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Abstract

The purpose of this thesis is to develop coupled multi-scale dynamics of infectious disease systems. An

infectious disease system consists of three subsystems interacting, which are the host, the pathogen, and

the environment. Each level has two different interaction scales (micro-scale and macro-scale) and is

organized into hierarchical levels of an organization, from the cellular level to the macro-ecosystem level,

and is arranged into hierarchical levels of an organization. There are two main theories of infectious

diseases: (i) the transmission mechanism theory, (ii) the replication-transmission relativity theory. A

significant difference exists between these theories in that (i) the transmission mechanism theory considers

transmission to be the primary cause of infectious disease spread at the macro-scale, while (ii) replication-

transmission relativity theory is an extension of the first theory. It is important to consider the interaction

between two scales when pathogen replication occurs within the host and transmission occurs between

hosts (macro-scale). Our research primarily focuses on the replication-transmission relativity theory of

pathogens. The main purpose of this study is to develop coupled multi-scale models of direct vector-

borne diseases using malaria as a paradigm. We have developed a basic coupled multi-scale model with

a combination of two other categories of multi-scale models, which are a nested multi-scale model in the

human host and an embedded multi-scale model in the mosquito host. The developed multi-scale model

consists of approaches of nonlinear differential equations that are employed to provide the mathematical

results to the underlying issues of the multi-scale cycle of pathogen replication and transmission of malaria

disease. Stability analyses of the models were evolved to substantiate that the infection-free equilibrium

is locally and globally asymptotically stable whenever R0 < 1, and the endemic equilibrium exists and

is globally asymptotically stable whenever R0 > 1. We applied the vaccination process as a governing

measure on the multi-scale model of malaria with mosquito life cycle by comprising the three stages of

vaccination, namely pre-erythrocyte stage vaccines, blood stage vaccines and transmission stage vaccines.

The impact of vaccination on malaria disease has been proven. Through numerical simulation, it was

found that when the comparative of vaccination efficacy is high, the community pathogen load (GH and

PV ) decreases and the reproductive number can be reduced by 89.09%, that is, the transmission of malaria

can be reduced on the dynamics of individual level and population-level.We also evolved the multi-scale

model with the human immune response on a within-human sub-model which is stimulated by the malaria

parasite. We investigated the effect of immune cells on reducing malaria infection at both the between-

host scale and within-host scale. We incorporate the environmental factor, such as temperature in the

multi-scale model of the malaria disease system with a mosquito life cycle. We discovered that as the

temperature enhances the mosquito population also increases which has the impact of increasing malaria

infection at the individual level and at the community-scale. We also investigated the influence of the

mosquito life cycle on the multi-scale model of the malaria disease system. The increase in eggs, larval

and pupal stages of mosquitoes result in the increase of mosquito density and malaria transmission at the

individual level and community-scale. Therefore, the suggestion is that immature and mature mosquitoes

be controlled to lessen malaria transmission. The results indicated that the combination of malaria health
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interventions with the highest efficacy has the influence of reducing malaria infection at the population-

level. Models developed and analyzed in this study can play a significant role in preventing malaria

outbreaks. Using the coupled multi-scale models that were developed in this study, we made conclusions

about the malaria disease system based on the results obtained. It is possible to apply the multi-scale

framework in this study to other vector-borne diseases as well.
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Chapter 1

INTRODUCTION

1.1 Background of the infectious diseases

Infectious diseases remain the leading cause of morbidity and mortality worldwide, with HIV, malaria and

tuberculosis being the leading cause of most deaths [2], particularly in low-income countries, particularly

among children under 5 [3]. Infectious disease systems are described as illness triggered by organisms

(such as bacteria, fungi, viruses, or parasites) that are transmitted either directly or indirectly from an

infected person, animal or reservoir to a susceptible host [4]. Infectious disease systems are viewed as

complex systems resulting from the interconnection of three subsystems (such as pathogen, host, and en-

vironmental) and these sub-systems are organised into hierarchical levels of organisation (that is from cell

level to macro-ecosystem level), with multi-scales (i.e., micro-scale and macro-scale) [5, 6]. These dis-

eases have endangered many people for centuries. Infections can be transmitted through direct or indirect

contact with an infectious agent such as contaminated food, water, feces, bodily fluids or animal prod-

ucts, or through the air. There have been some improvements in infectious disease research, treatment,

control and eradication, but they still face major public health challenges [7]. Mathematical models of

the biological system have played an important role in improving our understanding of infectious disease

systems at different organizational levels (e.g., cellular level, tissue level, organ level, micro-ecosystem

level, host/organism level, community level, and macro-ecosystem level).

The field of mathematical models has long dealt with aspects of transmission mechanisms of infectious

disease systems [8]. Daniel Bernoulli was the first to develop a mathematical modelling of infectious

disease system in 1766, as models work on smallpox immunization [9]. Since that time until recently,
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numerous single-scale mathematical model has been formulated to display and assess the transmission

dynamics of various infectious diseases across different levels of organisation of an infectious disease

system [10]. These traditional transmission mechanisms of mathematical models can be tracked back to

Sir Ronald Ross 1916-1917 phenomenal models to investigation mosquito borne diseases [8]. In the early

1900s, Ross published a series of articles on mathematical models to explore the theory of transmission

mechanisms of infectious disease systems. Most of George McDonald’s models were developed by ex-

tending Rosss models by accounting for factors such as age-related differential susceptibility to malaria

in human populations, acquired immunity, and host-parasite spatial and genetic heterogeneity[9]. Ronald

Ross and George McDonald pioneered the theory of mosquito-borne disease transmission and the use

of mathematics to model the transmission of infectious disease systems [9]. The Ross-McDonald models

were an intentionally simplified set of models, concepts, and principles that could help illustrate certain re-

lated empirical phenomena related to pathogen transmission. The Ross-McDonald theory has contributed

to improving the study of pathogen transmission and establishing strategies for the prevention of infectious

diseases. Most mathematical models of infectious diseases in the transmission of pathogens are based on

Ross-McDonald theory. In 1927, Kermack and McKendrick proposed the first Susceptible, Infected, and

Recovered (SIR) model, refining and expanding the theory of pathogen transmission [9].

For over a century, almost all studies of infectious diseases have been based on the principle of Ross

and McDonald, which has played an important role in developing the theory of pathogen transmission

mechanisms. It is generally accepted that a better understanding of the theory of infectious disease trans-

mission mechanisms can facilitate the development of new and improved prevention and control measures

against the burdens and challenges of these infectious diseases across populations by using mathemati-

cal modeling methods [11]. The advantages of these transmission models are that they have improved

our knowledge of the impact of different disease transmission mechanisms (e.g. fecal-oral transmission,

sexual-oral transmission mechanisms, vector-borne transmission mechanisms, etc.) on the risk of in-

fectious diseases on population health. These transmission models help us to compare and assess the

effectiveness of different health interventions against these infectious diseases, either locally or globally.

1.2 Theories of infectious disease systems

Several theories have been developed to explain the infectious diseases, and the two main theories of in-

fectious diseases are (i) the transmission mechanism theory and (ii) the replication-transmission-relativity

theory [11]. The difference between these theories is that the first theory considers transmission as the

main cause of infectious disease spread at macro-scale and the second theory considers replication trans-

mission as the main cause of pathogen replication at lower/micro-scale. Scale and pathogen transmission

at upper-scale/macro-scale. These theories of infectious disease systems are described as follows:
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(1) The transmission mechanism theory: The transmission mechanism theory is based on the assump-

tion that transmission is the most important dynamic disease process at each hierarchical scale of

organization (i.e. the cellular scale, the tissue scale, the organ scale, the micro-ecosystem scale, the

host scale, the community scale, the macro-ecosystem scale) in the dynamics of infectious diseases

and the transmission can be developed to study disease dynamics at a particular scale of organiza-

tion. The majority of studies so far on mathematical modelling of infectious disease systems were

confined to a single scale of organization (host-scale), thus creating distinct systems with their own

questions. The development of these transmission models at any level are classifying at the pop-

ulation level (i.e., population of cells at the cellular scale, population of tissues at the tissue scale,

population of organs at the organ scale, etc.) into compartments in which individuals behave in a ho-

mogeneous manner. However, we have seen number of mathematical models of infectious diseases

developed based on the transmission mechanism theory. The mathematical models developed based

on transmission mechanism theory demonstrated the infectious disease system on a single scale.

Students working on infectious disease systems adopt transmission mechanism theory in their mas-

ter’s [12] and Ph.D [13] theses. This idea is based on three main transmission processes: (i) direct

transmission mechanism, (ii) environmental transmission mechanism and (iii) vector transmitted

transmission mechanism [11]. These transmission mechanisms can be summarized as follows:

(i) The directly transmitted mechanisms are infectious disease processes built on the transmission

mechanism theory, in which transmission from one host to another occurs through host-to-

host transmission. The mechanism of transmission can be sexually transmitted infection such

as HIV/AIDS. The directly transmitted disease models are developed at the population level

that has the following compartments Susceptible, Exposed, Infected, Recovering (SEIR) and

variations of the paradigms (SI, SEI, SIR, etc.) at each hierarchical organizational level of an

infectious disease system [11, 14, 15].

(ii) Environmentally transmitted mechanisms are the infectious disease systems where transmission

of pathogens must pass through the environment to complete their disease life cycle [16, 17].

The models for environmentally transmitted disease systems have an additional compartment

of environmental pathogen load and the following compartment built at the population level,

i.e. H. Susceptible, Exposed, Infected, Recovered, and Environmental Pathogen Load (SEIRP)

and variations of the paradigms (SIP, SEIP, SIRP, etc.) [11, 15].

(iii) Vector-borne transmitted mechanisms arising due to pathogens have a complex life cycle that

requires the existence of two hosts (a vertebrate host and a vector host) for the pathogen to

complete its life cycle. These infectious disease systems are either environmental or directly

transmitted diseases [11, 18]. Vector-borne transmitted diseases have compartments for verte-

brate hosts and vector hosts.

The transmission mechanism process has certain limitations such as: being incapable to offer sys-

tem of level description of an infectious disease system that uses multiscale modeling approaches
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that address both the microscale and the macroscale. Most models of the transmission mechanism

also have limitations that are not sufficient to illustrate the phenomena of infectious disease dy-

namics that differ temporally and spatially at different scales [11]. These mathematical models

of transmission mechanism theory have failed to recognize that the infectious disease system can

be fully demonstrated by considering two bounding adjacent scales (i.e., the microscale and the

macroscale), and they focus on a disease process on a single scale. The studies on infectious disease

systems are mainly concerned with the theory of transmission mechanisms, that is of transmission

at the population level, there is very little effort devoted to replicating pathogens.

(2) The replication-transmission relativity theory: The need to consider the theory of relativity, which

accounts for events (i.e. replication of pathogens) that lead to transmission and thus accounts for

temporal and spatial variability. This theory is the extension of the first theory. The infectious dis-

ease systems that take into account pathogen replication and the theory of transmission mechanism

are called the relativity theory of replication and transmission [11]. Replication-transfer relativity

theory states that at each hierarchical level of organization of an infectious disease, there are interac-

tions between the micro-scale and macro-scale sub-models. This infectious disease system research

work addresses the replication-transmission relativity theory.

The replication-transmission relativity theory recognizes that there are two distinct processes at

each hierarchical level of organization that influence each other through a positive feedback mech-

anism at the micro-scale (where pathogen replication often occurs) and at the macro-scale (where

pathogens transmission occurs) when the dynamics of the infectious disease will spread and per-

sist. These hierarchical levels organize and shape the dynamics of infectious diseases at each level

as a multiscale loop that includes the influence between two scales (micro-scale and macro-scale)

[11]. At each hierarchical level of an infectious disease system, the reciprocal influence between the

micro-scale and macro-scale establishes a multi-scale cycle of pathogen replication and transmis-

sion [11]. The dynamics of infectious diseases are confronted with the circular causality of disease

processes at each of the seven hierarchical levels of organization. These will unify the multi-scale

cycle of replication and transmission. The two limiting scales (macroscale and microscale) interact

with each other through the processes of (i) superinfection/infection (movement of pathogen from

macroscale to micro-scale) and (ii) shedding/excretion (movement of pathogen from microscale to

macroscale). The macro-scale is at the population level (between cell scale, between tissue scale,

between organ scale, etc.) and the micro-scale is at the individual level (within cell scale, within

tissue scale, etc.). Frequently, the scales at which pathogen repetition and transmission take place

do not match [11]. The time scale on the microscale and the macroscale is different, that is, the

microscale has a fast time scale while the macroscale has a slow time scale. At all levels we observe

that there is pathogen replication and the process of transmission of pathogens linked by infec-

tion/superinfection and excretion/excretion processes. Studies have been concerned in transmission

mechanism theory until multiscale modeling came about. The diagram in figure (1.1) shows the
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reciprocal influence between the macroscale and the microscale.

Figure 1.1: Conceptual diagram of replication-transmission multi-scale cycle.

1.3 The seven fundamental levels of organisation of infectious disease sys-
tem

Infectious diseases are complex systems composed of multi-scale and multilevel dynamics. The seven

main levels of organization of an infectious disease system at which disease can be resolved, and these

levels are as follows: cellular level, tissue level, tissue level, organ level, micro-ecosystem level, host

level, community level, and macro-ecosystem. Each level of organization of an infectious disease system

is decomposed into two adjacent scales, the microscale and the macroscale, and these scales integrate in

reciprocal ways. The interaction between two adjacent scales of an infectious disease system at different

hierarchical levels of the biological organization of an infectious disease system, ranging from the cellular

level to the macro-ecosystem level, is shown in the diagram in Figure 1.2. At each organizational level

of an infectious disease system, there is an open scale boundary (enabling the bidirectional flow of infor-

mation between scales) that demarcates each level into two adjacent scales (microscale and macroscale),
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and the dynamics of infectious diseases at each hierarchical level creates a multiscale loop that entails

the reciprocal (that is, in both directions) influence of the macro-scale and the micro-scale.At each or-

ganizational level, the macroscale influences the microscale through pathogen infection/superinfection,

then follows the process of pathogen replication at the microscale. The micro-scale influences the macro-

scale through shedding/excretion of pathogens and the process of pathogen transmission takes place at

the macro-scale. These organizational levels of an infectious disease dynamics are briefly described as

follows:

I. The cellular level: The micro-scale and macro-scale of this hierarchical level of organization are the

within cellular scale and the between cellular scale, respectively. Infectious diseases, modelled

at the cellular level of organization, are diseases in which the pathogen invades specific or target

cells and damages the host cell. Integrating the intra-cell scale and the between cellular scale can

account for different types of target cells in the multiscale dynamics of infectious disease systems,

for example CD4+ T cells and microphages for HIV, red blood cells and hepatocytes (liver cells)

for malaria [3, 11].

II. The tissue level: The microscale and macroscale for this level are the within tissue and between tis-

sue scales, respectively. Infectious disease systems, modelled at the tissue level of organization,

are diseases in which the pathogen invades specific or target tissues and damages host tissues. The

different types of tissues that can be considered in the multiscale cycle of the infectious disease dy-

namics encompass the granuloma for tuberculosis, or micro-abscesses triggered by certain bacterial

infections [3, 11], epithelium, immune system, etc.

III. The organ level: This organizational level consists of two interacting scales, the within organ scale

and the between organs scale as a micro-scale and macro-scale, respectively. Infectious disease

modelled at the organ level are diseases in which the pathogen invades specific or targeted organs

and damages the host organ. This level of organization is described in terms of a single pathogen

strain and multiple organs/anatomical compartments. Some of the organs/anatomical compartments

are as follows: lungs, brain, intestines, kidneys, heart, liver, etc. [3, 11].

IV. The micro ecosystem level: This level of organization is demonstrated by multiple organs/anatomical

compartments and multiple pathogen strains/species replications. The various organs/anatomical

compartments such as the lungs, intestines, kidneys, heart, liver etc. are taken into account as

ecosystems. At this level of organization, the ecosystem process/interactions affect the infectious

disease system, which includes the competing species/strain interactions and the mutual interplay

between the multiple pathogen species/strains. This organizational level consists of two interacting

scales, the within micro-ecosystem scale and the between micro-ecosystems scale as a micro-scale

and macro-scale respectively [11].

V. The host/organism level: The micro-scale and macro-scale of this level are the within-host and inter-

host scales, respectively. This level of organization is demonstrated in terms of single pathogen
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species/strains as well as single host species and single community. The host-level disease system

begins with infection/superinfection of the host by the pathogen. When infection of the host by

the pathogen has successfully entered the host, replication of the pathogen at the intra-host level

follows. The technique of pathogen replication is followed by pathogen shedding/excretion into the

macroscale (between-host scale). The transmission process takes place at the macro scale. These

illustrate the multiscale cycle of pathogen replication at the host level through infection/superinfec-

tion and excretion/excretion (i.e. the influence between macroscale and microscale) that connects

the individual scale and the population scale within this level [11].

VI. The community level: Single pathogen species/strains, single host species, and multiple commu-

nities are used to demonstrate this level of organization. This organizational level has the within

community scale and the between community scale as its micro scale and macro scale [11].

VII. The macro-ecosystem level: Single pathogen species/strains, single host species, and multiple com-

munities are used to demonstrate this level of organization. This organizational level has the within

community scale and the between community scale as its micro-scale and macro-scale, respectively

[11].

The multiscale cycle can be differentiated into two types of reciprocal influence between the microscale

and the macroscale: Type I reciprocal influence and Type II reciprocal influence [11]. These reciprocal

influences are presented as follows:

(a) Type I reciprocal influence between macroscale and microscale within the levels of organisation.

In this type, the microscale influences the macroscale through pathogen shedding/ excretion (move-

ment of pathogen from microscale/lower scale/individual scale to macroscale/upper scale/popula-

tion level). The macroscale influences the microscale by initial infection. This kind of reciprocal

influence has a pathogen replication at micro-scale, the pathogen load on micro-scale increases by

the pathogen replication [11].

(b) Type II reciprocal influence between macro-scale and micro-scale within each level of organisa-

tion. In this type, the micro-scale affects the macro-scale through shedding/excretion. The macro-

scale affects the micro-scale through super-infection. This type of reciprocal influence between the

micro-scale and macro-scale has no pathogen replication at the micro-scale, the pathogen load at

the micro-scale increases due to the repeated infection [11].
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Figure 1.2: The seven hierarchical levels of organisation of infectious disease dynamics are illustrated in

this conceptual diagram.

1.4 Problem statement

Multiscale modelling of the infectious disease dynamics has recently gained acceptance in the mathe-

matical modelling community over the single-scale modelling which has mainly focused on the pathogen

transmission mechanisms theory. Infectious diseases have been a serious threat on humans across the

world, with the greatest impact in developing countries. The overall problem of the study is to re-engage

the pathogen replication-transmission relativity theory, and since the theory was published [11], there have

been few applications, although it is the overtake theory that provides a multi-scale modelling of infectious

disease systems. The fundamental problem is the malaria disease system, which remains the leading cause

of morbidity and mortality in the world. The malaria disease system has been modelled in the past, but

there are still problems. We study the malaria disease system as an example to identify hierarchical levels

of organization. There is no detailed work showing how the replication-transmission relativity theory can

be applied to the malaria disease system and possible extension to other vector-borne diseases.
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We change the whole Ross-Ronald setup that has been used to inform the modelling of malaria diseases

over the last century, we reorganize the knowledge and illustrate that every aspect we can do, for example

the issues of health interventions, environmental change system, and the human immune system can all

be incorporated into multi-scale modelling. In addition to modeling the malaria disease system at a mul-

tiscale, we hope the idea can be generalized to other vector-borne diseases. Plasmodium parasites require

both human hosts and mosquitoes to complete their life cycle in order to produce a realistic coupled mul-

tiscale model of malaria disease. There is a discussion of how health measures, environmental changes,

and the immune system influence malaria disease development. The models we develop can serve as an

important tool to address a variety of biomedical, biological, behavioral, environmental, and clinical prob-

lems related to malaria disease. The long-term contribution of biological and behavioral variability to the

effectiveness-efficiency gap.

1.5 Aim and objectives

The main aim of this study is to develop coupled multiscale models of vector-borne disease system that

consider the pathogen replication-transmission relativity theory using malaria as an example. The specific

objectives of the study are as follows:

(i) To develop a basic coupled multi-scale model of malaria disease system with replication-transmission

multi-scale cycle using type I reciprocal influence on humans and type II reciprocal influence on

mosquitoes.

(ii) To extend the basic multi-scale model for malaria disease system by incorporating the human liver

and blood stages and also to incorporating the vaccination process. Vaccines are also an important

control measure that has been used successfully to prevent other infectious diseases. The vaccine

prevents malaria in the stages of the life cycle of malaria and also prevents malaria infection on both

within-host scale and between-host scale.

(iii) To investigate the impact of the human immune response on malaria disease system.

(iv) To incorporate the mosquito life cycle on multi-scale model of malaria disease system and consider-

ing the environmental changes aspects.

(v) To incorporate the malaria health intervention methods on multi-scale model of malaria disease dy-

namics with mosquito life cycle. We look at the three health interventions for malaria: egg-larval-

pupa control, long-lasting insecticides treated bed nets (LLINs) and artemisinin-based combination

therapy (ACT).
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1.6 Preliminary of multiscale models of vector borne disease

Diseases transmitted by vectors such as mosquitoes, sand flies, black flies, ticks, tsetse flies, snails and

others are vector-borne diseases caused by parasites, viruses and bacteria. Since vector-borne diseases

have a complex life cycle, they require at least two hosts (i.e., vertebrate host and vector host). In addition

to serving as parasite carriers, vectors also serve as organisms in which parasites mature and become

infectious. There are two types of vector-borne diseases transmission mechanisms: (a) type I vector-borne

disease systems, and (b) type II vector-borne disease systems [18]. We give brief summary of these types

of vector-borne disease systems below.

a. Type I vector-borne disease systems: These are vector-borne diseases in which part of the pathogen life

cycle is outside of the two hosts (vertebrate host and vector host) [19]. Infection of hosts with this

type of vector-borne disease is caused by free-living infectious pathogens in the environment. These

types of vector-borne diseases are also environmental disease systems. Examples of type I vector-

borne disease systems are schistosomiasis in humans [20] and the guinea worm [21]. We have

classified the type I vector-borne disease system or the environmental vector-borne disease system

into three main groups, which are related to the level of organization of the infection where the

pathogen at the micro-scale and the macro-scale influence each other. These groups are described

as follows:

(i) Type I Environmentally transmitted vector-borne disease system: These are vector-borne dis-

eases in which pathogen replication is not observed at the microscale (type II reciprocal in-

fluence between the microscale and macroscale). The transmission process occurs at a macro

scale. Pathogen load in an infected host increases as a result of superinfection or repeated

infection. Examples of environmental type II diseases are schistosomiasis [20], guinea pig

worm [21] and soil borne hookworm disease [11].

(ii) Type II Environmentally transmitted vector-borne disease system: These are environmen-

tally transmitted vector borne disease systems which has pathogen replication at the micro-

scale and transmission at the macro-scale. There use type I reciprocal influence between the

micro-scale and the macro-scale. The examples of type II environmentally transmitted dis-

eases are are air-borne viral infections e.g. influenza [22] and food-borne bacterial infections

e.g. paratuberculosis species [23].

(iii) Type III Environmentally transmitted vector-borne disease systems: The pathogen repro-

duces at both the micro and macro scales in these type I vector-borne diseases. These vector-

borne type I disease systems exhibit a combination of type I and type II mutual influences,

showing the interaction between the micro and macro scales. The type III environmental dis-

eases include cholera, salmonella enterica, and anthrax[11].

b. Type II vector-borne disease systems: Vector-borne diseases, of which the entire life cycle of the

pathogen is strictly inside the hosts, are implicated in transmission of multiple-host infections[19].
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The pathogen only survives in the interior environment of two hosts in this type of vector-borne

disease system (i.e., the micro-scale). The majority of type II vector-borne diseases are spread by

blood-feeding arthropods such mosquitos, ticks, and fleas. From Garira’s work [18], we discovered

that they are two groups of type II vector-borne disease systems which are summarized below.

i. This group of type II vector-borne disease systems that do not have a microscale pathogen repli-

cation cycle. Therefore, the reciprocal influence between the microscale and the macroscale

of this group is a type II reciprocal influence. Example for this group is malaria in the vector

host [24].

ii. This type II vector-borne disease system has pathogen-reproduce cycle at the microscale. Thus,

micro-scale influences macro-scale through reciprocal influence of type I. Malaria is an exam-

ple of a type II vector-borne disease system, where merozoites replicate at a micro-scale in the

vertebrate host garira2019coupled.

This group of type II vector-borne disease systems that have a microscale pathogen replication cycle.

Therefore, the reciprocal influence between the microscale and the macroscale is a Type I reciprocal influ-

ence. An example of this group of Type II vector-borne disease systems is malaria. In this case we have

used malaria disease as a case study and we consider both the perspective of transmission mechanism

theory and pathogen replication that make up the disease dynamics. We also regard the malaria disease

system as the type II vector-borne disease systems. The basic problem in this study is the malaria disease

system and it has caused damage in humans, and malaria has been modeled in the past, but they still have

problems . We conduct a study of malaria disease systems at each hierarchical level of organization (the

cellular level, the tissue level, the organ level, etc.). We’re changing the entire setup used by Ronald Ross

and George Mcdonald to model mosquito-borne diseases for the past century. We expand all Ross Mc-

donald knowledge and explain that every aspect we can do, e.g. the issue of intervention, environmental

change, etc., can all be included in the multiscale modeling where the merozoite life stage has the mi-

croscale replication cycle in the vertebrate host [24].

From the recent work of Garira [3, 7], the author presents five different main categories of multiscale

models of infectious disease systems that integrate the two adjacent scales (i.e. the microscale and the

macroscale) at the time of infection disease systems. These categories are: (I) Individual-Based Mul-

tiscale Models (IMSMs), (II) Nested Multiscale Models (NMSMs), (III) Embedded Multiscale Models

(EMSMs), (IV) Hybrid Multiscale Models (HMSMs), and (V) Coupled Multiscale Models (CMSMs),

where each category has more than one class. The categorization of these multiscale models of infectious

disease systems that can be built at each of the seven levels of organization of infectious disease sys-

tems (i.e. cellular level, tissue level, organ level, microecosystem level, host level, the community level,

and the macro-ecosystem level). These categories of multiscale models of infectious disease systems are

summarized below.
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I. Individuals-based multiscale models (IMSMs):This category of multi-scale models of infectious dis-

ease systems that assume that the micro-scale sub-model illustrates the entire infection system both

at the micro-scale and macro-scales. This category of multiscale models of infectious disease dy-

namics can be built at a particular level of organisation of an infectious disease system. There is no

feedback from the macro-scale to the micro-scale and the macroscale is observed as emergent be-

haviour of the micro-scale entities. The microscale and the macro-scale are integrated through type

I reciprocal influence. There are many examples of IMSMs which are as follows: graph-theoretic

or network modeling, agent-based models (ABM), and cell automata (CA) [25–27].

II. Nested multiscale models (NMSMs): A category of multiscale models of infectious disease systems

that are built on the assumption that there is a unidirectional flow of information, i.e. only from

the microscale sub-model to the macroscale sub-model. This category of multiscale models of

infectious disease dynamics is developed at a specific organizational level. The micro-scale sub-

model and the macro-scale sub-model are integrated by Type I reciprocal influence. The micro-

scale and macro-scale sub-models must be demonstrated by the same formalism or mathematical

representation. Examples of NMSM can be found in [14, 28–30].

