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Abstract 

Wildfires are becoming more frequent due to increased fuel load, human activities and climate 

change and are some of the major hazards in the southern Africa region. The delay in the onset 

of the rainy season coupled with rising surface air temperatures have increased fire risk in the 

region. This study investigates the interactions between climate change and fire regimes in the 

grasslands of Limpopo, a region in northern South Africa. The study seeks to understand how the 

Conformal Cubic Atmospheric Model (CCAM) simulates the present-day fire season. The 

frequency of high fire risk days in the “present-day climate” and the future of fire risk under climate 

change are analysed using a fire danger index. The study employs the “McArthur Forest Fire 

Danger Index” which links rainfall, temperature and wind to fire danger. The CCAM model at a 

horizontal resolution of 8 km is forced with an ensemble of six “General Circulation Models” 

(GCMs) from phase 6 of the “Coupled Model Intercomparison Project” (CMIP6) to simulate 

climate change projections for the period 2021-2040, 2041-2060 and 2080-2099 against a 

historical baseline from 1961 to 1980. The models were validated using observational data 

comprising CRU ts4 gridded weather station data with spatial resolution of 0.5° × 0.5° and ARC-

SA weather station data. Taylor diagram was used for model verification integrating standard 

deviation, correlation coefficient, and Root Mean Square Errors (RMSE). Future climate 

projections were analysed with focus on the 50th percentile. The models’ verification showed close 

variability, least RMSE and high correlation (>r=0.9) compared with CRU ts4. The 50th percentile 

future simulations projected extreme hot and dry conditions over much of the study area. 

Projected mean annual high fire danger days from near future (2021–2040) reached a peak (> 

10–15 days) south of the grasslands, whilst the west region peaked (15–20 days) during 

September and October. During mid future (2041—2060), high fire danger days increased by a 

peak of 5 days and a further 5 days into the far future (2080–2099) during September and 

October. Results of this study contribute to an understanding of changing fire regimes in response 

to recent unprecedented temperature increases coupled with repeated heat waves, which appear 

to be modulating fire intensity in the study area. 

Keywords: Climate change, fire regimes, fire danger, grasslands, “McArthur Forest Fire Index”, 

CCAM. 
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Chapter 1: Introduction 

1.1 Background 

African savannas are fire prone ecosystems, with most wildfires occurring during the dry season 

(Laris et al. 2020). Dry and wet seasonality directly affects fuel moisture, fuel load and fire 

intensity, which vary from season to season (Platt et al., 2015). Most large fires that occur around 

the globe are influenced by weather conditions prevailing (Duane and Brotons, 2018). Weather 

conditions have a more direct effect on vegetation moisture content and fire behavior which 

becomes extreme under high-temperature, low humidity and windy conditions (Piñol et al. 1998). 

Large proportion of burned areas and biomass emissions around the globe are identified in 

African savannas (Platt et al., 2015). Climate is one of the contributing factors that define fire 

regimes with the interaction of topography and fuel available (Countryman, 1972; Kasischke and 

Hoy, 2012). Since about 400 million years ago, the frequent occurrence of wildfires maintained 

bush encroachment into the grasslands (Scott, 2000). Using proxies such as pollen spectra and 

micro-charcoal adopted as phenomena to explain frequent occurrence of wildfires since the last 

glacial maximum (Flannigan et al. 2009; Cordova et al. 2019). 

Biomass burning is a significant source of atmospheric pollutants, both gasses and particulates, 

at regional and global scales (Crutzen et al, 1979). Atmospheric gases such as carbon monoxide 

(CO), carbon dioxide (CO2), methane (CH4), volatile and semi-volatile organic compounds, 

aldehyde, organic acid and inorganic elements and particulate matter (PM) are released when 

burning biomass materials (Yadav and Devi, 2019). The continuous emission of CO2 to the 

atmosphere stimulates growth of vegetation biomass (Hovenden et al, 2019). Since rising CO2 

levels in the atmosphere directly affect the climate and stimulate growth of woody vegetation, fire 

frequency and intensity in the grassland’s ecosystem have also changed while posing significant 

threats (Ratajczak et al, 2014). Thus, sub-tropical and tropical grassland ecosystems require 

frequent fire to curb the woody plant encroachment because fire exerts significance on the 

structure, composition, and dynamics of areas (Gordijn et al, 2018). 

Grassland and savanna fires occur frequently, mostly in tropical regions, but also in temperate 

latitudes (Flannigan et al, 2009; Petermann and Buzhdygan 2021). Southern Africa is largely a 

semi-arid region with strong warming induced by the increase of an albedo due to suppressed 

precipitation and desertification which influence radiative cooling at the land surface (Wang, 2004; 

Kruger and Shongwe, 2004). The accumulated dead biomass and other fine flammable fuels ease 

ignition under strong winds while inducing high intensity fires (de Groot et al, 2010). Wildfires 
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spread widely in grassland around the world and number of fires that occur in grasslands is shown 

in Figure 1.1 (Leys et al, 2018). 

 

Figure 1.1 Fire activity for the year 2015 over Global Grassland Types. Colour ranges represent 

a number of fires over 100 km2 per day; from low fire activity in the red to high fires in yellow. 

Black areas represent grassland (source: Leys et al, 2018). 

The main synoptic weather system that affects fire regimes over the southern Africa region is the 

subtropical high-pressure belt which is divided by the continent to become the Atlantic Ocean 

High and the Indian Ocean High (Dyson and van Heerden, 2002). During the austral summer, 

easterlies draw moisture from the southwest Indian Ocean and warm Agulhas Current, which is 

a major moisture source region (Rapolaki et al, 2019). The winter season corresponds with the 

dry season over much of the subcontinent and the airflow is predominantly anticyclonic and 

subsiding (Tyson and Preston-Whyte, 2000). Strong drainage winds locally known as Berg winds 

are associated with most large fires that occur in South Africa. This occurs when a continental 

high situated over the interior and coastal lows develop resulting in descending air down the 

escarpment which warms adiabatically (Tyson and Preston-Whyte, 2000). 

Several studies have determined the significant role of climate and weather in wildfire activity 

(e.g., Kraaij et al, 2018; Engelbrecht et al, 2015; Keeley et al, 2016). Thus, Global Climate Models’ 

(GCMs) ability to simulate the past and future climate under different greenhouse gases emission 
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scenarios aids the understanding of present and future fire regimes (Fried, et al, 2008). Fire 

frequency and fire severity have been projected to increase by most GCM simulations in the 

western United States (Liu and Wimberly, 2016). These projections are based on links between 

fire activity, annual temperature, and the literature connecting fire activity with annual climate 

variability, and often at varying spatial scales (Liu and Wimberly, 2016). 

1.2 Dry and wet seasonality 

Seasons are determined by the rotation of earth around the sun and intensity of sunrays that a 

certain area receives at a given time of the year (De Paor et al, 2017). Due to the earth’s tilted 

axis at an angle of 23.5°, seasons are established on different parts of earth (Milutin, 1941). The 

mid-latitude climate is distinguished by four seasonal cycles consisting of summer, winter, spring 

and autumn, whereas the tropical climate is mainly characterized by a dry season and a wet 

season (Perry, 1987).  

The expansion of the Hadley cell poleward is distinguished by upwards lifting of convergent winds 

in the tropics which then sink along the subtropical regions in a high-pressure zone (Reichler, 

2016). However, where the Hadley cell converges upwards, the Intertropical Convergence Zone 

(ITCZ) is established (Yan, 2005).  The north-south movement of the tropical rain belts and the 

ITCZ is a major cause of dry and wet seasonality (Yan, 2005). Shifting of ITCZ over Africa brings 

more summer rainfall towards the subtropical regions of either the Southern or Northern 

Hemisphere (Nicholson, 2018). Dry and wet seasonality in southern Africa is influenced by various 

factors including topography, Pacific El Niño Southern Oscillation (ENSO), Indian Ocean dipole 

and seasonality of weather systems (Ogwang et al, 2020). It is also driven by several synoptic 

weather systems (Rapolaki et al, 2019). Rainfall producing systems include cloud bands, cut off-

lows, subtropical ridging high pressure systems, tropical cyclones and tropical lows most of which 

tend to occur at certain times of the year (Muofhe et al, 2020; Chikoore et al, 2021; Ndarana et 

al, 2022).  

The wet season over southern Africa is influenced by tropical-extratropical cloud band or Tropical-

temperate troughs (TTTs) that contribute nearly half of the regional summer rainfall (Harrison, 

1984; Hart et al 2010; Hart et al, 2013). A complex topography also contributes to more summer 

rain through orographic lifting over the escarpment (Chikoore, 2017). Nonetheless, the onset of 

the rainy season is projected delay considerably by 2070 – 2099 across southern Africa 

(Wainwright et al., 2021). Interannual variability of mid-tropospheric Botswana High advances the 

formation of TTTs when it is anomalously weak. Dry spells are becoming more intense due to mid 



4 | P a g e  
 

tropospheric anticyclone that develops over Namibia and ocean warming east of Madagascar that 

drives atmospheric moisture away from the continental interior (Ndarana et al. 2022). The 

Botswana High is found to have strong positive correlation with dry spell frequency and extreme 

temperature days during summer over southern Africa (Driver and Reason, 2017). Extreme 

drought conditions occur over southern Africa under strong Pacific El Niño conditions, a 

strengthened westerly jet stream and a positive Indian Ocean Dipole mode (Chikoore and Jury, 

2021). 

1.3 African Savanna 

African savannas supply valuable ecological services including water, grazing and browsing land, 

food, fuel and habitat for a large proportion of African people, and incomparable biodiversity that 

sustain wildlife tourism (Osborne et al, 2018). Savannas are distinguished by trees and grasses 

co-occurring in the seasonal tropics between the rainforests along the equator and mid-latitude 

desert ecosystems (Hutley and Setterfield, 2008). The structure and function of savannas are 

complex as shown in Figure 1.2, with interactions between various environmental determinants 

which include fire activities, herbivory, available nutrients and moisture to be effective (Hutley and 

Setterfield, 2008). 

African savannas transverse over a range of soil types and receive annual rainfall within a large 

range of 200 – 1800 mm (Mishra and Young, 2020). The largest savanna in Africa is the Miombo 

extending across central and southern Africa with area coverage of 2.7 million km2 which is 

distinguished by tall deciduous species with canopy height of less than 12 m and herbaceous 

layer of tall grasses (Frost, 1996; Muvengwi et al, 2020; Sikuzani et al, 2020). In southern Africa, 

savannas that spread on fertile soil are distinguished by fine leaves which help them to save water 

and thrive in the semi-arid areas which are dominated by Senegalia and Vechelia species whilst 

weathered and infertile soils are dominated by Broadleaved savannas, such as Combretum 

species (Hutley and Setterfield, 2008; Hassan and Hamdy, 2021). In northern Africa, deciduous 

trees and xerophytic grasslands have dominated the Sudanian savannas which in turn act as 

transitional zone for the drier Sahelian savannas north and wetter Guinea type savannas on the 

south (Fayolle et al, 2019). The east African savannas expand on arid and semiarid environments, 

as they are dominated by grasslands with scattered shrubs and trees (Hutley and Setterfield, 

2008; Utaile et al, 2021). 
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Figure 1.2 Interactions between factors influencing the savanna structure. The biomass on the 

savannas is determined by water availability, nutrients, and fires. Climate and soil types regulate 

these factors for any given location (Source: House et al, 2003)  

The savanna biome in Africa is estimated to have existed at different ages. Subtropical savannas 

are estimated to date between 10 and 15 million years ago, while the savanna that is found farther 

south is estimated to be less than 3 – 4 million years old (Hutley and Setterfield, 2008). Evidence 

has shown grasslands to date between 15 and 17.5 million years ago in East Africa with dominant 

transition to C4 grassland from 10 million years ago (Retallack, 1992; Linder, 2017). C3 

photosynthetic pathway grasses are more nutritious than C4 but their nutritional quality is affected 

by elevated atmospheric CO2 (Barbehenn et al, 2004; Jobe et al, 2020). Temperature and rainfall 

also determine distribution of C3 and C4 grasses, whereby C4 grasses commonly grow in areas 

that are warm and wet, while C3 grows in drier and cold areas (Sinclair, 2002; Mahdavi et al, 

2018; Pardo and VanBuren et al, 2021). Nonetheless, C4 grasslands are presently well 

established in East and southern Africa due general transition towards an increasing magnitude 

of C4 to C3 grasses and their patches may have existed before 10 million years ago (Uno et al, 

2011). 
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1.4 Fire on the Savanna 

Annually, up to 80% of landscape in African savannas are burnt by wildfires and this is driven by 

the availability of finer fuels and variable rainfall patterns (Archibald et al., 2010; Laris et al, 2020; 

de Dios, 2020; Harrison et al, 2021). Naturally occurring wildfires are common during the dry 

season on the African savannas and play a significant role in maintaining the arrangement and 

structure of these ecosystems (Bond, 2019). In southern Africa, savanna is a fire-prone 

ecosystem due to climate variability and vegetation types over the region (Maurin et al, 2014). 

Miombo woodlands and Dambo grasslands are the most dominant savanna ecosystems in 

southern Africa. During dry season in the year 2000, over one-third of the total burned area in 

southern Africa was recorded from this savanna ecosystem (Sinha et al, 2003). 

Increasing inter-annual variability of rainfall and emission of greenhouse gases have significant 

impacts on the savanna and fire regimes (Synodinos et al, 2018; Devine et al. 2017). Savanna 

ecosystems are highly vulnerable to woody encroachment due to rising levels of atmospheric 

CO2 and improper land management, with significant consequences on grazing systems, fire 

regimes and symbolic wildfires (Smit and Prins, 2015). Natural fires or prescribed burning help 

maintain vegetation composition and structure of the savannas, such that herbaceous and woody 

plants coexist (Archibald et al, 2017). Prescribed burning refers to controlled fires conducted in 

fire management on protected African savannas. The goal is to remove moribund and unpalatable 

grass by burning at given time to supress uncontrolled/unplanned fires which may rise during the 

dry season (Nieman et al, 2021). 

1.5 Climate Change in the Savanna 

Climate change disturbances to the ecosystem are expected to intensify in future with 

catastrophic events such as longer droughts affecting the tropical savannas (Sankaram, 2019). 

Furthermore, tropical savanna climate will become more vulnerable to extreme heatwaves, high 

fire frequencies, and loss of vegetation cover (Hoffmann et al, 2002). When the climate gets 

warmer, precipitation becomes more intense but less frequent. Precipitation intensity directly 

affects soil water availability from surface to deep soil, an increase in precipitation intensity 

increases deep soil water availability which in turn support rapid growth of woody plants that has 

deep roots system resulting into bush encroachment in savanna ecosystems (Engelbrecht et al, 

2016; Berry and Kulmatiski, 2017). 

Köppen-Geiger climate zones are projected to change when global temperatures increase by 3°C 

(Engelbrecht and Engelbrecht, 2016). High-resolution regional climate models showed south-
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westwards expansion of tropical savanna zone to South African east coast and invasion of woody 

cover into grasslands (Engelbrecht and Engelbrecht, 2016). The semi-arid region is observed to 

have shifted hundreds of kilometres eastwards across South Africa (Jury, 2021). Furthermore, 

there are large uncertainties in future projections of biomes across Africa due to climate and CO2 

changes but using high resolution improve model simulation of these impacts may provide 

adaptable strategies that are highly flexible (Martens, 2020). 

1.6 Research questions 

1.6.1 How do models simulations compare with observations? 

1.6.2 To what extent has climate change altered fire season characteristics over the 

Limpopo grasslands? 

1.6.3 How are high fire risk days projected to change between the current and future fire 

regimes? 

