Articles
Permanent URI for this collection
Browse
Browsing Articles by Author "Gitari, Wilson Mugera"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Mobility and Attenuation Dynamics of Potentially Toxic Chemical Species at an Abandoned Copper Mine Tailings Dump(MDPI, 2018-02-12) Gitari, Wilson Mugera; Thobakgale, Rendani; Akinyemi, Segun AjayiLarge volumes of disposed mine tailings abound in several regions of South Africa, as a consequence of unregulated, unsustainable long years of mining activities. Tailings dumps occupy a large volume of valuable land, and present a potential risk for aquatic systems, through leaching of potentially toxic chemical species. This paper reports on the evaluation of the geochemical processes controlling the mobility of potentially toxic chemical species within the tailings profile, and their potential risk with regard to surface and groundwater systems. Combination of X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) techniques, show that the tailing profiles are uniform, weakly altered, and vary slightly with depth in both physical and geochemical properties, as well as mineralogical composition. Mineralogical analysis showed the following order of abundance: quartz > epidote > chlorite > muscovite > calcite > hematite within the tailings profiles. The neutralization of the dominant alumino-silicate minerals and the absence of sulfidic minerals, have produced medium alkaline pH conditions (7.97–8.37) at all depths and low concentrations of dissolved Cu (20.21–47.9 μg/L), Zn (0.88–1.80 μg/L), Pb (0.27–0.34 μg/L), and SO42− (15.71–55.94 mg/L) in the tailings profile leachates. The relative percentage leach for the potentially toxic chemical species was low in the aqueous phase (Ni 0.081%, Cu 0.006%, and Zn 0.05%). This indicates that the transport load of potentially toxic chemical species from tailings to the aqueous phase is very low. The precipitation of secondary hematite has an important known ability to trap and attenuate the mobility of potentially toxic chemical species (Cu, Zn, and Pb) by adsorption on the surface area. Geochemical modelling MINTEQA2 showed that the tailings leachates were below saturation regarding oxyhydroxide minerals, but oversaturated with Cu bearing mineral (i.e., cuprite). Most of the potentially toxic chemical species occur as free ions in the tailings leachates. The precipitation of secondary hematite and cuprite, and geochemical condition such as pH of the tailings were the main solubility and mobility controls for the potentially toxic chemical species, and their potential transfer from tailings to the aqueous phase.Item Open Access Treatment of Acid Mine Drainage with Coal Fly Ash: Exploring the Solution Chemistry and Product Water Quality(IntechOpen, 2018) Gitari, Wilson Mugera; Petrik, Leslie F.; Akinyeni, Segun A.A treatment process for Acid mine drainage (AMD) using coal fly ash (CFA) was developed. AMD was treated with CFA as the alkaline agent at different CFA: AMD ratios and pH, electrical conductivity (EC) evolution monitored over time. In a separate experiment two AMD sources with differing chemistry were treated with the same CFA to evaluate the impact of AMD chemistry on the treatment process and product water quality. Various CFA: AMD ratios were stirred in a beaker for a pre-set time and the process water chemistry determined. pH was observed to increase in a stepwise manner with buffer zones observed at 4-4.5, 4.5-7 and 6-8. AMD with low concentration of Al3+, Fe2+, Fe3+ and Mn2+ didn’t exhibit these buffer zones. Two competing processes were observed to control the evolving pH of process water: dissolution of basic oxides (CaO, MgO) from CFA led to pH increase and hydrolysis of AMD species such as Al3+, Fe2+, Fe3+ and Mn2+ led to pH decrease. These processes initiated mechanisms such as precipitation, adsorption and ion exchange that led to decrease in inorganic contaminants as the treatment progressed. Inorganic contaminants removal was directly related to amount of CFA in reaction media. Precipitation of insoluble hydroxides and Al, Fe-oxyhydroxysulphates contributed to removal of major and minor chemical species. Precipitation of gypsum contributed to removal of sulphate. Na, K and Mg remained largely in solution after initial decrease. Significant leaching of B, Sr, Ba, and Mo from CFA was observed and was directly linked to amount of CFA in the reaction media. This will be a shortcoming of the treatment process since other processes may be required to polish up the product water. The treatment of AMD with CFA was observed to depend on CFA, AMD chemistry, treatment time and might therefore be site specific.