III. Embedded multiscale models (EMSMs): These are multiscale models of infectious disease systems

that have a bi-directional flow of information between the micro-scale sub-model and the macro-

scale sub-model. The micro-scale sub-model and the macro-scale sub-model are integrated by type

II reciprocal influences. In both the micro-scale and macro-scale sub-models, the same mathemati-

cal representation must be used. Examples of EMSMs can be found in [11, 21, 31].

IV . Hybrid multiscale models (HMSMs): These are multiscale models of an infectious disease system

that demonstrate the dynamics of infectious diseases at a specific organizational level. The micro-

scale sub-model and the macro-scale sub-model are integrated by either Type I reciprocal influence

or Type II reciprocal influence. The formalism or mathematical representation that demonstrates the

micro-scale sub-model and the macro-scale sub-model must be different. The examples of HMSMs

of such a paired formalism are deterministic/stochastic, mechanistic/phenomenological, ordinary

differential equation (ODE)/partial differential equation (PDE), and ODE/ABM. The multiscale

models in [32–34] are examples formulated on HMSMs.

V. Coupled multiscale models (CMSMs): These are multiscale models of infectious disease systems

that include multiple levels of organization of infectious disease systems, multiple host infections,

multiple strain infections, multiple group infections, multiple pathogen infections, multiple geo-

graphic environment infections, and multiple biological environment infections. This category of

multiscale models of infectious disease dynamics integrates more than two scales and can be either

Type I reciprocal influence or Type II reciprocal influence, or a combination of both types. The

CMSMs differ from other categories of multiscale models (I, II, III, and IV), which focus on a spe-

cific combination of (i) a single host, (ii) a single pathogen, and (iii) a single organizational level

of infectious disease systems. The other four categories of multiscale models (IMSMs, NMSMs,
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EMSMs, and HMSMs) can be used as sub-models to demonstrate the dynamics of an infectious

disease system across scales at each level of biological organization [3, 11]. The multi-scale models

in [18, 20, 24, 35] are typical examples of CMSMs.

In this study, we develop a multiscale model of the malaria disease system, which is a vector-borne disease

and a direct transmitted disease, and we illustrate the validity of the replication-transmission multi-scale

cycle in the relationship between the micro-scale and the macro-scale sub-models become either demon-

strated by Type I reciprocal influence or Type II reciprocal influence or a combination of both types. Char-

acteristics of vector-borne disease systems are (i) multiple hosts (i.e., vertebrate host and vector host), (ii)

effects of environmental change, and (iii) immune system. Therefore, in this study, we developed cou-

pled multiscale models of the infectious disease system that feature a combination of embedded multiscale

model with nested multiscale model that integrates two limiting neighboring scales at any hierarchical lev-

els of organization to study the pathogen replication-transmission multiscale cycle at the microscale and

the macro scale. We consider the embedded multiscale model in the vector-host since there is no pathogen

replication cycle within the infected vector scale and the pathogen load increases due to repeated infec-

tion, i.e. superinfection. We apply the nested multiscale model in the vertebrate host because there is

a pathogen replication cycle at the host level within the vertebrate, i.e. in merozoites. The within-host

scale affects the between-host scale through pathogen shedding/shedding, while the between-host scale

affects the within-host scale through initial infection, i.e. the pathogen load increases during the pathogen

replication cycle.

The replication transmission multiscale cycle of vector-borne diseases is influenced by factors affect-

ing vector numbers (e.g., warmer temperatures increase mosquito reproductive rates), contact between

humans and vectors, imported pathogens (e.g., migration of non-immune humans). in areas where the

disease is widespread), breeding grounds of the vectors [36]. The pathogen within the infected host scale

is an infectious disease only if it can survive and multiply (i.e., pathogen replication with the infected

host) at the infected host scale. Pathogens are very sensitive to environmental changes, i.e. temperature

and precipitation [36].

1.7 Methodology

The study focuses on coupled multiscale models of infectious disease system based on ordinary differen-

tial equations that describe the dynamics of type II vector-borne transmitted disease system at any levels of

organisation using the malaria disease system as a paradigm. We start by developing the malaria disease

system to demonstrate the transmission mechanism theory that is at the macro-scale/ between-host scale.

Then we followed by introducing the pathogen replication-transmission relativity theory to our model to

form a multiscale circle, that is the interaction between the microscale and the macroscale sub-models.

In other chapters, we consider the applications of the pathogen replication-transmission relativity theory.
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Therefore, the single scale model make use of transmission mechanism theory, whereas other chapters

with multiscale models use the replication transmission relativity theory.

In our mathematical analysis, we utilise numerous techniques to analyze all the models in this study,

which are as follows: (i) Next generation operator, (ii) fixed point theory, (iii) Center Manifold theory,

(iv) Descarte’s sign change theory, (v) Routh-Hurwitz criteria, and (vi) Lyapunov function. We conduct

sensitivity analysis to test the parameters which are sensitive to the models. We conducted sensitivity

analysis using the Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs).

The numerical simulation for the models were illustrated analytical solutions are obtained from these

multiscale models using ODE solvers in Matlab and Python, that is ODE int function in the sci.integrate

which solves systems of differential equations. These solvers are ode45 (Runge-Kutta Dormand-Prince

method of order (4,5)) with default tolerance) [37].

1.7.1 Process of Multi-scale Modelling of Infectious Disease Systems

There are four main stages need to be followed in the development of multiscale models which are ex-

plained in [38]. These stages are summarized as follows:

Stage I: The first stage involves the identification of the infectious disease problem that need to be ad-

dressed by the multiscale modelling study of infectious disease system. In this stage, the modeller

starts by state the aim and objectives of the multiscale modelling task of an infectious disease sys-

tem. The modeller needs to discover the levels of organisation to be incorporated into a multiscale

model and their associated scales. In this study of multiscale models of malaria disease system,

the invasion of malaria parasite in human begins in the liver-cells, then follows the invasion of red-

blood cells, which means the process of infection begins in at the cell-level. The study of multiscale

models of malaria disease system can be at cell-level, tissue level, organ-level, host-level, and so on.

Then there is need to decide which main categories of multiscale models which best fit your multi-

scale model. In case of our study of malaria disease system, the best category is coupled multiscale

models (CMSMs) is the malaria parasite has a complex life cycle that needs two hosts to complete

its life cycle and malaria can be studied at multiple levels of organisation. The reciprocal influence

between the micro-scale sub-model and the macro-scale also helps to decide which appropriate cat-

egories will suit for your model. In case of our model, we develop coupled multiscale model of

malaria disease system using the combination of (i) nested multiscale model in human-host where

merozoites has a replication cycle at the microscale (that is in red-blood cells) and (ii) embedded

multiscale model for vector-host where pathogen does not have a replication cycle at the micro-scale

(that is for malaria, there is no replication cycle in the mosquito vector, pathogen progress from one

stage to another). This multiscale model of malaria disease system which is linked through the

exchange of single pathogen/strain [38].
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Stage II : The second stage is to build a multiscale model of an infectious disease system using the infor-

mation gathered in the first stage. The development of multiscale model of infectious disease sys-

tem should involves the linkage of knowledge from four different multiscale modelling approaches.

These four main modelling approaches are as follows: (i) empirical-based multiscale models (E-

MSMs), (ii) mathematical-based multiscale models (M-MSMs), (iii) computational-based multi-

scale models (C-MSMs), and (iv) data-based multiscale models (D-MSMs). The process of devel-

opment of multiscale models begins with the formulation of the E-MSMs of the infectious disease

system, which is based on carrying out experiments, culture systems, clinical trials systems, obser-

vational systems, or surveillance systems which characterize an infectious disease system at mul-

tiple scales, that is where the data is being extracted. In the case of our multiscale model, we use

secondary data from the published literature. The next process is to formulate the M-MSMs which

involves the listing of the differential equations of all sub-models (i.e., within-host sub-model and

between-host sub-model), explaining the meaning of each differential equation, variables and all the

parameters utilised in the differential equations. All these differential equations, variables and pa-

rameters should be associated with each scale that integrates into multiscale model. It also involves

down-scaling and up-scaling of variables and parameters when linking/integrating two scales (that

is, micro-scale and macro-scale) into a complete multiscale model. The next process is the formu-

lation of C-MSMs, which involves the developing of computational algorithms that interpret the

M-MSMs and D-MSMs into numerical solutions and involves the use of software environments

(i.e., use of Matlab, Python, Mathematica and e.t.c.). Then the last process is the formulation of

D-MSMs that involves the transforming of multiscale data into knowledge about the dynamic of in-

fectious disease system. These multiscale data can be applied to estimate probabilistic future trend

of an infectious disease system derived from the previous behaviour characterized by the multiscale

data [38].

State III: In this stage involves the evaluation of quality of the multiscale model of the infectious dis-

ease system. This stage involves the testing of the multiscale models of infectious disease systems

by conducting multiscale model verification, multiscale model validation, and multiscale model

sensitivity analysis and uncertainty analysis. The testing of quality multiscale model involves the

examining whether it is mathematically and biologically well presented and the connection between

the variables and between the scales are correctly presented. For testing the mathematically well

posed, the modeller should use mathematical techniques to analyse the multiscale model of infec-

tious disease system. These mathematical techniques are used to determine the feasible region of

the equilibria of the multiscale scale, positivity of solutions, the basic reproductive number, the

equilibrium points of the model, local and global stabilities of the equilibrium points, and numer-

ical solutions. The conducting of sensitivity analysis assists in identifying the parameters which

can be influenced by the disease control or elimination or eradication activities of infectious disease

systems, which should be the critical points and need to be monitored and controlled during an
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infectious disease system outbreak. There is also needed to state the limitations of the multiscale

model which was developed [38].

Stage IV: In this last stage involves the use of multiscale models of infectious disease system in deci-

sion support. The process for multiscale models of infectious disease systems scientific agenda has

four main items which are related to decision support which are described in [38], these are as fol-

lows: (a) use of multiscale models as a framework for understanding the influence of functionally

organised complex systems of infectious disease dynamics, (b) utilize of multiscale models in pre-

dicting/forecasting of infectious disease dynamics, (c) use of multiscale models as strategic tools

in analysing or understanding the underlining mechanisms of infectious disease dynamics, and (d)

use of multiscale models in evaluation/analysis/formulation of policy for control or elimination or

eradication of an infectious disease system.

When this iterative scheme on four main different stages in development of multiscale model are complete,

then there should be a comparison between the results obtained and the real-world system in order to

decide/conclude whether the outcome behaviour of the model and what is observed in the system matches.

If the outcomes of the model obtained and the observation made from the system does not matches, then

there is need to modify the model and begin again the iterative scheme for the development of multiscale

model of infectious disease systems.

1.7.2 Multi-scale models and Vector-borne diseases

There are many mathematical models of malaria disease based on transmission mechanism theory, includ-

ing [39–42] and work done on malaria disease systems within host scale [43–46]. From recent studies

on the pathogen-replication-transmission relativity theory for type I vector-borne diseases (this takes into

account environmentally-related infectious diseases), for example schistosomiasis [20] and Guinea worm

disease [21] . Part of their pathogenic life cycle of these type I vector-borne diseases lies outside of the

two hosts (vertebrate host and vector host). This type of environmentally transmitted infectious disease

systems does not have a pathogen replication cycle at the micro-scale, rather there are only developmental

stages of the pathogen that occur at this scale, while a process of pathogen transmission occurs at the

macro-scale. Therefore, they integrate the micro-scale and macro-scale using the Type II reciprocal influ-

ence.

In the following, an overview of some of the existing coupled multiscale models that have been developed

to describe the multiscale dynamics of type II vector-borne diseases is given. Agusto [35] developed a

deterministically coupled multiscale model that combines the effects of microscale and macroscale dy-

namics on the type II transmitted disease system (i.e. the dynamics of malaria disease). They developed

four sub-models (within-host scale, within-vector scale, between-host scale and between-vector scale) and

these sub-models are linked using nested multi-scale models. Their coupled multi-scale model was built
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at the host level. They use the transmission mechanism process in the macro-scale sub-models (between-

host-scale and between-vector-scale) and use the replication process in the micro-scale sub-models (intra-

host-scale and intra-vector-scale). In their model they use the Type I reciprocal influence between the

macro-scale and the micro-scale, i.e. the macro-scale affects the micro-scale through initial infection,

while the micro-scale affects the macro-scale through shedding/excretion of pathogens. We differentiate

our multi-scale model with the model in [35], i.e. our model uses community pathogen load as a common

metric for infectivity and disease transmission potential, while in [35] pathogens within the host are used

as a measure of disease transmission, while the disease class between hosts (i.e., the infected class) is used

as a measure of disease transmission .

Cai [34] adopted a hybrid multi-scale model approach for the dynamics oftype II vectors that incorpo-

rates the vertebrate immune response to malaria transmission. They use age-structured partial differential

equations for the between-host sub-model, they describe the asymptomatic and symptomatic infectious

host population for malaria transmission. In their within-host sub-model, they use ordinary differential

equations (ODEs) to demonstrate the replication of the malaria pathogen. When linking their sub-models,

they use the mutual influence of type I, which demonstrates the interaction between the within-host scale

and the inter-host scale. Your model was developed at the host level. Their model is difficult to simulate

because one has to simulate their various components separately using special methods

Legros [47] worked on the evolution of resistance in a complex process influenced by transmission

between-host dynamics and pathogen replication in intra-host dynamics. Their aim of the study was

to investigate how these processes can be integrated at the micro-scale and macro-scale to influence the

development of multi-pathogen infection (i.e. resistance in malaria parasites). They used a coupled mul-

tiscale model since the life cycle of the malaria parasite involves two hosts (i.e. the human host and the

mosquito host). They also use nested multiscale models to link the within-host and the between-host

scales (i.e. they apply Type I mutual influence between the microscale and the macroscale). They use a

stochastic modeling framework to link transmission of malaria pathogens at the macro level and explicit

pathogen replication at the micro level for two competing strains.

1.8 Outline of the thesis

Here is how the thesis is structured:

• Chapter 2 deals with the development of a single-scale model for the malaria disease system that

only considers the theory of transmission mechanisms. We need to address the problem reflected in

the epidemiological triad theory, which asserts that infectious diseases are the result of the interac-

tion of three subsystems: host, pathogen, and environmental subsystems. The pathogen subsystem

is not included in the SEIR models for directly transmitted diseases, and the direct transmission
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mechanism shows the interaction of two subsystems: the host subsystem and the environmental

subsystem. The extension of current models to multi-scale models is not realistic. For example,

the time-since-infection models have pathogens at the microscale but no pathogen burden at the

macroscale. Tracing the pathogen life cycle from the microscale to the macroscale becomes diffi-

cult when the two stages are linked. Integrating the two scales is particularly difficult because the

scales have different units. In this chapter, we develop a directly transmitted mechanism of a vector-

borne disease system with a community pathogen load (CPL) that can be extended to a multiscale

model of the infectious disease system.

• From Chapter 3 to Chapter 7, we use the malaria disease system as an example to demonstrate the

applicability of multiscale models of directly transmitted infectious disease systems with pathogen

load at micro-scale and community pathogen load at macro-scale.

• Chapter 3 deals with the development of a basic coupled multiscale model of the malaria disease

system by using the multiscale replication-transmission cycle with type I reciprocal influence on

humans and with type II reciprocal influence on mosquitoes.

• In Chapter 4, extend the basic multi-scale model for malaria disease system by incorporating the

human liver and blood stage and extend by incorporating the vaccination processes.

• Chapter 5 deals with investigation of the impact of the human immune response on multi-scale

model of malaria disease dynamics.

• In Chapter 6, we investigate the mosquito life cycle on multi-scale model of malaria disease system

and considering the impact of environmental changes.

• In Chapter 7, we investigate the impact of malaria health intervention methods on multi-scale model

of malaria disease dynamics with mosquito life cycle.

• Chapter 8 provides conclusion and future research directions.
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A New Modelling Framework for Single
Scale Models of Disease Dynamics
Incorporating Direct Transmission

2.1 Introduction

One of the limitations of the transmission mechanism theory is that there is no common modeling frame-

work to understand both directly transmitted infectious diseases and those that are environmentally trans-

mitted. As a result, there is no measure of transmission or infectivity for either directly transmitted diseases

or environmentally transmitted diseases. For direct communicable diseases, incidence and prevalence are

the most common transmission metrics. However, for the dynamics of environmental disease, pathogen

load is used as a measure of disease transmission. There is a need for a unified and standardized approach

to modeling both direct and environmentally transmitted diseases. In an effort to address this limita-

tion of transmission mechanism theory, we have proposed a new model science for directly transmitted

diseases similar to an existing model science for environmentally transmitted infectious diseases. The

method development for directly transmissible infectious disease models proposed in this study is based

on the introduction of pathogen load as a new infectious disease variable, which is then used to define

infection strength and transmission probability in models of disease dynamics. This transforms stan-

dard disease dynamics models based on Susceptible, Exposed, Infected, Recovered (SEIR) and variations

of this paradigm (SI, SIS, SIR, etc.) for directly transmitted infectious diseases into disease dynamics

models that are similar to the existing models for environmentally transmitted infectious diseases based
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on Susceptible, Exposed, Infected, Recovered Pathogen Load (SEIRP) and variations of this paradigm

(SIP, SISP, SIRP, etc.) where the community-wide pathogen load/pool in the environment is explicitly

included in disease dynamics models.At the central to this modeling framework is the idea of using the

total infection reservoir of the scale of analysis (TIR-SA) as the standard metric for disease transmission.

This new metric of disease transmission is obtained by upscaling individual infectivity populations for

directly transmitted infectious disease systems. The usefulness of such simple models is that they predict

pathogens, the utility of which is threefold: [a.] as a measure to assess the effectiveness of treatment, [b.]

as an indicator of a scale of community infectivity and likelihood of transmission, and [ c.] as a proximal

marker for the occurrence of infectious diseases and the possible spread of the disease.

2.1.1 Malaria Model Based on Direct Transmission Mechanism

[I. ] Direct transmission of malaria in the human population: This sub-model is described by an SIS

model. This sub-model is formulated based on monitoring the dynamics of two populations which

are susceptible humans SH , and infected humans IH so that the total human population is given by

NH = SH + IH . We make the following assumptions for this sub-model.

[i. ] There is no herd immunity in the human population as a result of prior exposure to the malaria

infection or vaccination.

[ii. ] The infected human population can recover naturally from malaria infection.

[iii. ] The transmission parameter λV is a function of the number of infected mosquitoes so that

λV = λV (IV ).

[iv. ] The dynamics of SH and IH are assumed to occur at slow time scale t compared to the

within-human and within-mosquito submodels for malaria parasite population dynamics so

that SH = SH(t) and IH = IH(t).

Based on these assumptions the malaria transmission dynamics using the human organism scale as

the scale of observation and the community scale as scale of analysis becomes

Direct transmission

of malaria

among humans


1.

dSH(t)

dt
= ΛH − βV λV (IV )SH(t)− µHSH(t) + γHIH ,

2.
dIH(t)

dt
= βV λV (IV )SH(t)−

[
µH + δH + γH

]
IH(t).

(2.1.1.1)

The first equation in sub-model system (2.1.1.1) describes the dynamics of susceptible humans. The

population of susceptible humans is assumed to increase at a constant rate ΛH through birth. This

population is depleted through infection of susceptible humans at a variable rate λV (IV ) and natural

death at a constant rate µH . The population of susceptible humans also increases through natural

recovery of infected individuals at a rate γH . The second equation in sub-model system (2.1.1.1)



Chapter 2 21

describes the dynamics of infected humans. This population increases through infection of suscep-

tible humans and decreases through natural death at a rate µH , through disease induced death at a

rate δH and through natural recovery at rate γH .

[II. ] Direct transmission of malaria in the mosquito population in the Kermack-McKendrick Frame-
work: This sub-model is described by an SI model and describes the transmission of malaria para-

site from infected humans to susceptible mosquitoes. We make the following assumptions for this

sub-model.

[i. ] The infected mosquitoes do not recover naturally from malaria infection.

[ii. ] The transmission parameter λH is a function of the number of infected humans so that λH =

λH(IH).

[iii. ] The dynamics of SV and IV are assumed to occur at slow time scale t compared to the

within-human and within-mosquito submodels so that SV = SV (t) and IV = IV (t).

Based on these assumptions the malaria transmission dynamics using the mosquito organism scale

as the scale of observation and the community scale as scale of analysis becomes

Direct transmission

of malaria

among mosquitoes


1.

dSV (t)

dt
= ΛV − βHλH(IH)SV (t)− µV SV (t),

2.
dIV (t)

dt
= βHλH(IH)SV (t)−

[
µV + δV

]
IV (t).

(2.1.1.2)

The first equation in sub-model system (2.1.1.2) describes the dynamics of susceptible mosquitoes.

The first term on the right-hand side of this equation models the increase of susceptible mosquitoes

through birth. The susceptible population of mosquitoes decreases through natural death at a con-

stant rate µV , and through infection by humans at a variable rate λH(IH). The second equation

in sub-model system (2.1.1.2) describes the dynamics of infected mosquitoes. The population of

infected mosquitoes increases through infection of susceptible mosquitoes at a rate λH(IH). The

same population decreases through natural death at a constant rate µV and also through infection

induced death at a constant rate δV .

Putting together all the various derivations and assumptions the complete model for malaria transmis-

sion dynamics at the organism scale of observation (human organism and mosquito organism) and the

community scale of analysis becomes
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Malaria model

based on classical

transmission

mechanism theory



1.
dSH(t)

dt
= ΛH − βV λV (IV )SH(t)− µHSH(t) + γHIH ,

2.
dIH(t)

dt
= βV λV (IV )SH(t)−

[
µH + δH + γH

]
IH(t),

3.
dSV (t)

dt
= ΛV − βHλH(IH)SV (t)− µV SV (t),

4.
dIV (t)

dt
= βHλH(IH)SV (t)−

[
µV + δV

]
IV (t).

(2.1.1.3)

We now re-cast this model of malaria into the proposed new modelling framework.

2.1.2 Malaria Model in the Proposed New Modelling Framework

If we assume that host (scale of observation) infectiousness is constant for a given host (scale of obser-

vation), for the entire duration of host infectiousness, but varies among hosts in a discrete way (e.g. by

distinguishing several disease classes of hosts) so that average host infectiousness (determined by average

pathogen load at the scale of observation) may be calculated, then we may get direct transmission models

being of infectious disease system. In this case, details of pathogen-immune system interactions (which

characterizes the replication and persistence of the pathogen within an infected host) at within-host scale

are not modelled explicitly, instead, their interaction is rected in the choice of parameters used to char-

acterize the between-host model which is represented mechanistically. Then we have a hybrid multiscale

model of the mechanistic/phenomenological nature.

The first step in the integration of the two submodels is to make assumptions about the relationship be-

tween the dependent variables of the within-human and within-mosquito malaria parasite load dynamics

which are Nh and Nv and the parameters of the human-to-mosquito and mosquito-to-human malaria

parasite transmission at epidemiological scale which are λV (IV ) and λH(IH). Details of the specific

derivations and assumptions are as follows:

[a. ] Further, we assume that the transmission parameter in the mosquito-to-human malaria transmission

sub-model, λV is not just a function of the vector population alone IV (t), but of both the vector

population IV (t) and sporozoite population Nv so that λV = λV (NvIV (t)). The net effect of this

assumption is to up-scale individual mosquito infectiousness Nv to population level or community

level infectiousness NvIV (t). In addition, we interpret the quantity NvIV (t) to be a new variable

at epidemiological scale which we now denote by PV (t) so that PV (t) = NvIV (t), which is a

product of the average individual infected mosquito’s sporozoite load and the number of infected

mosquitoes. Here, PV (t) is the total infectious reservoir of mosquitoes in the community which

we refer to in this study as community sporozoite load. In terms of community sporozoite load,
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the transmission parameter for mosquito-to-human malaria transmission sub-model becomes λV =

λV (PV (t)). We further assume a Holling type II functional form of the function λV (PV ) so that the

force of infection, denoted here by λV (t), associated with infectivity of the community to humans

becomes

λV (t) = λV [PV (t)] =
βV PV (t)

P0 + PV (t)
, (2.1.2.1)

where βV is the exposure rate to a community with a population PV of sporozoites per unit time,

P0 is the community sporozoite load that yields 50 percent chance of getting a human host infected

with malaria after a bite by a mosquito in a particular community and

λV [PV (t)] =
βV PV (t)

P0 + PV (t)
, (2.1.2.2)

is probability that a random bite by a mosquito vector in a particular community with a community

sporozoite load PV (t) will infect the individual with malaria in that community. However, PV (t),

is a new variable at epidemiological scale which we have just introduced. In order to derive the dif-

ferential equation governing PV (t), then the rate of change of community sporozoite load PV (t), in

the entire community made of IV (t) unevenly distributed habitats/environments in the community

becomes
dPV (t)

dt
= NvαvIV (t)− αV PV (t), (2.1.2.3)

where αv is the shedding/excreting rate of the within-mosquito scale pathogen load to the commu-

nity sporozoites load. αV is the rate of sporozoite elimination in a particular geographical area/-

country/community so that the process of sporozoite elimination of community sporozoite load in

a particular geographical area/country/community takes an average of 1/αV days. Since PV (t) is

the total infectious reservoir of mosquitoes in a particular community defined here as community

sporozoite load, then 1/αV days is the average time to eliminate the total infectious reservoir of

mosquitoes and render all mosquitoes in a particular community non-infectious. Taking into ac-

count these derivations and assumptions the mosquito-to-human malaria transmission sub-model

which is now coupled to the within-mosquito parasite population dynamics becomes



1.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)−

[
µH + γH + δH

]
IH(t),

3.
dPV (t)

dt
= NvαvIV (t)− αV PV (t).

(2.1.2.4)

Community sporozoite load (CSL) PV (t), which is also a measure of the total infectious reservoir

of mosquitoes in the community, is defined in this study as an aggregate population-level biomarker
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of a community’s sporozoite burden over a specific time period and is being proposed in this study

as a useful metric for assessing the overall impact of malaria health interventions targeted at the

mosquito vector or the uptake of malaria interventions targeted at the mosquito vector and quanti-

fying their impact on transmission of malaria from mosquitoes to humans. In line with a similar

metric for HIV/AIDS [48, 49], we therefore propose that this new public health measure of malaria

transmission should be operationalized in the assessment of the path from control to elimination for

malaria transmission in a particular community as (a) an indicator of a community’s level of infec-

tiousness and transmission probability of malaria to humans, (b) a measure of the effectiveness of

malaria interventions targeted at the mosquito vector, and (c) a proximal maker of malaria incidence

among mosquitoes and their potential to propagate malaria to humans.

[b. ] Finally, we assume that the transmission parameter in the human-to-mosquito malaria transmission

sub-model, λH is not just a function of the human population alone IH(t), but of both the human

population IH(t) and gametocyte population Nh so that λH = λH(NhIH(t)). The net effect of this

assumption is also to up-scale individual human infectiousnessNh to population level or community

level infectiousness NhIH(t). In addition, the quantity NhIH(t) is also a new variable at epidemi-

ological scale which we now denote by GH(t) so that GH(t) = NhIH(t), which is a product of

the average individual infected human’s gametocyte load and the number of infected humans. Here

GH(t) is the total infectious reservoir of humans in the community which we refer to in this study as

community gametocyte load. In terms of community gametocyte load, the transmission parameter

for human-to-mosquito malaria transmission sub-model becomes λH = λH(GH(t)). We further

also assume a Holling type II functional form of the function λH(GH) so that the force of infection,

denoted here by λH(t), associated with infectivity of the community to mosquito becomes

λH(t) = λH(GH(t)) =
βHGH(t)

G0 +GH(t)
, (2.1.2.5)

where βH is the exposure rate to a community with a population GH of gametocytes per unit time,

G0 is the community gametocyte load that yields 50 percent chance of getting a mosquito vector

infected with malaria after a bite of a human host by a mosquito in a particular community and

λH [GH(t)] =
βHGH(t)

G0 +GH(t)
, (2.1.2.6)

is the probability that a random bite of a human host by a mosquito vector in a particular community

with a community gametocyte load GH(t) will infect the mosquito with malaria in that community.