1.7 Aim and specific research objectives 

1.7.1 Aim 

The aim of this study is to investigate impacts of climate change on fire regimes on Limpopo 

grasslands using historical observations and downscaled climate change projections 

1.7.2 Specific research objectives 

(a) To determine models’ performance against observations (1961-1980) 

(b) To simulate future changes in the climate of the grasslands under the RCP8.5 

emission scenario 

(c) To investigate changes in the future high fire risk days using the McArthur Forest Fire 

Danger Index under RCP8.5 scenario  

1.8 Dissertation structure  

This research is divided into six chapters: Chapter 1 provides the background of the study, 

research questions, study aim and specific research objectives.  The literature review is detailed 

in Chapter 2, focusing on studies of grasslands and aspects that influence fire behaviour at 

different temporal and spatial scales. This chapter explains the link between climate conditions 

and the occurrence of wildfires. Chapter 3 details the datasets, models, methods of analysis and 

instruments employed in this study. The delineation of the research and study area have been 

also covered in this chapter. Results of this study are presented in Chapter 4 and 5. Chapter 4 

focuses on the historical baseline climatology of the Limpopo Grasslands: 1961 – 1980 through 



8 | P a g e  
 

analysing several climate variables important for fire risk. Projections of high fire risk days on the 

grasslands for the near-term, medium-term and the far future are presented in Chapter 5. The 

conclusions and recommendations of this study are offered in Chapter 6. 
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Chapter 2: Literature Review 

2.1 Introduction 

Understanding dynamics in drivers that shaped present-day fire regimes helps to predict changes 

to fire regimes in future (Rogers et al, 2020). Drivers of fire regimes include the climate, land 

cover, and human activity via ignition and suppression (Rogers et al, 2020). Climate variability is 

a significant role in global fire activities, hence human activities interfere with an interaction 

between climate and fire (Abatzoglou et al, 2018). “General Circulation Models” (GCM) have 

simulated future climate induced by human activity to be composed of more severe fire weather, 

longer fire seasons, more fire ignitions and more area burned (Flannigan et al, 2006; Restaino 

and Safford, 2018). Fire activities are increasing in many regions around the world because of 

climate change (Barros et al, 2021). High temperatures associated with drought and prolonged 

dry periods and drought are major drivers of increased wildfire activities experienced in recent 

decades (Vose et al, 2021).  

This chapter reviews and acknowledges the refereed literature on climate change and fire 

regimes, with a focus on those that have used climate model simulations and meteorological 

observations. 

2.2 Climate Change 

Climate change results from the variability of the climate system that includes the atmosphere, 

land, ice, biogeochemical cycles, living and non-living components of the planet earth because of 

rising temperatures induced by human activities (Ahmed, 2020). A significant consequence of 

climate change is global warming, which emerged by excessive emission of greenhouse gases 

such as CO2, N2O, and CH4 (Fawzy et al, 2020; Ahmed, 2020). Human activities since the 

industrial revolution have contributed about 1°C of global warming and are still expected to have 

risen by 1.5°C in the early 2030s (Fawzy et al, 2020). Global warming of 1.5°C projected high 

climate variability because of climate change as the most concerning issue that requires new 

knowledge of adaptation and mitigation. 

Climate models from “Phase 6 of the Coupled Model Intercomparison Project” (CMIP6) are 

ensembled to project future greenhouse gas emission and climate change milestone through 

illustrative emission scenarios referred to as “Shared Socioeconomic Pathways” (SSPs) and 

Representative Concentration Pathways (RCPs) (Su et al, 2021). Climate change research 

community pioneers’ emission scenarios to ease the evaluation of the future climate, including 

mitigation, vulnerability and adaptation (Raihi et al, 2017; O’Neil et al, 2017). The Sixth 
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“Assessment Report” (AR6) prepared by the “Intergovernmental Panel on Climate Change” 

(IPCC) which comprises three working groups (WG) incorporating developments in climate 

science to project scenarios that are pivotal to climate change and policy makers (Burgess et al, 

2020; Eyring et al, 2021).  

SSPs scenarios in AR6 WG1 report illustrated future greenhouse gas scenarios ranging from best 

effort mitigation scenarios SSP1-1.9 to the succeeding high mitigation SSP2-2.7 then low SSP3-

7.0 and SSP5-8.5 mitigation (IPCC, 2021; Engelbrecht and Monteiro, 2021). Climate change 

projected under SSP5-8.5 low mitigation at 1.5°C, 2°C, 3°C, and 4°C global warming is 

considered ‘code red for’ humankind by the United Nations (UN) Secretary - General (van der 

Linden et al, 2021; Engelbrecht and Monteiro, 2021). The statement complements the Paris 

Agreement on Climate Change about global warming at 1.5°C and 2°C defined as ‘dangerous 

climate change’ (van der Linden et al, 2021; Engelbrecht and Monteiro, 2021). 

 

Figure 2.1 Near term (2021 -2040) projection of change in annual precipitation under SSP5-8.5 

global warming level 1.5°C, 2°C, 3°C, and 4°C using historical baseline of 1850 -1900 (Source: 

Engelbrecht and Monteiro, 2021) 
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Projections of change in annual precipitation may be derived from an ensemble of 30 global 

circulation models that contributed to the CMIP6 as shown on Figure 2.1 (Engelbrecht and 

Monteiro, 2021). Annual precipitation over southern Africa is projected to decline and the region 

becoming very dry moving from global warming level 1.5°C, 2°C, 3°C, and 4°C (Engelbrecht and 

Monteiro, 2021). The southern Africa region, particularly South Africa, Namibia and Botswana will 

encounter outstanding significant warming during SON (September-October-November) season 

(Maure et al, 2018). Reduced precipitation is projected in regions such as the Limpopo River 

Basin, Zambezi River Basin and parts of South Africa’s Western Cape (Maure et al, 2018). 

Projected changes in mean annual rainfall and length of dry – wet period over southern Africa 

exert significant threats to fragile ecosystems and agriculture (Kluste et al, 2018). 

 

Figure 2.2 Near term (2021 -2040) projections of change in surface temperature (°C) under SSP5-

8.5 at global warming level 1.5°C, 2°C, 3°C, and 4°C using historical baseline of 1850 -1900 

(Source: Engelbrecht and Monteiro, 2021) 
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Temperatures are projected to increase drastically across the north pole, continental Europe, 

North America, southern Africa and Australia as shown on Figure 2.2 (Engelbrecht and Monteiro, 

2021). The projections under SSP5-8.5 at global warming level 2°C show temperature to increase 

by 4°C in the middle of 2021 – 2040 over the northern latitudes (Carvalho, 2021). The Paris 

Agreement and IPCC aim to limit mean global warming to below 2°C throughout the 21st century 

and to encourage even warming below 1.5°C aiming to reduce Arctic ice melting (Ming et al, 2021; 

DeConto et al, 2021).  

2.3 Climate Change in South Africa 

South Africa is highly vulnerable to impacts of extreme temperature events, including frequent 

heat waves, warm spells, cold waves and cold spells (Mbokodo et al, 2020; van Der Walt and 

Fitchett, 2021). Over the past five decades, temperature is increasing over southern Africa at 

more than twice the global levels of temperature increase (Engelbrecht et al, 2015). The main 

consequence of climate change is increasing the frequency of extreme weather and climate 

events such as drought all over the world (Dube et al, 2020). Global Climate Models (GCM) have 

projected much of South Africa to become warmer and drier at global warming level of 1.5°C in 

the middle of near future term 2021 to 2040 (Englebrecht and Monteiro, 2021).  

The location of South Africa in the subtropics makes it more vulnerable to extreme climatic events 

(Smith & Sheridan, 2020). Climate – induced drought often leads to food insecurity, water scarcity, 

and threatens tourism (Zwane 2019; Muringai et al, 2021; Nyoni et al, 2021; Verschuur et al, 

2021). The drought episode commonly known as the “Day Zero” phenomenon during early 2018 

in the City of Cape Town (3.7 million population) was among the first major urban settlements  

areas to run low on water (Burls et al, 2019). Water shortages in Cape Town were significantly 

influenced by decreasing winter rainfall days and intensity over a long period (Burls et al, 2019). 

Most of South Africa receives summer rainfall while Cape Town and neighbouring south western 

Cape regions receive winter rainfall mostly from cold fronts linked to extratropical cyclones which 

propagate east across the South Atlantic (Reason et al, 2002). 

Drought is persistent in the Northern Cape Province in South Africa because of climate change 

(Ramafoko et al, 2021), even though the concept of drought is debatable in arid regions. 

Unprecedented extreme drought events induced water supply deficiency affecting agricultural 

sector in different parts of South Africa including Eastern Cape (Archer et al, 2022), Free State, 

KwaZulu-Natal, North West and Limpopo Province during the past decades (Masemola, 2021). 

Meanwhile, drought led to a reduction of tourists from the Western Cape because of water supply 
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shortage (Dube et al, 2020). Extreme wildfire events have occurred in southwestern Cape Coast 

in the last decade due to climate change and global warming (Kganyago et al, 2021). The recent 

Knysna fire was a catastrophic event in the Western Cape triggered by unprecedented drought, 

high fire danger conditions and land use change (Kraaik et al, 2018).  

In addition to increased risk of drought and wildfire activity over South Africa due to climate 

change, heavy rainfall events have also become more frequent. The annual risk of flooding in 

South Africa is forecasted to be above 80% because of anomalous rise in global temperatures 

triggered by socio-economic activities (Munyai et al, 2019). Warming will most like result in more 

frequent tropical cyclones over the warm Indian Ocean resulting in flooding over the coastal areas 

(Kusanganya et al, 2014). Flooding may affect the vegetation and fuel load and fire regimes. 

Understanding vulnerabilities and risks due to climate change will help to develop adaptation 

strategies and finding solutions towards natural disaster risk reduction (Masipa, 2017; Ofuegbu 

et al, 2017). 

2.4 Understanding wildfire 

2.4.1 Drivers of fire 

Fire has a significant role in the earth system, regardless that some terrestrial ecosystems are 

fire sensitive, wildfires are not foreign ecological disturbances (Cochrane et al, 2021; Bowman et 

al, 2020). Wildfires occur in ecosystems as a function of climate, human activities, and vegetation 

types (Cochrane et al, 2021). Humans affected factors that shape fire regimes by changing timing 

of ignitions, climate and fuels (Rogers et al, 2020; Archibald 2016). Factors that shape fire regimes 

include fire frequency, severity, intensity, type, seasonality and spatial scale (Cochrane et al, 

2021). 

Wildfire occurrence and behavior have been changing during recent decades in several regions 

worldwide (Keely and Syphard, 2021). Land use change and associated climate related stress 

factors induced extreme events such as drought which influence occurrence of wildfires (Roces-

Diaz et al, 2021). By far, the majority of wildfires are ignited by human interactions with landscapes 

which influence flammability (Viedma et al, 2018). Impacts of human factors on wildfires override 

the role which climate plays and it is difficult to understand due to the varying nature of factors 

(Viedma et al, 2018). Variation caused by human factors involves decreasing fires through 

enforcing suppression policy or increasing fire activities due to Land Use/Land Cover (Bajocco et 

al, 2019; Schmidt and Eloy, 2020).  
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2.4.2 Fire seasonality and frequency 

Fire frequency may be defined as the rate at which fires occur within a specific region over a 

precise period of time (Curt, 2018). Factors affecting fire frequency consist of natural (weather 

conditions, dead biomass level and topography) and anthropogenic (human) factors (Kavhu and 

Ndaimani, 2021). The composition and structure of plant communities determine their fire 

frequency (Gallagher et al, 2021). The savanna is a fire-prone biome that requires fire to maintain 

their structure and composition but high fire frequency causes high mortality of other plant species 

(Gallagher et al, 2021). Fire frequency is also determined by the preceding extreme rainfall events 

which influences high fire frequency of large fires in the succeeding years (Verhoeven et al, 2020). 

Fire season refers to the period throughout the year when the ignition and spread of wildfires is 

most likely, burning dry fuel while affecting resources (Zhao et al, 2020). The fire season is 

associated with high fire frequency and intensity (Govender et al, 2006). The length of a fire 

season is determined by climate conditions: high temperatures, low humidity, no rain or days with 

little rain, and high winds that influence fire to spread (Wotton and Flannigan, 1993; Flannigan et 

al, 2013; Zhao et al, 2020). Fire frequency is a critical component of defining a fire regime, which 

is integrated with the intensity of wildfires to determine fire seasonality over a region (Pyne et al, 

1996a; Pyke et al, 2010; Gao et al, 2021) 

2.4.3 Fire Intensity and Severity 

Fire intensity is linked to the amount of heat released by an active fire per unit area and time 

(Rossi et al, 2019). It is used to measure energy output, but it is confused with fireline intensity by 

some authors (Keeley, 2009). Fire records comprise fire intensity measured as an attribute, 

making it a significant key element of a fire regime (Govender et al, 2006). Fire intensity plays a 

significant role in understanding fire behaviour in forests measuring energy released at different 

stages of a fire (Keeley, 2009). Fire intensity is defined as the most commonly used factor to 

describe fire behaviour among others, including fire direction and rate of spread (Byram, 1959; 

Ruecker, 2021). High fire intensity induces high mortality and loss of species with profound 

destructive impacts on vegetation composition and structure (Trouve et al, 2021). 

Fire severity refers to destructive impacts, such as tree mortality or loss of biodiversity that fire 

has on the ecosystem (Keeley, 2009). Factors influencing fire severity include forest type, aspect, 

slope, fire weather and period since previous major disturbance (Lindenmayer 2021). Vegetation 

composition influences high fire severity in previously long-time unburned areas (Cansler et al, 

2022). Invasive non-native grasses drive high fire intensity and promote mortality of heat-sensitive 
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seeds and buds within native vegetation communities (Tomat-Kelly, 2021). Since the savanna is 

made up of trees, shrubs and grasses, expansion of woody savanna jeopardizes grass cover 

hence increasing fuel load, fire intensity and fire severity (Johansson et al, 2021).  

2.4.4 Fire duration and size 

Fire duration and size are correlated key outcome when assessing fire behaviour and the area 

burnt over a specific time certain period (Xi et al, 2021). The size of wildfires, whether small or 

large and the time during which wildfires continue burning play’s critical role in understanding fire 

behaviour (Calkin et al, 2021; Santos et al, 2021). Fire duration and fire size are correlated due 

to dominant variability in extreme magnitude (Xi et al, 2021). Rate coefficients have indicated 

rapid increase in fire size as the number of spread days increases (Wang et al, 2020). Large and 

long duration fires are influenced by weather and vegetation conditions, resulting in a large extent 

of burned area (Chuvieco, 2008; Wang et al, 2020; Potter and McEvoy, 2021). 

2.4.5 Fire weather 

2.4.5.1 Wind 

Understanding wind components in fire weather forecasting and prediction is crucial for foresters, 

wildfire risk management and public (Vancil et al, 2020). Wind is the most influential weather 

variable to fire behaviour due to the unpredictable variability of wind speed and wind direction 

over time and space (Payne et al, 1996). Wind speed and direction are important variables in 

predicting the occurrence and spread rate of wildfires (Cruz et al, 2020; Vancil et al 2020). Most 

large wildfires in an area with less fuel load are wind driven (Prichard et al, 2020). Dangerous 

wildfire conditions are frequently rendered by extreme downslope mountain winds (Zigner et al, 

2020). Wind direction over uphill, sidehill and downhill the slope influences smouldering of 

wildfires (Christensen et al, 2021). Since wildfires affect air quality, both wind speed and direction 

contributed to accurate prediction of biomass burning emission pathways within or above the 

planetary boundary layer (Friberg et al, 2021). 

2.4.5.2 Temperature 

Temperature distributes heat required for the ignition and combustion process (Cardil et al, 2021). 

The warming of the earth’s climate is fuelling the frequent occurrence of extreme wildfire hence 

affecting fire behaviour (Shi et al, 2021). When temperatures are extremely high, soil and fuel 

moisture content decreases with chances of ignition and fire spread becoming high (Cardil et al, 

2021; Marques et al, 2021; Turco et al, 2019; Wei et al, 2020). Temperature is a critical factor that 
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determines fuel moisture and dryness of fuel (Countryman, 1972; Rani, 2021; Ma et al, 2021). 

Change of state from lower to higher temperatures increases fuel flammability and incidence of 

wildfires (Agovino et al, 2021).  

2.4.5.3 Relative Humidity  

Relative humidity (RH) is the ratio of moisture content in the atmosphere to the amount of moisture 

necessary to saturate the atmosphere at the same temperature and pressure (Yahia, 2019). RH 

directly affects moisture content of dead biomass due to exchanging moisture with air. When RH 

is low, moisture is withdrawn from the fuels, whereas when the RH is high fuels take moisture 

from the air (Barik and Baidya, 2020). Finer fuels are quick to gain and lose moisture content 

when relative humidity changes (Castillo et al, 202). Decreasing RH influences an increase in fire 

behaviour because of rapid dryness of fine fuels (Rodrigues and Torres, 2020; Biswell, 2020). 

Heavy fuel reaction to change in humidity is slower and usually requires significant moisture from 

rainfall (Rodrigues and Torres, 2020; Biswell, 2020).  

2.4.5.4 Precipitation  

Changes in precipitation affects the flammability of fuels and the frequency of ignition (Ziel et al, 

2015; Pickell et al, 2017; Gowan and Horel, 2020). Precipitation increases moisture content of 

surface fuel, resulting in suppression of wildfires during the wet season (Kharuk et al, 2021; Tang 

et al, 2021). Significant precipitation during the rainfall season enhances growth in vegetation 

cover, resulting in more fuel available for the upcoming dry or fire season (Lui et al, 2021). 

