

Effects of mineral ions on yeast performance under very high gravity beer fermentation

By

Henry Okwudili, Udeh

Student No: 11626674

MSc Research Project (FST 6099)

A research project submitted in fulfilment of the requirement for the degree of MSc in Food Science and Technology (Course work and mini-dissertation)

Supervisor: Mr. T.E. Kgatla

Co-Supervisor: Professor A.I.O. Jideani

Department of Food Science and Technology, School of Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950.

UNIVEN LIBRARY

March, 2014

ABSTRACT

The effect of three divalent cationic concentrations of Zn2+, Mg2+, and Ba2+ on yeast (Saccharomyces pastorianus) fermentative performance was investigated at independent and four variable combinations in 24 experimental runs in accordance with the experimental design. Very high gravity wort of 21°P was prepared from barley malt, hops and water, to which the metal and their combinations were supplemented and subsequently pitched using lager brewing strain S. pastorianus and allowed for 96 h fermentation. After 96 h of fermentation, highest wort fermentability of %F = 30.16 and %F = 29.53 which were not significantly different (p \geq 0.05) were obtained for wort medium supplemented with 12, 900, and 4 ppm (Zn²⁺, Mg²⁺, and Ba²⁺) and 900 and 4 ppm (Mg²⁺ and Ba²⁺) respectively. Maximum ethanol yield of 8.4347% (v/v) was obtained in wort medium supplemented with the metal combination ratio of 12:900:4 (Zn2+, Mg2+, and Ba2+). For the individual metal concentration levels tested, high wort fermentability of %F = 27.94 and %F = 26.03 which were not significantly different (p \geq 0.05) was obtained for wort media supplemented with 700 ppm Mg^{2+} and 2 ppm Ba^{2+} . High ethanol yield of 7.8844% (v/v) and 7.6245% (v/v) was recorded for Mg²⁺ and Ba²⁺ at concentration of 700 ppm and 2 ppm, respectively. Wort pH of 4.75 was found optimal for the yeast activity. Concentrations of 10 ppm Zn²⁺ and 4 ppm Ba2+, were found to reduce yeast performance. Thus, the study established relationships between the metal ions on yeast fermentative performance and the impact of Ba2+ on yeast fermentation process – with concentrations of 1 and 2 ppm Ba^+ found significant (p \leq 0.05).

Keywords: Very high gravity fermentation, brewer's yeast, yeast stress, yeast stress tolerance, yeast performance, mineral ions, fermentability, ethanol yield.