However, because GH(t), is also a new variable at epidemiological scale which we have just intro-

duced. In order to derive the differential equation governing GH(t), since at any time t we have

a total of IH(t) of these contaminated habitats/environments contaminated with an average of Nh

gametocytes, then the rate of change of community gametocyte load, GH(t) in the entire commu-

nity made of IH(t) homogeneous and unevenly distributed habitats/environments in the community
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becomes
dGH(t)

dt
= NhαhIH(t)− αHGH(t), (2.1.2.7)

where αh is the shedding/excreting rate of the within-human host scale pathogen load to the com-

munity gametocytes load. αH is the rate of elimination of this total infectious reservoir of humans

in the community so that the process of gametocyte elimination in a particular geographical area/-

country/community takes an average of
1

αH
days. Since GH(t) is the total infectious reservoir

of humans in a particular community defined here as community gametocyte load, then
1

αH
days

is the average time to eliminate the total infectious reservoir of humans and render all humans in

a particular community non-infectious to mosquitoes. Taking into account these derivations and

assumptions the human-to-mosquito malaria transmission sub-model which is now coupled to the

within-human parasite population dynamics becomes



1.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

2.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)−

[
µV + δV

]
IV (t),

3.
dGH(t)

dt
= NhαhIH(t)− αHGH(t).

(2.1.2.8)

The total infectious of the scale of analysis GH(t) when the human organism is the scale of obser-

vation, which is also a measure of the total infectious reservoir of humans in the community [24]

(because the community scale is the scale of analysis), is defined in this study as an aggregate

population-level biomarker of a community’s gametocyte burden over a specific time period and is

being proposed in this study as a useful public health measure of malaria transmission for assess-

ing the overall impact of malaria health interventions targeted at the human host or the uptake of

malaria interventions targeted at the human host and quantifying their impact on transmission of

malaria from humans to mosquitoes. We therefore propose that this new measure should be oper-

ationalized in the assessment of the path from control to elimination for malaria transmission in a

particular community as [a.] an indicator of a community’s level of infectiousness and transmission

probability of malaria to mosquitoes, [b.] a measure of the effectiveness of malaria interventions

targeted at the human host, and [c.] a proximal maker of malaria incidence among humans and their

potential to propagate malaria to mosquito vectors.

Based on all the derivations, mentioned assumptions, the diagram presented in Fig. (2.1) and description

of variables in Table (2.1), the complete model for malaria transmission dynamics at the organism scale

of observation (human organism and mosquito organism) and the community scale of analysis becomes
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Malaria model

in the new

framework



1.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)− (µH + δH + γH)IH(t),

3.
dPV (t)

dt
= NvαvIV (t)− αV PV (t),

4.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

5.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)− (µV + δV )IV (t),

6.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),

(2.1.2.9)

No Variable Description

1 SH(t) Population of susceptible humans at time t

2 IH(t) Population of infected humans at time t

3 GH(t) Total infectious reservoir of humans (gametocyte load) of the

scale of analysis at time t

4 PV (t) Total infectious reservoir of mosquito vectors (sporozoite load) of

the scale of analysis at time t

5 SV (t) Population of susceptible mosquito vectors at time t

6 IV (t) Population of infected mosquito vectors at time t

Table 2.1: Table of variables and their description for the malaria model 2.1.2.9. For this malaria model,

the scale of analysis is the community scale.
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Figure 2.1: A conceptual diagram of the new model of malaria transmission dynamics based on the

transmission mechanism theory using the organism scale (human organism and mosquito organism) as

the scale of observation and the community scale as the scale of analsysis.
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2.2 Analysis of the Model

We provide some qualitative analysis of the malaria model in this section. The aim is not to introduce new

mathematical methods, but to show that the same simple methods for analyzing current models of disease

dynamics are applicable to the proposed new modelling framework.

2.2.1 Positivity of solutions of the malaria model

Since the model given by (2.1.2.9) describes human, mosquito, and malaria parasite populations, all pa-

rameters in the model are non- negative and it can also be shown that the solutions of the model (2.1.2.9)

are non-negative, given non-negative initial values (SH(0), IH(0), GH(0), SV (0), IV (0), PV (0)), the so-

lution/trajectories (SH(t), IH(t), GH(t), SV (t), IV (t), PV (t)) of the model (2.1.2.9) will remain positive

for all t ≥ 0, so should be in consistence with the basic aspect of the biological reality. This is summarized

in the following theorem.

Theorem 2.1. Given that the initial conditions of the system of equations (2.1.2.9) remain non-negative

(i.e. SH(0), IH(0) ≥ 0, GH(0) ≥ 0, SV (0) ≥ 0, IV (0) ≥ 0, PV (0) ≥ 0), the resulting solutions (SH(t),

IH(t), GH(t), SV (t), IV (t), PV (t)) are all positive for all t ≥ 0.

Proof. From the system of equations (2.1.2.9), a differential inequality which demonstrates the dynamic

of susceptible human population in time is given by

dSH(t)

dt
≥ −(λV (t) + µH)SH(t). (2.2.1.1)

Hence, the expression of the differential inequality (2.2.1.1) can be solved by the separation of variables

as follows
dSH(t)

SH(t)
≥ −(λV (t) + µH)dt. (2.2.1.2)

We letting

t̂ = sup {t > 0 : SH > 0, IH > 0, GH > 0, SV > 0, IV > 0, PV > 0} ∈ [0, t],

and integrating equation (2.2.1.2), we thus have

ln(SH(t)) ≥ −(µHt+

∫ t

0
λV (t̂)dt̂) + ln(SH(0)). (2.2.1.3)

Therefore, the solution of the differential inequality for the susceptible human population is given by

SH(t) = SH(0). exp

{
−(µHt+

∫ t

0
λV (t̂)dt̂)

}
> 0. (2.2.1.4)
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This implies that

lim
t−→∞

inf(SH(t)) ≥ 0. (2.2.1.5)

Based on the same principle, it can be shown that

lim
t−→∞

inf(IH(t)) ≥ 0. (2.2.1.6)

Using the last equation of the system of equations (2.1.2.9) that shows the evolution of the community

gametocyte load, we can have the following differential inequality:

dGH(t)

dt
≥ −αHGH(t). (2.2.1.7)

Thus, by the separation of variables we obtain

GH(t) ≥ GH(0). exp{−αHt} > 0. (2.2.1.8)

This implies that

lim
t−→∞

inf(GH(t)) ≥ 0. (2.2.1.9)

Using the same principle, it can be shown that

lim
t−→∞

inf(SV (t)) ≥ 0,

lim
t−→∞

inf(IV (t)) ≥ 0, (2.2.1.10)

lim
t−→∞

inf(PV (t)) ≥ 0.

The solution of the model, when starting with non-negative initial conditions in the system of equations

(2.1.2.9), will remain non-negative for t ≥ 0, and this completes the proof.

2.2.2 Boundedness of solutions of the malaria model

In order to analyze the model (2.1.2.9), we split it into four parts, namely the human population, mosquito

population, community gametocyte load and community sporozoite load. Consider the biologically feasi-

ble region consisting of

Ω = ΩH × ΩV × ΩG × ΩP ⊂ R2
+ × R2

+ × R+ × R+ (2.2.2.1)

where
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ΩH =
{
(SH , IH) ∈ R2

+ : 0 ≤ NH ≤ ΛH

µH

}
,

ΩV =
{
(SV , IV ) ∈ R2

+ : 0 ≤ NV ≤ ΛV

µV

}
,

ΩG =
{
GH ∈ R+ : 0 ≤ GH ≤ NhαhΛH

αHµH

}
,

ΩP =
{
PV ∈ R+ : 0 ≤ PV ≤ NvαvΛV

αV µV

}
.

(2.2.2.2)

We follow the following steps to establish the positive invariance of Ω. Adding equations (1) and (2) and

also adding equations (4) and (5) of model system (2.1.2.9) gives,



1.
dNH

dt
= ΛH − µHNH − δHIH ,

2.
dNV

dt
= ΛV − µVNV − δV IV ,

3.
dPV

dt
= NvαvIV − αV PV ,

4.
dGH

dt
= NhαhIH − αHGH .

⇒



1.
dNH

dt
≤ ΛH − µHNH ,

2.
dNV

dt
≤ ΛV − µVNV ,

3.
dPV

dt
≤ NvαvNV − αV PV ,

4.
dGH

dt
≤ NhαhNH − αHGH .

(2.2.2.3)

From which we obtain



1. NH(t) ≤ NH(0)e−µH t +
ΛH

µH

[
1− e−µH t

]
,

2. NV (t) ≤ NV (0)e
−µV t +

ΛV

µV

[
1− e−µV t

]
,

3. PV (t) ≤ PV (0)e
−αV t +

NvαvΛV

µV αV

[
1− e−αV t

]
,

4. GH(t) ≤ GH(0)e−αH t +
NhαhΛH

µHαH

[
1− e−αH t

]
.

(2.2.2.4)

where NH(0), NV (0), PV (0) and GH(0) represent the values of total human population, total mosquito
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population, community sporozoite load (total infectious reservoir of mosquitoes) and community game-

tocyte load (total infectious reservoir of humans) evaluated at the initial values of the respective variables.

Taking the limit as time gets large, we get the following expressions.



1. lim
t→∞

sup(NH(t)) ≤ ΛH

µH
,

2. lim
t→∞

sup(NV (t)) ≤
ΛV

µV
,

3. lim
t→∞

sup(PV (t)) ≤
NvαvΛV

αV µV
,

4. lim
t→∞

sup(GH(t)) ≤ NhαhΛH

αHµH
.

(2.2.2.5)

Thus, the region Ω is positively invariant. Therefore, it is sufficient to consider the dynamics of the

flow generated by (2.1.2.9) in Ω . In this region, the model is epidemiologically and mathematically

well-posed. Thus, every solution of the mode (2.1.2.9) with initial conditions in Ω remains in Ω for all

t > 0. Therefore, the Ω-limit sets of the model (2.1.2.9) are contained in Ω. We summarize this result in

Theorem 2.2 below.

Theorem 2.2. The region Ω = ΩH ×ΩV ×ΩG ×ΩP ⊂ R2
+ ×R2

+ ×R+ ×R+ is positively invariant for

the model system (2.1.2.9) with non-negative initial conditions in R6
+.

2.2.3 Determination of the Basic Reproductive Number

An important question in malaria elimination is: how far has a particular scale of analysis gone in elimi-

nating malaria and what more remains to be done? If a strategy for control interventions is that a particular

scale of analysis has achieved R0 < 1, then it is possible that maintaining current coverage levels of in-

terventions would continue to reduce malaria transmission at a particular scale of analysis. However, if

R0 > 1, this gives way to an increase of malaria transmission at a particular scale of analysis. To obtain

the reproductive number of the model system (2.1.2.9) we first obtain the disease-free equilibrium point

by setting the left-hand side of this model equal to zero and also assume that IH = IV = GH = PV = 0

for the community scale as the scale of analysis. Thus we get

E0 = (S0
H , I

0
H , P

0
V , S

0
V , I

0
V , G

0
H) =

(ΛH

µH
, 0, 0,

ΛV

µV
, 0, 0

)
, (2.2.3.1)

where E0 denotes the disease-free equilibrium of the model system (2.1.2.9). The local asymptotic sta-

bility of E0 can be established using the basic reproductive number. In this study, we calculate the basic

reproduction number of the model system (2.1.2.9) by using the next generation matrix approach [50].
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In this case, the second and the third equations of the model system (2.1.2.9) form a subsystem that de-

scribes the generation and transition of infectious humans and the community pathogen load that are used

to calculate R0. The Jacobian matrix associated with the linearized subsystem evaluated at the disease

free equilibrium point, E0, of the model system (2.1.2.9) is given by

J(E0) =



−(µH + δH + γH)
βV ΛH

P0µH
0 0

0 −αV Nvαv 0

0 0 −(αV + δV )
βHΛV

G0µV

Nhαh 0 0 −αH


(2.2.3.2)

Then, J(E0) is decomposed into two matrices F and V such that J(E0) = F − V , where F is the trans-

mission and non-negative matrix describing the generation of secondary infections, and V is the transition

and non-singular matrix, describing the changes in individual states such as removal by death, recovery

or excretion of gametocytes into the blood plasma by infected humans in the community. Following [51],

we can give two different biological interpretations of the disease compartments and hence different next

generation matrices from (2.1.2.2), to get two different R0 expressions for the compartmental single scale

model (2.1.2.9) as follows.

[a. ] Assume that the community pathogen load is an extended state of host infectiousness: This assump-

tion holds since we upscaled individual host infectiousnessGh(s) to population level infectiousness

GH(t) and also the upscaling of within-mosquito host infectiousness Pv(s) to population level in-

fectiousness PV (t). In this case, the shedding of gametocytes (i.e. Nhαh) into the blood plasma

and the shedding of sporozoites (i.e., Nvαv) into the mosquito salivary glands are placed in the V

matrix rather than in the F matrix, so that matrices F and V become

FI =



0
βV ΛH

P0µH
0 0

0 0 0 0

0 0 0
βHΛV

G0µV

0 0 0 0


, VI =



(µH + δH + γH) 0 0 0

0 αV Nvαv 0

0 0 (αV + δV ) 0

Nhαh 0 0 αH


,(2.2.3.3)

and
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V −1
I =



1

(µH + δH + γH)
0 0 0

0
1

αV
− Nvαv

αV (µV + δV )
0

0 0
1

(αV + δV )
0

− Nhαh

αH(µH + δH + γH)
0 0

1

αH



(2.2.3.4)

Then the next generation matrix, MI = FIV
−1
I is given by

MI =



0
βV ΛH

αV P0µH

−Nvαv

(αV + δV )
.
βV ΛH

αV P0µH
0

0 0 0 0

−Nhαh

(µH + δH + γH)
.
βHΛV

αHG0µV
0 0

βHΛV

αHG0µV

0 0 0 0


(2.2.3.5)

The basic reproductive number is the spectral radius (dominant eigenvalue) of the matrix FIV
−1
I ,

that is, RI
0 = ρ(FIV

−1
I ). Therefore, in this case, the basic reproduction number of the model

system (2.1.2.9) becomes

RI
0 = ρ(FIV

−1
I ) = 2

√√√√[ Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

][
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

]
(2.2.3.6)

[b. ] The community is assumed to act as a reservoir of the infective pathogen: This assumption also

holds since Nhαh and Nvαv are the rates that describes how much malaria pathogen load each

infected individual (mosquito or human) contributes to the community pathogen load during their

entire period of infectiousness. In this case, the shedding rate of malaria parasite (i.e. Nhαh and

Nvαv) are placed in the F matrix rather than in the V matrix, so that matrices F and V derived from



Chapter 2 34

matrix (2.2.3.2) become

FII =



0
βV ΛH

P0
0 0

0 0 Nvαv 0

0 0 0
βHΛV

G0µV

Nhαh 0 0 0


,

VII =



(µH + δH + γH) 0 0 0

0 αV 0 0

0 0 (αV + δV ) 0

0 0 0 αH


, (2.2.3.7)

and

V −1
II =



1

(µH + δH + γH)
0 0 0

0
1

αV
0 0

0 0
1

(αV + δV )
0

0 0 0
1

αH



(2.2.3.8)

Then the next generation matrix, MII = FIIV
−1
II is given by

MII =



0
βV ΛH

αV P0µH
0 0

0 0
Nvαv

(µV + δV )
0

0 0 0
βHΛV

αHG0µV

Nhαh

(µH + δH + γH)
0 0 0



(2.2.3.9)
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The basic reproductive number is also the spectral radius (dominant eigenvalue) of the matrix

FIIV
−1
II , that is, RII

0 = ρ(FIIV
−1
II ). In this case, the basic reproduction number of the model

system (2.1.2.9) becomes

RII
0 = ρ(FIIV

−1
II ) = 4

√√√√[ Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

][
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

]
(2.2.3.10)

Therefore, the model system (2.1.2.9) is shown to have two reproductive numbers which are given by

equation (2.2.3.6) and equation (2.2.3.10).

The two basic reproductive numbers RI
0 and RII

0 have each four main components which are: (i) the

human-to-community partial reproductive number (RHC), and (ii) the community-to-mosquito partial

reproductive number (RCV ), (iii) the mosquito-to-community partial reproductive number (RV C), and

(iv) the community-to-human partial reproductive number (RCH ) so that

1. RI
0 = 2

√√√√[ Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

][
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

]
= 2
√
RHC .RCV .RV C .RCH ,

2. RII
0 = 4

√√√√[ Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

][
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

]
= 4
√
RHC .RCV .RV C .RCH .

(2.2.3.11)

Therefore, the basic reproductive number RI
0 or RII

0 in the human-to-human or mosquito-to-mosquito for

human malaria transmission is made up of the following four partial reproductive numbers as follows.

[i. ] The human-to-community partial reproductive number (RHC): This partial reproductive number is

given by

RHC =
Nhαh

(µH + δH + γH)
. (2.2.3.12)

This is the average amount of infectious reservoir contributed to the community gametocyte load

(CGL) by each infected human host during his or her entire period of of infectiousness. This quan-

tity depends on the average number of gametocytes Nh, produced by each infected human, which

is available for ingestion by a mosquito during her uptake of blood meals from an infected human

during his or her entire period of infectiousness and is a composite parameter given by Nh In the

expression for RHC , αh is the rate at which gametocytes are shed/excreted into the blood plasma.

Therefore, Nhαh is the rate that describes how much each infected human host contributes to the

community gametocyte load (the total infectious reservoir of humans in the community) during

his/her entire period of infectiousness while 1/(µH + δH) is the average gametocyte carriage time

by each infected human host.
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[ii. ] The community-to-mosquito vector partial reproductive number (RCV ): This partial reproductive

number is given by

RCV =
ΛV βH
µV αHG0

. (2.2.3.13)

It describes the average number of infected mosquitoes arising from each infectious dose of ga-

metocytes ingested from the total infectious reservoir of humans in the community. This partial

reproductive number depends on the effective supply rate of susceptible mosquitoes ΛV , the aver-

age life span of each susceptible mosquito 1/µV , the rate of contact of the susceptible mosquitoes

with the infectious reservoir of humans βH , the average time it takes to eliminate the infectious

reservoir of humans in the community 1/αH and the susceptibility coefficient, 1/G0 of mosquito

vectors to infection by the CGL (the total human infectious reservoir in the community).

[iii. ] The mosquito-to-community partial reproductive number (RV C): This partial reproductive number

is given by

RV C =
Nvαv

(µV + δV )
. (2.2.3.14)

This is also the average amount of infectious reservoir contributed to the community sporozoite load

(CSL) by each infected mosquito vector during her entire period of infectiousness. This quantity

depends on the average number of sporozoites produced in each infected mosquito vectorNv, which

is available for injection into a human host by a mosquito during uptake of blood meals from a

human during her entire period of infectiousness and is a composite parameter which is also given

by Nv. In the expression for RV C , αv is the rate at which sporozoites are excreted/shed into the

salivary glands of the mosquito. Therefore, Nvαv is the rate that describes how much an infected

mosquito contributes to the community sporozoite load (the total infectious reservoir of mosquitoes

in the community) during her entire period of infectiousness while 1/(µV + δV ) is the average

sporozoite carriage time by each infected mosquito.

[iv. ] The community-to-human partial reproductive number (RCH ): This reproductive number is given

by

RCH =
ΛHβV
µHαV P0

. (2.2.3.15)

It describes the average number of infected humans arising from each infectious dose of sporozoites

injected from the total infectious reservoir of mosquitoes in the community. This partial reproduc-

tive number depends on the effective supply rate of susceptible mosquitoes ΛH , the average life

span of each susceptible humans 1/µH , the rate of contact of the susceptible humans with the in-

fectious reservoir of mosquitoes βV , the average time it takes to eliminate the infectious reservoir

of mosquitoes in the community 1/αV and the susceptibility coefficient, 1/P0 of human hosts to

infection by the CSL (the total mosquito infectious reservoir in the community).

Another informative way of interpreting R0 is to consider it as a product of two partial reproductive

numbers which are the human-to-mosquito partial reproductive number RHV and the mosquito-to-human

partial reproductive number RV H so that
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R0 =

√√√√[ Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

][
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

]
=
√
RHV .RV H . (2.2.3.16)

In equation (2.2.3.16), the quantity RHV is interpreted as follows. Consider a single newly infected human

host entering a disease-free population of mosquitoes at equilibrium. This individual is still present and

infectious and the expected number of mosquitoes infected by this human host is approximately

RHV =
Nhαh

(µH + δH + γH)

ΛV βH
µV αHG0

. (2.2.3.17)

Therefore, the human-to-mosquito transmission coefficient RHV is composed of between-host disease

parameters and within-human parameters. Similarly, in Eq. (2.2.3.16) the quantity RV H is interpreted as

follows. Consider a single newly infected mosquito vector entering a disease-free population of humans

at equilibrium. This mosquito is still present and infectious and the expected number of humans infected

by this mosquito is approximately

RV H =
Nvαv

(µV + δV )
.
ΛHβV
µHαV P0

. (2.2.3.18)

From Eq. (2.2.3.18), we deduce that the mosquito-to-human transmission coefficient RV H is also com-

posed of between-host disease parameters and within-mosquito parameters.

2.2.4 Existence and uniqueness of the endemic equilibrium state

We let

E∗ = (S∗
H , I

∗
H , P

∗
V , S

∗
V , I

∗
V , G

∗
H), (2.2.4.1)

denoting the endemic equilibrium points of the system of equations (2.1.2.9). We let the right-hand side

of the system of equations (2.1.2.9) equal to zero to obtain

ΛH −
βV P

∗
V

P0 + P ∗
V

S∗
H − µHS

∗
H + γHI

∗
H = 0,

βV P
∗
V

P0 + P ∗
V

S∗
H − (µH + γH + δH)I∗H = 0,

NvαvI
∗
V − αV P

∗
V = 0, (2.2.4.2)

ΛV −
βHG

∗
H

G0 +GH
− (µV + δV )I

∗
V = 0,

NhαhI
∗
H − αHG

∗
H = 0.
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From (2.2.4.2), the endemic equilibrium is given by

S∗
H(P ∗

V ) =
{ΛH [a2P0 + (a1 + a2)P

∗
V ] + γHβV ΛHP

∗
V }(P0 + P ∗

V )

[a2P0 + (a1 + a2)P ∗
V ][µHP0 + (βV + µH)P ∗

V ]
,

I∗H(P ∗
V ) =

βV ΛHP
∗
V

a2P0 + (a1 + a2)P ∗
V

,

G∗
H(P ∗

V ) =
NhαhβV ΛHP

∗
V

αH [a2P0 + (a1 + a2)P ∗
V ]
, (2.2.4.3)

S∗
V (P

∗
V ) =

ΛV {G0αH [a2P0 + (a1 + a2)P
∗
V ] +NhαhβV ΛHP

∗
V }

µVG0αH [a2P0 + (a1 + a2)P ∗
V ] + (βH + µV )NhαhβV ΛHP ∗

V

,

I∗V (P
∗
V ) =

NhαhβHΛV βV ΛHP
∗
V

(µV + δV ){µVG0αH [a2P0 + (a1 + a2)P ∗
V ] + (βH + µV )NhαhβV ΛHP ∗

V }
,

P ∗
V =

(µV + δV )µHP0(µH + δH + γH)µV αHG0

µVG0αH(a1 + a2) + (βH + µV )NhαhβV ΛH
[R2

0 − 1],

where

a1 = βV (µH + δH),

a2 = µH(µH + γH + δH).

Therefore, we can conclude that there exists unique endemic equilibrium state for model (2.1.2.9) when-

ever R0 > 1.

2.2.5 Numerical Study of the Malaria Model

In this subsection, we perform numerical simulations of the single-scale malaria model (2.1.2.9) us-

ing the parameter values given in Table (2.2). We illustrate the influence of parameters (αv, αH , αV ,

βH ,βV , δH , δV , G0, γH , ΛH , ΛV , µV , Nh, Nv, P0, αh) on the model variables (IH , GH , IV , PV ). The

model developed in this work, was simulated using the initial value conditions given by SH(0) = 50000,

IH(0) = 7000, GH(0) = 60000, SV (0) = 150000, IV (0) = 20000, and PV (0) = 40000.
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Parameter Description Initial Value Range Units Source

ΛV Recruitment rate of mosquitoes. 6000 5000–7000 Mosquitoes per

day

[35]

βV Contact rate of susceptible humans with

the infectious reservoir of mosquitoes.

0.52135 2.7×10−3–0.64 day−1 [35]

µV Natural death rate of mosquitoes. 0.12 0.033-0.3 day−1 [24]

δV induced death rate of infected

mosquitoes.

4.26× 10−6 4.26 × 10−6 −
5.33× 10−6

day−1 [24]

P0 Half saturation constant associated with

the infection of humans.

1× 108 1×106−5×108 day−1 [24]

Nv Number of sporozoites available for ex-

cretion

3000 100-4000 Sporozoites per

day

assumed

αV Rate of clearance of community sporo-

zoite load.

0.3 0.09-0.99 day−1 [24]

αv Shedding rate of sporozoites 0.25 0.016-1.0 day−1 [24]

ΛH Recruitment rate of humans. 1000 100-1200 humans per day [35]

βH Contact rate of susceptible mosquitoes

with the infectious reservoir of humans.

0.356 0.072-0.64 day−1 [35]

µH Natural death rate of humans. 4.002×10−5 1×10−5−−0.9 day−1 [24]

δH induced death rate of infected humans. 0.0027 1 × 10−15 −
0.0027

day−1 [24]

γH Recovered rate from infection. 0.25 0.0014-0.7 day−1 [24]

G0 Half saturation constant associated with

the infection of mosquitoes.

5× 108 16 − 5× 109 day−1 [24]

Nh Number of gametocytes available for

excretion

2000 10-2000 gametocytes

per day

assumed

αH Rate of clearance of community game-

tocytes load.

0.913 4.67 × 10−5 −
−0.913

day−1 [24]

αh Shedding rate of gametocytes 0.4 0.01-0.9 day−1 [24]

Table 2.2: Parameters values of model of malaria and their description.

Based on our numerical simulations, we determined the existence of malaria-endemic equilibrium, as fig-

ure (2.2) shows that each variable varies with time and reaches a constant value (i.e., at malaria-endemic

equilibrium). Thus, Figure (2.2) displays the presence of malaria-endemic equilibrium for the model

(2.1.2.9). Figure 2.3 and figure 2.4 are set of two graphs showing changes in four variables: IH , IV , GH

and PV for different parameters: αv, and αh. Figure 2.3 shows the effect of rate at which sporozoites

develop and become infectious to humans (αv) on (i) population of infected humans IH , (ii) community

gametocytes loadGH , (iii) population of infected mosquitoes IV and (iv) community sporozoites load PV

for different values of αv: αv = 0.25, αv = 0.45, αv = 0.85. Figure 2.3 shows that as the rate at which

sporozoites develop and become infectious to humans (αv) increases, malaria disease transmission in the

community also increases. Figure 2.4 shows the effect of rate at which gametocytes develop and become

infectious to mosquitoes (αh) on (i) population of infected humans IH , (ii) community gametocytes load
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Figure 2.2: Variation of the Human and mosquito variables with time to verify the existence of malaria
infection equilibrium.