Precipitation deficiency has led to rapid development of drought conditions with extreme fire 

behaviour because of high ignition rate and rapid spread of wildfires (Miller, 2020; Lui et al, 2021; 

Ma et al, 2021; Kennedy et al, 2021).  Dry or drought seasons are often associated with very hot 

weather and heat wave conditions over southern Africa (Lyon, 2009; Chikoore, 2016; Chikoore 

and Jury, 2021) 

2.4.6 Fuel load 

Fuel load is referred to as the quantity of dead and live biomass available to burn (Rodrigues et 

al, 2021). The overall forest fuels are determined by fuel on both grasses and forest surface and 

ground layer only excluding the crown fuel even if they are likely to catch flame during a fire event 

(Stefandou et al, 2020). Fuel load estimation only takes into consideration any fuel with a diameter 

less than 6 mm, including leaves, twigs and barks that are classified as fine fuel, whereas woody 

fuel such as logs, larger twigs, large shrubs and fallen branches are coarse fuels (Matthews, 

2014; Sullivan et al, 2018; Price et al, 2022). Coarse fuels with diameter greater than 6 mm are 
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not considered when modelling the rate of fire spread (Sullivan et al, 2018). However, fine “dead 

fuel moisture” content is significant in understanding extreme wildfire behaviour when interacting 

with other factors, including weather, topography, and live fuel (Matthews, 2014).  

Predicting wildfire behaviour requires understanding interactions between fuel load and fuel type 

(Prior et al, 2018; McLauchlan, 2020). Fuel types comprise ground, surface, ladder and crown 

fuels, as shown in Figure 2.3. (Vora, 2016). Ground fuels are forest duff and other organic 

material, rotten roots, tree base, logs, and other decomposed woody debris (Reardon, 2020). 

They burn slowly while producing a large quantity of smoke (Reardon et al, 2007). Surface fuel 

refers to fuel lying on or near the ground surface, including litter, rotten logs, grass, herbs, and 

small shrubs (Keane, 2015). Ladder fuels transport fire from the surface to the canopy, including 

small trees, low-lying branches on medium to large trees (Pyne et al, 1996; Menning and 

Stephens, 2007). Crown fuels refer to the biomass that composes forest canopy, including snags, 

lichen, tree needles, mosses and small branches (Keane et al, 2001; Affleck, et al, 2013).  

 

Figure 2.3 Categories of fuels in the fire environment (source: Vora, 2016) 

2.4.7 Topography  

Topography is a stable variable in the triangle of fire behaviour (Pyne et al, 1996). Since 

topography influences the formation of local weather and distribution of dead or live biomass over 
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a certain region, topographic factors including slope, aspect, and elevation influence the fire 

spread rate or burn severity (Birch, et al, 2015). For example, fire spreads faster up-slope than 

downslope because flames of fire-head preheat fuels lying in front (Biswell, 2020). Aspect 

regulates insolation and also the vegetation type on-site. In southern hemisphere north-facing 

slopes comprises of drier vegetation and high intensity fires frequently occurs (van Breda Weaver, 

1991).  

Elevation directly affects fire behaviour due to change in temperature from low to high elevation, 

orographic lift of prevailing winds and adiabatic lapse rate (Estes et al, 2017). Fuels at lower 

elevation dry quicker because of high temperatures and low rainfall, unlike at higher elevations 

whereby orographic lift of prevailing winds and adiabatic lapse rate had resulted in condensation 

causing more rainfall (Estes et al, 2017). Fuel may be abundant at higher elevation but at 

extremely high elevations, there may be no fuel (San-Miguel et al, 2020). Fires at high elevation 

occur frequently because of extensive lightning strikes that occur at those levels (Vaughan et al, 

2021). Landscape features also play a critical role in fire behaviour, whereby canyons and ridges 

change prevailing wind patterns whilst intensifying fire behaviour (McBride, 2019). Other 

landscape features that affect fire behaviour include water bodies, roads and rock outcroppings, 

act as barriers that curb fire spread (Rothermel, 1972; McBride, 2019). 

2.5 Impacts of wildfire 

Fire has a significant role on earth system processes, but has profound adverse effects on the 

climate, environment and society at global and regional and global scales (Kasischke and Hoy, 

2012; Carlson et al, 2012). Fire affects biogeochemical cycles through interacting with the 

biosphere, atmosphere and cryosphere when burning (Ward et al, 2012). Biomass burning 

emissions are a major source of air pollution impacting air quality, human health and climate on 

several space scales (Chen et al, 2017; Wu et al, 2018). Wildfires deteriorate air quality and 

adversely impact human health (Fann et al, 2018). Burning biomass material releases harmful 

diverse gases, including CO, CO2, CH4, NOx, volatile organic compounds, and particulate matter 

(PM) (Sharratt and Auvermann, 2014). Greenhouse gases emission induced irreversible climate 

change trends, causing more frequent occurrence of wildfire which are unmanageable (Tavra, 

2021). 

Destructive wildfires with high fire frequency and high severity affect native fauna and flora that 

are less fire resilient (Lindenmayer, 2020). Plants and animal mortality from uncontrolled fire 

occurring in fire prone areas has affected endangered species from growing in numbers (Pausas 
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and Parr, 2018; Elliot et al, 2019; Kumari and Pandey, 2020). High fire frequency induces plant 

species richness but indirectly affect animals through changing their habitat and food availability 

(Heim et al, 2019; Pausus and Keeley, 2019). Ordinarily, controlled fires with low-intensity are 

used in ecosystem management to maintain habitat and wildfire management (Weiss and Brower, 

2021). Uncontrolled fires with high fire intensity because of woody shrub encroachment induced 

extinction of small mammals in arid Australia grassland and savanna ecosystems (Gordon and 

Letnic, 2019). Increasing wildfire activities have driven extinction of amphibians due to canopy 

density thinning and higher temperatures that affects amphibian’s thermoregulation and breeding 

sites (Spranger et al, 2020). Animals’ physiological response from harsh wildfire events affects 

their phenotype and sexual ornament, hence females remain stressed and unlikely not to 

reproduce but maintain (Weiss and Brower, 2021).  

Wildfire directly and indirectly affect physico-chemical property of soil including texture, pH, 

colour, bulk density, organic matter, nutrient and biota (Licas-Borja et al, 2020; Gomez-Sanchez 

et al, 2019; Isah et al, 2021). During burning, the fuel layers are consumed with heating soil 

minerals influencing change in soil texture, bulk density, colour, moisture content, and 

permeability (Isah et al, 2021). The degree of fire intensity, severity and frequency determines a 

variety of impacts on soil depending on weather, topography and fuel availability (Oyewole et al, 

2019). Not all fires affect soil properties but fires that burn at high temperature (>300°C) affect 

surface and deep soils (Lambao et al, 2021). High temperature fires change soil colour resulting 

in decreasing organic matter and increasing bulk density, silt and clay content (Zhang et al, 2018) 

2.6 Fire Regimes in South Africa 

A fire regime is a general pattern in which fires vary in intensity, frequency, size, extent, type, 

seasonality and severity in an ecosystem over an extended period (Keeley et al, 2009; Weston, 

2010; Rogers et al, 2020). Fire regimes are mainly determined by vegetation, weather and climate 

patterns (Pechony and Shindell, 2010). Climate change directly affects vegetation, fire severity 

and fire frequency due to prolonged dry days, abundant dead biomass and dry fuel load 

(Countryman, 1972). Fire regimes are also influenced by terrain features, slope exposure, fire 

management regimes and landscape patterns (Taylor and Skinner 2003). Topography, near 

surface winds and dead biomass available influences wildfire ignition, behaviour, the rate and 

direction of fire spread (Potter, 2012; Thurston et al, 2014;). 

Changes in rainfall seasonality shows a decrease in the wet season duration and a prolonged the 

dry season over South African rainfall zones (Roffe et al, 2021). Rainfall zones distinguished are 
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summer rainfall zone (SRZ), winter rainfall zone (WRZ) and year-round rainfall zone (YRZ) play 

a significant role to South Africa ecosystem (Tyson and Preston-Whyte, 2000). The bulk of the 

country is a SRZ, the south-west region (Western Cape Province) is a WRZ, while the Cape south 

coast is classified as YRZ (Tyson and Preston-Whyte, 2000; Botai et al, 2018; Roffe et al, 2019). 

Distribution of rainfall throughout the year has established two fire seasons in South Africa 

(Strydom and Savage, 2016). The period December to April coincides with the dry season in the 

Western Cape which is also the fire season over the region whilst May to November is the fire 

season for the rest of the country (Santam, 2014). Rainfall absence during summer over the 

Western cape plays a significant role in the occurrence of wildfire during summer (Strydom and 

Savage, 2016). Wildfires occur in all months of the year but most wildfires frequently occur in July, 

August, September and October, as shown on Figure 2.4 (Strydom and Savage, 2016). 

 

Figure 2.4 Mean annual number of fires per month from 2003 to 2013 in South Africa (Source: 

Strydom and Savage, 2016) 

The frequency and intensity of wildfires peak during winter and spring seasons, because of windy 

and dry conditions that prevail over large parts of South Africa (Strydom and Savage, 2016). It is 

argued that the fire season over South Africa spans the period from May to November (Lui et al, 

2010), May to October (Pricope and Binford, 2012), June to September (Scholes et al, 1996), or 

July to October (Archibald et al, 2010). These wildfires may be human induced or naturally 

occurring. 
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2.7 Influence of synoptic weather type on large fire activity  

Synoptic weather types provide understanding of fire regimes and account for fire activities at 

different space and time scales (Duane and Brotons, 2018). Synoptic weather patterns and local 

weather conditions are critical to the development and rapid spread of wildfires (Schroeder et al, 

1964; Duane and Brotons, 2018; Keely et al, 2021). Thus, weather conditions contribute 

significantly to the occurrence of large wildfires (Flannigan et al, 2000; Kraaj et al, 2018). 

Meteorological parameters including near surface temperature, precipitation, wind speed and 

direction, relative humidity, and atmospheric stability are anticipated when forecasting fire weather 

(Erickson et al, 2016; Dowdy and Pepler, 2018). The north-facing slopes are vulnerable to 

lightning-caused wildfire under low humidity conditions and prolonged drought period (Granger, 

1984; Nampak et al, 2021). 

The formation of a ridge and trough weather pattern has driven high to extreme fire spread rate 

(Tymstra et al, 2021). Ridge and trough weather types induce anomalous warm events with rapid 

fine fuel dryness and expected drought events, decreasing coarse fuels moisture (Rodrigues et 

al, 2020). Synoptic conditions responsible for wildfires in South Africa comprise of a ridging inland 

Kalahari high pressure cell which is associated with Berg winds near the coast during the austral 

winter (Chartan et al, 2018; Barnes et al, 2021). Berg winds also known as Foehn winds are strong 

drainage winds which are warm and dry,  descending downslope the sharp escarpment from the 

plateau to the coast of South Africa influencing high fire danger rating (Sharples and Manzello, 

2018; Adepoju and Adelabu, 2019; Barnes et al, 2021).  

2.8 Fire danger Ratings System 

Fire danger is defined as the resultant combination of both static and variable factors of the fire 

environment which affect the initiation, spread and difficulty of control of wildfires in an area and 

impact of fire (Deeming et al, 1972; Wotton, 2009). The constant factor is referred to as fuel and 

topography, whereas the variable factor is referred to as weather (Chandler et al, 1983). A fire 

danger rating system requires weather inputs from a specific weather station of interest to 

calculate an index under constant proposition of fuel, topography and ignition elements but 

weather forecasts will be used to predict the fire danger for the forthcoming period of time (Willis 

et al, 2001).  

A Fire Danger Index (FDI) consists of fuel and meteorological information unified into several 

measures that are applied for issuing of warnings and estimating the suppression difficulty of a 

fire (Dowdy, 2009). An FDI is built to predict fire behaviour, declare fire bans, schedule prescribed 
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burns, and determine fire risk categories which are used by fire management authorities to identify 

danger and preparedness for unexpected wildfires outbreaks (Sharples et al, 2009, Khastagir et 

al, 2018). There are many fire danger indices used in different parts of the world, including 

“Grassland and Forest Fire Danger Index” (GFDI and FFDI) (McArthur, 1967) developed in 

Australia, “Canadian Forest Fire Weather Index” (FWI) System (Van Wagner, 1974), “Lowveld 

Fire Danger Index” (Meikle and Heine, 2010) developed in Zimbabwe and the “US National Fire 

Danger Ratings System” (NFDRS) (Deeming et al, 1977). 

2.8.1 McArthur Grassland and Forest Fire Danger Index 

“McArthur Grassland Fire Danger Index” (GFDI) (McArthur, 1966) and “Forest Fire Danger Index” 

(FFDI; (McArthur, 1967) are used by “Australian Bureau of Meteorology” to predict the role of 

weather variables on fire behavior and forecasts for use by fire authorities. Both GFDI and FFDI 

have similar basis but differentiated by fine fuel availability in the GFDI which is calculated using 

the degree of curing instead of Drought Index and Drought Factor components used in FFDI 

(Griffiths, 1999). The McArthur FFDI is broadly applied on all types of forests but fire behaviour 

differs with vegetation types and adaptation requires redefining the different fire danger classes. 

Nonetheless, the McArthur FFDI is based on an empirical model which requires several inputs 

including rainfall, air temperature, wind speed, and relative humidity time since last rainfall, and 

the “Keetch-Byram Drought Index” (KBDI) (Dowdy, 2009).  

In order to calculate the FFDI, relevant information about the fuel moisture content, fuel load and 

terrain slope is also needed to define aspects of fire behaviour including the rate of forward spread 

of fire, heat output, fire line intensity, flame height, and spotting distance (Willis, et al, 2001, Noble 

et al, 1980). The formula to calculate FFDI is expressed by Willis et al, (2001).  

𝐹𝐷𝐼 = 2ⅇ−0⋅45 + 0.987𝑙𝑛(𝐷) − 0.034𝑅𝐻 + 0.0338𝑇 + 0.0234𝑉                

Equation 2.1 

Where, FDI is fire danger index (non-dimensional), 𝐷 is drought factor (non-dimensional), 𝑅𝐻 is 

relative humidity (%), 𝑇 is air temperature, particularly maximum temperature (°C), and 𝑉 is 10 m 

wind speed (km h-1) 

The drought factor (𝐷) was introduced into the McArthur FFDI by Noble et al, (1980), then later 

improved by Griffiths (1999). Drought factor is defined as a variable representing the state of 

fuel and fine fuel availability derived from categories of the Keech-Byram drought index (Keech 
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& Byram, 1968).  There drought factor is a non-dimensional parameter whose values range 

from 0 to 10 (Griffith, 1999). The formula to calculate 𝐷 is expressed: 

𝐷 = 𝑚𝑎𝑥 [10 ⋅ 5 (1 − ⅇ−
(𝐼+30
40 )

𝑦 + 42

𝑦2 + 3𝑦 + 42
] 

Equation 2.2 

𝑦 = max

{
 
 

 
 
(𝑃 − 2

𝑁1.3
,                             𝑁 ≥ 1 𝑎𝑛𝑑 𝑃 > 2

(𝑃 − 2)

0.821.3
,                            𝑁 = 0 𝑎𝑛𝑑 𝑃 > 2

0,                                      𝑃 ≤ 2

 

Equation 2.3 

Where, 𝑦 is a past 20 day index variable, 𝑃 is 24-hour accumulated rainfall (mm), 𝑁 is period 

since the last rainy event (days), 𝐷 is drought factor (Scale range between 0 and 10), and 𝐼 is 

KBDI (mm). 

Holgate et al, (2017) outlined the revised classification of FFDI and their assigned Fire Danger 

Rating (FDR) categories shown on Table 2.1. However, the revised threshold of FFDI presented 

in Table 2.1 differs from the original FFDI classification threshold shown on Table 2.2 (Dowdy et 

al, 2009). 