GH , (iii) population of infected mosquitoes IV , and (iv) community sporozoites load PV for different

values of αh: αh = 0.4, αh = 0.6, αh = 0.8. Similarly, Figure 2.4 shows that as the rate at which

gametocytes develop and become infectious to mosquitoes (αh) increases, malaria disease transmission

in the community also increases. Overall Figure 2.3 and Figure 2.4 suggests that interventions that reduce

the rate of development of gametocytes and sporozites to become infectious reduces malaria transmis-

sion for the specified scale of analysis, that is the community scale. Therefore, the use artemisinin-based

combination therapy (ACT) which reduce the productions of gametocytes which will likely to reduce the

malaria disease transmission.

Figure 2.5 and figure 2.6 are set of two graphs showing changes in four variables: IH , IV , GH and PV

for different parameters: Nh, and Nv. Figure 2.5 shows the effect of the number of gametocytes available

for excretion (Nh) on (i) population of infected humans IH , (ii) community gametocytes load GH , (iii)

population of infected mosquitoes IV , and (iv) community sporozoites load PV for different values of the

average number of gametocytes in the blood stream of an infected human (Nh): Nh = 1800, Nh = 2000,

Nh = 2200. The numerical results in Figure 2.5 indicate that the variables (IH , GH , IV , PV ) increase as

the number of gametocytes available for excretion (Nh) increases, implying that as the number of gameto-

cytes available for excretion (Nh) increases, malaria disease transmission in the community also increases.
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Figure 2.6 shows the effect of number of sporozoites available for excretion (Nv) on (i) population of in-

fected humans IH , (ii) community gametocytes load GH , (iii) population of infected mosquitoes IV , and

(iv) community sporozoites load PV for different values of the average number of sporozoites in the sali-

vary glands of each infected mosquito (Nv): Nv = 2600, Nv = 2800, Nv = 3000. The numerical results

in Figure 2.6 also indicate that the variables (IH , GH , IV , PV ) increase as the number of sporozoites

available for excretion (Nv) increases, implying that as the number of sporozoites available for excretion

(Nv) increases, malaria disease transmission in the community also increases.

Figure 2.7 and Figure 2.8 are set of two graphs showing changes in four variables: IH , IV , GH and PV for

different parameters: βH , and βV . Figure 2.7 shows the effect of contact rate of susceptible humans with

infectious mosquitoes (βV ) on (i) population of infected humans IH , (ii) community gametocytes load

GH , (iii) population of infected mosquitoes IV , and (iv) community sporozoites load PV for different

values of βV : βV = 0.32135, βV = 0.42135, βV = 0.52135. The results in Figure 2.7 shows that as the

contact rate of susceptible humans with infectious reservoir of moquito vectors (βV ) increases, malaria

transmission at community scale as the scale of analysis increases. Figure 2.8 shows effect of contact

rate of susceptible mosquitoes with infectious humans (βH ) on (i) population of infected humans IH , (ii)

community gametocytes load GH , (iii) population of infected mosquitoes IV , and (iv) community sporo-

zoites load PV for different values of βH : βH = 0.356, βH = 0.456, βH = 0.556. Equally, the results

in Figure 2.8 show that as the contact rate of susceptible mosquitoes with infectious reservoir of humans

(βH) increases, malaria transmission at community scale as the scale of analysis also increases. Overall,

the results in Figure 2.7 and Fig. 2.8 suggest that the use of Long-lasting insecticidal nets (LLINs) have

an beneficial impact of reducing malaria disease transmission in the community.

Figure 2.9 and Figure 2.10 are set of two graphs showing changes in four variables: IH , IV , GH and

PV for different parameters: G0, and P0. Figure 2.9 effect of Half saturation constant associated with

infection of mosquitoes (G0) on (i) population of infected humans IH , (ii) community gametocytes load

GH , (iii) population of infected mosquitoes IV , and (iv) community sporozoites load PV for different

values of G0: G0 = 3 × 108, G0 = 5 × 108, G0 = 7 × 108. We note from Figure (2.9) that as the

half saturation constant associated with mosquito infection (G0) increases, malaria disease transmission

in the community decreases. Figure 2.10 shows effect of half saturation constant associated with infection

of humans (P0) on (i) population of infected humans IH , (ii) community gametocytes load GH , (iii)

population of infected mosquitoes IV , and (iv) community sporozoites load PV for different values of P0:

P0 = 5× 107, P0 = 1× 108, P0 = 1.5× 107. We also note from Figure (2.10) that as the half saturation

constant associated human with infection (P0) increases, malaria disease transmission in the community

decreases.
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Figure 2.3: Graphs showing the effect of shedding rate of sporozoites (αv) on (i) population of infected

humans IH (ii) community gametocytes load GH (iii) population of infected mosquitoes IV and (iv)

community sporozoites load PV for different values of αv: αv = 0.25, αv = 0.45, αv = 0.85

Figure 2.4: Graphs showing the effect of shedding rate of gametocytes (αh) on (i) population of infected

humans IH (ii) community gametocytes load GH (iii) population of infected mosquitoes IV and (iv)

community sporozoites load PV for different values of αh: αh = 0.4, αh = 0.6, αh = 0.8.
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Figure 2.5: Graphs showing the effect of number of gametocytes available for excretion (Nh) on (i) popu-

lation of infected humans IH (ii) community gametocytes loadGH (iii) population of infected mosquitoes

IV and (iv) community sporozoites load PV for different values of Nh: Nh = 1800, Nh = 2000,

Nh = 2200.

Figure 2.6: Graphs showing the effect of number of sporozoites available for excretion (Nv) on (i) popula-

tion of infected humans IH (ii) community gametocytes load GH (iii) population of infected mosquitoes

IV and (iv) community sporozoites load PV for different values of Nv: Nv = 2600, Nv = 2800,

Nv = 3000.
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Figure 2.7: Graphs showing the effect of contact rate of susceptible humans with infectious mosquitoes

(βV ) on (i) population of infected humans IH (ii) community gametocytes load GH (iii) population of in-

fected mosquitoes IV and (iv) community sporozoites load PV for different values of βV : βV = 0.32135,

βV = 0.42135, βV = 0.52135.

Figure 2.8: Graphs showing the effect of contact rate of susceptible mosquitoes with infectious humans

(βH ) on (i) population of infected humans IH (ii) community gametocytes load GH (iii) population of

infected mosquitoes IV and (iv) community sporozoites load PV for different values of βH : βH = 0.356,

βH = 0.456, βH = 0.556.
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Figure 2.9: Graphs showing the effect of Half saturation constant associated with infection of mosquitoes
(G0) on (i) population of infected humans IH (ii) community gametocytes load GH (iii) population of
infected mosquitoes IV and (iv) community sporozoites load PV for different values ofG0: G0 = 3×108,

G0 = 5× 108, G0 = 7× 108.

Figure 2.10: Graphs showing the effect of Half saturation constant associated with infection of humans

(P0) on (i) population of infected humans IH (ii) community gametocytes load GH (iii) population of

infected mosquitoes IV and (iv) community sporozoites load PV for different values of P0: P0 = 5×107,

P0 = 1× 108, P0 = 1.5× 107.
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By using pathogen load as a common metric of disease dynamics at all levels of organization of an in-

fectious disease, this would ensure a common metric of control, elimination and eradication of disease in

terms of pathogen load. Currently, single scale models of infectious disease systems at host level define

disease burden in terms of incidence and prevalence. However, for some infectious diseases prevalence

is not very informative, as the infectivity of individuals depends more on pathogen load than on whether

one is infected or not. Incidence is difficult to measure directly. More importantly, the use of community

pathogen load as a measure of disease burden also enables us to use a common metric for disease dynam-

ics and burden across scales. Further, community pathogen also combines information from prevalence.

Our revised manuscript explains this aspect in more detail [52].

2.3 The Modern Theory of Disease Dynamics

Although science has progressed over time by being able to summarize our existing knowledge of natural

phenomena using certain scientific theories, it must be made clear that our description of natural phenom-

ena using scientific theories is a dynamic process because these scientific theories often only adequately

describe the phenomenon studied up to a certain time. As time progresses, new knowledge often emerges

as we refine the domains of observation and the analysis to improve the accuracy of measurement. In

this dynamic picture of science, the classical transmission mechanism theory of disease dynamics with

its intellectual origins in the orginal work of Daniel Bernoulli [53], and later formulated and developed

in its present form by Kermack and McKendrick [54–56] and others, remained unaltered for almost three

centuries. However, because of the need to refine the domains of observation and scales of analysis of

infectious disease dynamics, the transmission mechanism theory met its first obstacles around the turn of

the nineteenth century. An increasing awareness of the complexity of infectious disease system, and of the

challenges precipitated by the need to expand the scales of obervation and analsysis to much finer scales

of observation and analysis than the scale of organization at which only transmission occurs required the

development of new theory through novel extension of existing theory (the transmission mechanism the-

ory) to advance the understanding of dynamics of infectious disease systems over the coming decades.

The problem of directly transmitted diseases was recently successfully resolved by establishing a mathe-

matical and computational description of infectious disease dynamics through a union of the microscale

as a scale of observation where pathogen replication and macroscale where pathogen transmission often

occurs resulted in a new theory of infectious disease dynamics called the replication-transmission mecha-

nism theory which results in the description of phenomena involving simultaneously of both the pathogen

transmission and pathogen replication. The main limitation of the transmission mechanism theory of dis-

ease dynamics is that it tends to disjoin the scales of description in order to simplify representation and

understanding of infectious disease dynamics. This culminated in a radical scientific theory of infectious

disease dynamics called the replication-transmission relativity theory of disease dynamics [11], in which

old scientific knowledge of disease dynamics based on transmission mechanism theory was reordered into

a new framework based on a revolutionary scientific theory called the replication-transmission mechanism
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relativity theory. The replication-transmission relativity theory states that at any level of organization of an

infectious disease system there is no privileged/absolute scale which would determine disease dynamics,

only interactions between the microscale and macroscale [11]. It identifies an infectious disease system as

a complex system which is organized into seven main hierarchical levels at which host-pathogen interac-

tions can play out: (i) the cell level, (ii) the tissue level, (iii) the organ level, (iv) the microecosystem level,

(v) the host/organism level, (vi) the community level, and (vii) the macroecosystem level. The replication-

transmission relativity theory for multiscale dynamics of infectious disease ripped the entire fabric of clas-

sical transmission mechanism theory which has been in existence at least since Daniel Bernoulli developed

a dynamic model of smallpox transmission and control in 1760 [53], which was later unified by Kermack

and McKendrick in their seminal papers [54–56] into an idea now more widely known as mathematical

epidemiology by 1933. The replication-transmission relativity theory for multiscale modelling of infec-

tious disease dynamics [11] demolished the notion that transmission is the only main dynamic disease

process. Therefore, the replication-transmission relativity theory is a radical paradigm shift from the scale

specific transmission mechanism theory to modelling infectious disease systems.

Figure 2.11 is a conceptual representation of the replication-transmission relativity theory of disease dy-

namics. The theory makes the point that in multiscale dynamics of infectious diseases, there is an in-

teracting multiscale cycle of four processes which are [a.] infection/super-infection by pathogen, [b.]

pathogen replication, [c.] pathogen shedding/excretion, and [d.] pathogen transmission, which is repeated

sequentially at each level of organization of an infectious disease system. These four processes are key

to understanding infectious disease dynamics using the multiscale modelling methods. The linking of

the scales in the development of multiscale as illustrated conceptually in Figure 2.11 involves linking or

integration of microscale and macroscale. This involves up-scaling and down-scaling variables associ-

ated with some disease processes at these two scale as illustrated in Figure 2.11. This is because for

an infectious disease system, the boundary between the microscale and macroscale for each hierarchical

level of an infectious disease system indicate/represent shifts in disease processes. However, the greatest

challenge in the development of multiscale models of infectious disease dynamics is in methodological

difficulties on specific implementation approaches for downscaling and up-scaling in space and time and

in converting dimensions across the microscale and macroscale when coupling the submodels of a multi-

scale model [3]. The lack of rigorous frameworks for down-scaling and up-scaling undermines progress

in the development of multiscale models of infectious disease systems. Furthermore, down-scaling to mi-

croscale or up-scaling to macroscale involves developing conceptual models that adequately capture the

dominant disease processes at these scales. In particular, we inevitably need to know more details when

down-scaling while we also need to ignore some fine details when up-scaling. But another challenge is

that when either down-scaling or up-scaling, we do not know in general how scale transition occurs. In

particular when down-scaling, we do not know what microscale disease processes and parameters are

essential in representing the macroscale processes and vice-versa when up-scaling.
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Figure 2.11: A conceptual representation of the replication-transmission relativity theory of disease dy-

namics.

This replication transmission mechanism theory is a radical paradigm shift from the scale specific trans-

mission mechanism theory to modelling infectious disease systems. However, the passage from trans-

mission mechanism theory of disease dynamics to the replication-transmission relativity theory of disease

dynamics shares a feature that are common to all such transitions in which an old scientific theory gives

way to a new one. In almost every situation where this transmission occurs there is usually a domain Dn

of phenomena described by the new theory and a subdomain Do wherein the old theory is reliable to a

given accuracy. In the case of infectious disease dynamics, the domain Dn represents the level of mul-

tiscale observation described by the replication-transmission relativity theory while the subdomain D0

represents the scale of observation described by the transmission mechanism theory. Further, in addition

to numerical accuracy, the new theory often brings about radical conceptual changes. Therefore, unlike

the transmission mechanism theory which bring down the complexity of an infectious disease system to

manageable levels by discretizing or decomposing the infectious disease system into hierarchical scales
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of organization, each of which can be analyzed independently using single scale modelling methods, the

replication-transmission relativity theory enables us to bring down the complexity of an infectious disease

system to manageable levels by discretizing or decomposing the infectious disease system into hierarchi-

cal levels of organization, each of which, can analyzed independently using multiscale modelling methods.

This theory ripped the entire fabric of classical transmission mechanism theory which has been in exis-

tence at least since Daniel Bernoulli developed a dynamic model of smallpox transmission and control

in 1760, which was later unified by Kermack and McKendrick in their seminal work, into an idea now

more widely known as mathematical epidemiology. It demolished the notion that transmission is the only

main dynamic process in infectious disease dynamics. It anticipates that the replication-transmission rel-

ativity theory will remain firmly established as the fundamental theory on which multiscale modelling of

infectious disease dynamics is based on from the cell level to the macroecosystem level. Therefore, with a

theory in place, we expect that multiscale modelling of infectious disease systems will evolve and expand

in scope.

We anticipate that this landmark theory will uncannily transform mainstream thinking about modelling

disease dynamics from a complex systems perspective. The basic principle behind the replication-transmission

relativity theory is that it establishes that at every level of organization of an infectious disease system there

is a replicative-transmission cascade in which a pathogen replicates at microscale while there is transmis-

sion at macroscale. This theory provides formal methodology, of describing the multiscale dynamics of

infectious disease systems through the use of formal mathematics. It marks a breakthrough in a century

long quest to build a working theory of the multiscale dynamics of infectious disease systems. This theory

addresses data and observations with far-reaching implications for understanding key infectious disease

processes and their fundamental consequences for human, plant and animal health. This theory guides

model construction and experimentation, and to identify new organizing principles of infectious disease

dynamics by establishing [a.] a common constructive framework multiscale models of infectious disease

systems in which the scales are linked through exchange of organisms implicated in transmission of in-

fectious disease system at all levels of organization of an infectious disease system (i.e., cell level, tissue

level, organ level, microecosystem level, host level, community level, and macroecosystem level), and [b.]

a theory to account for the reciprocal influence between pathogen replication and pathogen transmission,

or persistence and dispersal in infectious disease dynamics at every level of organization of an infectious

disease system. [c.] a common framework to link the scales of levels of biological organization of an

infectious disease system. [c.] a framework to account for the reciprocal influence between the microscale

and the macroscale at every level -dependency of information flow or other biological phenomena. There-

fore, through out this thesis we are going to use the application of the replication-transmission relativity

theory of infectious disease systems.
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2.4 Discussion and conclusions

In this chapter we presented the transmission mechanism theory of disease dynamics and also explained

its aims, assumptions and limitations. It is a scientific theory that has matured substantially over the past

century and has established an enduring framework for the study of infectious disease dynamics using

mathemtical and computational models. However, the transmission mechanism theory has limitations

which undermine their usefulness. In an effort to address some of the limitations of the transmission

mechanism theory we proposed a new modelling science for directly transmitted diseases similar to an ex-

isting modelling science for environmentally transmitted infectious diseases. The methods development

for models of directly transmitted infectious diseases proposed in this study is based on introducing a new

epidemiological variable called community pathogen load (CPL), which is then used to define the force

of infection and transmission probability. This then converts standard epidemiological models based on

susceptible, exposed, infected, recovered (SEIR) and variations of this paradigm (SI, SIS, SIR, etc.) for

directly transmitted infectious diseases into epidemiological models similar to existing models for envi-

ronmentally transmitted infectious diseases based on susceptible, exposed, infected, recovered, pathogen

load (SEIRP) and variations of this paradigm (SIP, SISP, SIRP, etc.) in which community wide pathogen

load/pool in the environment is explicitely incorporated into epidemiological models. At the centre of

this modelling framework is the idea of using community pathogen load as the standard metric for as-

sessing the effectiveness of TasP. We upscale individual microscale infectiousness to define macroscale

infectiousness (community pathogen load) for directly transmitted infectious disease systems. Therefore,

the incorporation of community pathogen load variable into the model (while useful as the metric to as-

sess the effectiveness of TasP) is also done because of the need to represent transmission of an infectious

disease systems more accurately at population level. The usefulness of such simple models is that they

are predictive model for community pathogen load whose usefulness is three-fold: [a.] as a metric for as-

sessing the effectiveness of Treatment as Prevention (TasP), [b.] as an indicator of a community’s level of

infectiousness and transmission probability, and [c.] as a proximal marker for infectious disease incidence

and potential epidemic propagation. The concept of community pathogen load, which is an aggregate

biomarker of a community’s pathogen burden over a specific time period. We determined that when the

community pathogen load is assumed to act as a reservoir for malaria parasites (i.e., Nhαh and Nvαv)

in human blood plasma and mosquito salivary glands is placed in F -matrix instead of V -matrix, then the

reproductive number will be R0 =
4
√
RHVRV H .
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A Basic Multiscale Model of Malaria
Disease Dynamics With Variable
Super-infection of Mosquitoes

3.1 Introduction

Malaria disease is a type II vector-borne disease system that is initiated by protozoan parasites known as

Plasmodium and it is transmitted to humans by a bite of an infected mosquito [57]. The malaria disease

system in humans develops in two stages, the first is the exo-erythrocytic stage (i.e., the liver cells) and

the second is the erythrocytic stage which occurs in the red blood cells. Malaria infection begins when an

infected mosquito takes a blood meal from a susceptible human and thereby injects the malaria parasite

(sporozoites) into the otherwise healthy human. This process is called mosquito to human transmission

and the process occurs at the between-host scale (macro-scale). The processes which happen at the within-

host scale (micro-scale) begin when the injected sporozoites migrate to liver-stage, by invading the liver

cells, and they develop into schizonts which burst to produce merozoites and thus demonstrating the end of

the exo-erythrocytic stage. The erythrocytic stage begins with the released merozoites entering the blood-

stream and invading the red blood cells. The infected red blood cells burst releasing the merozoites which

further invade the red blood cells to renew the cycle and maintain the infection or pathogen load, that is,

the replication process that occurs at the micro-scale. The merozoites are the asexual form of the parasite,

however, some of the released merozoites differentiate into the sexual form known as gametocytes. These

gametocytes must be released into the community pathogen load such that the susceptible mosquitoes
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take the blood meal from the community gametocytes load. When the mosquito is infected the parasite

must progress from one stage to another within the infected mosquitoes [35]. The process of susceptible

mosquitoes getting into contact with infected humans is called the human to mosquito transmission which

occurs at the macro-scale.

Figure 3.1: A diagram that demonstrates the life cycle of Malaria in Human and in Mosquito [1]

The malaria disease system has a complex life cycle, during sporogonic development, the malaria parasite

has in close contact with the midgut, hemolymph, and salivary glands of vector-mosquito. The game-

tocytes which are consumed by the mosquito in blood meal cause the cycle of transmission to continue

back to the mosquito. The gametocytes must cross the midgut of the mosquito, which performs as the first

physical obstacle within the vector. The male and female gametocytes fuse within the mosquito forming

diploid zygotes, which progress to ookinetes. The ookinetes migrate to the midgut of the mosquito, pass

through the gut wall, and form the oocysts, which mature in the midgut’s basal lamina. Upon the develop-

ment, each oocyst bursts to discharge thousands of sporozoites, which then migrate to the salivary glands
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of the female Anopheles mosquitoes to undergo further modifications that are necessary to continue the

cycle of transmission back to humans [58]. The sporozoites must be released into the pool of pathogen

load (i.e., the community sporozoites load).

Infectious disease systems are considered complex systems because of their multi-level and multi-scale

nature [11]. As a result of multi-level and multi-scale as main features in infectious disease systems, has

raised hopes for researchers in the mathematical modeling community has to lead them to multiscale mod-

eling method for studying infectious diseases dynamics at any level of the organization. In this chapter, we

present a coupled multi-scale model that has the combination of two other categories, which are the nested

multiscale model and embedded multiscale model. The nested multi-scale model is at human-host and in-

tegrates the microscale sub-model and macro-scale sub-model at the host-level of an infectious disease

system that has a pathogen replication-cycle at the microscale, that is, in merozoites. The pathogen load

at the micro-scale increase through the pathogen replication cycle. The micro-scale sub-model influences

the macro-scale sub-model through shedding/excretion, while the macro-scale sub-model influences the

micro-scale sub-model through initial infection. The embedded multi-scale model is applied to mosquito-

vector and integrates the micro-scale sub-model and the macro-scale sub-model at the host level, and

there is no pathogen replication cycle at the micro-scale. The pathogen load at the micro-scale increase

through repeated infection/ super-infection. The micro-scale sub-model influences the macro-scale sub-

model through pathogen shedding/ excretion, whilst the macro-scale influences the micro-scale through

repeated micro-scale through repeated infection/ super-infection.

The microscale sub-model and the macroscale sub-model can be integrated using the nested multiscale

model at human-host and embedded multiscale model at mosquito-host, and the models can be developed

at any level of organization of an infectious disease system, that is, at cell-level, tissue-level, organ-level,

micro-ecosystem level, host-level, community-level, and micro-ecosystem level. At each level of organi-

zation, there is a transmission process at the macroscale sub-model and a replication cycle at the micro-

scale sub-model. The two sub-models influence each other with type I or type II reciprocal influences.

The objective of this study is to investigate how super-infection in mosquitoes has an influence on malaria

disease dynamics for a pathogen with no replication cycle at the micro-scale and to investigate how initial

infection in humans has an influence on malaria disease dynamics for a pathogen with a replication cycle

at the micro-scale.

The research to date on malaria disease dynamics has tended to focus on the dynamics of malaria in-

fection and investigating the influence of control measures that target at controlling, eliminating, and

even eradicating this malaria disease system using a single-scale modeling approach, that is, within-host

scale [43–45, 59, 60] and between-host scale [40–42]. From the literature, we observed the development

of multiscale models of malaria infection in [34] using the time since infection, that is, the between-host
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scale sub-model which modelled using partial differential equations (PDEs) and the within-host scale sub-

model which are developed using ordinary differential equations (ODEs) and the sub-models are linked

through a hybrid multiscale model approach. We also observed that all the research developed on infec-

tious disease systems which use the coupled multiscale models as the main category, they linked the two

multiscale using the combination of the same category in both human and vector. For example work by

Garira [24] on a coupled multiscale model of malaria disease, the author linked the sub-models using the

nested multiscale model on humans and linked sub-models using the nested multiscale model on vectors.

3.2 Derivation of the Basic Coupled Multiscale Model for Malaria Disease
System

In this subsection, we develop a basic multiscale model of the malaria disease system which is at multiple

hosts (that is, human-host and mosquito-host), with four sub-models which are within-host scale sub-

models (within-human scale and within-mosquito scale), and between-host scale sub-models (between-

human scale and between-mosquito scale). We obtain the nested multiscale model on human-host that

links the between-human host sub-model which is related to the transmission dynamics of the malaria

disease system and the within-human host sub-model which is related to the replication cycle of the

malaria parasite within the infected humans. The between-human sub-model influences the within-human

sub-model through initial infection whereas the within-human sub-model influences the between-human

sub-model through shedding/ excretion of the pathogen. We also extract the embedded multiscale model

on mosquito host that links the between -mosquito sub-model which is related to the transmission dy-

namics of malaria disease and within-mosquito sub-model which is associated with the replication cycle

of the malaria parasite within the infected mosquitoes. The between-mosquito sub-model influences the

within-mosquito sub-model through super-infection while the within-mosquito sub-model influences the

between-mosquito sub-model through shedding/excretion of the pathogen. The human-host and mosquito-

host are linked through the sharing of the pathogen (malaria parasite).

In this study, we adapted the work on a coupled multiscale model of malaria disease by Garira [24] with

some minor modifications on the super-infection in mosquitoes. We make the following assumptions from

the multiscale model system (3.2.0.1):

i. The transmission of infection of humans is only through direct contact with the sporozoites load (PV ),

that is, from the infected mosquitoes whereas the transmission in mosquitoes is only through getting

direct contact with the gametocytes load (GH) from the infected humans.

ii. For embedded multiscale model, the dynamics of between-mosquito sub-model and the within-mosquito

sub-model for malaria disease dynamics variables happen at the same time scale, that is, at a slow

time scale, t, such that SV = SV (t), IV = IV (t), PV = PV (t), Gv = Gv(t), Gm = Gm(t),

Zv = Zv(t), Ov = Ov(t), and Pv = Pv(t).
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iii. For the nested multiscale model, we assume that the dynamics of between-human host sub-model

and within-human host sub-model of malaria disease dynamics variables occur at different time

scales. The between-human scale variables SH , IH and GH occur at slow time scale, t, such that

SH = SH(t), IH = IH(t), and GH = GH(t), whilst the within-human scale variables Rh, Rm,

Mh, and Gh occur at fast time scale , s, such that Rh = Rh(s), Rm = Rm(s), Mh = Mh(s), and

Gh = Gh(s).

iv. Infected mosquitoes do not recover from malaria.

From the model diagram shown in figure (3.2), we have the following system of equations as our coupled

multiscale model for malaria disease system transmission dynamics:

1.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)− [µH + γH + δH ] IH(t),

3.
dRh(s)

ds
= Λh − βhRh(s)Mh(s)− µbRh(s),

4.
dRm(s)

ds
= (1− π)βhRh(s)Mh(s)− αmRm(s),

5.
dMh(s)

ds
= NmαmRm(s)− µmMh(s),

6.
dGh(s)

ds
= πβhRh(s)Mh(s)− [αh + µh]Gh(s),

7.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),

8.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

9.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)− [µV + δV ] IV (t),

10.
dGv(t)

dt
=

βHGH(t)(SV − 1)

(G0 +GH)ϕV (IV + 1)
− [αg + µg]Gv(t), (3.2.0.1)

11.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t),

12.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

13.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(s),

14.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

15.
dPV (t)

dt
= Pv(t)αv (IV (t) + 1)− αV PV (t),
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H

Figure 3.2: A conceptual diagram of the multiscale model of malaria disease dynamics

3.2.1 Analysis of the multi-scale model using fast-slow time-scale analysis

We observed from the embedded multi-scale model of system (3.2.0.1) that at mosquito-host level has

same time scales which involved the between-mosquito host time scale (t) which associated with trans-

mission at the population-level and the within-mosquito host time scale (t) associated with the growth of

sporozoites population at the individual-level. We also note from the nested multi-scale model system

(3.2.0.1) that at human host level, has different time scale which are the between-human host time scale

(t) which associated with the transmission of malaria disease system and within-human host time scale (s)

which associated with the replication of merozoites at an individual level. The analysis of the multi-scale

model system (3.2.0.1) can be simplified by expressing the slow-time scale and fast time scale in terms of

each other by using the form t = ϵs such that the within-human-malaria disease dynamics can be written

in the form of slow time scale.

3.2.1.1 Within-human malaria parasite population model

The within-host scale sub-model illustrate the time evolution of four population dynamics within an in-

fected human host which are the population of uninfected red blood cells (Susceptible erythrocyteRh), the

population of infected red blood cells (merozoites infected erythrocytesRm), the population of merozoites

Mh, and the population of gametocyte infected erythrocytes Gh. The sub-model (3.2.1.1) has adopted the

following assumptions from [24], which are:
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i. There is no super-infection/repeated infection of humans.

ii. The immune response is not considered in the infected human.

iii. We only explicitly consider the blood-stage parasite population dynamics and consider the initial

infection from the liver-stage of malaria parasite population dynamics which is captured through

merozoites i.e., Mh =Mh(0).

iv. The dynamics of the four populations of within an infected human occurs at a fast time scale, s,

compared to between-host transmission dynamics, such that Rh = Rh(s), Rm = Rm(s), Mh =

Mh(s), and Gh = Gh(s).

v. The within human gametocyte populationGh is a proxy for individual human infectiousness to mosquitoes.

When we consider all the assumptions, the sub-model describing the dynamics of the four within-human

populations is proposed to be:

1.
dRh(s)

ds
= Λh − βhRh(s)Mh(s)− µbRh(s),

2.
dRm(s)

ds
= (1− π)βhRh(s)Mh(s)− αmRm(s), (3.2.1.1)

3.
dMh(s)

ds
= NmαmRm(s)− µmMh(s),

4.
dGh(s)

ds
= πβhRh(s)Mh(s)− (αh + µh)Gh(s).

The first equation in the system of equations (3.2.1.1), describes the dynamics of uninfected red blood cells

(Rh). The population of uninfected red blood cells is assumed to increase through the supply of red blood

cells from the bone marrow at a rate Λh and the population of uninfected red blood cells decrease through

the infection of red blood cells. βhRh(s)Mh(s) models the rate at which the merozoites get contact with

the uninfected red blood cells, where βh is the infection rate or contact rate. The susceptible erythrocytes

are also reduced through natural decay at a constant rate µb. The second equation of sub-model (3.2.1.1)

illustrates the dynamics of merozoites infected red blood cells (Rm). The dynamics of merozoites infected

red blood cells increase through infection of susceptible red-blood cells with a propotion of (1 − π)

and reduced through bursting of infected red blood cells to produce merozoites at a rate αm. The third

equation of sub-model (3.2.1.1) demonstrate the dynamics of population of merozoites. The dynamics

of merozoites increase through the average number of merozoites releasedm in the human blood stream

through bursting of infected red blood cells at a rate NmαmRm(s). The population of merozoites reduced

through natural decay at a rate µm. The last equation of sub-model (3.2.1.1) describe the dynamics of the

population of gametocytes. The population of gametocytes increase through the population of gametocyte

infected erythrocytes at a proportion π and the sub-model decrease through natural decay of gametocytes

at a rate µh and through shedding/excretion of gametocytes at a rate αh.
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1. ϵ
dRh(t)

dt
= Λh − βhRh(t)Mh(t)− µbRh(t),

2. ϵ
dRm(t)

dt
= (1− π)βhRh(t)Mh(t)− αmRm(t), (3.2.1.2)

3. ϵ
dMh(t)

dt
= NmαmRm(t)− µmMh(t),

4. ϵ
dGh(t)

dt
= πβhRh(t)Mh(t)− (αh + µh)Gh(t),

where ϵ is a small constant number that is 0 < ϵ ≪ 1 which highlights the fast time scale of the

within-human host sub-model compared to the slow time scale of the between-host transmission sub-

model [14, 24].

We use the next generation operator approach to obtain the basic reproductive number of the within-human

host model (3.2.1.2). The model (3.2.1.2) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z),

DZ

dt
= h(X,Y, Z),

where

X = (Rh),

Y = (Rm, Gh), (3.2.1.3)

Z = (Mh).

We define g̃(X∗, Z) by

g1(X
∗, Z) = Rm =

(1− π)βhRhMh

αm
,

g2(X
∗, Z) = Gh =

πβhRhMh

αh + µh
. (3.2.1.4)

By substituting the values of Rm and Gh and letting h1 =
dMh

dt
we obtain

h1 =
dMh

dt
= NmαmRm − µmMh,
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therefore

h1 =
(1− π)NmαmβhΛhMh

αmµb
− µmMh,

A =
∂h1
∂Mh

=
(1− π)NmαmβhΛh

αmµb
− µm, (3.2.1.5)

where

A = M −D,

M =
(1− π)NmαmβhΛh

αmµb
,

D = µm,

D−1 =
1

µm
, (3.2.1.6)

MD−1 =
(1− π)NmαmβhΛh

αmµbµm
.

Therefore ℜ0 = ρ(MD−1), the reproductive number is given by

ℜ0 =
(1− π)NmβhΛh

µbµm
. (3.2.1.7)

The basic reproductive number number (ℜ0) of the within-human host submodel measures the total num-

ber of secondary infected red blood cells (IRBCs) produced by primary IRBCs in a host at the beginning

of the infection.

Since 0 < ϵ ≪ 1, we let ϵ = 0 so that the within-human host sub-model becomes independent of time

and which is given by:

Λh − βhR̂hM̂h − µbR̂h = 0,

(1− π)βhR̂hM̂h − αmR̂m = 0, (3.2.1.8)

NmαmR̂m − µmM̂h = 0,

πβhR̂hM̂h − αhĜh = 0.

The disease free equilibrium point of the within-human scale model, where there is no pathogen exists to

infect the inside-host environment (human-host). The D.F.E is given by

E0 =
(
R0

h, R
0
m,M

0
h , G

0
h

)
,

=

(
Λh

µb
, 0, 0, 0

)
. (3.2.1.9)
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The endemic equilibrium point of the within-human scale model, where the pathogen exists to infect the

inside-host environment. The endemic equilibrium point is given by

E1 = (R̂h, R̂m, M̂h, Ĝh), (3.2.1.10)

where

R̂h =
Λh

µbℜ0
,

R̂m =
µmµb

βhNmαm
(ℜ0 − 1), (3.2.1.11)

M̂h =
µb
βh

(ℜ0 − 1),

Ĝh =
πΛh

ℜ0(αh + µh)
(ℜ0 − 1),

where

ℜ0 =
(1− π)NmβhΛh

µbµm
. (3.2.1.12)

The within-human host sub-model has a unique positive endemic equilibrium point when ℜ0 > 1 and no

positive equilibrium point when ℜ0 < 1.

We note that from the multiscale model (3.2.0.1), the total number of gametocytes shed/excreted by each

infected human in the environment (community gamocytes load) NhIH is approximated by ĜhIH . Ap-

plication of the notation Nh = Ĝh, which is the average number of the within-human host scale of the

gamotocytes load (Gh) at the endemic equilibrium point is available for shedding/excretion into the com-

munity gametocyte load by each infected human. The multi-scale model (3.2.0.1) of the malaria disease

system has been simplified to:
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1.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)− [µH + γH + δH ] IH(t),

3.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),

4.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

5.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)− [µV + δV ] IV (t),

6.
dGv(t)

dt
=

βHGH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t), (3.2.1.13)

7.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t),

8.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

9.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

10.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

11.
dPV (t)

dt
= Pv(t)αv (IV (t) + 1)− αV PV (t),

where

Nh = Ĝh =
π

(1− π)

[
(1− π)NmβhΛh − µbµm

Nmβh(αh + µh)

]
=

πΛh

(αh + µh)ℜ0
[ℜ0 − 1] ,

(3.2.1.14)

ℜ0 =
(1− π)NmβhΛh

µbµm
.

ℜ0 is the reproductive number of the within an infected human.

The first equation in system (3.2.1.13) describes the dynamics of uninfected humans (susceptible) SH .The

population is assumed to increase at a constant rate ΛH through birth and immigrants and also increase

through natural recovered of infected individual at a rate γH . This population is reduced through infection

of susceptible humans at a rate to
βV PV

P0 + PV
, where βV is the contact rate to a community sporozoite load

PV (t) per unit time, P0 is the community sporozoite load that yields 50% chance of getting a human host

infected with malaria after a bite by a mosquito in a particular community. This equation also decreased

by natural death at a constant rate µH .

The second equation in system (3.2.1.13) demonstrates the dynamics of infected individuals. The equa-

tion increases through infection of susceptible humans and also depleted through natural death rate µH ,
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recovery of the infected individual at rate γH and through disease induced death rate δH .

The third equation in system (3.2.1.13), demonstrates the dynamics of the community gametocyte load

(GH). The first term in the right-hand-side of this equation describes the total number of gametocytes

load contributed by all infected individuals from within-host process to the community gametocytes load

pool, where Nh is defined as the measure of the total volume of gametocytes produced within an infected

host throughout the entire period of host infectiousness and αh is the proportion of individuals who are

infected. αH is the rate of degradation of this class.

The fourth equation in system (3.2.1.13) describes the dynamics of uninfected mosquitoes (SV ). This

equation increase through constant rate ΛV . The equation depleted through infection of susceptible

mosquitoes at a rate
βHGH

G0 +GH
, where βH is the contact rate to a community gametocyte loadGH per unit

time, G0 is the community gametocyte load that yields 50% chance of getting a mosquito-vector infected

with malaria after bite a human host in a particular community. This equation also decreased by natural

death at a constant rate µV . The fifth equation in system (3.2.1.13) demonstrates the dynamics of infected

mosquitoes. This equation increase through the infection of susceptible mosquitoes and also decreased

through natural death rate µV and also disease induced death rate δV .

The sixth equation in system (3.2.1.13) demonstrates the dynamics of gametocytes infected erythrocytes

within an infected mosquito after a mosquito gets a blood meal from an infected human. The first term on

the right-hand-side of this equation is the new infection at an individual mosquito. This equation depleted

through natural decay rate of gametocyte infected erythrocytes within an infected mosquito µg and also

through αg the rate at which gametocyte infected erythrocytes burst releasing sex cells called gametes.

The seventh equation (3.2.1.13) describes the dynamics of the population of gametes within an infected

mosquito. The first term of this equation is the rate of increase of gametes within an infected mosquito.

The gametes decay at a rate µs and also depleted through male and female gametes fusing to form zygotes

at a constant rate αg. The eighth equation of system (3.2.1.13) demonstrates the dynamics of zygotes. The

equation increase through gametes fuse to form zygotes at a rate
αs

2
and depleted through natural decay

µz and also through develop into oocysts at a rate αs. The ninth equation of system (3.2.1.13) illustrates

the dynamics of the population of oocysts in an infected mosquito. The first term in the right-hand-side

of the ninth equation represent the rate of increase where the ookinetes transform into early oocysts. The

second term is the rate of reduction of this population through either natural decay at a rate µk or burst

and release sporozoites at a rate αk. The tenth equation of system (3.2.1.13) describes the dynamics of

sporozoites population in an infected mosquito. The first term of the RHS of the tenth equation is given

by each oocysts bursts at a rate αk releasing an average of Nk sporozoites upon bursting. Therefore, the

rate of increase in sporozoites within an infected mosquito is given by NkαkOv. The tenth equation is

reduced through either natural decay at a rate αv or through the rate at which sporozoites mature and

become infectious to humans and migrate to salivary glands of the infected mosquito.
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The eleventh equation of system (3.2.1.13) describes the community sporozoites load PV . The equa-

tion increase by the up-scaling of within-host scale excretion/shedding of pathogen which is given by

Pvαv(IV + 1) and reduced by αV the rate of sporozoites eliminated from geographical area/ community

area.

3.2.2 Positivity of Solutions

The system of equations (3.2.1.13) demonstrates the dynamics of human, mosquito and parasite popu-

lations and it is essential to show that these populations are positive for all ≥ 0. We have to prove the

following theorem.

Theorem 3.1. The solutions of the system of equations (3.2.1.13) satisfy the following initial conditions

with strictly-positive components i.e. (SH > 0, IH > 0, GH > 0, SV > 0, IV > 0, PV > 0, Gv > 0,

Gm > 0, Zv > 0, Ov > 0, Pv > 0) for all t > 0.

Proof. We prove that the solution of the model (3.2.1.13) of which the solution starts from a strictly

positive point, all components are positive for 0 ≤ t ≤ t0

dSH(t)

dt
≥ −(λV (t) + µH)SH(t). (3.2.2.1)

The equation can be solved by the separation of variables as follows:

dSH(t)

SH(t)
≥ −(λV (t) + µH)dt. (3.2.2.2)

By letting

t̂ = sup{t > 0 : SH > 0, IH > 0, GH > 0, SV > 0, IV > 0, PV > 0, Gv > 0, Gm > 0, Zv > 0,

Ov > 0, Pv > 0} ∈ [0, t],

and integrating equation (3.2.2.2) and we obtain

ln(SH(t)) ≥ −
(∫ t

0
λV (t̂)dt̂+ µHt

)
+ ln(SH(0)),

SH(t) ≥ SH(0). exp

{
−
(∫ t

0
λV (t̂)dt̂+ µHt

)}
, (3.2.2.3)

SH(t) ≥ 0.

It implies that

lim
t→∞

inf(SH(t)) ≥ 0. (3.2.2.4)
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Using the similar method, it can be shown that

lim
t→∞

inf(IH(t)) ≥ 0,

lim
t→∞

inf(GH(t)) ≥ 0,

lim
t→∞

inf(SV (t)) ≥ 0,

lim
t→∞

inf(IV (t)) ≥ 0, (3.2.2.5)

lim
t→∞

inf(PV (t)) ≥ 0,

lim
t→∞

inf(Gv(t)) ≥ 0

lim
t→∞

inf(Gm(t)) ≥ 0,

lim
t→∞

inf(Zv(t)) ≥ 0,

lim
t→∞

inf(Ov(t)) ≥ 0,

lim
t→∞

inf(Pv(t)) ≥ 0.

Thus, when starting with non-negative initial value conditions in the model (3.2.1.13), the solutions of the

model will remain non-negative for all t ≥ 0, and this completes the proof.

3.2.3 Feasible region of the equilibrium of the model

All the parameters and state variables for the model system (3.2.1.13) are assumed to be non-negative

to be consistent with human and mosquito populations. Further, it can be verified that for model system

(3.2.1.13), all solutions with non-negative initial conditions remain bounded and non-negative.

By letting NH = SH + IH and adding first and second equations in system (3.2.1.13)

dNH

dt
≤ ΛH − µHNH . (3.2.3.1)

It implies that

lim
t−→∞

Sup(NH(t)) ≤ ΛH

µH
. (3.2.3.2)

Using similar method by lettingNV = SV +IV and adding fourth and fifth equations in system (3.2.1.13)

gives
dNV

dt
≤ ΛV − µVNV . (3.2.3.3)

This implies that

lim
t−→∞

Sup(NV (t)) ≤
ΛV

µV
. (3.2.3.4)

Using equation (3.2.3.2) and (3.2.3.4) similar expressions can be derived for the remaining model vari-

ables. Therefore all feasible solutions of the model system (3.2.1.13) are positive and eventually enter the

invariant attracting region

Ω = (SH , IH , GH , SV , IV , Gv, Gm, Zv, Ov, Pv, PV ) (3.2.3.5)
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where

0 ≤ SH + IH ≤ ΛH

µH
,

0 ≤ SV + IV ≤ ΛV

µV
,

0 ≤ GH ≤ Nhαh

αH

ΛH

µH
,

0 ≤ Gv ≤ 1

αg + µg

1

ϕV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

ΛV + µV
,

0 ≤ Gm ≤ Ngαg

αg + µg

1

µs + µs

1

ϕV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

ΛV + µV
, (3.2.3.6)

0 ≤ Zv ≤ 1

2

Ngαg

αg + µg

αs

µs + µs

1

αz + µz

1

ϕV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

ΛV + µV
,

0 ≤ Ov ≤ 1

2

1

2

Ngαg

αg + µg

αs

µs + µs

αz

αz + µz

1

αk + µk

1

ϕV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

ΛV + µV
,

0 ≤ Pv ≤ 1

2

Ngαg

αg + µg

αs

µs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv

1

ϕV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

ΛV + µV
,

0 ≤ PV ≤ 1

2

Ngαg

αg + µg

αs

µs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

1

ϕV

1

αV

NhαhΛH

G0µHαH +NhαhΛH

βH(ΛV − µV )

µV
,

for

ΛV > µV

Thus, the region Ω is positively invariant. It is sufficient to consider the dynamics of the flow generated by

model system (3.2.1.13) in Ω. Thus, every solution of multiscale model (3.2.1.13) with initial condition

in Ω remains in Ω for all t > 0.

3.2.4 Reproductive Number

We use the next generation operator approach to calculate the basic reproductive number and we use the

[61]’s approach . Model system (3.2.1.13) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (3.2.4.1)

dZ

dt
= h(X,Y, Z),

where

X = (SH , SV ),

Y = (IH , IV , Gv, Gm, Zm, Ov, Pv), (3.2.4.2)

Z = (PV , GH).
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Components of X denote the number of susceptibles, while combonents of Y represent the number of

infected individuals that do not transmit the disease. Components of Z denotes the number of individuals

capable of transmitting the disease. We define g̃(X∗, Z) by

g̃(X∗, Z) = (g̃1(X
∗, Z), g̃2(X

∗, Z), g̃3(X
∗, Z), g̃4(X

∗, Z), g̃5(X
∗, Z), g̃6(X

∗, Z),

g̃7(X
∗, Z)), (3.2.4.3)

with

g̃1(X
∗, Z) =

1

µH + γH + δH

βV ΛH

µH

PV

P0 + PV
,

g̃2(X
∗, Z) =

1

µV + δV

βHΛV

µV

GH

G0 +GH
,

g̃3(X
∗, Z) =

1

αg + αg

1

ϕV

βH(ΛV − µV )

µV

1

IV + 1

GH

G0 +GH
,

g̃4(X
∗, Z) =

Ngαg

αg + αg

1

αs + µs

1

ϕV

βH(ΛV − µV )

µV

1

IV + 1

GH

G0 +GH
, (3.2.4.4)

g̃5(X
∗, Z) =

1

2

Ngαg

αg + αg

αs

αs + µs

1

αz + µz

1

ϕV

βH(ΛV − µV )

µV

1

IV + 1

GH

G0 +GH
,

g̃6(X
∗, Z) =

1

2

Ngαg

αg + αg

αs

αs + µs

αz

αz + µz

1

αk + µk

1

ϕV

βH(ΛV − µV )

µV

1

IV + 1

GH

G0 +GH
,

g̃7(X
∗, Z) =

1

2

Ngαg

αg + αg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv

1

ϕV

βH(ΛV − µV )

µV

1

IV + 1

GH

G0 +GH
.

By substituting the values of IH , IV , Gv, Gm, Zv, Oz and Pv and letting h1 =
dPV

dt
, h2 =

dGH

dt
we

obtain

h1 =
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αs

αs + µs

αz

αz + µz

αv

αv + µv

1

ϕV

βH(ΛV − µV )

µV

GH

G0 +GH|
− αV PV ,

(3.2.4.5)

h2 =
Nhαh

µH + γH + δH

βV ΛH

µH

GH

G0 +GH
− αHGH .

Let A = Dz(X
∗, g̃(X∗, 0), 0) and further assume that A can be written in the form A = M −D, where

M ≥ 0 and D > 0, a diagonal matrix.

A =

 ∂h1
∂PV

∂h1
∂GH

∂h2
∂PV

∂h2
∂GH

 ,
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then A becomes

A =

 −αV
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αs

αs + µs

αz

αz + µz

αv

αv + µv

1

ϕV

1

G0

βH(ΛV − µV )

µV
1

µH + γH + δH

Nhαh

P0

βV ΛH

µH
−αH

 .

(3.2.4.6)

We deduce matrices M and D to be

M =

 0
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αs

αs + µs

αz

αz + µz

αv

αv + µv

1

ϕV

1

G0

βH(ΛV − µV )

µV
1

µH + γH + δH

Nhαh

P0

βV ΛH

µH
0

 ,

(3.2.4.7)

and

D =

(
αV 0

0 αH

)
=⇒ D−1 =

 1

αV
0

0
1

αH

 . (3.2.4.8)

The basic reproductive number is a spectral radius (dominant eigenvalue) of the matrix MD−1, that is

R0 = ρ(MD−1). Therefore R0 =√(
1

2

Nkαk

αk + µk

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

αv

αv + µv

1

G0

1

ϕV

1

αH

βH(ΛV − µV )

µV

)(
Nhαh

αV

1

µH + γH + δH

1

P0

βV ΛH

µH

)
where ΛV > µV .

3.2.5 Local Stability analysis of disease-free equilibrium point

We investigated the local stability of the disease-free-equilibrium.

Theorem 3.2. The disease-free equilibrium point is locally asymptotically stable when R0 < 1.

Proof. We linearize the system of equations (3.2.1.13), obtain the Jacobian matrix J at the infection-free

steady state E∗, and calculate the matrix |J(E∗)− λI| as follows, where λ is the eigenvalue and I is the

identity matrix with the same dimension as J(E∗). Where the disease-free equilibrium is given by

E∗ = (S∗
H , I

∗
H , G

∗
H , S

∗
V , I

∗
V , G

∗
v, G

∗
m, Z

∗
v , O

∗
v , P

∗
v , P

∗
V ),

=

(
ΛH

µH
, 0, 0,

ΛV

µV
, 0, 0, 0, 0, 0, 0, 0

)
. (3.2.5.1)
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J(E∗) =



−µH γH 0 0 0 0 0 0 0 0 −βV ΛH

µHP0

0 −k1 0 0 0 0 0 0 0 0
βV ΛH

µHP0

0 Nhαh −αH 0 0 0 0 0 0 0 0

0 0 −βHΛV

µVG0
−µV 0 0 0 0 0 0

0 0
βHΛV

µVGH
0 −J1 0 0 0 0 0

0 0 J2 0 0 −k2 0 0 0 0 0

0 0 0 0 0 Ngαg −k3 0 0 0 0

0 0 0 0 0 0
1

2
αs −k4 0 0 0

0 0 0 0 0 0 0 αz −k5 0 0

0 0 0 0 0 0 0 0 Nkαk −k6 0

0 0 0 0 0 0 0 0 0 αv −αV



,

where k1 = (µH + γH + δH), k2 = (αg + µg), k3 = αs + µs, k4 = αz + µz , k5 = (αk + µk),

k6 = (αv + αv), J1 = (δV + µV ), and J2 =
βH(ΛV − µV )

µV ϕVG0
.

|J(E∗)− λI| = 0,

(µH + λ)(µV + λ)(J1 + λ) {(k1 + λ)(αH + λ)(k2 + λ)(k3 + λ)(k4 + λ)(k5 + λ)×

(k6 + λ)(αV + λ)− 1

2
Nhαh

βV ΛH

µHP0

βH(ΛV − µV )

µVG0ϕV
NgαgαsαzNkαkαv

}
= 0.

(3.2.5.2)

The disease-free steady state is locally asymptotically stable if and only if all the roots of the characteristic

equation are negative or have negative real parts. λ1 = −µH , λ2 = −µV , λ3 = −(δV + µV ) and

a0λ
8 + a1λ

7 + a2λ
6 + a3λ

5 + a4λ
4 + a5λ

3 + a6λ
2 + a7λ+ a8 = 0, (3.2.5.3)

where

a0 = 1,

a1 = k1 + k2 + k3 + k4 + k5 + k6 + αH + αV ,

a2 = k1k2 + k1k3 + k1k4 + k1k5 + k1k6 + k1αH + k1αV + k2k3 + k2k4 + k2k5 + k2k6 + k2αH + k2αV

+k3k4 + k3k5 + k3k6 + k3αH + k3αV + k4k5 + k4k6 + k4αH + k4αV + k5k6 + k5αH + k5αV +

k6αH + k6αV + αHαV , (3.2.5.4)
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a3 = k1k2k3 + k1k2k4 + k1k2k5 + k1k2k6 + k1k2αH + k1k2αV + k1k3k4 + k1k3k5 + k1k3k6 +

k1k3αH + k1k3αV + k1k4k5 + k1k4k6 + k1k4αH + k1k4αV + k1k5k6 + k1k5αH + k1k5αV +

k1k6αH + k1k6αV + k1αHαV + k2k3k4 + k2k3k5 + k2k3k6 + k2k3αH + k2k3αV + k2k4k5 +

k2k4k6 + k2k4αH + k2k4αV + k2k5k6 + k2k5αH + k2k5αV + k2k6αH + k2k6αV + k2αHαV

+k3k4k5 + k3k4k6 + k3k4αH + k3k4αV + k3k5k6 + k3k5αH + k3k5αV + k3k6αH + k3k6αV

+k3αHαV + k4k5k6 + k4k5αH + k4k5αV + k4k6αH + k4k6αV + k4αHαV + k5k6αH + k5k6αV

+k5αHαV + k6αHαV , (3.2.5.5)

a4 = k1k2k3k4 + k1k2k3k5 + k1k2k3k6 + k1k2k3αH + k1k2k3αV + k1k2k4k5 + k1k2k4k6 + k1k2k4αH

+k1k2k4αV + k1k2k5k6 + k1k2k5αH + k1k2k5αV + k1k2k6αH + k1k2k6αV + k1k2αHαV +

k1k3k4k5 + k1k3k4k6 + k1k3k4αH + k1k3k4αV + k1k3k5k6 + k1k3k5αH + k1k3k5αV +

k1k3k6αH + k1k3k6αV + k1k3αHαV + k1k4k5k6 + k1k4k5αH + k1k4k5αV + k1k4k6αH +

k1k4k6αV + k1k4αHαV + k1k5k6αH + k1k5k6αV + k1k5αHαV + k1k6αHαV + k2k3k4k5 +

k2k3k4k6 + k2k3k4αH + k2k3k4αV + k2k3k5k6 + k2k3k5αH + k2k3k5αV + k2k3k6αH +

k2k3k6αV + k2k3αHαV + k2k4k5k6 + k2k4k5αH + k2k4k5αV + k2k4k6αH + k2k4k6αV +

k2k4αHαV + k2k5k6αH + k2k5k6αV + k2k6αHαV + k3k4k5k6 + k3k4k5αH + k3k4k5αV +

k3k4k6αH + k3k4k6αV + k3k4αHαV + k3k5k6αH + k3k5k6αV + k3k5αHαV + k3k6αHαV

+k4k5k6αH + k4k5k6αV + k4k5αHαV + k4k6αHαV + k5k6αHαV , (3.2.5.6)

a5 = k1k2k3k4k5 + k1k2k3k4k6 + k1k2k3k4αH + k1k2k3k4αV + k1k2k3k5k6 + k1k2k3k5αH +

k1k2k3k5αV + k1k2k3k6αH + k1k2k3k6αV + k1k2k3αHαV + k1k2k4k5k6 + k1k2k4k5αH +

k1k2k4k5αV + k1k2k4k6αH + k1k2k4k6αV + k1k2k4αHαV + k1k2k5k6αH + k1k2k5k6αV +

k1k2k5αHαV + k1k2k6αHαV + k1k3k4k5k6 + k1k3k4k5αH + k1k3k4k5αV + k1k3k4k6αH +

k1k3k4k6αV + k1k3k4αHαV + k1k3k5k6αH + k1k3k5k6αV + k1k3k5αHαV + k1k3k6αHαV

+k1k4k5k6αH + k1k4k5k6αV + k1k4k5αHαV + k1k4k6αHαV + k1k5k6αHαV + k2k3k4K5k6

+k2k3k4K5αH + k2k3k4K5αV + k2k3k4K6αH + k2k3k4K6αV + k2k3k4αHαV + k2k3k5k6αH

+k2k3k5k6αV + k2k3k5αHαV + k2k3k6αHαV + k2k4k5k6αH + k2k4k5k6αV + k2k4k5αHαV

+k2k4k6αHαV + k2k5k6αHαV + k3k4k5k6αH + k3k4k5k6αV + k3k4k5αHαV + k3k4k6αHαV +

k3k5k6αHαV + k4k5k6αHαV , (3.2.5.7)

a6 = k1k2k3k4k5k6 + k1k2k3k4k5αH + k1k2k3k4k5αV + k1k2k3k4k6αH + k1k2k3k4k6αV +

k1k2k3k4αHαV + k1k2k3k5k6αH + k1k2k3k5k6αV + k1k2k3k5αHαV + k1k2k3k6αHαV +

k1k2k4k5k6αH + k1k2k4k5k6αV + k1k2k4k5αHαV + k1k2k4k6αHαV + k1k2k5k6αHαV +

k1k3k4k5k6αH + k1k3k4k5k6αV + k1k3k4k5αHαV + k1k3k4k6αHαV + k1k3k5k6αHαV +

k1k4k5k6αHαV + k2k3k4k5k6αH + k2k3k4k5k6αV + k2k3k4k5αHαV + k2k3k4k6αHαV +

k2k3k5k6αHαV + k2k4k5k6αHαV + k3k4k5k6αHαV , (3.2.5.8)
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a7 = k1k2k3k4k5k6αH + k1k2k3k4k5k6αV + k1k2k3k4k6αHαV + k1k2k3k4k5αHαV + k1k2k3k5k6αHαV

+k1k2k4k5k6αHαV + k1k3k4k5k6αHαV + k2k3k4k5k6αHαV , (3.2.5.9)

a8 = k1k2k3k4k5k6αHαV

[
1−R2

0

]
. (3.2.5.10)

It is clear that a0 > 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0, a5 > 0, a6 > 0 and a7 > 0 and a8 > 0 whenever

R0 < 1. To confirm that all the roots of the systems of equations (3.2.5.2) have negative real parts, we

shall use Descarte’s law of signs to determine the possible number of positive roots of equation (3.2.5.3)

as shown in table (3.1).

use Descartes’ Rule of signs change, we observe that on characteristic equation (3.2.5.3) there is no sign

changes in the sequence of coefficients and so there is zero real positive roots.