Table 2.1 Revived classification of FFDI into Fire Danger Ratings (Source; Holgate et al, 2017) 

“Fire Danger Rating” “FFDI Range” 

“Low–Moderate”  “0 –11”  

“High” “12 – 23 (12 – 31 in Western Australia)” 

“Very High” “24 – 49 (32 – 49 in Western Australia)” 

“Severe” “50 – 74 “ 

“Extreme” “75 – 99” 

“Catastrophic”  “≥ 100”  
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Table 2.2 Original FFDI classification into “Fire Danger Ratings” (source: Dowdy et al, 2009) 

“Fire Danger Rating”  “FFDI Range” 

“Low” “0 – 5”  

“Moderate” “5 – 12”  

“High” “12 – 24”  

“Very High” “24 – 50”  

“Extreme” “50 +” 

 

An equation to calculate the “McArthur Grassland Fire Danger Index” (GFDI) (McArthur, 1966) 

has evolved throughout time. The current GFDI Mark 5 equation (Noble et al 1980) is provided in 

terms of wind speed (km h -1), relative humidity (%), dry-bulb temperature (°C), and grass curing 

(%) (Sharples et al, 2009). The GFDI Mark 5 equations are expressed as: 

𝐺𝐹𝐷𝐼5 = {
3.35𝑊(−0.0897𝑚+0.0403𝑈),                                  𝑚 < 18.8,

0.299𝑊(−1.686+0.0403𝑈)(30 −𝑚), 18.8 ≤ 𝑚 < 30
 

Equation 2.4  

𝑚 = 
97.7 + 4.06𝐻

𝑇 + 6
−  0.00854𝐻 +

3000

𝐶
− 30 

Equation 2.5 

Where, 𝑚 is fuel moisture content (%), 𝐻 is relative humidity (%), 𝑇 is air temperature (°C), 𝐶 is 

degree of curing (%), 𝐺𝐹𝐷𝐼5 is fire danger index, 𝑊 is fuel load (kg/m2). Including 𝑊 in 𝐺𝐹𝐷𝐼5 

equation has affected its application over a regional scale unless they assume the fuel load to be 

constant (Sharples et al, 2009).  

McArthur 1966 GFDI Mark V Fire Danger Rating Thresholds range: Low (0 – 2.5), Moderate (3 – 

7.5), High (8 – 20), Very High (20.5 – 50), Extreme (>50 – 100/150) and Catastrophic/Code red 

(>150) (Cheney and Gould, 1995). “GFDI Mark IV Fire Danger Ratings GFDI thresholds Low (0 

– 2.5), Moderate (>2.5 – 7.5), High (>7.5 – 20), Very High (>20 – 50) and Extreme (>50 – 200)” 

(Sharple et al, 2009). 
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2.8.2 Lowveld Fire Danger Index 

The Lowveld Fire Danger Index (LFDI) was developed in Zimbabwe (Laing, 1978) and has been 

fully adopted as an official “South African National Fire Danger Rating System (Notice 1099 of 

2013)”. LFDI comprises burning index, rain correction factor and wind correction factor calculated 

together to simulate fire behaviour (Meikle and Heine, 1987). The formula to calculate the Burning 

index (BI) requires meteorological inputs from temperature and relative humidity (Notice 1099 of 

2013). 

𝐵𝐼 = (𝑇 − 35) −
(35−𝑇)

30
+ 0.37(100 − 𝑅𝐻) + 30                Equation 2.5 

Where, 𝑇 is Temperature and 𝑅𝐻 is Relative Humidity 

The LFDI is calculated daily in the morning at 10h00 and afternoon at 14h00 Local Standard Time 

(LST) when maximum index values are expected.  

Formula: 

𝐿𝐹𝐷𝐼 = (𝐵𝐼 +𝑊𝑖𝑛𝑑𝐹𝑎𝑐𝑡𝑜𝑟) × 𝑅𝐶𝐹     Equation 2.6 

The wind factor is the additional FDI value that corresponds with the recorded wind speed 

(km/h). Rain correction factor (RCF) is determined by the accumulated rainfall over a single to 

many more days which have an assigned number value ranging from 0 to 1. The calculated 

LFDI is rated between 0 and 100 (Notice 1099 of 2013).  

The “Fire Danger Rating System” used in South Africa has five fire colour codes categories which 

represent the fire behaviour, dangers, and severe damage associated with each colour code and 

FDI rating (Notice 1099 of 2013). The rating of FDI closer to zero, represents safer conditions, 

while rating score closer to 100 represents dangerous conditions. The colour codes are 

interpreted under a range of FDI rating: Blue (insignificance) 0 - 20, Green (low) 21 – 45, Yellow 

(moderate) 46 – 60, Orange (high) 61 - 75, and Red (extremely high) 76 – 100 (Notice 1099 of 

2013). 

The colour codes defined unique fire parameters calibrated in accordance to the FDI rating 

(Notice 1099 of 2013). Blue represents fire, with flame height less than 1m, with no spreading 

threat. Green colour code alert about fires with flame height between 1.0 and 1.2m and slight 

threat of spreading (Notice 1099 of 2013). Yellow colour code corresponds to extreme caution 

with 1.2-1.8m flame height driven by unfavourable weather and control burn being undertaken 
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within manageable conditions (Notice 1099 of 2013). Orange enforces maximum suppression 

effort to fires of any kind and estimated flame heights are 1.8-2.4m (Notice 1099 of 2013). Red 

colour code requires all firefighting teams on standby because of whirl-fire development, increase 

in wind speed, lots of spotting fires and flame heights above 2.4 meters (Notice 1099 of 2013). 

2.9 Fire management in South Africa 

Wildfires are very common in South Africa because of the vegetation types that are fire dependent 

and climate dependent to maintain their structure and composition (Kruger et al, 2006). South 

Africa has adopted the National Veld and Forest Fire Act, No. 101 of 1998 as a major tool and 

improved wildfires warning and management guide in South Africa (Kruger et al, 2006; Moyo et 

al, 2020). NVFFA is a tool to facilitate integration between owners (organ of state, private 

landowner, and communities on communal lands) in preventing and combating wildfire (Bridgett 

et al, 2003). Therefore, NVFFA requires owners to form and register a functional Fire Protection 

Association (FPA) to predict, prevent, manage and extinguish wildfires (Bridgett et al, 2003; 

Ballantyne, 2019). 

“South African National Fire Danger Rating System” (NFDRS) has adopted the “Lowveld Fire 

Danger Rating System” by Meike and Heini (1987) developed in Zimbabwe (Lall and Mathibela, 

2016). Lowveld Fire Danger Index (LFDI) alerts fire managers and foresters about the weather 

that may influence ease of ignition, harsh behaviour of fires and assess the risk of ordained 

burning activities, improving preparedness of real-time firefighting and allocating firefighting 

resources (Meikle and Heine 1987; de Groot et al, 2006). South African NFDRS considers the 

relevant features of every area including the vegetation type, topography, seasonal climatic cycle, 

recent, current and forecasted weather and also other relevant matter (Willis et al, 2001; Harrison, 

2015). 

South Africa’s 226 local municipalities are used as a division to represent wildfire risk assessment 

and the calculated LFDI which is used for fire danger rating (Kruger et al, 2006; Forsyth et al, 

2010). Wildfire risk assessment has been adopted as a guide which classified fire-ecology types 

derived from South African biomes (Low and Rebelo, 1998; Dayaram et al, 2019). Fire-ecology 

types are classified as either fire dependent or climate dependent (Kruger et al, 2006). Fire-

ecology types are composed of Forest, Thicket, Savanna (Sparse Arid, Arid, and Moist 

Woodland), Karoo (Succulent, Nama, and Grassy Nama Karoo), Grassland (Coastal, Sour and 

Sweet Grassland) and Fynbos (Renosterveld and Fynbos) (Low and Rebelo, 1998; Kruger et al, 

2006; Harris et al, 2019; Dayaram et al, 2019).   
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2.10 Projected wildfire activities using GCMs 

Climate change has manifested in long-term mean rainfall, temperature and circulation patterns, 

but also through a global increase in the frequency of extreme events (John et al, 2015). Extreme 

wildfire events estimated using multiple climate models based on KBDI, showed potential 

increase in intensity, duration and frequency (Brown et al, 2021). Modelling wildfire activities plays 

a significant role in understanding dynamics of fire regimes and their associated socio-economic, 

and ecological impacts under climate change (Dupuy et al, 2020). Improving climate models 

reduces biasedness hence increasing reliability in simulating the past and projected trends of 

regional climate variabilities and determining the magnitude and extent of climate signals (Irrgang 

et al, 2021; Watson-Parris, 2021).  

GCMs have projected an increase in wildfire activities globally at the end of this century using the 

“Keetch-Byram Drought Index” (KBDI) (Lui et al, 2010; Brown et al, 2021). The KBDI is a tool 

used for estimating drought and forest fire potential risk by indicating the amount of moisture 

decreasing in the top soil layers (Srinivasan and Narasimhan, 1998; Johnson and Forthum, 2001; 

Xanthopoulos et al, 2006; Fujioka, 2019). Meteorological variables including wind speed, 

precipitation, and maximum temperature are used to measure the fire potential (Lui et al, 2010; 

Barbero et al, 2020; Keely et al, 2021).  

Rising global average surface temperature reaching thresholds 3°C showed complex feedback 

between climate, fire, CO2, trees, and C4 grasses (Engelbrecht and Engelbrecht, 2016). 

Projections under “A2 scenario” of the “Special Report on Emission Scenarios” (SRES) showed 

expansion of hot steppe and hot desert zones, intrusion of savanna into grassland and more 

frequent fynbos fires in a drier and  warmer climate (Engelbrecht and Engelbrecht, 2016). Fire 

and CO2 influences growth of trees in mesic savannas and grasslands (Bond et al, 2003; 

February et al, 2020). Rising levels of CO2 influence growth of trees which are more fire resistant 

to invade the savannas throughout the world (Bond and Midgely, 2012; Voelker et al, 2019).  

Projections of vegetation change using a “dynamic-vegetation” model with exclusion of fire and 

results showed most of C4 grasslands and savannas were likely to become forest to a greater 

distinct (Bond et al, 2005; Quirk et al, 2019). The paleo-records showed forests existed in the 

ancient ecosystems over sites which are the current savannah biomes of South Africa but 

simulations from a dynamic vegetation model have shown a significant increase in tree numbers 

since the pre-industrial era (Bond et al, 2003). Catastrophic fires and low CO2 levels in the 
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atmosphere influenced the slow recovery of trees, which persuaded establishment of the current 

savannah and grassland ecosystem (Bond et al, 2003). 

2.11 Summary 

Climate observations are the crucial resource needed to understand and predict the climate and 

its influence on fire regimes. Projections of future wildfire regimes in a changing climate require 

consideration of current interactions between short-term climate variables and wildfire activity 

(Kennedy et al, 2021). However, incorporating “Fire danger Rating Systems” and biomass 

accumulation have played a significant role in predicting fire behaviour using meteorological 

observations (Anderson, 2009; Harris et al, 2012; Canadell et al, 2021). Since climate models can 

produce simulations of future climate on seasonal, annual, and longer time scales, fire danger 

and behaviour within the prescribed timeframes or forecasting scale (Littell, 2018). Climate 

models are the best tools to project the future climate considering different socio-economic 

pathways. This study employs climate models to project the risk of future fires over the Limpopo 

grasslands under a “business as usual” scenario. 
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Chapter 3: Research Methodology 

3.1 Introduction 

The change in climate variables and moisture content of live and dead vegetation influences 

wildfires (Halofsky, 2018). During the dry season, water stress is high and with less moisture in 

the fuel, fires ignite easily, and other driving forces, including wind, may cause rapid and intense 

fire to spread (Pierre-Louis and Schwartz, 2018). The data required for the present study was 

gathered and analysed using relevant methods to explain the relationship between climate 

change, wildfires, and fire regimes. Thus, this chapter describes the datasets and methods that 

were employed in the study. Climate observational data and climate models’ simulations under 

the worst-case emission scenario RCP8.5 were used to simulate the present-day climate and 

project the future. Simulations from climate models need to be validated against historical 

observations using appropriate statistical parameters (Cannon et al, 2020). 

3.2 Study area  

 

Figure 3.1 Map showing geographical location of the study area. 
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Limpopo is one of the nine provinces of South Africa, located on the north-eastern side of the 

country, as shown in Figure 3.1. The province is largely a semi-arid region that shares its 

boundaries with Zimbabwe (north), Botswana (west), and Mozambique in the east. The savanna 

and grassland biomes, but with patches of forest and alluvial, distinctively occupy the area (Val 

et al, 2021; Moshobane et al, 2021). The study area includes the Kruger National Park on the 

eastern boundary, one of South Africa's largest national parks (Mills et al, 2021). 

 

Figure 3.2 Point areas of interest within Limpopo grasslands 

There are three geographical point areas of interest for the present study which include Waterberg 

(27.77 E; 24.45 S), Sekhukhune (29.73 E; 25.15 S), and Mopani (30.01 E; 23.91 S) as shown in 

Figure 3.2. These three locations derive their names from the district municipalities in which they 

are located, and were selected to investigate the impact of weather conditions on fire danger 

rating. Recent intense droughts in the past decade have triggered unprecedented large fires in 

Limpopo. The accumulated dead fuels during drought induced extreme fire events with high fire 

intensity and high spread rate. 
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3.3 Observational data  

3.3.1 Key variables 

3.3.1.1 Precipitation 

Precipitation is any product of the condensation of the atmospheric water vapor that falls under 

gravity (Kumari et al, 2019). The amount, duration, and frequency of precipitation directly affect 

drought and fire activities (Chen et al, 2014). Declining summer rainfall and wetting rain days 

significantly drives an increase in fire activities (Holden et al, 2018). Fuel moisture is influenced 

by the amount and duration of the precipitation (Ruffault et al, 2018). Fine fuels rapidly react to 

change in precipitation by gaining or losing moisture, usually within one hour (Bilgili et al, 2019). 

It does not affect heavy fuels due to lengthy period they take to gain or lose moisture (Miller and 

Wilmore, 2020). Heavy rainfall over a short duration will not increase fuel moisture compared to 

light rainfall over a longer period where the fuels can absorb more moisture influenced by less run 

off (Ruffault et al, 2018). 

3.3.1.2 Air Temperature  

Air temperature is a measure of the degree to which air becomes cold or hot, in variation with 

time, location, and altitude. Changes in air temperature near earth’s surface are influenced by 

dynamic activity, seasonality, diurnal cycles, and movement of weather systems (Ziter et al, 

2019). Hot temperatures influence the ignition and behaviour of wildfires due to preheating fuels, 

whilst cooler temperatures have the opposite effect (Sun et al, 2021). Air temperature can be 

measured using thermometers and expressed in degrees Kelvin, Celsius or Fahrenheit (Wilson, 

2021). If the reading of air temperature is in Kelvin, it can be converted to Celsius by subtracting 

273.15 from the recorded value and conversely converted from Celsius to Kelvin by adding same 

value of 273.15 (Wilson, 2021). 

3.3.1.3 Wind speed 

Wind is the movement of air from an area of high pressure to an area of low pressure across earth 

surface comprises of zonal (U), meridional (V) and vertical (ω) components (Droste et al, 2018). 

The horizontal components of the wind vector are combined to give the speed and direction of 

the horizontal wind, measured in m.s-1 (Chen et al, 2021). Wind determines advection of heat and 

moisture and therefore the weather conditions. It is the most significant weather element 

influencing behaviour of wild fires, the most unpredictable, and frequently changing over time and 
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space (Storey et al, 2020). The most significant role played by winds is driving the weather and 

climate at local and global scale (Holbrook et al, 2019). 

3.3.1.4 Relative Humidity  

Relative humidity, expressed as a percentage, is the ratio of the amount of moisture in the 

atmosphere at a given air temperature relative to the amount the air could hold when saturated 

at the same air temperature (Nui et al, 2020). Relative humidity ranges from 1% (very dry) to 

100% (saturated), even though the atmosphere is never completely dry. It has an influence on 

wildfire behaviour making is a good indicator of high fire danger (Torres et al, 2018). In wild fire 

environment, relative humidity influences fuel moisture content depending on fuel types, hence 

varying over time and location (Torres et al, 2018). The relationship between temperature and 

relative humidity is inversed (Matsoukis et al, 2018). When temperature reaches its lowest point 

in the early morning, relative humidity reaches its highest point, and the temperature increases 

so does the water holding capacity, thus the relative humidity decreases (Jatta et al, 2018). 

3.3.2 Weather Station Data 

In the present study, daily weather station data comprises six key variables; rainfall (mm), 

minimum temperature (°C), maximum temperature (°C), minimum relative humidity (%), 

maximum relative humidity (%), and wind speed (m/s) was used as the present climate data 

spanning period from 1961 – 1980. Weather station data was obtained from the South African 

Agricultural Research Council (ARC-SA). The weather stations used are listed in Table 3.1 below:     

Table 3.1 ARC weather station used in the present study 

Station name  Altitude Latitude Longitude 

Duiwelskloof: Westfalia Letaba 858 m -23.96666718 30.18333244 

Thabazimbi: Marakele Towers 2256 m -24.45878  27.61334 

Sekhukhune: Leeukraal 1446 m -24.91583 29.83511 

 

These weather stations are selected because they are located close to three geographical point 

areas of interest for the present study shown in Figure 3.2. 