Table 3.1: Possible number of positive roots of the characteristic equation (3.2.5.3)

a0 a1 a2 a3 a4 a5 a6 a7 a8 The number of positive roots

R0 < 1 + + + + + + + + + 0

R0 > 1 + + + + + + + + - 1

When R0 < 1 we notice that a8 > 0 and there is no change of sign and conclude that the equation

(3.2.5.3) has zero positive roots. When R0 > 1, we observe that a8 < 0, and there is only one change of

sign and conclude that the characteristic equation (3.2.5.3) has atleast one positive root. The roots of the

characteristic equation (3.2.5.2) are all negative or have negative real parts. Therefore, all the eigenvalues

of the Jacobian matrix J(E∗) are negative or have negative real parts when R0 < 1. This proves that E∗

is locally stable whenR0 ≤ 1.
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3.2.6 Determination of endemic equilibrium

The equilibrium point of the model are obtained by setting the right-hand-side of the systems of equations

(3.2.1.13) to zero.

S̃H =
ΛH(δH + γH + µH)(P0 + P̃V )

a1(P0 + PV ) + a2P̃V

,

ĨH =
βV ΛH P̃V

a1(P0 + PV ) + a2P̃V

,

S̃V =
ΛV

[
NhαhβV ΛH P̃V + αHG0[a1(P0 + P̃V ) + a2P̃V ]

]
NhαhβV ΛH P̃V (βH + µV ) + µV αHG0[a1(P0 + P̃V ) + a2P̃V ]

,

ĨV =
NhαhβV ΛHβHΛV P̃V

(µV + δV )
[
NhαhβV ΛH P̃V (βH + µV ) + αHG0µV [a1(P0 + P̃V ) + a2P̃V ]

] ,
G̃H =

NhαhβV ΛH P̃V

αH [a1(P0 + P̃V ) + a2P̃V ]
,

G̃v =
NhαhβV ΛHβH P̃V

[
a1αHG0P0(ΛV − µV ) + b1P̃V

]
[b2P̃V + αHa1G0P0]ϕ(ĨV + 1)(αg + µg)(b3P̃V + a1µV αHG0P0)

, (3.2.6.1)

G̃m =
NgαgNhαhβV ΛHβH P̃V

[
a1αHG0P0(ΛV − µV ) + b1P̃V

]
(αs + µs)[b2P̃V + αHa1G0P0]ϕ(ĨV + 1)(αg + µg)(b3P̃V + a1µV αHG0P0)

,

Z̃v =
0.5NgαgαsNhαhβV ΛHβH P̃V

[
b1P̃V + a1αHG0P0(ΛV − µV )

]
(αs + µs)(αz + µz)[b2P̃V + αHa1G0P0]ϕ(ĨV + 1)(αg + µg)(b3P̃V + a1µV αHG0P0)

,

Õv =
0.5NgαgαsαzNhαhβV ΛHβH P̃V

[
b1P̃V + a1αHG0P0(ΛV − µV )

]
(αs + µs)(αz + µz)(αk + µk)[b2P̃V + αHa1G0P0]ϕ(ĨV + 1)(αg + µg)(b3P̃V + a1µV αHG0P0)

,

P̃v =
c1P̃V

[
b1P̃V + a1αHG0P0(ΛV − µV )

]
c2(IV + 1)(b2P̃V + a1αHG0P0)(b3P̃V + a1µV αHG0P0)

,

P̃V =
c1αvP̃V

[
b1P̃V + a1αHG0P0(ΛV − µV )

]
c2αV (b2P̃V + a1αHG0P0)(b3P̃V + a1µV αHG0P0)

P̃V =
−D2 +

√
D2

2 − 4D1D3

2(D1)
,
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where

a1 = µH(δH + γH + µH),

a2 = βV (δH + µH),

b1 = αHG0(a1 + a2)(ΛV − µV ) +NhαhβV ΛH [ΛV − (βH + µV )],

b2 = NhαhβV ΛH + αHG0(a1 + a2),

b3 = NhαhβV ΛH(βH + µV ) + µV αHG0(a1 + a2),

(3.2.6.2)

c1 = 0.5NkαkNgαgαsαzNhαhβHβV ΛH ,

c2 = ϕ(αv + µv)(αs + µs)(αz + µz)(αk + µk)(αg + µg),

D1 = b2b3c2αV ,

D2 = a1c2αHαVG0P0(µV b2 + b3)− b1c1αv,

D3 = −a21α2
HG

2
0P

2
0 c2αV µV

[
R2

0 − 1
]
.

1. P̃V = 0, ifR0 = 1, D1 > 0, andD3 = 0, therefore P̃V will be at the disease free equilibrium point.

2. P̃V < 0, when R0 < 1, D1 > 0, D3 > 0.Therefore, P̃V is not a positive equilibrium point because

of Descartes rule of signs, there is no sign of change from the coefficients.

3. P̃V > 0, whenR0 > 1,D1 > 0,D3 < 0, the co-efficientD2 could be positive or negative, therefore

P̃V is a positive equilibrium point, according to Descartes rule of signs.

Therefore, we conclude that there exist a positive endemic equilibrium points when R0 > 1.

3.2.6.1 Local Stability analysis of endemic equilibrium point

The endemic equilibrium is given by

E∗∗ =
(
S̃H , ĨH , G̃H , S̃V , ĨV , G̃v, G̃m, Z̃v, Õv, P̃v, P̃V

)
.

The infected steady state exists if and only if R0 > 1. The following results shows the chronic infection

is established when R0 > 1.

Theorem 3.3. The endemic equilibrium point E∗∗ of systems of equations 3.2.1.13 is locally asymptoti-

cally stable when R0 > 1.

Proof. We obtain the Jacobian matrix at the endemic equilibrium (E∗∗) and calculate the Jacobian matrix

J(E∗∗) is given by



Chapter 3 73

J(E∗∗) =



−j0 γH 0 0 0 0 0 0 0 0 − βV P0S̃H

(P0 + P̃V )2

βV P̃V

P0 + P̃V

−j1 0 0 0 0 0 0 0 0
βV P0S̃H

(P0 + P̃V )2

0 Nhαh −αH 0 0 0 0 0 0 0 0

0 0 −j2 −j3 0 0 0 0 0 0 0

0 0 j2 j4 −j7 0 0 0 0 0 0

0 0 j6 j5 −j14 −j8 0 0 0 0 0

0 0 0 0 0 Ngαg −j9 0 0 0 0

0 0 0 0 0 0
1

2
αs −j10 0 0 0

0 0 0 0 0 0 0 αz −j11 0 0

0 0 0 0 0 0 0 0 Nkαk −j12 0

0 0 0 0 αvP̃v 0 0 0 0 j13 −αV



,

where

j0 = µH +
βV P̃V

P0 + P̃V

, j1 = (δH + γH + µH), j2 =
βHG0S̃V

(G0 + G̃H)2
,

j3 =
βHG̃H

G0 + G̃H

+ µV , j4 =
βHG̃H

G0 + G̃H

, j5 =
βHG̃H

(G0 + G̃H)ϕV (ĨV + 1)
,

j6 =
βHG0(S̃V − 1)

(G0 + G̃H)2ϕV (ĨV + 1)
, j7 = (δV + µV ), j8 = (αg + µg),

j9 = (αs + µs), j10 = (αz + µz), j11 = (αk + µk),

j12 = (αv + µv), j13 = αv(ĨV + 1), and j14 =
βHG̃H(S̃V − 1)

(G0 + G̃H)ϕV (ĨV + 1)2

Where S̃H , G̃H , S̃V , ĨV , P̃V and P̃v are given in equations (3.2.6.1). The characteristic equation of the

Jacobian matrix evaluated at the endemic equilibrium point (E∗∗) is given by

|J(E∗∗)− λI| = 0. (3.2.6.3)

To find the eigenvalues of the characteristic equation (3.2.6.3), we use numerical solutions. Parameter

values are given in the tables (3.2) and (3.3). The eigenvalues are given by

λ1 = −96.606, λ2 = −58.08, λ3 = −1.424,

λ4 = −0.4760, λ5 = −0.0002720, λ6 = −0.00009130,

λ7 = −0.028467, λ8 = −0.02510, λ9 = −0.2100,

λ10 = −0.120004 and λ11 = −0.9000

All the eigenvalues of the Jacobian matrix are negative. This proves that E∗∗ is locally asymptotically

stable.
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3.3 Results

3.3.1 Numerical Simulation

We compute the model system (3.2.0.1) to outline the influence of variation on parameter values. The

behaviour of model system (3.2.0.1) was analysed using numerical simulations using a python program

version 2.7. The numerical simulation of the model system was used to predict malaria disease system

for long term trends for human population and mosquito population. The numerical simulations were per-

formed utilising a set of within-host scale (human and mosquito) and between-host(human and mosquito)

parameters defined in Table 3.3 and Table 3.2 for within-mosquito and between-host respectively. The

reason why some parameter values are assumed or estimated is that the multiscale modeling of malaria

infectious disease, which includes the within-human host scale and within-mosquito scale, are limited or

the parameter values found in existing literature are not suitable for this model. The dynamics of some

epidemiological class of the model are simulated with time and also the effects of sensitivity parameters

to demonstrate the behaviour of the model. The dynamics of some epidemiological class of the model

are simulated with time as well as the influences of sensitivity parameters to demonstrate the behaviour of

the model in the following, we display the outcomes of simulations for model system (3.2.0.1) in graph-

ical form. We use the coupled multiscale models of infectious disease system and in this case we use

embedded multiscale models and nested multiscale models as sub-models. Embedded multiscale models

developed at host level is that the within-host scale and the between-host scale influences each other in a

reciprocal way i.e. bi-directional flow of information. Nested multiscale model developed at host level

is demonstrated by the within-host scale influence the between-host scale through shedding/excretion of

pathogens and the between-host scale influence within-host scale through initial infection i.e. there is

unidirectional flow of information. In this work, we use numerical simulations to illustrate and verify

this structure of coupled multiscale model (3.2.0.1) and indicate the measures for control, elimination and

eradication of malaria disease system. We investigate the influence of the within-host scale parameters on

between-host scale variables for malaria disease system and to investigate the influence of between-host

scale parameters on within-host scale variables.
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Table 3.2: Between-human and between-mosquito parameter values and their description.

Parameter Description Initial Value Units Source
ΛH Rate of recruitment of susceptible humans 400 Humans per

day

[35, 62]

ΛV Rate of recruitment of susceptible mosquitoes 0.525 Mosquitoes per

day

Assumed

βV Infection rate of susceptible humans 0.32135 day−1 [24, 62]
µH Natural death rate of humans 0.00004002 day−1 [24, 43]
γH Natural recovery rate of humans 0.0092 day−1 [35]
P0 Saturation constant rate of community sporozoite

load

1 000 000 day−1 [24]

δH Disease induced death rate 0.000345 day−1 [35, 62]
G0 Saturation constant rate of community gametocyte

load

5 000 000 day−1 [24]

βH infection rate of susceptible mosquitoes 0.356 day−1 [24, 35, 62]
µV Natural death rate of mosquitoes 0.12 day−1 [24, 43]
δV Induced death rate of infected mosquitoes 0.00000426 day−1 [24]
αH Rate of clearance of community gametocyte load 0.0000913 day−1 [24]
ϕ Down scaling 0.0001 day−1 Assumed
αV Rate of clearance of community sporozoite load 0.3 day−1 [24]

Table 3.3: Within-mosquito parameter values and their description.

Parameter Description Initial Value Units Source
αz Rate at which zygotes develop into oocysts 0.4240 day−1 [24]
αh Rate at which gametocytes develop and become infectious 0.4 day−1 [24, 47]
αg Rate at which gametocyte infected erythrocytes burst 96 day−1 [24, 43]
µz Natural death rate of oocysts 1 day−1 [24, 43]
µg Decay rate of gametocytes 0.0625 day−1 [24, 43]
αs Fertilization of gametes 0.2 day−1 Assumed
Nm Number of merozoites produced per bursting erythrocytes 16 day−1 [24, 63, 64]
µs Natural death rate of gametes 58 day−1 [24]
Ng Number of gametes produced per gametocyte infected ery-

throcyte

2 day−1 [24]

Nk Number of sporozoites produced per bursting oocyst 3 000 day−1 [24]
αv Rate at which sporozoites become infectious to humans 0.025 day−1 [24]
αk Bursting rate of oocysts to produce sporozoites 0.2 day−1 [24]
µk Natural death rate of oocysts 0.01 day−1 [24]
µh Natural death rate of gametocyte infected erythrocytes

within infected humans

0.0625 day−1 [24]

µv Natural death rate of sporozoites 0.0001 day−1 [24]
Λh Rate of supply of uninfected red blood cells(erythrocytes) 200 Cells per day [24]
βh the rate of infection of erythrocytes by free merozoites 0.3 day−1 [24]
µb Natural decay of erythrocytes 0.0083 day−1 [24]
π Proportion of gametocytes infected erythrocytes 0.4 day−1 [24]
µm Natural decay of rate of free merozoites 0.001 day−1 [24]
αm Rate at which erythrocytes burst to produce merozoites 0.5 day−1 [24]
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3.3.1.1 Sensitivity Analysis

Using the parameter values in Table (3.2) and (3.3), we compute sensitivity analysis to assess the relative

change in R0, P̃V and G̃∗
H when between-host parameters of the model varies. Sensitivity index help

us to detect the change in the reproductive number (R0), the community sporozoites load (P̃V ) and the

community gametocytes load (G̃H) when parameter changes. The normalised forward sensitivity index of

variable to parameter is defined as the relation of the relative change in the variable to the relative change

in the parameter. The sensitivity analysis of R0, P̃V and G̃H against parameters from the model based on

the method developed by [21] is presented. The purpose of study is to investigate the model output sen-

sitivity with changes in model parameters or recognise parameters with crucial reservations on the model

output. We compute R0, P̃V and G̃H using differentiable function of the parameter i. The normalised

forward sensitivity index of R0, P̃V and G̃H at i is defined as ⋎R0
i =

∂R0

∂i
× i

R0
, ⋎P̃V

i =
∂P̃V

∂i
× i

P̃V

and ⋎G̃H
i =

∂G̃H

∂i
× i

G̃H

.

The results of sensitivity indices of R0, P̃V and G̃H to the different model parameters are shown in the

Table:(3.4). The sensitivity index value sign indicates whether the parameter have effects on increases the

reproduction number,R0, community sporozoite load, P̃V and community gametocyte load G̃H or reduces

R0, P̃V and G̃H . We notice from the values that there are four between-host scale parameters (µV , ϕ, αV

and ΛV ) which are sensitive to endemic equilibrium point P̃V . The within-host scale parameters which are

sensitive to P̃V are αs, µz , αs, µs,Ng andNk. We note that the endemic equilibrium point G̃H is sensitive

to between-host scale parameters, which are ΛH , ΛV , βV , γH , P0, µV , αH , ϕ and αV , and within-host

scale parameters which are µz , αs, µs, Ng, Nk, Λh and π. We also discover the parameters (ΛH , ΛV , βV ,

βH , αz , αs, Ng, Nk, Λh and π) which have effect in increasing the reproductive number (R0), whilst the

parameters which have effects in reducing R0 are (γH , P0, G0, µV , αH , ϕ, αv, µz and µs).
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Table 3.4: Sensitivity indices of reproduction number R0 to parameter for the model system, evaluated at

the parameter values

Number Parameter PV GH R0

1 ΛH -0.250899266417443 0.796246060144495 0.500000000000000
2 ΛV 5.66302415329643 4.59891134480741 0.648148148148148
3 βV -0.250879052719156 0.608937009344156 0.500000000000000
4 µH 0.251928072243536 -0.630918594174446 -0.502086506562063
5 γH 0.240791963300044 -0.584453490304655 -0.479896509274522
6 P0 0.250878990140534 -0.608357128208763 -0.500000000000000
7 δH 0.00905828359302024 -0.189810985009550 -0.0180169841634152
8 G0 0.250899266417444 0.203753939855506 -0.500000000000000
9 βH -3.43063855634498 -2.78600305236642 0.500000000000000
10 µV -1.73416974300393 -1.40830988691442 -0.648148148148148
11 δV 0 0 0
12 αH 0.250899266417444 -0.796246060144495 -0.500000000000000
13 ϕ -1.00002616577141 -0.812115850890962 -0.500000000000000
14 αV -1.00002616577141 -0.812115850890961 -0.500000000000000
15 αz 0.451360409938765 0.366547352381680 0.351123595505618
16 αh -0.0339053062726275 0.107600818938445 0.0675675675675675
17 αg -0.250254520800838 -0.203230345420720 0.000325309043591481
18 µz -0.702265565850710 -0.570306075063878 -0.351123595505618
19 µg -0.000650635111106969 -0.000528377261477529 -0.000325309043591412
20 αs 0.747743563350139 0.607238511334258 0.499311294765840
21 Nm -3.61538857890509e-9 1.14736848056915e-8 7.20486106779192e-9
22 µs -0.998648719262085 -0.810997234016456 -0.499311294765840
23 Ng 0.749121009859466 0.608357128208764 0.500000000000000
24 Nk 0.749121009859466 0.608357128208764 0.500000000000000
25 αv -0.246920987920824 -0.200523201363907 0.00199203187250988
26 αk -0.203284862303783 -0.165086539306438 0.0238095238095239
27 µk -0.0476202936081624 -0.0386721833757601 -0.0238095238095238
28 µh 0.0339053062726275 -0.107600818938445 -0.0675675675675676
29 µv -0.00398416799112116 -0.00323552131829068 -0.00199203187250996
30 Λh -0.250899270032832 0.796246071618180 0.500000007204861
31 βh -3.61538876643451e-9 1.14736844261895e-8 7.20486112664761e-9
32 µb 3.61538878693143e- -1.14736847125536e-8 -7.20486121493116e-9
33 π -0.250899264007185 0.796246052495371 0.499999995196759
34 µm 3.61538878693143e-9 -1.14736847125536e-8 -7.20486121493116e-9
35 αm 0 0 0

Using the tornado plot sensitivity analysis will allow us to establish which factors influence the model

outcomes when we decrease or increase certain parameter values. We need to discover which parameters

should we target to decrease the R0, PV and GH .
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Figure 3.3: Tornado plot showing Partial Rank Correlation Coefficients of the reproduction number (R0)

Figure (3.3), showing the sensitivity analysis of reproductive number (R0) using the tornado plot. If the

parameter values are positive, partial rank correlation coefficients (PRCCs) increase the value of R0 if

their parameter values are increased. The parameter values which have negative PRCCs have impact of

reducing the value of R0 when we increase the parameter values. The parameters ΛH , ΛV , βV , βH , αz

and αg have the effect in raising the value of R0 when these parameter values are increased. The param-

eters αH , G0, ϕ, µg and µv have the effect in reducing the value of R0 when these parameter values are

increased. The parameter values may have either positive or negative PRCCs, it is important to discover

whether there is an increasing or decreasing trend when the parameter values are varied.

Figure (3.4), tornado plot showing Partial Rank Correlation Coefficients of the endemic equilibrium point

(P̃V ). The parameters ΛH , ΛV , βH , βV , αz , αh, αg, αs, Ng and αv have an impact in increasing the

value of P̃V when these parameters values are increased. The parameters αV , G0, π, P0, µg, and µk have

the impact on decreasing the value of community sporozoites load (P̃V ) when these parameter values

are increased. In figure (3.5) illustrate tornado plot which show the PRCCs of the endemic equilibrium

equilibrium point (G̃H ). The parameters (βh, αv, π, Nk, Nm, αs, αh, αz , ΛH , ΛV and βV ) that have

impact in increasing the value of G̃H when the parameter value is increased, whilst parameters (P0,

ϕ, αV , µv, µz and µk) have the impact on reducing the value of the endemic equilibrium point G̃H .
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In general, we find that evaluating the sensitivity of the malaria disease transmission, which are: the

basic reproductive number R0, the endemic equilibrium value of community sporozoites load P̃H and the

endemic equilibrium value of the community load G̃H to the multiscale model parameters was useful to

guide the data collection for model parameterization and to recognize parameters that are important in the

control and elimination of the malaria disease system [65].

Figure 3.4: Tornado plot showing Partial Rank Correlation Coefficients of the community sporozoites

load (PV )
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Figure 3.5: Tornado plot showing Partial Rank Correlation Coefficients of the community gametocytes

load (GH )

3.3.2 The impact of initial infection on the within-human scale of malaria infection dy-
namics

In figure (3.6), we illustrate through numerical solutions of the coupled multiscale model (3.2.0.1) the

impact of between-host (human and mosquito) scale malaria disease dynamics on within-human scale

variables for malaria incfection dynamics. We are varying the initial value condition that is initial infec-

tion Mh(0), the susceptible erythrocytes within human scale acquire infection by have interacting with

the merozoites for different values and we evaluate its influence on the dynamics of within-host scale vari-

ables ((a) population of infected erythrocyte Rh, (b) population of merozoites Mh and (c) population of

gametocytes Gh). The results presented that as the initial condition of merozoites increase, there is a visi-

ble slightly changes in the dynamics of within-host scale variables ((a) population of infected erythrocyte

Rh, (b) population of merozoites Mh and (c) population of gametocytes Gh) within the first day. When

the host is infected, then the replication process follows in the within-host scale to sustains the disease

dynamics at within-host scale.
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Figure 3.6: Numerical simulation of multiscale model (3.2.0.1) showing the evolution with time of (a)

population of infected erythrocyte within-infected humans B∗
h, (b) the population of merozoites Mh and

(c) the population of gametocytes within infected human Gh for different values of initial value condition

of the within human scale Mh(0): Mh(0) = 1, Mh(0) = 10, Mh(0) = 100 and Mh(0) = 1000.

3.3.3 To investigate the influence of between-human parameters on the within-mosquito
scale of malaria disease dynamics

In this sub-section, we illustrate through numerical simulations of multi-scale model (3.2.0.1) the influ-

ence of between-human dynamics on within-mosquito scale variables for malaria disease dynamics ((a).

population of gametocytes within-infected mosquito Gv, (b). population of gametes Gm, (c). population

of zygotes Zv and (d). the population of sporozoites Pv). We vary the between-human parameters (βH ,

G0 and γH ) and investigate their influence on the dynamics of the within-mosquito scale variables.

Figure (3.7)shows graphs of numerical results of the system of equations (3.2.0.1) showing the evolution

in time of (a) population of gametocytes within-infected mosquito Gv, (b) population of gametes Gm,

(c) population of zygotes Zv and (d) population of sporozoites Pv for different values of infection rate of

susceptible mosquitoes with infectious reservoir of humans βH : βH = 0.356, βH = 0.656 and βH =

0.956. The results in figure (3.7) indicate that an increase in the infection rate of susceptible mosquitoes
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with infectious reservoir of humans has important public health effects at the within-mosquito scale for

malaria disease dynamics and we observe an increase in the population of gametocytesGv, the population

of gametesGm, the population of zygotes Zv and the population of sporozoites Pv. Hence, any prevention

measures (i.e., use of LLNs, mosquito repelent and protective efficacy of humans from mosquitoes) are

important in both at the between-human scales for malaria dynamics and the within-infected mosquito

will prevent the malaria parasite to complete its life-cycle which have an impact in reducing the malaria

infection at individual mosquitoes.
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Figure 3.7: Simulation of model (3.2.0.1) showing the evolution with time of (a) population of gameto-

cytes within-infected mosquitoes Gv , (b) the population of gametes Gm, (c) the population of zygotes Zv

and (d) the population of sporozoites Pv for different values of infection rate of susceptible mosquitoes

with infectious reservoir of humans βH : βH = 0.356, βH = 0.656 and βH = 0.956.

Figure (3.8) demonstrates the dynamics in within-mosquito variables, that is, (a) the population of ga-

metocytes Gv, (b) the population of gametes Gm, (c) the population of zygotes Zv and (d) the popula-

tion of sporozoites Pv for the variation of between-human scale, that is the half saturation constant of

between-human scale, that is, the half saturation constant associated with infection of mosquitoes G0:

G0 = 100000000, G0 = 500000000 and 900000000. The numerical solutions in fig. (3.8) depicts that

as the half saturation constant associated with infection of mosquitoes increases, we observe reduction on
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malaria disease dynamics at within-mosquito scale (a) the population of gametocytes Gv, (b) the popula-

tion of gametes Gm, (c) the population of zygotes Zv and (d) the population of sporozoites Pv. Therefore,

the reduction of susceptibility to malaria infection in the gametocytes community, that is, the use of trans-

mission blocking vaccine have an impact in reducing the malaria disease in both between-human scale

and at the within-mosquito scale.
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Figure 3.8: Graphs of numerical solution of multi-scale model (3.2.0.1) showing the evolution in time of

(a) population of gametocytes within-infected mosquitoGv , (b) population of gametesGm, (c) the popula-

tion of zygotes Zv and (d) the population of sporozoites Pv for different values of half saturation constant

rate of community gametocyte load G0: G0 = 100000000, G0 = 500000000 and G0 = 900000000

Figure (3.9) illustrates the dynamics in the within-mosquito malaria disease dynamics (a) the population

of gametocytes Gv, (b) the population of gametes Gm, (c) the population of zygotes Zv, and (d) the

population of sporozoites Pv for different values of human recovery rate from malaria infection γH : γH =

0.0092, γH = 0.092, and γH = 0.92. The numerical solution in figure (3.9) indicate that as the huma

recovery rate from malaria infection increases, we notice a reduction in malaria infection within-infected

mosquito, that is, there is reduction in population of gametocytes and population of gametes and we also

notice that there is no change in the population of zygotes and population of sporozoites.
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Figure 3.9: Simulation of multi-scale model (3.2.0.1) showing the changes in (a) the population of ga-

metocytes within-infected mosquito Gv , (b) the population of gametes Gm, (c) the population of zygotes

Zv and (d) the population of sporozoites Pv for different values of recovery rate of infected humans γH :

γH = 0.0092, γH = 0.092 and γH = 0.92

3.3.4 Assessment of the influence of between-mosquito parameters on within-mosquito
variables.

In this sub-section, we demonstrate through numerical simulations of the multiscale model (3.2.0.1) the

impact of between-mosquito scale parameters on the within-mosquito scale variable for malaria disease

dynamics. We describe the variation of the between-mosquito scale parameters (βV , ΛV , P0 and µV ) and

analyse their influence on the within-mosquito scale variables. Figure (3.10) presents graphs of numerical

results of the system of equations (3.2.0.1) presenting the dynamics of (a) the population of gametocytes

Gv, (b) the population of gametes Gm, (c) the population of zygotes Zv and (d) the population of sporo-

zoites Pv for different values of the contact rate of susceptible humans with the infectious reservoir of

mosquitoes (βV ) with values βV = 0.0052135, βV = 0.052135 and βV = 0.52135. The increase in βV
has an impact in increasing the within-mosquito scale variables (Gv, Gm, Zv and Pv). The results indi-

cate that an increase in the contact rate of susceptible humans with the infectious reservoir of mosquitoes
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result in the increase of malaria infection on within-mosquito scale, that is, we notice an increase in the

population of gametocytes, population of gametes, population of zygotes and population of sporozoites.

Therefore, any prevention measures that prevent the contacts of susceptible humans and infected mosuit-

oes has an impact in reducing the transmitting malaria infection in the population level and as well as at

the within-mosquito scale.
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Figure 3.10: Graphs of numerical results of the model (3.2.0.1) presenting the changes in (a) the population

of gametocytes within-infected mosquito Gv , (b) the population of gametes Gm, (c) the population of

zygotes Zv and (d) the population of sporozoites Pv for different values of the contact rate of susceptible

humans with the infectious reservoir of mosquitoes βV : βV = 0.0052135, βV = 0.052135 and βV =

0.52135

In figure (3.11) presents the the dynamics in (a) the population of gametocytes Gv, (b) the population

of gametes Gm, (c) the population of zygotes Zv and (d) the population of sporozoites Pv for different

values of recruitment rate of susceptible mosquitoes (ΛV ): ΛV = 20, ΛV = 200 and ΛV = 2000. The

results indicate that as the recruitment rate of mosquitoes increases, the transmission of malaria infection

at within-mosquito scale also increases. Hence, these results will help us to come up with control measures

on the immature mosquitoes which will result in reducing the malaria infection at a community-level and

also at within-mosquito level.
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Figure 3.11: Graphs of numerical simulations of model (3.2.0.1) showing the evolution with time 0f (a)

the population of gametocytes Gv , (b) the population of gametes Gm, (c) the population of zygotes Zv

and (d) the population of sporozoites Pv for different values of the recruitment rate of mosquitoes ΛV :

ΛV = 20, ΛV = 200 and ΛV = 2000

Figure (3.12) illustrates the evolution with time of within-mosquito scale dynamics ((a) the population of

gametocytesGv, (b) the population of gametesGm, (c) the population of zygotesZv and (d) the population

of sporozoites Pv) for different values of saturation constant rate of community sporozoites load P0: P0 =

50000, P0 = 500000000 and P0 = 500000000. The numerical solutions indicate that an increase in the

half saturation constant rate of community sporozoites load has an impact in the reducing the transmission

of malaria infection on within-mosquito scale variable, that is, on the population of gametocytes, the

population of gametes, the population of zygotes and the population of sporozoites.
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Figure 3.12: Graphs of numerical simulations of model (3.2.0.1) showing the evolution with time 0f (a)

the population of gametocytesGv , the population of gametesGm, (c) the population of zygotes Zv and (d)

the population of sporozoites Pv for different values of saturation constant rate of community sporozoites

load P0: P0 = 50000, P0 = 5000000 and P0 = 500000000.

Figure (3.13) pictures the numerical simulations of multi-scale model (3.2.0.1) showing the changes in the

dynamics of within-mosquito scale variables ((a) the population of gametocytes Gv, (b) the population of

gametesGm, (c) the population of zygotesZv and (d) the population of sporozoites Pv) for different values

of the proportion of new infected mosquitoes in the total infected mosquito population ϕV : ϕV = 0.0001,

ϕV = 0.0002 and ϕV = 0.0003. The numerical results shows that an increase in the proportion of

infected mosquitoes in the total infected mosquito population results in the reduction of transmission of

malaria infection of within-mosquito variables ((a) the population of gametocytes Gv, (b) the population

of gametes Gm, (c) the population of zygotes Zv and (d) the population of sporozoites Pv).
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Figure 3.13: Graphs of numerical simulation of multi-scale model (3.2.0.1) showing the dynamics of (a)

the population of gametocytes Gv , (b) the population of gametes Gm, (c) the population of zygotes Zv

and (d) the population of sporozoites Pv for different values of the proportion of new infected mosquitoes

in the total infected mosquito population ϕV : ϕV = 0.0001, ϕV = 0.0002 and ϕV = 0.0003

3.3.5 Analysing the influence of within-human parameters on between-host variables.

In this sub-section, we analyse numerically the influence of the within-human scale parameters (αh, π

and µh) on the between-host scale malaria disease transmission dynamics that is (a) the population of in-

fected humans IH , (b) the population of community gametocytes load GH , (c) the population of infected

mosquitoes IV and (d) the population of community sporozoites load PV using the multi-scale model

(3.2.0.1) for malaria disease system. Figure (3.14) presents the graphs of numerical results of system of

equations (3.2.0.1) indicating changes in dynamics of (a) population of infected humans IH , (b) the popu-

lation of community gametocytes load, (c) the population of infected mosquitoes IV and (d) the population

of community sporozoites load PV for different values of the shedding/excretion rate of gametocytes from

within-human scale into between-host scale αh: αh = 0.002, αh = 0.02 and αh = 0.2. The numerical re-

sults display that an increase of excretion rate of gametocytes from within-human scale into the population

level by each infected human individual has significant in public health influence at population level since
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there is an observable increase in the between-host scale malaria malaria transmission on the population of

infected humans IH and the population of community gametocytes load GH and there is slightly increase

in the population of infected mosquitoes IV and the population of community sporozoites load PV .
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Figure 3.14: Graphs of numerical results of the multiscale model (3.2.0.1) picturing the evolution in time

of dynamics of (a) population of infected humans IH , (b) the population of community gametocytes load,

(c) the population of infected mosquitoes IV and (d) the population of community sporozoites load PV for

different values of the shedding/excretion rate of gametocytes from within-human scale to between-host

scale αh: αh = 0.002, αh = 0.02 and αh = 0.2.

In figure (3.14), we demonstrate the numerical results of multiscale model (3.2.0.1) showing changes in

the between-host scale malaria infection dynamics ((a) the population of infected humans IH , (b) the

population community gametocytes load GH , (c) the population of infected mosquitoes IV and (d) the

population of community sporozoites load PV ) for different values of the proportion of gametocytes in-

fected erythrocytes within infected human π: π = 0.2, π = 0.4 and π = 0.6. The numerical results

indicate that an increase of the proportion of gametocytes infected erythrocytes within infected humans

has an impact in decreasing malaria disease transmission at between-human scale that is at population of

infected humans and the population of community sporozotes load and at between-mosquito scale (the
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population of infected mosquitoes and the population of community sporozoites load), we notice a light

reduction in malaria transmission for 100 days.
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Figure 3.15: Graphs of numerical results of the multiscale model (3.2.0.1) picturing the evolution in time

of dynamics of (a) population of infected humans IH , (b) the population of community gametocytes load,

(c) the population of infected mosquitoes IV and (d) the population of community sporozoites load PV for

different values of the proportion of gametocytes infected erythrocytes π: π = 0.2, π = 0.4 and π = 0.6

In figure (3.16), we illustrate the simulations of multi-scale model (3.2.0.1) showing the evolution in

time of between-host scale dynamics ((a) the population of infected humans IH , (b) the population of

community gametocytes load GH , (c) the population of infected mosquitoes IV and (d) the population

of community sporozoites load PV ) for variation of the natural decay rate of gametocyte infected ery-

throcytes within infected humans µh: µh = 0.0325, µh = 0.0625 and µh = 0.0925. The numerical

results shows that an increase in the natural decay rate of gametocyte infected erythrocytes within infected

humans,has an impact of reducing malaria disease transmission at the between-human scale, that is, we

notice a reduction of the population of infected humans and the population of community gametocyte

load and we notice that there is no difference in the population of infected mosquitoes and the population
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of community sporozoites load. Therefore, the use of ACTs which kills the gametocytes within the in-

fected humans is important in reducing the malaria disease transmission at within-human scale and also

at population-level.
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Figure 3.16: Graphs of numerical results of the multiscale model (3.2.0.1) picturing the evolution in time

of dynamics of (a) population of infected humans IH , (b) the population of community gametocytes load,

(c) the population of infected mosquitoes IV and (d) the population of community sporozoites load PV

for different values of the natural decay rate of gametocyte infected erythrocytes within infected humans

µh: µh = 0.0325, µh = 0.0625 and µh = 0.0925

3.3.6 The influence of within-mosquito scale parameters on the between-host scale malaria
transmission dynamics

In this sub-section, we illustrate through numerical results of coupled multi-scale model (3.2.0.1) the influ-

ence of within-mosquito scale dynamics on between-host scale variables for malaria disease transmission

dynamics. We vary within-mosquito scale parameters (αs, αz , Nk, αk, Ng, αv, µk, µs and µz) for differ-

ent values and analyse the influence on the dynamics of the between-host scale for malaria disease system

(the population of infected humans IH , the community gametocytes load GH , the population of infected

mosquitoes IV and the community sporozoites load PV ).
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Figure 3.17: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the communit sporozoites load PV

for distinct values of fertilization of gametes within infected mosquitoes αs: αs = 0.002, αs = 0.02 and

αs = 0.2.

Figure (3.17) displays graphs of numerical solutions of the system of equtions (3.2.0.1) showing the dy-

namics of (a) the population of infected humans IH , (b) the community gametocytes load GH , (c) the

population of infected mosquitoes IV and (d) the community sporozoites load PV for variation of fer-

tilization of gametes within infected mosquito αs: αs = 0.002, αs = 0.02 and αs = 0.2. The results

demonstrate that an increase in the fertilization of gametes also has an influence of increasing malaria

disease transmission at the between-human scale (the population of infected humans and the community

gametocytes load) and the malaria transmission at the between-mosquito scale, we observe no different

on malaria transmission at the population of infected mosquitoes and there is slightly increase in the com-

munity sporozoites load for the first 100 days.

Figure (3.18) displays graphs of numerical results of the system of equations (3.2.0.1) presenting the

dynamics of (a) the population of infected humans IH , (b) the community gametocytes load GH , (c) the

population of infected mosquitoes IV and the community sporozoites load PV for different values of the
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development rate of zygotes into oocysts within infected mosquito αz: αz = 0.024, αz = 0.424 and

αz = 0.824. The results in Fig.(3.18) indicate that reducing the development rate of zygotes into oocysts

have an effects of reducing the malaria transmission at the between-host scale. This implies that any

interventions that are focused on the development rate of zygoges into oocysts within infected vector is

likely to have impact in reducing malaria transmission.
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Figure 3.18: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load

PV for distinct values of the development rate of zygotes into oocysts within infected mosquitoes αz:

αz = 0.024, αz = 0.424 and αz = 0.824.

Figure (3.19) presents changes in (a) the population of infected humans IH , the community gametocytes

load GH , the population of infected mosquitoes IV and the community sporozoites load PV for distinct

values of the number of sporozoites produced per bursting oocyst within infected mosquitoes Nk: Nk =

1000, Nk = 2000 and Nk = 3000. The results indicate that as the number of sporozoites produced per

bursting oocyst within infected mosquito has impact of increasing the malaria transmission at a population-

level that is at between-host scale. Hence, any intervention that targets the number of sporozoites produced

per bursting oocyst has an impact of reducing mosquito-to human malaria transmission.
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Figure 3.19: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load PV

for distinct values of the number of sporozoites produced per bursting oocyst within infected mosquitoes

Nk: Nk = 1000, Nk = 2000 and Nk = 3000.

Figure (3.20) presents changes in (a) the population of infected humans IH , the community gametocytes

load GH , the population of infected mosquitoes IV and the community sporozoites load PV for distinct

values of the bursting rate of oocysts to produce sporozoites within infected mosquitoes αk: αk = 0.2,

αk = 0.7 and αk = 1.2. The results show that as the bursting rate of oocysts to produce sporozoites

within infected mosquitoes increases, there is also observable increase on between-host scale malaria

transmission,that is, the population of infected humans IH , the community gametocytes load GH , the

population of infected mosquitoes IV and the community sporozoites load PV . Therefore, the results

suggest that intervention measures which targets at the bursting rate of oocysts to release sporozoites

within infected mosquitoes are important for the community in reducing transmission of malaria infection

at population level.
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Figure 3.20: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load PV

for distinct values of the bursting rate of oocysts to produce sporozoites within infected mosquitoes αk:

αk = 0.2, αk = 0.7 and αk = 1.2.

Figure (3.21) pictures the changes in (a) the population of infected humans IH , (b) the community game-

tocytes load GH , (c) the population of infected mosquitoes IV and the community sporozoites load for

different values of the number of gametes released per gametocyte infected erythrocyte within infected

mosquitoes Ng: Ng = 4, Ng = 12 and Ng = 22. The results show that an increase in the number of

gametes released per gametocyte infected erythrocyte within infected mosquitoes has impact in increasing

the malaria transmission at community-level, that is, the population of infected humans IH , the commu-

nity gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load

PV .

Figure (3.22) depicts variation in (a) the population of infected humans IH , (b) the community game-

tocytes load GH , (c) the population of infected mosquitoes IV and the community sporozoites load for

different values of the rate at which sporozoites becomes infectious to humans αv: αv = 0.025, αv = 0.25

and αv = 0.5. The results indicate that as the rate at which sporozoites becomes infectious to humans
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increase, there is a corresponding increase in the malaria transmission at the community-level, that is, at

the population of infected humans IH , the community gametocytes load GH , the population of infected

mosquitoes IV and the community sporozoites load PV .
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Figure 3.21: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load PV

for distinct values of the number of gametes produced per gametocyte infected erythrocyte within infected

mosquitoes Ng: Ng = 4, Ng = 12 and Ng = 22.

Figure (3.23) depicts the evolution in time of (a) the population of infected humans IH , (b) the commu-

nity gametocytes load GH , (c) the population of infected mosquitoes IV and the community sporozoites

load for different values of the natural decay rate of oocysts within infected mosquitoes µk: µk = 0.01,

µk = 0.1 and µk = 1. The results depict that an increase in the natural decay rate of oocysts within in-

fected mosquitoes has an impact in reducing the malaria transmission at community-level, that is, the pop-

ulation of infected humans IH , the community gametocytes load, the population of infected mosquitoes

IV , the community sporozoites load PV . However, any interventions that kills the oocysts within infected

mosquitoes has an impact in reducing the malaria transmission at community-level, that is , the popula-

tion of infected humans, the community gametocytes load, the population of infected mosquitoes and the

community sporozoites load.
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Figure 3.22: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load

PV for different values of the rate at which sporozoites become infectious to humans αv: αv = 0.025,

αv = 0.25 and αv = 0.5.

Figure (3.24) depicts the changes in (a) the population of infected humans IH , (b) the community ga-

metocytes load GH , (c) the population of infected mosquitoes IV and the community sporozoites load

for different values of natural decay rate of gametes within infected mosquitoes µs: µs = 38, µs = 58

and µs = 78. From the results, it can be seen that as the natual decay rate of gametes within infected

mosquitoes increases, there is a corresponding increase in the malaria transmission on community-level,

that is, the population of infected humans, the community gametocytes, the infected mosquitoes and the

community sporozoites load.

Figure (3.25) demonstrates the dynamics of (a) the population of infected humans IH , (b) the community

gametocytes load GH , (c) the population of infected mosquitoes IV and the community sporozoites load

for different values of natural decay rate of zygotes within infected mosquitoes µz: µz = 0.01, µz = 0.1

and µz = 1.0. The results depict that an increase in natural decay rate of zygotes has an effect in reducing
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the malaria transmission at community-level, that is, the population of infected humans, the community

gametocytes, the population of infected mosquitoes and the community sporozoites load.
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Figure 3.23: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load

PV for distinct values of the natural decay rate of oocysts within infected mosquitoes µk: µk = 0.01,

µk = 0.1 and µk = 1.

We note from the results in figure (3.14)- figure (3.25) that between-host variables ((a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquitoes IV and

(d) community sporozoite load PV ) are importantly sensitive to the variation of the within-host (human

and mosquito) scales parameters (αh, π and µh) and (αs, αz , Nk, αv, µk, µs and µz) respectively. From

the results in fig. (3.7)-fig.(3.13), we also note the within-mosquito variables ((a)population of Gv, (b)

population of gametes Gm, (c) population of zygotes Zv and population of sporozoites pv) are crucially

sensitive to the variation of the between-host (human and mosquito) scales parameters (βH , G0 and γH )

and (βV , ΛV , P0 and µV ) respectively. We conclude from the observation obtain from the numerical

results in fig. (3.6)-fig.(3.25) that:
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Figure 3.24: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load PV

for distinct values of the natural decay rate of gametes within infected mosquitoes µs: µs = 38, µs = 58

and µs = 78.

(1) Within-host (human and mosquito) scales influence the dynamics of malaria disease system at be-

tween host scale throughout the whole process of infection through shedding/excretion of malaria

pathogen.

(2) The between host scale influence the within-human scale through initial infection of pathogen and

then the within-human scale pathogen load increase through replication-cycle. The process of the

pathogen replication cycle contributed much compared to the initial infection.

(3) The between-host scale influences the within-mosquito scale through super-infection, the within-

mosquito pathogen load increase through repeated infection.

(4) We also notice that the nested multiscale model has a unidirectional flow of information from mi-

croscale to macroscale, that is, micro-scale influences macro-scale through shedding or excretion of

pathogens whereas macro-scale influences micro-scale through initial infection.
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(5) We also notice that the embedded multiscale model has a bidirectional flow of information, that is, the

within-mosquito scale influences the between-host scale through shedding/excretion of pathogen

whilst the between-host scale influences the within-mosquito scale through repeated infection/

super-infection.
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Figure 3.25: Graphs presenting changes in (a) the population of infected humans IH , the community

gametocytes load GH , the population of infected mosquitoes IV and the community sporozoites load PV

for distinct values of the natural decay rate of zygotes within infected mosquitoes µz: µz = 0.01, µz = 0.1

and µz = 1.0.

3.4 Summary

The objective of the study is to investigate how super-infection/re-infection in mosquitoes has an impact

on dynamics of type II-vector borne disease transmission with no pathogen replication cycle at the mi-

croscale and to investigate how initial infection in humans has an influence on multiscale model dynamics

of an infectious disease with the pathogen replication cycle at the microscale. The coupled multiscale

model of type II vector-borne disease has a combination of a nested multiscale model and an embedded

multiscale model for integrating the microscale and the macroscale sub-models. The coupled multiscale
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model in this study was derived from work by Garira in [11] and we modify the model by including

the influence of super-infection on mosquitoes. The coupled multiscale model of type II vector-borne

disease transmission presents the replication-transmission multiscale cycle in both mosquito and human

populations. The embedded multiscale model was used on mosquitoes to examine the influence of super-

infection on the multiscale model of the malaria disease system. There is no pathogen replication cycle

at the within-mosquito scale and pathogen load increase through super-infection/re-infection. While the

nested multiscale model on the human population was used to investigate the influence of initial infec-

tion with pathogen replication cycle at within-human sub-model. From the results, we discovered that

the embedded multiscale model has the bidirectional flow of information, that is, the within-host scale

influences the between-host scale throughout the infection through shedding/excretion whereas between

host scale influences the within-host scale throughout the infection through super-infection. On the other

hand, the results indicate that the nested multiscale model has a unidirectional flow of information, that is,

the within-host scale influences the between-host scale throughout the infection through pathogen shed-

ding/excretion, whilst the between-host scale influences the within-host scale through initial infection and

the pathogen load within infected host increased through pathogen replication. The sensitivity used to

discover the parameters that are sensitive to the decrease or increase of the basic reproductive number R0,

community sporozoites load PV , and community gametocyte load GH , which help to suggest appropriate

health intervention measures.
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A Multiscale Model of Malaria Disease
Dynamics to Access Vaccine Components

4.1 Introduction

In the previous chapter, we develop a coupled multiscale model for the malaria disease system with a

combination of a nested multiscale model and an embedded multiscale model. We used an embedded

multiscale model in mosquitoes to investigate the influence of super-infection/re-infection on malaria dis-

ease dynamics whilst in humans, we used a nested multiscale to investigate the impact of initial infection

on malaria disease dynamics. In this chapter, we demonstrate a coupled multiscale model of malaria dis-

ease dynamics with the combination of two embedded multiscale models, that is, an embedded multiscale

model on humans and an embedded multiscale model on mosquitoes. We perform the processes that

happen in the infectious disease system from the work by Garira in [11], which are (i) infection/ super-

infection, (ii) pathogen replication cycle, (iii) pathogen shedding/excretion, and (iv) pathogen transmis-

sion. The microscale and the macroscale influence each other in a reciprocal way and these processes can

occur at any hierarchical level of organization for infectious disease systems. In humans, the macroscale

influences the microscale through super-infection/re-infection of pathogens whereas the microscale in-

fluences the macroscale through shedding/excretion of the pathogens. There is pathogen replication in

microscale that is in merozoites and there is a transmission cycle at the macroscale. In mosquitoes, we

adapt the processes in the previous chapter. At every hierarchical level of organization for infectious dis-

ease dynamics which involves pathogen replication-transmission multiscale cycle.
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Malaria is an infectious disease system caused by the Plasmodium parasite which has a complex life cycle

such that they require at least multiple-host which are (i) human-host and (ii) vector host, for the malaria

parasite to have fully completed its life cycle process. In addition to acting as a carrier, the mosquito

provides an environment where the Pasmodium parasite can develop to an infectious state before it is

transmitted to vertebrate hosts. The Plasmodium life cycle can be divided into three main phases: (1) the

vector phase, which happens in the midgut and salivary glands of female Anopheles mosquitoes, (2) The

liver stage, which occurs in the hepatocytes of the secondary host, in this case, its humans, and (3) the ery-

throcytic stage, which occurs in the red blood cells of the secondary host, [35]. Taking into consideration

the burden of malaria infection, there is a need for a malaria vaccine that would reduce the gap left by other

medical and public health interventions [66]. A Malaria vaccine would be an important tool in controlling

malaria because the current struggle against disease is on a variety of these interventions, that include

the distribution of LLNs, the promotion of indoor spraying, and the development of new medicines and

insecticides [66]. However, the malaria vaccine is designed to act at these three stages during the life cycle

of the Plasmodium parasite. There are three main classes of vaccine which are (i) pre-erythrocytic vac-

cine (PEV), (ii) blood-stage vaccine (BSV), and (iii) transmission-blocking vaccine (TBV) which inhibits

the malaria infections in the pre-erythrocytic stage, erythrocytic stage, and in mosquitoes on preventing

from transmitting the infection to the next person, respectively [45, 67]. These sub-units are desribed as

follows:

(i) The pre-erythrocytic vaccine aims to inhibit the early phase of malaria infection, the phase at which

the plasmodium parasite enters or matures in an infected human’s liver cells [45, 67].

(ii) The blood-stage vaccine targets the malaria parasite at its most destructive phase, the rapid reduction

of the organism in human red red-blood cells. This vaccine do not aim to block all infection, but it

ia expected to minimize the number of malaria parasites in the blood system, and this will reduce

the severity of the disease [45, 67].

(iii) The transmission-blocking vaccine seeks to disrupt the life cycle of plasmodium parasite by stimu-

lating antibodies that inhibit the malaria parasite from maturing in the mosquito after feeding blood

meal from a vaccinated person. This transmission-blocking vaccine would not inhibit a human from

getting malaria, nor would diminish the symptoms of the disease. The TBV, which the processes

are carried into mosquito after taking a blood meal and their disruption with in-vector parasite de-

velopment [43, 45, 67].

The vaccine has provided a cost-effective and efficacious means of inhibiting malaria disease and reducing

the mortality rate, boosting the immune system in the fight against parasites [67].

The recent studies of malaria vaccines are on single scale models which are either immunological (within-

host scale) [45] or epidemiological (between-host scale) by [67]. There were none of the studies that

attempted to evaluate the possible impacts of malaria vaccines in controlling malaria parasites on both
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scales (within-host scale and between-host scale). There has been relatively little literature published on

coupled multiscale models for malaria disease systems. Garira [24] developed a new coupled multiscale

model for malaria infection which can enlighten policy and guide malaria control and elimination. They

demonstrated their model using nested multiscale models for linking within-host scale sub-model and

between-host scale sub-model. In their model, they incorporate the two malaria public health interven-

tions (i.e., artemisinin-based combination therapy (ACT) and long-lasting insecticides treated nets) which

they used comparative effectiveness of malaria health interventions. Agusto [35] developed a coupled

multiscale model of malaria disease system with immune response, where they also demonstrated their

model using the nested multiscale model for linking the within-host scale sub-model and the between-host

scale sub-model. None of these investigations has tried to examine the possible influence of malaria vac-

cines in controlling clinical Plasmodium falciparum parasites in all the parasite stages.

In this study, we formulate a more detailed coupled multiscale model for the malaria disease system

considering the contact of malaria parasites with liver cells, red blood cells, human population level, and

mosquito population level. The objective of this study is to investigate the influence of vaccine on the

multiscale model of the malaria disease system. However, we consider the intra-organ level and extra-

organ level. On the intra-organ level, we are investigating the interaction of malaria parasites and the liver

cells whereas, at the extra-organ level, we are investigating malaria parasites outside the liver stage.

4.2 The Mathematical Model

We formulate a coupled multiscale model that traces the malaria parasite’s life cycle of malaria disease

systems. The malaria parasite’s life cycle should involve two distinct environments which are: biolog-

ical human host environment and biological mosquito vector environment. In this work we presented

a full coupled multiscale model based on monitoring the dynamics of eighteen populations at time t,

which are susceptible humans SH(t) and infected humans IH(t); community gametocytes load GH(t)-

in human biological environment; susceptible mosquito SV (t) and infected mosquito IV (t); community

sporozoites load PV (t)- in mosquito biological environment; sporozoites population Ph(t), uninfected

liver cells Lh(t), infected liver cells L∗
h(t), uninfected red blood cells Bh(t), infected red blood cells

B∗
h(t), population of merozoites Mh(t) and population of gametocytes Gh(t) within-human biological

environment; population of gametocytes within infected mosquito Gv(t), population of gametes Gm(t),

population of zygotesZv(t), population of oocystsOv(t) and population of sporozoites Pv(t) -in mosquito

biological environment.