3.3.3 Climate Research Unit Observations 

In addition to the weather station data, the gridded Climate Research Unit (CRU) Time-series (ts) 

data version 4.04 (Harris et al., 2020) was also used in this study. The CRU data comprises 

monthly averages of variable such as precipitation, daily minimum and maximum temperature. 
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Essentially, the CRU data are gridded weather station data with a spatial resolution of 0.5° x 0.5° 

(Harris et al., 2020). CRU datasets are reliable with long timeframe since 1901 to present (Jones 

and Harris, 2008; Harris et al., 2020). The designated period of study for this research is from 

1961 to 1980 as the historical baseline. The variables used for the present study include; 

precipitation, minimum and maximum temperature. 

3.4 Climate Models 

3.4.1 Conformal Cubic Atmospheric Model (CCAM) 

CCAM is a GCM developed at CSIRO (Australia), fully based on a variable-resolution conformal-

cubic grid to “simulate regional scales” barring “lateral boundary conditions” (Thatcher et al, 2015; 

McGregor, 2005). It is among the first “cube-based three-dimensional” (3-D) atmospheric model 

which avoids lateral boundary stipulations and allowing coupling done together with the “global 

and regional spatial scales” on the equal grid (Figure 3.3; Thevakaran et al, 2015). The model 

uses a non-hydrostatic, semi-implicit, and semi-Lagrangian dynamical core that is cost-effective 

for regional climate modeling because of semi-Lagrangian methods that allow longevity of time-

step (McGregor, 2005). It also has a sizable sequence of physical parameterizations to calibrate 

forces and energy transformation to describe the behavior of the radiation, convection, aerosols, 

cloud microphysics, boundary layer turbulence, gravity wave drag, and land surface (Thevakaran 

et al, 2015).  

The CCAM spatial resolution ranges from the 200 km horizontal resolution provided using quasi-

uniform C48 conformal-cubic grid (Schmidt factor 1) for global simulations to an ultra – high 

resolution of 1 km (Schmidt factor 200) over a specific area of study (Engelbrecht et al, 2011). In 

the present study, CCAM 8 km resolution simulations were obtained by nudging the output of 60 

km resolution simulations shown by Figure 3.3 with Schmidt stretching factor 24.75 over South 

Africa for the period 1961 – 1980 (historical baseline), 2021 – 2040 (near future), 2041 – 2060 

(mid future), and 2080 – 2099 (far future). McArthur high fire danger days', rainfall, maximum 

temperature, minimum relative humidity, and wind speed are the key variables projected using 

CCAM. 



34 | P a g e  
 

 

Figure 3.3 CCAM grid under Schmidt factor 3.3 used over Southern Africa and tropical Africa for 

downscale simulations at 60 km spatial resolutions (Engelbrecht et al, 2011). 

3.4.2 Six Downscaled General Climate Models (GCM) from CIMP6 

Simulations from six (6) downscaled GCMs were used in this study. The dynamical downscaling 

of six GCMs was performed through RCM CCAM to get a relatively high spatial resolution of 8 

km over the study area. 

3.4.2.1 Australian Community Climate and Earth System Simulator Coupled Model (ACCESS-

CM) 

ACCESS-CM is a climate model used for climate research (Bi et al, 2013) which contributed to 

Phase Five of the Coupled Model Inter-comparison Project (CMIP5). The model was developed 

in Australia through alliance between “Centre for Australian Weather and Climate Research 

(CAWCR), Bureau of Meteorology and CSIRO” (Bi et al, 2013). ACCESS-CM comprises two 

versions, including ACCESS1.0 and ACCESS1.3, both coupling the atmospheric Unified Model 

(UM), ocean model and sea-ice model from NOAA/GFDL and the UK Met Office, fully coupled 

using CERFACS4 OASIS3.2–5 framework (Bi et al, 2013).   
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Both ACCESS1.0 and ACCESS1.3 have unique land surface and atmospheric components. 

ACCESS1.0 is the basic version which runs through the Met Office’s most considered HadGEM2 

(r1.1) atmospheric physics and Surface Exchange Scheme version 2 (MOSES2) (Martin et al. 

2011). ACCESS1.3 is considered as the experimental version to run projections of climate change 

at a century scale. Therefore, atmospheric physics of ACCESS1.3 is made up of prognostic cloud 

prognostic condensate (PC2) cloud scheme (Wilson et al. 2008; Hewitt et al, 2011) which 

assimilate the configuration of the “Met Office Global Atmosphere” (GA) version 1.0. The land 

components of ACCESS1.3 are assimilated from “Community Atmosphere Biosphere Land 

Exchange (CABLE) version 1.8” (Kowalczyk et al, 2006, 2013). 

3.4.2.2 The Community Climate System Model (CCSM) 

CCSM is a GCM comprising coupled components of atmosphere, land, ocean, and sea ice linked 

through interchanging of state information and fluxes (Gent et al, 2011). It was developed through 

collaboration between National Center for Atmospheric Research (NCAR) and various 

organisations including universities, national laboratories, and a community of scientists from 

different institutions (Gent, 2006). The most recent version CCSM is approved around the world 

to take part in the CMIP5 (Blackmon et al, 2001; Gent et al, 2011). Other previous versions CCSM 

were employed to study paleoclimate epochs, the most recent climate, and future climate change 

projections via coupled runs comprising 1° and 2° grid resolution of the atmosphere and land 

components (Gent et al, 2011). 

3.4.2.3 CNRM-CM 

CNRM-CM is a GCM developed to contribute to CMIP5 through collaboration between “Centre 

National de Recherches Meteorologiques-Groupe d’etudes de l’Atmosphere Meteorologique” 

(CNRM-GAME) and “Centre Europeen de Recherche et de Formation Avancee” (Cerfacs) 

(Voldoire et al, 2013). CNRM-CM version 5.1 comprises components of atmosphere, land, ocean 

and sea ice models coupled through the OASIS system with reoccurring frequency of 6 hours 

(Voldoire et al, 2013). The model contributed to the long term control experiment in both CMIP5 

and CMIP6 (Séférian et al, 2016). The 6th version of CNRM-CM can represent heat source and 

moisture sink properties integrated in a single-column approach (Abdel-Lathif et al, 2018). 

3.4.2.4 Geophysical Fluid Dynamics Laboratory Earth System Models (GFDL-ESM) 

GFDL-ESM is a model that merges advanced component in atmospheric chemistry, carbon, and 

ecosystem all-inclusive within a single coupled climate framework (Dunne et al, 2020). The most 

recent version, GFDL-ESM Version 4.1 (ESM4.1) is contributing to the CMIP6 (Dunne et al, 
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2020). GFDL-ESM v4.1 features double horizontal resolution of both atmosphere 2° to 1° and 

ocean 1° to 0.5° which significantly helps to represent the climate mean patterns and variability 

(Horowitz et al, 2020). The model comprehensively focuses on earth system interactions through 

improved couplings for chemistry, carbon, and dust in contrast to previous version (Horowitz et 

al, 2020).  

3.4.2.5 Max Planck Institute Earth System Model (MPI-ESM) 

The latest version MPI-ESM1.2 is the CMIP6 baseline and mainly used to study current seasonal 

and decadal climate predictions (Müller et al, 2018). The MPI-ESM1.2 consists of coupled higher-

resolution version (MPI-ESM1.2-HR) and lower resolution version (MPI-ESM1.2-LR) (Gutjahr et 

al, 2019). The MPI-ESM1.2-RH has an equilibrium radiation budget and stable ocean circulation 

(Müller et al, 2018). Both versions consist of a coupled atmospheric model and ocean model 

(Mauristen et al, 2019).  

The coupling of oceanic and atmospheric components is performed using the 4th version of 

“Ocean- Atmosphere-Sea-Ice” coupler without flux adjustment (Müller et al, 2018; Mauristen et 

al, 2019). The CMIP5 version have coupling frequency of one day, hence CMIP6 coupling 

frequency has been improved to one hour (Müller et al, 2018). Due to the improved coupling 

frequency, projection tropical Pacific diurnal cycle of convection improved and Niño events has 

been enhanced and improved (Müller et al, 2018). The computing resources to run MPI-ESM-HR 

are not cost-efficient compared to MPI-ESM LR (Müller et al, 2018). Components of MPI-

ESM1.2HR and MPI-ESM1.2-LR are shown in Table 3.2 below. 

Table 3.2 Component of MPI-ESM 

Components MPI-ESM1.2-HR MPI-ESM1.2-LR 

Atmospheric Model “ECHAM6.3” “ECHAM6.3” 

Horizontal resolution “T127 (~100 km)” “T63 (~200 km)” 

Vertical resolution “L95” “L47” 

Oceanic Model “MPIOM 1.6.3” “MPIOM 1.6.3” 

Horizontal resolution “0.4o” “Nominal 1.5o” 

Vertical resolution L40 L40 
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3.4.2.6 Norwegian Earth System Model (NorESM) 

NorESM is a model that assimilated CCSM4 (Gent et al, 2011) framework, developed by 

“University Corporation for Atmospheric Research” (Iversen et al, 2013). The difference between 

NorESM and CCSM4 is an isopycnic coordinate which was adopted from ocean model and 

atmospheric component that has adopted advanced interaction system between chemistry, 

aerosol, cloud and radiation (Seland et al, 2020). NorESM1-M is core version comprising 

atmosphere and land components at the horizontal resolution of 2°. Lower resolution version 

(NorESM1-L) and a version that includes prediction of biogeochemical cycling is also available 

(NorESM1-ME) (Iversen et al, 2013). The ocean and ice components have horizontal resolution 

of 1° (Iversen et al, 2013; Guo et al, 2019). The main goal behind developing and improving 

NorESM is to verify climate processes at northern high latitude around the north pole (Bentsen et 

al, 2012).   

3.5 Representative Concentration Pathways (RCPs) 

RCPs are scenarios that describe trajectories and time series of emissions and concentrations 

GHGs, aerosols and other active gases, along with land use/land cover (Moss et al, 2010; Su et 

al, 2021). The RCPs are innovation among incorporated assessment modelers, climate modelers, 

terrestrial ecosystem modelers and emission inventory experts (Gütschow et al, 2021). Integration 

between modellers induced comprehensive high-resolution datasets that project future climate 

conditions from the current climate and radioactive forcing values between 2.6 to 8.5 W/m2 (van 

Vuuren et al, 2011). Integrated Assessment Models produced four RCPs corresponding emission 

scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) to draw trajectories of emission and 

concentration of atmospheric pollutants influencing gradual rise of temperature before 2100 and 

projected further to 2300 (Yuan and Kopp, 2021; Reddy et al, 2021). 

In this present study, the high emission ‘RCP8.5’ global warming scenario was used. The RCP8.5 

is usually referred as worst-case or “business as usual” scenario, with the notion of society not 

taking initiatives and any effort to limit greenhouse gas emissions (Nordgren, 2021; Nguyen et al, 

2021). The RCP8.5 scenario assumes rapid population growth, slow economic growth, increased 

poverty, low technology development and high emissions from energy use (Mendelsohn, 2021). 
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Figure 3.4 Four RCPs trends from 2000 to 2100 (Source: Maule et al, 2017) 

3.6 McArthur Forest Fire Danger Index 

The McArthur Forest Fire Danger Index (FFDI) is the most reliable and consistent fire danger 

predicting model that takes into consideration all significant drivers of fire behaviour (Willis et al, 

2001). The Mark 5 Forest Fire Danger Meter is the currently used version of FFDI with thresholds 

range from a value 0 to 100 and divided into five fire danger categories namely; low, medium, 

high, very high and extreme (Sharples et al., 2009). The FFDI is calculated using meteorological 

variables, such as “wind speed, temperature, relative humidity, and rainfall” (Stephenson, 2015). 

The equation to calculate the FFDI is expressed in Equation 3.1 below (Hadisuwito and Hassan, 

2021). The daily FFDI data used for the study was calculated using the CCAM future projections. 

FDI = 2ⅇ−0⋅45 + 0.987ln(D) − 0.034RH + 0.0338T + 0.0234U        Equation 3.1 

where, FDI is fire danger index (unitless), D is drought factor (unitless), RH is relative humidity 

(%), T is air temperature, either maximum or measured at noon (°C), and U is average wind speed 

(km/h) at a height of 10 m. 

The drought factor in FFDI was calculated using Equation 3.2, with recorded daily precipitation 

and time parameters since the last rain (Khastagir, 2018). 

𝐷𝐹 = 
0.191(𝑖 + 104)(𝑁 + 1)1.5

3.52(𝑁 + 1)1.5 + 𝑃 − 1
  𝑖𝑓 𝐷𝐹 > 10,𝐷 = 10 

Equation 3.2 
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where 𝑖 is the Keetch–Byram Drought Index (KBDI) in millimetre (mm), 𝑁 is the time since the last 

rain in days and 𝑃 is the last recorded daily precipitation in mm. 

KBDI is a drought index that has been widely used for forewarning the danger of wildfires (Jain, 

2020). The drought index increases with the potential risk of ignition of wildfires. Crane (1982) 

reformulated the drought factor (DQ) on the International System unit scale written in equation 

3.3 (Keetch and Byram, 1968; Alexander, 1990; Abrha and Adhana, 2019). 

𝐷𝑄 =
[203.2 − 𝑄][0.968ⅇ(0.0875𝑇 + 1.5552) − 8.30]𝑑𝜏

1 + 10.88ⅇ(−0.001736𝑅)
10−3 

          Equation 3.3 

Where 𝑄 is moisture deficiency (mm), 𝑇 is daily maximum temperature (°C), 𝑅 is mean annual 

precipitation (mm), and 𝑑𝜏 is time increment (1 day). 

The high fire danger rating was used in the present study by counting total number of days 

which the FFDI rank between 7.5 and 20 thresholds. 

3.7 Model Validation 

3.7.1 Taylor diagram 

A Taylor diagram is a two-dimensional (2-D) graph that summarizes the strength of the 

relationship between a set of models and observations (Taylor, 2001; Montgomery, 2019). It is 

employed to evaluate how close models match observations. It comprises the centered Root 

Mean Square Error (RMSE), correlation coefficient (r), and standard deviation plotted 

simultaneously on a single quadrant (Taylor, 2005). The values of different variables used in the 

present study, including rainfall, maximum temperature, minimum relative humidity, and wind 

speed, are plotted with normalized variance to show the relative amplitude of the model and 

observed variations (Hu et al, 2019). Taylor diagrams were used to evaluate models’ performance 

(Montgomery, 2019) for the historical baseline (1961 – 1980) in the present study. 

3.7.2 Root Mean Square Error (RMSE) 

The RMSE is the standard deviation of the residuals (prediction errors) (Muthyalappa and 

Sreedhar, 2021). Residuals measures how far are data points are from the regression line, hence 

RMSE measures how spread out are these residuals (Mawlood et al, 2021; Yan et al, 2021). It 

shows how concentrated the data are near the line of best fit. RMSE is commonly used in 

climatology, forecasting, and regression analysis to validate experimental results (Lou et al, 
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2021). The equation 3.4 below, Oi is the ith observed value and Mi the ith modelled value for a 

total of n observations. 

RMSE = (
∑ (Mi− Oi)
n
i=1

n
)

1

2
   Equation 3.4  

 

3.7.3 Standard deviation 

The standard deviation is a statistic that measures the dispersion of a dataset relative to its mean 

and is calculated as the square root of the variance (El Omada and Sergent, 2021). It is calculated 

as the square root of variance by determining the variation between each data point relative to 

the mean (Baker et al, 2021). The distance between point data and the mean, indicates deviation 

or variability within the data set; thus, the more outspread the data, the higher the standard 

deviation (El Omada and Sergent, 2021). The formula is expressed in Equation 3.5. 

σ = √
Σ(Oi−O̅)

2

n−1
      Equation 3.5 

Where, Oi  is the value of observed data, O̅ is the mean value of the data set n is the number of 

data points in the data set. 

3.7.4 Correlation coefficient (r) 

Correlation coefficient (r) is a statistical measure that calculates the strength of the relationship 

between the linear association of two variables (Ali and Medhat, 2021). The values of correlation 

coefficient range between -1.0 and 1.0 (Fu et al, 2020). However, if a calculated value exceeds 

the thresholds of 1.0 and -1.0, it means that there was an error in the correlation measurement 

(Li et al, 2022).  A positive correlation implies that as one variable increases, so does the other, 

whilst the converse is true for a negative correlation. A correlation of 0.0 suggests that no 

relationship exists between two variables. The equation 3.6 below, Oi represents the ith observed 

value and Mi represents the ith modelled value for a total of n observations. Furthermore  σM is 

the standard deviation for modelled value, σO represent the standard deviation for observed value, 

M̅ is the mean of the Modelled value and O̅ is the mean of the observed values. 

r =
1

(n−1)
∑ (

Mi −M̅

σM
) (

Oi− O̅

σO
)n

i=1             Equation 3.6 
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3.8 Climate change projections 

Climate change projections in this study are presented as percentiles. Percentiles are used in 

statistics to translate and interpret data in which the Nth percentile of a set of data is the value 

below the Nth percent of the data (Taylor, 2020). Percentiles arrange a dataset into divisions of 

100 equivalent segments, deciles of ten equivalent parts, and quartiles four equal parts (Kaur et 

al, 2018). Differences between percentiles and quartiles are minor and often disappear with many 

values in a dataset. The lower quartile (25th percentile) is the point at which 25% of values in a 

dataset lies below and 75% of values lie above. The second quartile (50th percentile) is the 

median (midpoint of the dataset). The upper quartile (75th percentile) is the point at which 75% 

of values in a dataset lies below and 25% of values lie above (Kaur et al, 2018). The 10th, 50th 

and 90th percentiles were used to analyse a number of high fire danger days in the future. 

However, the discussion in Chapter 5 focuses on the 50th percentile. Percentile formula is 

expressed in equation 3.7. 

n = (
P

100
) × N     Equation 3.7 

Where, n is ordinal rank of given value P is Percentile N is Number of values in a dataset.  

This study considered three future periods i.e., 2021 – 2040 (near future), 2041 – 2060 (mid 

future), and 2080 – 2099 (far future). The projections are made against historical baseline 

period from 1961 to 1980 using the RCP8.5 “business as usual” emission scenario. 

3.9 Data Display  

3.9.1 R 

R is an open-source software and programming language developed as an environment for 

statistical computing and graphics (Winter, 2019; Ihaka and Gentleman, 1996). It provides 

facilities for data manipulation, calculation and graphical displays which have effective data 

handling and storage facility from a large collection of packages (Venable and Smith, 2021). 

Calculations are processed on arrays and matrices in particular matrices to manipulate datasets 

of different dimensions (Gandrud, 2018). R uses a simple and effective programming language 

called ‘S’ which includes conditionals, loops, user defined recursive functions and input and output 

facilities as platform for interactive data analysis (Venable and Smith 2021). 
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3.8.2 Grid Analysis and Display System (GrADS) 

GrADS is an interdependent computer software used to retrieve, manipulate, and visualize spatial 

data of different dimensions (Wang, 2019). It processes the data in 5-Dimensions (5-D) 

comprising the four conventional dimensions such as longitude, latitude, vertical level, and time 

whilst an optional 5th dimension for grids is implemented but designed to be used for ensembles 

(Wang, 2019). The data descriptor file is used to integrate datasets within the 5-D through the 

entering command line in FORTRAN expression (Kumar, 2020). GrADS supports various file 

formats, including binary, GRIB, NetCDF, HDF, and BUFR (Dmitruk, 2020; Wang, 2019). 

Graphics used to display data in GrADS include line and bar graphs, scatter plots, smoothed 

contours, shaded contours, streamlines, wind vectors, grid boxes, shaded grid boxes, and station 

model plots, which are saved as PostScript or image formats (Sato et al, 2018).  

3.8.3 Climate Data Operator (CDO) 

CDO software is an integration of numerous operators for processing and manipulating climate 

datasets in a user-friendly format (Schulzweida, 2019). The operators encompassing simple 

statistical and arithmetic functions, data selection and sub-sampling tools, and spatial 

interpolation (Koffe et al, 2019). It was developed with a mandate to have similar set of processing 

functions for GRIB and NetCDF datasets in one package (Schulzweida, 2019). Features that are 

crucial to CDO include available operators above 700, modular design and assimilated open 

source for extendable new operators (Koffe et al, 2019). It uses an uncomplicated UNIX 

“command-line interface” which processes dataset using a number of operators, saving output on 

designated pathways and fast processing of missing values within large datasets (Wachsmann, 

2020; Schulzweida, 2019). 

3.8.4 ArcGIS 

ArcGIS is a complete software suite for desktop and cloud-based Geographic Information System 

(GIS) (Kholoshyn et al, 2019). Both desktop and cloud-based ArcGIS softwares provide powerful 

applications that are used to create maps, perform spatial analysis, manage geographical data 

and imagery (Price, 2019). It comprises optional extensions that feature tools in areas of 3D 

modelling and analysis, network analysis, spatial analysis, image analysis, geostatistical, 

workflow management, data quality control, comprehensive data interoperability, and industry-

focused workflows (Law and Collins, 2019) 



43 | P a g e  
 

3.9 Summary 

This chapter has detailed the datasets and data analysis techniques applied to obtain the results 

based on the objectives of this study. Meteorological observations from 1961 – 1980 were used 

as the baseline and six downscaled GCMs through RCM CCAM provided climate simulations for 

the near future (2021 – 2040), mid future (2041 – 2060) and far future (2070 – 2099). Precipitation, 

maximum and minimum temperature, wind speed, relative humidity and FFDI are used as key 

variables to investigate influence of climate change on fire regimes. Correlation co-efficiency, 

standard deviation and root mean square error are used for model validation. Several data display 

tool was used in the present study including the Grid Analysis Display System (GrADS), ArcGIS 

and R were used to visualize and interpretation the results using spatial maps and graphs. 
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Chapter 4: Historical baseline 

4.1 Introduction 

Climate models have become significant tools to simulate the past and future climate systems at 

different spatial and temporal resolutions (Beaumont et al, 2008; Hausfather et al, 2018). 

However, it is crucial to begin with model verification against observation to determine the 

skill/bias of the models before using them to project the future. Thus, the aim of this chapter is to 

perform model verification to evaluate models’ performance in reflecting the present-day observed 

climate, hence gaining confidence in using the model to simulate the future climate. In the present 

study, six GCMs were downscaled with RCM CCAM to attain a high resolution of 8 km under the 

RCP8.5 emission scenario. The CRU data and ARC weather station data were used as the 

observation for model validation. The validation process focuses on models’ capabilities to 

reproduce the spatial and temporal variation of climate variables such as rainfall, maximum 

temperature, minimum relative humidity, wind speed and McArthur high fire danger days. A Taylor 

diagram (Taylor, 2001) was used to investigate models’ reliability in producing results that are 

consistent with observational data in the Limpopo grasslands.  

4.2 Spatial verification of the models 

4.2.1 Annual means over Limpopo  

4.2.1.1 Rainfall 

Mean annual rainfall over the Limpopo province varies significantly, with lower rainfall in the north 

(~22-23°S) near the boundary between with Botswana and Zimbabwe and Mozambique, whilst 

more rainfall is observed over interior and south region where the Limpopo grasslands are located 

(Mosase and Ahiablame, 2018). The panel plots of observation (CRU ts4.04) and six downscaled 

GCMs show similar spatial variations in mean rainfall distribution over the study area as shown in 

Figure 4.1. The observed CRU rainfall varies from less than 30 mm/month to well above 75 

mm/month in some locations (Figure 4.1a). The region north-south along ~30°E experiences high 

rainfall (>90 mm/month), consistent with the presence of the northeastern escarpment which 

enhances rainfall through orographic lifting. Similarly, high rainfall along ~23°S is associated with 

the influence of the Soutpansberg mountain range. In fact, some of the highest rainfalls in South 

Africa occur along this range with some stations recording ~1800 mm/year. The general pattern 

is for lower rainfall (<45 mm/month) in the border areas with Botswana, Zimbabwe and 

Mozambique which is the lowveld.  
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Rainfall simulations of the historical baseline for six downscaled GCMs are shown in Figure 4.1 

(b – g) in relation to the CRU observation. All models simulated significant high rainfall along the 

great escarpment over the study area. Similar patterns of mean annual rainfall over the study 

area was presented by Mpandeli et al, (2015). Lower mean annual rainfall variabilities (30 

mm/month) were simulated widely extending in the north region of the study towards Botswana 

and Zimbabwe by CCAM_CCS85, CCAM_ACC85 and CCAM_CNR85 models. Historical 

simulations from models CCAM_GFD85 and CCAM_MPI85 showed close spatial variabilities with 

observation around the transboundary between Limpopo, Botswana and Zimbabwe. 

CCAM_NOR85 simulations generally overestimated mean annual rainfall over the study area 

than other models and the CRU observation during the period 1961 - 1980. 

Model verification was employed to evaluate the performance of six downscaled GCMs against 

observations. A Taylor diagram shown in Figure 4.3 was used for model validation, hence 

standard deviation, correlation coefficient, and RMSE are integrated to rank the performance of 

the GCMs. Results from Taylor diagram have shown high performance by all models in terms of 

correlation with positive values above 0.9 calculated. The highest correlation of 0.99 relative to 

the observation was achieved by CCAM_ACC85, CCAM_CNR85 and CCAM_MPI85. 

Standard deviations showed close variability to the observation from CCAM_GFD85 and 

CCAM_CCS85. Model CCAM_ACC85 have less variability than observation, while models 

CCAM_CNR85, CCAM_MPI85 and CCAM_NOR85 have more variabilities than observation. 

RMSE between observation and models’ simulations were low. The overall performance of all 

models showed model CCAM_NOR85 to be the worst performing model because of high RMSE, 

whereas the CCAM_ACC85 and CCAM_CCS85 have shown the best performance in simulating 

rainfall over the Limpopo grasslands. 

4.2.1.2 Maximum temperature  

Observed and projected annual mean maximum temperatures during the period 1961 - 1980 are 

shown in Figure 4.2. The mean observed pattern (Figure 4.2a) shows generally high temperatures 

(>28°C) in the lowveld areas, corresponding to the low rainfall areas shown in Figure 4.1. The 

interior region of the study area showed mean maximum temperatures between 23°C and 27°C. 

Lower annual mean maximum temperatures in the interior region are influenced by high altitude 

on the African plateau, while high observed annual mean maximum temperatures along the north 

and east regions were influenced by low altitude. All six GCMs simulated mean annual maximum 

temperature of about 30°C in the Limpopo River valley between Limpopo province and Zimbabwe, 
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and in the east region towards Mozambique. The CCAM_NOR85 model (Figure 4.2e) projected 

lower maximum temperatures than all models over the study area. 

Model validation has shown high performance from all models with regard to maximum 

temperatures (Figure 4.4). The CCAM_NOR85 showed high variability while CCAM_CCS85, 

CCAM_CNR85, CCAM_ACC85, CCAM_MPI85 and CCAM_GFD85 showed less variability from 

observation. Meanwhile, CCAM_NOR85 and CCAM_GFD85 simulated temperature variability 

close to observation. The models performed very well in terms of high correlation coefficient 

above 0.95, as shown in Figure 4.4. CCAM_MPI85 had the highest RMSE, resulting in it being 

the worst performing model because it was the furthest from the ‘observed’ value of mean annual 

maximum temperature. 

4.2.1.3 Minimum relative humidity 

Annual mean minimum relative humidity was calculated from three weather stations that are 

located in the Limpopo grasslands. The weather stations are located between 23.9°S – 25°S 

latitude and 27.5°E – 30.5°E Longitude. Models’ annual means were calculated using Limpopo 

Province domain ranging from 22°S – 25.5°S and 26°E – 32°E. In terms of standard deviation, all 

six models overestimated variabilities from observation, as shown in Figure 4.5. Meanwhile, 

CCAM_ACC85 and CCAM_GFD85 exhibited a closer variability from the observation. Models 

CCAM_ACC85 and CCAM_GFD85 showed least RMSE while CCAM_CCS85, CCAM_MPI85, 

CCAM_CNR and CCAM_NOR85 showed high RMSE. High correlation coefficients around 0.8 

were calculated with model CCAM_ACC85, CCAM_GFD85 and CCAM_MPI85. The least 

performing model in terms of correlation was CCAM_NOR85, which was measured below 0.7. 

Therefore, model CCAM_NOR85 was the least performing model because of high RMSE, lower 

correlation and high standard deviation variability compared with observed values. 

4.2.1.4 Wind speed at 10m 

Annual mean wind speeds on the Limpopo grasslands were calculated from the same three 

weather stations used for minimum relative humidity above.  The models’ annual means were 

calculated using the domain ranging from 22°S – 25.5°S and 26°E – 32°E, which is the 

geographical area of Limpopo. In terms of standard deviation, an ensemble of six models 

overestimated variabilities when compared with the observed wind speed shown in Figure 4.6. All 

models have shown poor performance in terms of standard deviation due to more variabilities 

than observation in simulating wind speed over the study area, which was also determined by the 

highest RMSE. Perhaps, the models failed to perform better due to low observed wind speeds 
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influenced by the location/siting of weather stations. The wind field itself is one of the most variable 

meteorological parameters in time and space. Positive correlations calculated between observed 

values and model simulations were around 0.7.  

4.2.2 Seasonal means over Limpopo 

4.2.2.1 Rainfall seasonal means 

Limpopo province is largely a semi – arid region which forms part of Limpopo River Basin which 

is one of the largest river systems in southern Africa. It is prone to frequent drought events mostly 

associated with the El Niño Southern Oscillation (Landman et al, 2020; Jimoh et al, 2021; 

Nembilwi et al, 2021) and destructive flood events frequently due to tropical storms from the 

southwest Indian Ocean (Rapolaki et al, 2019). Synoptic scale weather systems that drive the 

occurrence of rainfall include Temperature Tropical Troughs (TTTs), tropical low-pressure 

systems, mesoscale convective systems and cut-off lows (Rapolaki et al, 2019). On occasion, 

tropical storms which are remnants of landfalling tropical cyclones from the southwest Indian 

Ocean bring floods to the study region. High rainfall regions over the study area are largely 

influenced by high altitude (mountains and the northeastern escarpment) due to orographic 

effects (Hart et al, 2013).  

December-January-February (DJF) seasonal mean rainfall over Limpopo province is shown in 

Figure 4.7. DJF rainfall seasonal observation from CRU ts4 (Figure 4.7a) have shown a minimum 

of ~60 mm to a maximum of ~160 mm. All six models’ simulations recorded maximum rainfall of 

about 160 mm/month in some regions along the great escarpment and grasslands in the study 

area, as shown in Figure 4.7 (b – g). Models CCAM_CCS85, CCAM_ GFD85, CCAM_ACC85 

and CCAM_CNR85 simulated lowest summer rainfall (60 mm) in the north and north-western 

region extending towards Zimbabwe and Botswana. CCAM_NOR85 and CCAM_MPI85 

overestimated summer rainfall over the study area. Summer rainfall in the Limpopo exhibits a very 

high coefficient of variability largely due to the influence of the El Nino Southern Oscillation 

phenomenon (Chikoore, 2016). El Nino events are mostly linked to drought and high temperatures 

over the Limpopo whilst La Nina phases bring higher rainfall to the region and more likelihood for 

landfalls of tropical cyclones from the Mozambique Channel.  

March – April – May (MAM) rainfall is distinguished by decreasing rainfall as the tropical rain belts 

shift equator ward as shown in Figure 4.8. The CRU ts4 observation shows MAM rainfall 

variabilities of about 40 mm/month throughout the study area, except the interior region with 60 

mm/month observed rainfall. Rainfall below 20 mm/month in the north region has been simulated 
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by models CCAM_CCS85, CCAM_GFD85, CCAM_ACC85, CCAM_CNR85 and CCAM_MPI85, 

as shown in Figure 4.8. High MAM rainfall variabilities during 1961 – 1980 were simulated with 

model CCAM_NOR85. 

During the austral winter months from June – July – August (JJA), both observations and models 

showed rainfall variabilities of about 20 mm/month over the study area, as shown in Figure 4.9. 

The spring season from September – October – November (SON) rainfall variabilities showed an 

increase in the interior region of the study area shown in Figure 4.10. The mean rainfall for SON 

ranges between 80 mm/month and 100 mm/month in the interior region with low variabilities of 

40 mm/month in the west and 60 mm/month in the east region. It must be stated that the austral 

spring marks the beginning/onset of the rainfall season which can be October or November in this 

region. This season also corresponds to the peak of the fire season on the Limpopo grasslands 

such that any changes to the climate in this season may affect fire regimes significantly in future. 

4.2.2.2 Maximum temperature seasonal means 

The Limpopo province is located in the subtropics of the Southern Hemisphere under the 

subsiding limb of the Hadley Cell such that high temperatures prevail and the region is highly 

vulnerable to heatwaves. As shown in the rainfall analyses, the northern part of Limpopo is rather 

dry and particularly vulnerable to hot temperatures and heat waves. DJF is the hottest, with an 

average maximum temperature ranging above 22°C and below 34°C recorded by CRU ts4 and 

all six downscaled GCMs in the north region towards Zimbabwe and east region towards 

Mozambique, as shown in Figure 4.11(a – g). Model CCAM_ACC85 projected DJF maximum 

temperature (>34°C) expanding along the northern boundary between Zimbabwe and Limpopo 

Province. Spatial distribution of DJF means maximum temperature from CCAM_ACC85, 

CCAM_CCSS85 and CCAM_CNR85 showed variabilities of 30°C – 32°C expanding over the 

west region of study area along the boundary between Botswana and Limpopo in relation to CRU 

ts4 observation. Simulation from CCAM_NOR85 underestimated DJF mean maximum 

temperatures during period 1961 – 1980.  

MAM mean maximum temperatures cooled down to a peak mean maximum temperature below 

30°C, as shown by CRU ts4 observation in Figure 4.12a. Spatial distribution of MAM maximum 

temperature showed the north and east region remained hot while the south and interior regions 

where grasslands are located were becoming cooler. Models CCAM_CCS85, CCAM_GFG85, 

CCAM_ACC85, CCAM_CNR85 and CCAM_MPI85 showed gradient spatial variabilities below 

32°C mean maximum temperature in the north and east regions of the study area. CCAM_NOR85 
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underestimated MAM maximum temperature over the west region of Limpopo province in relation 

to observation and other models’ simulation. 

During JJA, the observed mean maximum temperatures across grasslands were simulated below 

26°C in the north region, 24°C in the interior and 22°C over the southern region, as shown in 

Figure 4.13. Observation showed significant spatial distribution of 26°C – 28°C JJA mean 

maximum temperature over the north (~23°S), and east region (~31°E) of Limpopo province. 

Model CCAM_NOR85 simulated JJA mean maximum temperature below 22° across grasslands 

in the study area, resulting in overestimated cooling of maximum temperature. JJA mean 

maximum temperatures 28°C – 30°C were overestimated by CCAM_CCS85, CCAM_ACC85, and 

CCAM_CNR85 in the north and east region of the study area. Spatial distribution of JJA mean 

maximum temperature with close variabilities to observation were projected by models 

CCAM_GFD85 and CCAM_MPI85, as shown Figure 4.13. 

Observed SON mean maximum temperature (Figure 4.14a) showed a gradient from 24°C in the 

interior to 30°C – 32°C in the west, north and east regions of the study area. Limpopo grasslands 

are well established in area which maximum temperature is relatively low. SON spatial distribution 

of mean maximum temperature in the northern region was projected to reach a maximum of 32°C 

– 34°C along the boundary with Zimbabwe by model CCAM_CNR85. In the meantime, model 

CCAM_NOR85 projected underestimated SON mean maximum temperatures with spatial 

variabilities of 28°C in the west region of study area towards Botswana. Thus, CCAM_CCS85, 

CCAM_GFD85, CCAM_ACC85 and CCAM_MPI85 projection showed close variability with 

observation, as shown in Figure 4.14. 

4.3 Mean annual cycle 

4.3.1 Rainfall 

Limpopo province is a summer rainfall region with most rainfall accumulated the during austral 

summer from October to March (Rapolaki et al, 2020). High rainfall accumulated during the 

summer is largely influenced by synoptic scale cloud bands, also known as TTTs (Harrison 1984; 

Reason et al, 2006; Rapolaki et al, 2020). Low accumulated rainfall thresholds in the study area 

are influenced by prevailed semi-arid climate associated with El Niño phenomenon, causing 

frequent drought events over the region (Reason et al, 2006). Annual mean rainfall of CRU ts4 

observation and ensemble of six downscaled GCMs from CMIP6 is shown in Figure 4.15 with a 

threshold range of 0 to 120 mm/month.  
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Observations and model simulations showed closed variability in mean annual rainfall during 

period 1961 – 1980. Model CCAM_NOR85 showed high variability from the January to June when 

related to CRU ts4 rainfall observations. High rainfall activities with 90 mm/month were recorded 

during austral summer, including November, December, January and February. Mean annual 

rainfall rapidly declines from March to the lowest mean annual threshold in June, July and August 

(winter). Both observation and models showed a gradual increase in rainfall from September to 

December, as shown in Figure 4.15. 

4.3.2 Maximum Temperature 

The models simulated significantly close variabilities to the observed mean annual maximum 

temperature (Figure 4.16). Warmer conditions prevailed during austral summer were recorded 

from both CRU ts4 and six downscaled GCMs from CMIP6. Mean maximum temperature of above 

30°C was recorded in January from both CRU ts4 and models. CCAM_NOR85 underestimated 

mean annual maximum temperature from January to September. Model CCAM_MPI85 showed 

an increase in maximum temperature from January to March.  

Mean annual cycle showed a decline in maximum temperature from the mid-summer to the low 

mean maximum temperature of 22.5°C recorded in June and July, followed by a gradual increase 

from July to December. High temperatures are significantly influenced by the Tropic of Capricorn 

at 23.5° south latitude, which the sun is directly overhead at noon during summer. It can be can 

be concluded that extreme maximum temperatures associated with heatwaves over the Limpopo 

province are influenced by climate change (Maposa et al, 2021). 

4.3.3 Minimum relative humidity 

Minimum relative humidity observations used in the present study were obtained from three local 

weather stations located between 23.9°S – 25°S latitude and 27.5°E – 30.5°E Longitude in 

Limpopo grasslands. Mean annual minimum relative humidity was calculated using three weather 

stations to represent the study area. Models’ annual means were calculated using Limpopo 

province domain ranging from 22°S – 25.5°S and 26°E – 32°E. Due to the small domain of the 

study area represented by three used weather stations, the models projected high variability of 

minimum relative humidity against weather station observation. Models such as CCAM_ACC85, 

CCAM_GFD85 and CCAM_MPI85 were found with a strong correlation coefficient (r) of 0.8. 

Mean annual minimum relative humidity cycle is shown in Figure 4.17. Both observation and 

models’ projection showed a high percentage of minimum RH during austral summer (November, 

December, January, February and March). Observed minimum relative humidity declined until 
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July, where it remained constant until September, then increases towards early austral summer. 

Models’ simulation showed similar declining pattern until reaching minimum limits in September 

succeeded by a rapid rise October towards December. 

4.3.4 Windspeed at 10m 

The observed annual mean windspeed was calculated from three weather stations located 

between 23.9°S – 25°S latitude and 27.5°E – 30.5°E longitude in Limpopo grasslands. The 

models’ annual means were calculated using the domain encompassing 22°S – 25.5°S and 26°E 

– 32°E. Therefore, weather stations only covered southern region of Limpopo province, resulting 

in high variability between observed and models projected mean annual values. At the same time, 

the wind itself is highly variable in space and time. A correlation coefficient of 0.7 was measured 

during model verification in Figure 4.6. Annual mean wind speed cycles of both observations and 

model projections are plotted in Figure 4.18.  

Models varied closely from January to December, hence showing similar trends and patterns with 

weather stations observations. Meanwhile, weather station observations showed a slight 

decrease in wind speed (<1 m/s) from January to March but remained consistently low until 

gradual increase from June to October. The models projected mean annual wind speed of 3 m/s 

and 4 m/s during summer and spring, while autumn and winter varied relatively between 3 m/s 

and 2 m/s. In Figure 4.18, models showed mean annual wind speed varied below 3 m/s from 

March to the lowest values of 2 m/s in June followed by a gradual rise until October then declined 

during period 1961 – 1980.   

4.4 Summary 

In this chapter, spatial verification of models, seasonal means, and mean annual cycles were 

employed to analyse variations during the historical baseline from (1961–1980) in relation to 

observation and six downscaled GCMs from CMIP6. Taylor diagram comprising standard 

deviation, correlation coefficient and RMSE was used to validate models projection over the study 

area. Observation dataset were obtained from CRU ts4 gridded weather station data with spatial 

resolution of 0.5°× 0.5° and ARC-SA three weather stations within grassland over the study area. 

Models simulation was derived from six GCMs from CMIP6 dynamically downsacled with RCM 

CCAM comprising high resolution of 8 km. Spatial verification of models using CRU ts4 showed 

best performance from all models, but CCAM_NOR85 was the least performing model.   

 

 



52 | P a g e  
 

 

Figure 4.1 Limpopo annual mean rainfall (mm/month) from observation (a) and models (b – g) 

for the historical baseline 1961 – 1980. 
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Figure 4.2 Limpopo annual mean maximum temperature from observation (a) and models (b – 

g) for the historical baseline 1961 – 1980.  
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Figure 4.3 Taylor diagram showing rainfall model validation. 

 

Figure 4.4 Taylor diagram showing maximum temperature model validation. 
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Figure 4.5 Taylor diagram showing minimum relative humidity model validation 

 

Figure 4.6 Taylor diagram showing windspeed model validation 
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Figure 4.7 DJF seasonal mean rainfall for the period 1961 – 1980. 
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Figure 4.8 MAM seasonal mean rainfall for the period 1961 – 1980. 
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Figure 4.9 JJA seasonal mean rainfall for the period 1961 – 1980. 
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Figure 4.10 SON seasonal mean rainfall for the period 1961 – 1980. 
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Figure 4.11 DJF seasonal mean maximum temperature for the period 1961 – 1980. 
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Figure 4.12 MAM seasonal mean maximum temperature for the period 1961 – 1980. 
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Figure 4.13 JJA seasonal mean maximum temperature for the period 1961 – 1980. 
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Figure 4.14 SON seasonal mean maximum temperature for the period 1961 – 1980. 
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Figure 4.15 Limpopo rainfall mean annual cycle (mm/month). 

 

 

 

Figure 4.16 Limpopo maximum temperture mean annual cycle.  
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Figure 4.17 Limpopo minimum relative humidity mean annual cycle. 

 

 

 

Figure 4.18 Limpopo windspeed at 10 m mean annual cycle. 

 



66 | P a g e  
 

Chapter 5: Future projections of climate change and fire risk over 

the Limpopo grasslands 

5.1 Introduction 

This chapter aims to detail future projections of climate change and fire risk over the Limpopo 

grasslands for three future periods including the near future (2021 – 2040), mid future (2041 – 

2060) and far future (2080 – 2099). The projections are derived from an ensemble of six GCMs 

from the CMIP6, which were dynamically downscaled through RCM CCAM (McGregor 2005) to 

get relatively high spatial resolution of 8 km. The study focused on the RCP8.5 emission scenario, 

also known as low mitigation or “business as usual” scenario. Whilst several percentiles were 

calculated, only the median quartile (50th percentile) was selected for presentation in this chapter. 

Spatial analysis was applied to investigate the future of five key variables including rainfall, 

maximum temperature, minimum relative humidity and wind speed at 10 m.  Changes in the mean 

annual cycle were used to investigate fire risk over the study area using McArthur FFDI high fire 

danger days comparing changes between three future periods. 

5.2 Future climate projections 

5.2.1 Rainfall 

Future rainfall projections for three periods, i.e., 2021 – 2040, 2041 – 2060 and 2080 – 2099, 

were analysed using the 50th percentile to distinguish spatial variabilities of future rainfall in the 

study area. The key message is that rainfall is projected decreasing over most of the study area. 

During period 2021 – 2040, all models projected more rainfall variabilities varying along the Great 

Escarpment and grasslands in the interior regions between longitudinal line 30°E and 31°E as 

shown in Figure 5.1. The influence of orographic lifting on rainfall will remain despite changes 

induced by global warming and climate change. 

The ensemble of six downscaled GCMs showed a mean annual rainfall below 30 mm/month 

spatially distributed over much of the study region apart from the escarpment and the mountain 

ranges as shown in Figure 5.1(a – f). Models CCAM_CNR (Figure 5.1b) and CCAM_GFD (Figure 

5.1e) projected mean annual rainfall of 35 mm/month rainfall over the grasslands in the west 

region of study area extending to the south-western region with increasing rainfall to 40 

mm/month. Mean annual rainfall of less than 30 mm/month is projected in the west region, 

expanding to Botswana by models CCAM_ACC and CCAM_MPI as shown in Figure 5.1a and 

Figure 5.1b. The east region toward Mozambique showed fewer variabilities with rainfall below 
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30 mm/month from an ensemble of six downscale GCMs, as shown in Figure 5.1. The 

CCAM_GFD model projected slightly more rainfall in the southeast than the other 5 models 

(Figure 5.1e). 

In the mid future (2041 – 2060), the models projected high rainfall of above 55 mm/month along 

the Great Escarpment in the interior and south region of the study area as shown in Figure 5.2. 

Model CCAM_CCS (Figure 5.2d) projected extremely low mean annual rainfall of less than 15 

mm/month over the north and north-western regions of Limpopo province. CCAM_GFD (Figure 

5.2e) projected more rainfall variabilities over the east region into Mozambique. CCAM_NOR 

projected more rainfall variabilities in the study, with 40 mm/month expanding from south-west 

region into grassland as shown in Figure 5.2f. 

The far future projections (2080 – 2099) showed extreme low rainfall of 10 mm/month over north 

and west region from Botswana and Zimbabwe as shown in Figure 5.3. More rainfall variabilities 

were projected along Great Escarpment and increase spatial extent over the south region. Model 

CCAM_MPI (Figure 5.3c) showed small spatial extent of projected rainfall in the south region of 

the study area. CCAM_CNR and CCAM_NOR projected rainfall varying below 30 mm/month over 

the west region. Overall, all models project significant drying over the Limpopo grasslands into all 

three futures under investigation. 

5.2.2 Maximum Temperature 

Maximum temperature projections for the near future, mid future and far future have shown a 

gradual increase in the study area, consistent with the global warming trend. Near future 

projections showed maximum temperature ranging between 25°C and 29°C varying in the interior 

region and grasslands over the study area. Models projected fewer variabilities of highest 

maximum temperature (34°C) expanding from north-east region of study area as shown in Figure 

5.4. CCAM_ACC projected spatial extent of 33°C along the boundary between Limpopo and 

Zimbabwe. CCAM_NOR (Figure 5.4f) underestimated maximum temperature, resulting in 

projections of low maximum temperature (28°E – 31°E and 23°S – 25.5°S) in the study area 

during 2021 – 2040. 

In the mid future (2041 – 2060), CCAM_CCS projected increasing spatial extent of maximum 

temperature (34°C) along the boundary line between Limpopo and neighbouring countries (Figure 

5.5). The models projected increasing maximum temperatures throughout the domain of study 

area. Patches of grasslands in the west region are projected under significant vulnerabilities due 

to increasing maximum temperatures. During the 2080 – 2099 (far future) period, models 
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projected extreme hot climate over the study area. Maximum temperatures ranging between 25°C 

and 31°C are projected expanding in the interior region and grassland along the Great 

Escarpment. Models CCAM_ACC, CCAM_MPI and CCAM GFD projected extreme hot climate 

increasing in the interior region of the study area, as shown in Figure 5.6(a, c, d). 

5.2.3 Minimum relative humidity 

The models’ projections of minimum RH into the future showed more spatial variability from west 

to east region of the study area, similar to the rainfall variabilities. In the near future (2021 – 2040), 

all models showed spatial gradients in minimum relative humidity gradually increasing from west 

(Botswana) to the east region (Mozambique) as shown in Figure 5.7. It is also important to 

highlight that the dominant moisture source region for the province is the southwest Indian Ocean 

in the east. The models projected minimum RH of 45% - 60% varying from west to east in the 

southern regions (~25°S – 25.5°S) of the study area. More spatial variabilities were projected in 

the interior with a high minimum RH (65%) along the Great Escarpment and decreasing in the 

west region. The east region of grasslands showed less variation, but high minimum RH ranging 

from 45% to 55% as shown in Figure 5.7.  

During the mid-future period from 2041 – 2060, model CCAM_CCS (Figure 5.8d) projected more 

variabilities of low minimum RH from west into the interior of study area. CCAM_ACC, 

CCAM_CNR and CCAM_MPI have shown a less change in comparison with near future 

projections. Model CCAM_GFD (Figure 5.8d) have shown decreasing minimum RH over 

grasslands expanding from the interior to west of study area compared to near future variabilities. 

The east region remained ranging between 45% and 55% minimum RH as shown in Figure 5.8. 

In the far future (Figure 5.9), all models projected more variabilities of low minimum RH (35% and 

below) expanding from west region to the interior. The east region (~31°E) was projected 

consistently ranging from 45% to 60% minimum RH in the near and mid future. The far future is 

projected decreasing to minimum RH range between 40% and 55% as shown in Figure 5.9. 

5.2.4 Windspeed at 10 m 

Spatial variabilities of projected wind speed at 10 m showed no significant change from all three 

future periods, as shown in Figure 5.10, Figure 5.11 and Figure 5.12. All models projected wind 

speeds of between 3 m/s and 5.5 m/s from the interior to the north and west region of the study 

area. The high wind speed may be related to the nocturnal low-level jet stream, locally known as 

Limpopo Jet, responsible for transporting water vapour over Limpopo River valley (Riffe et al, 

2010; Munday et al, 2021). South region of the study area extending from 24°S latitude poleward 

was projected with uniform windspeed variabilities by all models through all three future periods. 
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The wind field itself is one of the most complex variables, considering wind gusts and local winds 

due to topography or thermally induced circulations. 

5.3 High fire danger days in the future climate 

5.3.1 McArthur high fire danger days 

Projections of the McArthur FFDI high fire danger days were used to investigate fire behaviour in 

the near future, mid future and far future. Ten days were used as a scale to distinguish high fire 

days' spatial variabilities from an ensemble of six downscaled CMIP6 GCMs. High fire danger 

days spatial variabilities would vary under highs and lows projected by rainfall, maximum 

temperature, minimum RH, and wind speed through each model and period.  

Projected high fire danger days for the near future are shown in Figure 5.13(a – f). All model 

projected high fire danger days above 10 days over the north and west region. The east region 

projected with 7 to 8 days of high fire danger hence, the interior and south region were entirely 

ranging between 1 – 4 days, as shown in Figure 5.13. Meanwhile, model CCAM_CCS (Figure 

5.13 d) projected low vulnerabilities over the east region towards Mozambique. The models also 

projected 5 – 9 days expanding south-westerly from 24°S – 25°S and 29°E – 30°E during the 

near future period.  

In the mid future, model CCAM_GFD (Figure 5.14e) projected least vulnerability than others 

model in the east region whilst, CCAM_CCS (Figure 5.14d) projected high variabilities ranging 

from 7 to 10 high fire danger days. The number of days expanding south-westerly from 24°S – 

25°S and 29°E – 30°E increased in all models. Far future projections (Figure 5.15) have shown a 

further increase in high fire danger days in the study area. All models showed 10 days of high 

danger days throughout the study except along the Great Escarpment, where the number of days 

remained uniform. 

5.3.2 Projected future mean annual cycles 

In the present study, three locations including Mopani (30.01 E; 23.91 S), Sekhukhune (29.73 E; 

25.15 S), and Waterberg (27.77 E; 24.45 S) were selected for analysis. Mopani was excluded in 

this section because of outcomes with minimum threshold that were uninterpretable. 

5.3.2.1 Sekhukhune 

Mean annual high fire danger days in Sekhukhune for three future periods were analysed using 

an ensemble of six downscaled CMIP6 GCMs. Projected near future mean annual high fire 

danger days showed no variation in the number of high fire danger days from January to June, 
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as shown in Figure 5.16. However, the models showed variations in high fire danger days from 

July increasing to a close range between 10 – 15 days from September and October, then 

descends through November back to zero in December. CCAM_ACC85 and CCAM_CCS85 

projected 15 days and above in September, while CCAM_CNR85 projected over 15 days of high 

fire danger in October. The lowest high fire danger days were projected by model CCAM_GFD85 

(Figure 5.16).  

During the 2041 – 2060 period (Figure 5.17), the model projected an increase in the number of 

high fire danger days to maximum high between 15 and 20 days. Other models showed fewer 

variabilities from January to June, with an early increase in number of high fire danger days from 

May. CCAM_CCS85 projected highest number (>20 days) in September, hence in October, 

CCAM_MPI85 projected highest number (>20 days). CCAM_GFD85 constantly projected lowest 

days (15 days) during period 2021 – 2040 as shown in Figure 5.17.  

In the far future (Figure 5.18), the models projected high fire danger days above 20 per annum. 

Mean annual high fire danger days varied from between 0 – 10 days until July, followed by a rapid 

rise to above 20 days in September and October. High fire danger days are projected increasing 

in Sekhukhune from near to far future. 

5.3.2.2 Waterberg 

Waterberg is in the west region of study area, where future projection from models showed 

extreme arid climate conditions. In the near future, high fire danger days projected varied below 

5 days from January to July, as shown in Figure 5.19. CCAM_ACC85 and CCAM_CCS85 

projected 20 days in September, hence CCAM_CCS85 and CCAM_MPI85 projected more than 

20 days of high fire danger in October. CCAM_GFD85 projected lower high fire danger days in 

September and October. 

During period 2041 – 2060, model projections showed an increasing high fire danger day in 

Waterberg. All models projected over 20 days in September and October. CCAM_CCS85 

projected highest number of high fire danger days, as shown in Figure 5.20. In the far future, the 

models projected increasing number of days from January to June. CCAM_GFD85 projected 

more days of high fire danger days than all models. Increasing high fire danger days early from 

March showed extremely hot climate expected from Waterberg. Models projected mean annual 

high fire danger of 30 days in September and October, as shown in Figure 5.21. 
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5.4 Discussion 

In the present study, the 50th percentile climate variabilities were projected and analysed to 

distinguish changes between the near future, mid future and far future. Projected variables which 

are most relevant to wild fires include rainfall, maximum temperature, minimum relative humidity, 

wind speed at 10 m and McArthur FFDI high fire danger days. Projections under low mitigation 

showed extreme dry and hot conditions over the study area from an ensemble of six CMIP6 GCMs 

forced with high resolution (8 km) regional climate model CCAM. Several studies have projected 

hot and dry condition over the study area under 1.5°C, 2°C, 3°C, and 4°C global warming levels 

into the future (i.e., Engelbrecht et al, 2015; Mbokodo et al, 2020; Engelbrecht and Monteiro, 

2021).  

Several other studies have projected the Limpopo province to become drier under the low 

mitigation emission scenario (e.g., Engelbrecht et al, 2011; Archer et al, 2018; Engelbrecht and 

Monteiro, 2021). Tropical cyclone tracks are also projected continuously varying northwards to 

northern Mozambique, hence becoming fewer over Limpopo province (Malherbe et al., 2013). 

CORDEX regional climate models projected decrease in rainfall by 0.2 and 0.3 mm /day under 

1.5° and 2° global warming levels (Maure et al, 2018). Some studies have projected decreasing 

rainfall spatial extent varies with increasing intensity of drought under increasing global warming 

levels over southern Africa (James and Washington 2013; Maúre et al, 2018). Meteorological 

drought is projected increasing consistently in southern Africa under both 1.5°C and 2°C global 

warming levels (Hoegh-Guldberg et al, 2018). Besides projected decreasing rainfall variabilities, 

daily rainfall intensities are expected in some regions (Hoegh-Guldberg et al, 2018). 

Projected increasing maximum temperatures are associated with occurrence of heatwaves over 

the study area (Engelbrecht et al, 2015; Mbokodo et al, 2020) and expansion of arid climate zone 

(Engelbrecht and Engelbrecht, 2016). Projected maximum temperature will increase frequency of 

heatwaves over the study area due to mid-level high pressure systems that prevail over this 

region, influenced by expansion of the Hadley cell over southern Africa (Engelbrecht et al, 2011). 

Rising temperature may support growth of tress and expansion of Limpopo savanna into patches 

grasslands (Engelbrecht and Engelbrecht, 2016). 

The study projected decreasing rainfall and rising temperatures inducing drastic high fire danger 

days over the study area in the future. A key finding of this study is the projected increase in fire 

risk over the Limpopo grasslands via a steady rise in future high fire danger days. The study by 

Engelbrecht et al, (2015) also made a similar projection, suggesting that high fire danger days 
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may lead to occurrence of catastrophic wildfire events. Since rising temperature favour growth of 

woody vegetation, frequent occurrence of wildfire may reserve grassland from spatial expansion 

of savanna over the study area. Mean annual cycles of high fire danger days in the future showed 

a peak in September, which is similar to peaks in the number of fires observed during fire season 

in Limpopo by Strydom and Savage (2016). The assumed strong relationship between fire and 

climate requires climate models to assess human impacts in the system (Archibald et al, 2010). 
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Figure 5.1 Near future rainfall projection from an ensemble of six downscaled CMIP6 GCMs 
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Figure 5.2 Mid future rainfall projection from an ensemble of six downscaled CMIP6 GCMs  
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Figure 5.3 Far – future rainfall projection from an ensemble of six downscaled CMIP6 GCMs 
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Figure 5.4 Near – future maximum temperature projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.5 Mid – future maximum temperature projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.6 Far – future maximum temperature projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.7 Near – future minimum relative humidity projection from an ensemble of six 

downscaled CMIP6 GCMs 
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Figure 5.8 Mid – future minimum relative humidity projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.9 Far – future minimum relative humidity projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.10 Near – future wind speed at 10 m projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.11 Mid – future wind speed at 10 m projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.12 Far – future wind speed at 10 m projection from an ensemble of six downscaled 

CMIP6 GCMs 
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Figure 5.13 Near – future McArthur FFDI high danger days projection from an ensemble of six 

downscaled CMIP6 GCMs 
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Figure 5.14 Mid – future McArthur FFDI high danger days projection from an ensemble of six 

downscaled CMIP6 GCMs 
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Figure 5.15 Far – future McArthur FFDI high danger days projection from an ensemble of six 

downscaled CMIP6 GCMs 
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Figure 5.16 Sekhukhune mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (near – future). 

 

 

Figure 5.17 Sekhukhune mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (mid – future). 
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Figure 5.18 Sekhukhune mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (far – future). 

 

 

Figure 5.19 Waterberg mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (near – future). 
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Figure 5.20 Sekhukhune mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (near – future). 

 

 

Figure 5.21 Sekhukhune mean annual McArthur FFDI high danger days from an ensemble of six 

downscaled CMIP6 GCMs (near – future). 
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Chapter 6: Conclusions and Future work 

6.1 Introduction 

Fire is a common and essential process in the ecology of the savanna grasslands of Limpopo, 

located northeast of South Africa. However, increasingly, the burned area is growing due to a 

prolonged fire season as the climate warms and changes. Recurrent drought on the grasslands 

coupled with high temperatures and heat wave conditions (Lyon, 2009; Chikoore and Jury 2021) 

create conditions conducive for frequent and intense wildfires. This study aimed to investigate 

changes in fire risk on the Limpopo grasslands due to climate change. It is well established in the 

literature that weather and climate variables such as temperature, precipitation, humidity and wind 

play an important role in the occurrence and spread of wildfires. Precipitation promotes fuel 

accumulation, temperature influences dryness of fuels, relative humidity regulates fuel moisture 

content, whilst wind speed affects fire spread rate. 

This concluding chapter provides a synthesis of the key findings of this work, while providing 

recommendations for future research and fire management practices. 

6.2 Discussion of Key Findings  

6.2.1 Model verification 

This study employed an ensemble of six models from the CMIP6 models forced with the high 

resolution CCAM model. The period 1961-1980 was employed as the historical baseline, whilst 

CRU TS4.04 data and ARC-SA weather station observations were used to verify the models. The 

Taylor diagram was employed to investigate models’ performance against observations. 

Statistical tools featured in a Taylor diagram include standard deviation, correlation coefficient 

and RMSE. For this study of fire regimes, key variables used for model verification include rainfall, 

maximum temperature, minimum relative humidity, and wind speed. 

Rainfall model verification showed CCAM_ACC85, CCAM_CCS85, CCAM_CNR85, 

CCAM_GFD85, and CCAM_MPI85 exhibited the closest variability, highest correlation and least 

RMSE compared with observation, whilst CCAM_NOR85 had the least skill. As expected, 

maximum temperature showed highest correlation and least RMSE from all models compared 

with observation, with CCAM_GFD85 and CCAM_NOR85 having high skill. In terms of minimum 

relative humidity, CCAM_ACC85, CCAM_GFD85 and CCAM exhibited high correlation (r=0.8), 

whilst the same models had least RMSE and close variability compared with the CRU ts4 

observation. Under wind speed, the models showed worst performance in terms of standard 
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deviation and RMSE, hence having correlation (r=0.65) compared with observation. Therefore, 

the black dashed line in the Taylor diagram measures magnitude of variability compared with 

observations. All models that lie below the black dashed line are underestimating variability of 

observation and ones that lie above the dashed black line are overestimating observations.  

6.2.2 Climate change projections 

Future projections showed an increasing magnitude and spreading of aridity over the study area, 

consistent with Jury (2021). Rainfall is projected decreasing, suggesting increasing the intensity 

and frequency of drought on the grasslands. Spatial distribution of rainfall showed more activities 

occurring in the interior of study area. Maximum temperature is projected increasing to thresholds 

that will influence frequent occurrence of heatwaves. It has been found that drought is often 

accompanied by very high temperatures and heat waves (Lyon 2009). The models projected 

decreasing minimum relative humidity suggesting increased risk for vegetation and the 

agricultural sector. Reduced rainfall and high surface temperatures imply increasing 

evapotranspiration and reduced soil moisture. Manifestation of climate change through increased 

drought and heatwaves can be associated with food insecurity, water scarcity, decimation of 

livestock. Several studies have shown the Limpopo province is prone to heatwaves, which pose 

significant threats to agricultural sector, human lives and livelihoods (Mbokodo et al, 2020; 

Maposa et al, 2021; Nyoni et al, 2021). 

6.2.3 Future changes in fire risk on the Limpopo grasslands 

Limpopo grasslands are projected to become more vulnerable to increasing high fire danger days 

in the future. The projected increasing high fire danger days may influence frequent occurrence 

of wildfires that are destructive. In the near future (2021 – 2040), high fire danger days are 

projected ranging from 0 to the peak of 15 days over the grasslands in the south of the study 

region. In the west region, high fire danger days projected over the grasslands were varying from 

0 to 20 days. The peak high fire danger days are projected to occur in September and October.  

In the mid future (2041 – 2060), high fire danger days are projected increasing throughout the 

grasslands. Mean annual cycles analysed in chapter 5 showed relatively low fire risk from January 

to July across Limpopo grasslands. The peak high fire danger days have increased by 5 days 

from September to October, hence increasing fire risk in the grasslands. In the far future (2080-

2099), the grasslands are vulnerable to high fire risk due to an increasing mean annual high fire 

danger days. The mean annual cycles projected drastic increases of high fire danger days from 

early autumn (March) until reaching the peak of 30 days high fire danger in spring.  
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6.3 Future work 

Whilst this study has employed the McArthur FFDI, a comparison of the simulations of future fire 

risk based on different fire danger indices might be more revealing. Fire danger indexes, including 

fire weather index (FWI) and Lowveld Fire Danger Index (LFDI) are also employed in different 

part of the world. A comparison between fire danger indexes would provide different input and 

arguments to support the results because index values vary assessing impact of fire danger 

between different regions (Dowdy et al, 2010). Such a comparison of the performance of the 

different indices is therefore necessary. 

Climate change projections of the present study were based on low mitigation effort (RCP8.5) 

and did not consider other RCPs. Future projections of fire risk using illustrative greenhouse 

emission scenarios referred to as Shared Socio-economic Pathways (Popp et al, 2017) showing 

climate variability from best effort mitigation to low mitigation (IPCC, 2021) would construct a firm 

fire risk assessment under current climate change uncertainty. Based on the projections of 

increasing fire risk under climate change in the future, fire managers and disaster risk reduction 

authorities need to take proactive prevention measures to reduce the impacts of future fires. The 

recent fires in the Western Cape of South Africa, in Knysna and on the Table Mountain have 

increased awareness of the potential harm due to runaway fires. 

High resolution climate models, such as CCAM, would be useful in projections of future fire risk. 

Application of high-resolution climate models at regional scale may provide fire managers, 

including foresters, farmers, risk disaster managers and nature conservationists with an 

understanding of physical processes conducive to extreme weather and climate variabilities that 

cause catastrophic fire events. More research is thus needed to reduce the future impacts and 

vulnerabilities of the grasslands to high fire risk. 

6.4 Conclusion 

The study of projecting fire risk over an area that is prone to fire is very important under increasing 

global warming levels due to climate change. In the present study, future climate change 

projections for three periods including near future (2021 – 2040), mid future (2041 – 2060), and 

far future (2080 – 2099) over Limpopo grasslands are presented. An ensemble of six GCMs from 

CMIP6 dynamically downscaled though RCM CCAM with a high resolution of 8 km was used. 

Taylor diagram (Taylor, 2001) was used for model verification and statistics showed best 

performance from models compared with CRU ts4 observation during historical baseline of 1961 

– 1980. Model verification increases confidence in using climate model for realistic presentation 
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of future climate change variabilities. The study a found drier and warmer climate consistent with 

the recent literature. The projected increasing high fire danger days under RCP8.5 showed high 

fire risk in the future over Limpopo grasslands. Models’ findings agree with future projections from 

other studies, projecting increasing temperatures and an elongated future drying (Engelbrecht et 

al, 2015; Archer et al, 2018; Engelbrecht and Monteiro, 2021). This study contributed new 

knowledge to the understanding of fire risk on the grasslands, via an ensemble of very high-

resolution climate models at the regional scale. 
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