This coupled multiscale model express the transmission of malaria parasite from mosquito to human using

SIP sub-model with variables which are susceptible humans SH(t), infected humans IH(t) and commu-

nity sporozoites load PV , where by the transmission of malaria parasite at between-human scale from
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community infectious reservoir of mosquitoes to humans occurs at a rate λV (t) =
βV PV (t)SH(t)

P0 + PV (t)
, where

βV is the contact rate to the community with a population PV (t) sporozoites per unit time [20]. The com-

munity sporozoite load that yields 50% probability of human host get infected with malaria after mosquito

bites in a certain community, which is denoted by P0. Similarly, the model illustrate the transmission of

malaria pathogen from human to mosquito using SIP sub-model with variables which are susceptible

mosquitoes SV (t), infected mosquitoes IV (t) and community gametocytes load GH(t) and the transmis-

sion of malaria pathogen at between-mosquito scale from community infectious reservoir of humans to

mosquitoes happen at rate λH(t) =
βHGH(t)

G0 +GH(t)
. Where βH is the rate of contact to the community with

a population GH(t) gametocytes per unit time and which is considered as a method of evaluate the human

biting rate. Where G0 models the community gametocyte load that yields 50% likelihood of mosquito

getting infected with malaria after mosquito biting an infected human in a certain community.

The SH and SV increases at a constant recruitment rate ΛH and ΛV respectively. The susceptible humans

are decreasing due to the transmission of malaria parasite at between-human scale from community in-

fectious reservoir of mosquito PV (t) to human hosts occurs at a rate βV λV (PV )SH(t). The susceptible

mosquitoes are decreasing due to transmission of malaria pathogen at between-mosquito scale from com-

munity infectious reservoir of humans GH to mosquitoes occurs at a rate βHλH(t)(GH(t))SV (t). From

between-host scale variables, the susceptible host populations (SH(t) and SV (t)) are reduced through nat-

ural death at rates µH and µV respectively. SH(t) also increase through natural recovery of infected pop-

ulation at a rate γH . Infected human populations (IH(t)) and Infected mosquito populations (IV (t)) in-

crease through βV λV (t)(PV (t))SH(t) and βHλH(t)(GH(t))SV (t) respectively and they reduced through

natural death at rates (µH and µV ) and also reduced by mortality due to infection at rates δH and δV .

IH(t) is also reduced due to natural recovery from infection at a rate γH . In community sporozoites

load (PV (t)), the first term on the right hand side of the equation (18) of model (4.2.0.1) is modeled by

(IV (t) + 1)αvPv(t), where every infected mosquito sheds/excretes the within-mosquito scale pathogens

(sporozoites) at a rate αvPv(t) and for a total of Iv(t) = IV (t) + 1 infected mosquitoes which the model

involves the upscaling ( for linking of within-mosquito scale to the between-mosquito scale) [18, 20]. PV

diminished by the elimination of the total community sporozoite load at a rate αV . From community

gametocytes load (GH(t)), the first term of the right hand side of the equation (10) of model (4.2.0.1) is

showed by (IH(t) + 1)αhGh(t), where every infected human excretes the within-human scale pathogen

(gametocytes) at a rate αhGh(t) and for a total of Ih(t) = IH(t) + 1 infected mosquitoes is the upscaling

of within-human scale to the between-human scale. GH(t) decreases due to elimination of the total com-

munity gametocytes load.

We show features for the derivation of a coupled multiscale model for directly transmitted vector-borne

disease (i.e. malaria disease systems) in which the Plasmodium falciparum does not have a replication

cycle at both within-human scale and within-mosquito scale as a way of complete its life-cycle. The

pathogen load at both within-human scale and within-mosquito scale grows only through super-infection.
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The coupled multiscale model of malaria disease systems is demonstrated in Figure (4.1). The infection

process at human usually starts with an infected mosquito sucking blood meal and injecting sporozoites

in the human blood system. The sporozoites in mosquito will be injected into human system and consti-

tutes the sporozoites population in the first life-stage at within-human scale denoted by Ph(t) and may

increase through super-infection at a rate λv(t)Sh(t) =
βV PV (t)(SH(t)− 1)

(P0 + PV (t))ϕH(IH(t) + 1)
, where ϕH is the

proportion of new infection or decay naturally at rate µp. This process of super-infection involves the

down-scaling whereby we integrate the between-host scale parameter and variables to the within-human

sub-model. The first intermediate life stage of within-human sub-model which is the uninfected liver cells

which is given by Lh(t), increase through the rate of supply of unifected liver cells Λl. Uninfected liver

cells decrease due to infection of liver cells by sporozoites which is given by βlPh(t)Lh(t) where βl is the

contact rate of sporozoites with uninfected liver cells. The first intermediate life-stage of within-human

scale die naturally at a rate µl. The infected liver cells is the second intermediate life stage of within-

human scale and which is denoted by L∗
h(t). The second intermediate life stage increase through infection

of uninfected liver cells βlPh(t)Lh(t), or decay naturally at rate µl or bursting of liver cells at rate αl.

The uninfected red blood cells is the third intermediate life stage of within-human scale which is given

by Bh(t), which increase through the rate of supply of uninfected red blood cells Λh, and decrease by

infection of uninfected cells by merozoites which is given by βhMh(t)Bh(t) where βh is the contact rate

of merozoites and unifected red blood cells, or decay naturally at rate µb. Infected red blood cells is the

fourth intermediate life stage of within-human scale which is denoted by B∗
h(t), increase throughthe rate

of proportion of infection of liver cells (1− π)βhMh(t)Bh(t) and or decay natually at rate µb or bursting

of infected-red blood cells to produce merozoites αm. The merozoites population is the last stage of the

intermediate life stage of within-human scale which is given byMh(t), the merozoites in the human blood

system increase due to bursting of infected liver cells which is given by NlαlL
∗
h(t) and through the rate

of increase of merozotes in the human blood system through bursting of infected red blood cells which is

given by NmαmB
∗
h(t) The population of merozoites assumed to decay naturally at rate µm. The popula-

tion of gametocytes is the last life stage of within-human scale which is given byGh(t). This last life stage

increase through the proportion of the total population of merozoites infected liver cells πβhMh(t)Bh(t),

or decrease through the rate of natural decay of gametocytes infected erythrocytes (µh) or by (αh) which

is the rate of shed/ excretion of infectious gametocytes from within-infected human blood system to the

community gametocytes load.

The infection process of malaria disease system at within-mosquito scale is initiated with the mosquito

draw blood meal from an infected human. The gametocytes which are consumed up by the mosquito

in blood meal and must cross through the midgut of mosquito, which performance are the first physical

obstacle inside the mosquito [58]. The gametocytes population is the initial life-phase at within-mosquito

scale which is indicated by Gv(t) in the flow diagram in Figure (4.1) and gametocytes population may

increase through super-infection at rate λh(t)Sv(t) =
βHGH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
, where ϕV is the

proportion of new infection or decay naturally at rate µg or proceed to the initial intermediate life stage
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that is gametes population at rate αg. We can say αg is the rate at which gametocytes within-infected

mosquitoes burst releasing sex cells called gametes (either male or female gametes). The population of

gametes Gm(t) increase by NgαgGv(t), where we assume that for every bursting gametocytes within an

infected mosquito, it releases an average of Ng gametes upon bursting. The gametes population decreases

through natural decay at rate µs or at rate αs where gametes also get depleted through male and female

gametes fusing to form zygotes which is the second intermediate life-phase. The population of zygotes

Zv(t) increase through the developmental processes which is udergone by gametes to mature and pair-up

and fuse to form zygotes at rate
αs

2
Gm(t). The zygote population either decay naturally at rate µz or

proceed to further developmental changes into ookinetes and migrates to the midgut of the mosquito by

pass through the gull wall and then form the oocysts at rate αz . The oocysts population (Ov(t)) is the

last intermediate life-stage on within-mosquito scale where increase through developmental changes in

ookinetes to become oocysts at αzZv(t) and decrease through natural decay at rate µk or through bursting

of oocysts to release sporozoites at αk. The population of sporozoites (Pv(t)) increase by NkαkOv(t),

where we assume that each oocyst bursts at a rate of αk producing an average of Nk sporozoites upon

bursting. The population of sporozoites decrease through natural decay at rate µv or at rate αv which is

the excretion/shedding rate of mature sporozoites into the salivary glands of within-infected mosquito to

the community sporozoites load.

From the diagram shown in Figure (4.1), we have the following system of equations as a coupled multi-

scale model for malaria disease system transmission dynamics which is given by model (4.2.0.1).
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1.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)− [µH + γH + δH ] IH(t),

3.
dPh(t)

dt
=

βV PV (t)(SH(t)− 1)

(P0 + PV (t))ϕH(IH(t) + 1)
− µpPh(t),

4.
dLh(t)

dt
= Λl − βlPh(t)Lh(t)− µlLh(t),

5.
dL∗

h(t)

dt
= βlPh(t)Lh(t)− αlL

∗
h(t),

6.
dBh(t)

dt
= Λh − βhMh(t)Bh(t)− µbBh(t),

7.
dB∗

h(t)

dt
= (1− π)βhMh(t)Bh(t)− αmB

∗
h(t),

8.
dMh(t)

dt
= NlαlL

∗
h(t) +NmαmB

∗
h(t)− µmMh(t)− βhMh(t)Bh(t),

9.
dGh(t)

dt
= πβhMh(t)Bh(t)− (αh + µh)Gh(t).

10.
dGH(t)

dt
= Gh(t)αh(IH(t) + 1)− αHGH(t), (4.2.0.1)

11.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

12.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)− [µV + δV ] IV (t),

13.
dGv(t)

dt
=

βHGH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t),

14.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t),

15.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

16.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

17.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

18.
dPV (t)

dt
= Pv(t)αv (IV (t) + 1)− αV PV (t).
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Figure 4.1: A conceptual diagram of a coupled multiscale model (4.2.0.1) of malaria disease dynamics.

4.2.1 Reproductive Number

Using the next generation operator approach to calculate the basic reproductive number and we use the

[61]’s approach. The model system (4.2.0.1) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (4.2.1.1)

dZ

dt
= h(X,Y, Z),
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where

X = (SH(t), Lh(t), Bh(t), SV (t)),

Y = (IH(t), Ph(t), L
∗
h(t), B

∗
h(t), Gh(t), IV (t), Gv(t), Gm(t), Zv(t), Ov(t), Pv(t)), (4.2.1.2)

Z = (Mh(t), GH(t), PV (t)).

We define g̃(X∗, Z) by The disease free equilibrium is given by

E0 = (S0
H , I

0
H , P

0
h , L

0
h, L

∗0
h , B

0
h, B

∗0
h ,M

0
h , G

0
h, G

0
H , S

0
V , I

0
V , G

0
v, G

0
m, Z

0
v , O

0
v , P

0
v , P

0
V ),

=

(
ΛH

µH
, 0, 0,

Λl

µl
, 0,

Λh

µb
, 0, 0, 0, 0,

ΛV

µV
, 0, 0, 0, 0, 0, 0, 0

)
. (4.2.1.3)

By letting h1 =
dMh

dt
, h2 =

dGH

dt
and h3 =

dPV

dt
we obtain

h1 =
Nlαl

αl + µl

βlΛlβV (ΛH − µH)(µH + γH + δH)PV

µpµlϕH [βV ΛHPV + µH(µH + γH + δH)(P0 + PV )]

+
Nmαm

αm + µb

(1− π)βhΛhMh

µb
− (µmµb + βhΛh)Mh

µb

h2 =
αh

αh + µh

πβhΛh[βV ΛHPV + µH(µH + γH + δH)(P0 + PV )]Mh

µbµH(µH + γH + δH)(P0 + PV )
− αHGH , (4.2.1.4)

h3 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

βH(ΛV − µV )GH

µV ϕV (G0 +GH)
− αV PV ,

A =M −D, where M > 0 and D > 0, a diagonal matrix.

A =



∂h1
∂Mh

∂h1
∂GH

∂h1
∂PV

∂h2
∂Mh

∂h2
∂GH

∂h2
∂PV

∂h3
∂Mh

∂h3
∂GH

∂h3
∂PV


,

(4.2.1.5)

=



Nmαm

αm + µb

(1− π)βhΛh

µb
− µmµb + βhΛh

µb
0

Nlαl

αl + µl

βlΛlβV (ΛH − µH)

µpµlµHϕHP0

αh

αh + µh

πβhΛh

µb
−αH 0

0 a1 −αV


,
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M =



Nmαm

αm + µb

(1− π)βhΛh

µb
− µmµb + βhΛh

µb
0

Nlαl

αl + µl

βlΛlβV (ΛH − µH)

µpµlµHϕHP0

αh

αh + µh

πβhΛh

µb
0 0

0 a1 0


,(4.2.1.6)

D =



µmµb + βhΛh

µb
0 0

0 αH 0

0 0 αV


, (4.2.1.7)

D−1 =



µb
µmµb + βhΛh

0 0

0
1

αH
0

0 0
1

αV


, (4.2.1.8)

where a1 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

βH(ΛV − µV )

µV ϕVG0
.

MD−1 =



Nmαm

αm + µb

(1− π)βhΛh

µmµb + βhΛh
0

Nlαl

αl + µl

βlΛlβV (ΛH − µH)

µpµlµHαV ϕHP0

αh

αh + µh

πβhΛh

µmµb + βhΛh
0 0

0 QV 0


, (4.2.1.9)

where

QV =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

βH(ΛV − µV )

µV αHϕVG0

QH =
αh

αh + µh

πβhΛh

µmµb + βhΛh

Nlαl

αl + µl

βlΛlβV (ΛH − µH)

µpµlµHαV ϕHP0
(4.2.1.10)
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R0 = ρ(MD−1), which is given by

λ3 + b2λ
2 + b1λ+ b0 = 0, (4.2.1.11)

where

b2 = − Nmαm

αm + µb

(1− π)βhΛh

µmµb + βhΛh

b1 = 0, (4.2.1.12)

b0 = −QVQH ,

where

ΛH > µH ,

ΛV > µV . (4.2.1.13)

The solution is given by the cubic formulae

λ1 = −1

3
b2 + (H +O),

λ2 = −1

3
b2 −

1

2
(H +O)− 1

2

√
3(O −H), (4.2.1.14)

λ3 = −1

3
b2 −

1

2
(H +O) +

1

2

√
3(O −H),

where

H =
3

√
R+

√
D,

O =
3

√
R−

√
D,

D = Q3 +R2, (4.2.1.15)

Q =
3b1 − b22

9
,

R =
9b1b2 − 27b0 − 2b32

54
.
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Since b0 < 0, b1 = 0 and b2 < 0, therefore

Q = −b
2
2

9
< 0,

R =
−27b0 − 2b32

54
> 0, (4.2.1.16)

D =

(
− b

2
2

32

)3

+

(
−33b0 + 2b32

2× 33

)2

,

=
−4b62 + 36b20 + 2× 33b0b

3
2 + 4b62

22 × 36
,

=
33(33b0 + 2b32)

22 × 33 × 33
,

D =
b0(27b0 + 2b32)

108
> 0. (4.2.1.17)

Since R > 0 and D > 0, therefore

H =
3

√
R+

√
D > 0,

O =
3

√
R−

√
D > 0, (4.2.1.18)

H > O,

O −H < 0.

There are three possible values which may represent the value of reproductive number, these are mathe-

matically correct but not all of them gives us real positive solutions, some are complex numbers. We take

the real positive numbers only. Therefore λ1 > 0, and λ2 and λ3 are the imaginary roots of polynomial

equaton (4.2.1.11). Therefore we conclude that our reproductive number is given by

R0 = λ1 = −1

3
b2 + (H +O),

= −1

3
b2 +

[
3

√
R+

√
D +

3

√
R−

√
D

]
,

= −1

3
b2 +

 3

√
−27b0 − 2b32

54
+

√
b0(27b0 + 2b32)

108
+

3

√
−27b0 − 2b32

54
−
√
b0(27b0 + 2b32)

108

 ,
=

1

3

Nmαm

αm + µb

(1− π)βhΛh

µmµb + βhΛh
(4.2.1.19)

+

3

√√√√√√27QVQH + 2
(

Nmαm
αm+µb

(1−π)βhΛh

µmµb+βhΛh

)3
54

+

√√√√√QVQH

(
27QVQH + 2

(
Nmαm
αm+µb

(1−π)βhΛh

µmµb+βhΛh

)3)
108

+

3

√√√√√√27QVQH + 2
(

Nmαm
αm+µb

(1−π)βhΛh

µmµb+βhΛh

)3
54

−

√√√√√QVQH

(
27QVQH + 2

(
Nmαm
αm+µb

(1−π)βhΛh

µmµb+βhΛh

)3)
108
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4.2.2 Positivity of solutions

The multiscale model (4.2.0.1) describes the dynamics of human, mosquito and parasite populations and

it is essential to show that these populations are positive for all t ≥ 0. We have to prove the following

theorem.

Theorem 4.1. The solutions of the multiscale model (4.2.0.1) satisfy the following initial conditions which

strictly positive components i.e. (SH > 0, IH > 0, Ph > 0, Lh > 0, L∗
h > 0, Bh > 0, B8

h > 0, Mh > 0,

Gh > 0, GH > 0, SV > 0, IV > 0, Gv > 0, Gm > 0, Zv > 0, Ov > 0, Pv > 0,PV > 0) for all t > 0.

Proof. We prove that the solution of the multiscale model (4.2.0.1) of which the solution starts from a

strictly positive point, all components are positive for 0 ≤ t ≤ t0.

dSH(t)

dt
=≥ −(λV (t) + µH)SH(t), (4.2.2.1)

The equation can be solved by the separable variable as follows.

dSH(t)

SH(t)
≥ −(λV (t) + µH)dt. (4.2.2.2)

By leting

t̂ = sup{t > 0 : SH > 0, IH > 0, Ph > 0, Lh > 0, L∗
h > 0, Bh > 0, B∗

h > 0,Mh > 0, Gh > 0,

GH > 0, SV > 0, IV > 0, Gv > 0, Gm > 0, Zv > 0, OV .0, P − [v].0, P − [V ].0} ∈ [0, t],

and integrating equation (4.2.2.2), and we obtain

ln(SH(t)) ≥ −
(∫ t

0
λV (t̂)dt̂+ µHt

)
+ ln(SH(0)),

SH(t) ≥ SH(0) exp

{
−
(∫ t

0
λV (t̂)dt̂+ µHt

)}
.

It implies that

lim
t→∞

inf(SH(t)) ≥ 0.

Using similar method, we obtain

IH(t) ≥ IH(0) exp{−(µH + γH + δH)t},

lim
t→

inf(IH) ≥ 0.

Using similar principle on the sporozoites population (Ph) within-human dynamics, we obtain

Ph(t) ≥ Ph(0) exp{−µpt},

lim
t→∞

inf(Ph(t)) ≥ 0. (4.2.2.3)
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Using Similar method, it can be shown that

lim
t→∞

(Lh(t)) ≥ 0,

lim
t→∞

(Lh∗(t)) ≥ 0,

lim
t→∞

(Bh(t)) ≥ 0,

lim
t→∞

(B∗
h(t)) ≥ 0,

lim
t→∞

(Mh(t)) ≥ 0,

lim
t→∞

(Gh(t)) ≥ 0,

lim
t→∞

(GH(t)) ≥ 0,

lim
t→∞

(SV (t)) ≥ 0, (4.2.2.4)

lim
t→∞

(IV (t)) ≥ 0,

lim
t→∞

(Gv(t)) ≥ 0,

lim
t→∞

(Gm(t)) ≥ 0,

lim
t→∞

(Zv(t)) ≥ 0,

lim
t→∞

(Ov(t)) ≥ 0,

lim
t→∞

(Pv(t)) ≥ 0,

lim
t→∞

(PV (t)) ≥ 0,

Thus, when starting with no-negative initial value conditions in the multiscale model (4.2.0.1), the solu-

tions of the model will remain non-negative for all t ≥ 0, and this completes the proof.

4.2.3 Invariant Region

Let NH represent the total human population and by letting NH = SH + IH and adding first and second

equations in system (4.2.0.1)

dNH

dt
=

dSH
dt

+
dIH
dt

,

= ΛH − µHNH − δHIH ,

≤ ΛH − µHNH . (4.2.3.1)

It implies that

lim
t→∞

Sup(NH(t)) ≤ ΛH

µH
. (4.2.3.2)
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Applying the similar method letting NV = SV + IV , where NV is the total mosquitoes population, and

by adding fourth and fifth equations in system (4.2.0.1), we obtain

dNV

dt
≤ ΛV − µVNV . (4.2.3.3)

It implies that

lim
t−→∞

Sup(NV (t)) ≤
ΛV

µV
. (4.2.3.4)

Let Nh represent the total liver cells population, where Nh = Lh + L∗
h. By adding equations thirteen and

fourteen we obtain
dNh

dt
≤ Λl − µlNh. (4.2.3.5)

It implies that

lim
t→∞

Sup(Nh(t)) ≤
Λl

µl
. (4.2.3.6)

Let the total red blood cells population beNr, such thatNr = Bh+B
∗
h. From adding the equations fifteen

and sixteen of the system (4.2.0.1), we obtain

dNr

dt
≤ Λh − µbNr. (4.2.3.7)

This implies that

lim
t→∞

Sup(Nr(t)) ≤
Λh

µb
. (4.2.3.8)

Therefore all feasible solutions of the model system (4.2.0.1) are positive and eventually enter the invariant

attracting region

Ω = ((SH , IH , Ph, Lh, L
∗
h, Bh, B

∗
h,Mh, Gh, GH , SV , IV , Gv, Gm, Zv, Ov, Pv, PV ) :

0 ≤ SH + IH ≤ Ω1, 0 ≤ SV + IV ≤ Ω2, 0 ≤ Lh + L∗
h ≤ Ω3, 0 ≤ Bh +B∗

h ≤ Ω4,

0 ≤Mh ≤ Ω5, 0 ≤ Gh ≤ Ω6, 0 ≤ GH ≤ Ω7, 0 ≤ Gv ≤ Ω8, 0 ≤ Gm ≤ Ω9, (4.2.3.9)

0 ≤ Zv ≤ Ω10, 0 ≤ Ov ≤ Ω11, 0 ≤ Pv ≤ Ω12, 0 ≤ PV ≤ Ω13),

where
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Ω1 =
ΛH

µH
,

Ω2 =
ΛV

µV
,

Ω3 =
Λl

µl
,

Ω4 =
Λh

µb
,

Ω5 =
NlαlµbΛl +NmαmµlΛh

µl(µmµb + βhΛh)
,

Ω6 =
1

αh + µh

πβhΛh [NlαlµbΛl +NmαmµlΛh]

µlµb(µmµr + βhΛh)
,

Ω7 =
αh

αh + µh

πβhΛhd1
αHµHµLµr(µmµr + βhΛh)

, (4.2.3.10)

Ω8 =
1

αg + µg

παhβhΛhβH(ΛV − µV )d1
ϕV (ΛV + µV )d2

,

Ω9 =
Ngαg

αg + µg

1

αs + µs

παhβhΛhβH(ΛV − µV )d1
ϕV (ΛV + µV )d2

,

Ω10 =
1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

παhβhΛhβH(ΛV − µV )d1
ϕV (ΛV + µV )d2

,

Ω11 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

παhβhΛhβH(ΛV − µV )d1
ϕV (ΛV + µV )d2

,

Ω12 =
1

2

Nkαk

αk + µk

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αv + µv

παhβhΛhβH(ΛV − µV )d1
ϕV (ΛV + µV )d2

,

Ω13 =
1

2

Nkαk

αk + µk

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

αv

(αv + µv)

παhβhΛhβH(ΛV − µV )d1
αV µV ϕV d2

,

where

d1 = (ΛH + µH) [NlαlµbΛl +NmαmµlΛh] ,

d2 = G0µHαHµlµb(αh + µh)(µmµb + βhΛh) + αhπβhΛhd1. (4.2.3.11)

Any solution of the model (4.2.0.1) which commences in Ω at any time t ≥ 0 will always remain confined

in the region. Whenever ΛH > µH and ΛV > µV , Ω is positively invariant and attracting and it is

sufficient to consider solutions of the system of equations (4.2.0.1) in Ω. So the model (4.2.0.1) is hence

well presented mathematically and biologically.

4.3 Numerical Simulation

In this section, we carry out a numerical simulations of a coupled multiscale model of malaria disease

system, in order to illustrate some of the analytical results obtained in this work. We compute the model

system to outline the effect of different parameter values. The behaviour of model system (4.2.0.1) was
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investigated using Python program version (2.7) in the windows operation system (Windows 10). The

parameter values used for model simulation are presented and described in Tables (4.1), (4.2), (4.3) and

(4.4). Some of the parameter values utilised in this research work were taken from published literature and

some were estimated from experimental studies. The reason why some parameter values are assumed or

estimated is that the multiscale modeling of malaria infectious disease, which includes the within-human

host scale and within-mosquito scale, are limited or the parameter values found in existing literature are

not suitable for this model. The model developed in this work, was simulated using the initial value

conditions given by SH(0) = 10000, IH(0) = 70, Ph(0) = 1000, Lh(0) = 100, L∗
h(0) = 10, Bh(0) =

10, B∗
h(0) = 10, Mh(0) = 10, Gh(0) = 100, GH(0) = 60000, SV (0) = 100000, IV (0) = 200,

Gv(0) = 100, Gm(0) = 100, Zv(0) = 10, Ov(0) = 10, Pv(0) = 10 and PV (0) = 40000.

Table 4.1: Between-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source
ΛV Rate of recruitment of susceptible

mosquitoes.

2000 1000-3000 Mosquitoes per

day

[35]

βV Contact rate of susceptible humans with

the infectious reservoir of mosquitoes.

0.32135 2.7× 10−3-0.64 day−1 [35]

µV Natural death rate of mosquitoes. 0.12 0.033-0.3 day−1 [24]
δV induced death rate of infected

mosquitoes.

0.00000426 4.26 × 10−6 −
5.33× 10−6

day−1 [24]

P0 Half saturation constant associated with

the infection of humans.

1× 108 17 − 5× 108 day−1 [24]

ϕV Proportion of new infected mosquitoes

in the total infected mosquito popula-

tion.

0.0001 0.0001-0.01 day−1 Assumed

αV Rate of clearance of community sporo-

zoite load.

0.3 0.09-0.99 day−1 [24]
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Table 4.2: Between-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source
ΛH Rate of recruitment of Susceptible hu-

mans.

600 10-800 Humans per day [35]

βH Infection rate of susceptible

mosquitoes.

0.356 0.072-0.64 day−1 [35]

µH Natural death rate of humans. 0.00004 0.00001-

0.00008

day−1 [24]

δH Disease induced death rate of humans. 0.003454 1 × 10−15 −
4.1× 10−4

day−1 [35]

γH Natural recovery rate of humans. 0.0092 0.0014-0.017 day−1 [35]
G0 Half saturation constant associated with

the infection of mosquitoes.

5× 108 1×108−1×109 day−1 [24]

ϕH Proportion of new infected humans in

the total infected human population.

0.0001 0.0001-0.01 day−1 Assumed

αH Rate of clearance of community game-

tocyte load.

0.0000913 0.0000467-

0.000274

day−1 [24]

Table 4.3: Within-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source
αg Rate at which gametocyte infected ery-

throcytes burst within ifected mosquito.

96 90-100 day−1 [24]

µg Decay rate of gametocytes within in-

fected mosquito.

0.0625 0.0326-0.0725 day−1 [24]

Ng Number of gametes produced per ga-

metocyte infected erythrocyte within

infected mosquito.

2 1-3 day−1 [24]

αz Rate at which zygote develop into

oocysts.

0.4240 0.01-0.5 day−1 [24]

µz Natural death rate of zygote. 1 1-4 day−1 [24]
αs Fertilisation of gametes. 0.2 0.01-0.2 day−1 Assumed
µs Natural death rate of gametes. 58 40-129 day−1 [24]
αk Bursting rate of oocysts to produce

sporozoites.

0.2 0-1 day−1 [24]

Nk Number of sporozoites produced per

bursting oocysts.

3 000 1000-10000 day−1 [24]

µk Natural death rate of oocysts. 0.01 0.071-0.143 day−1 [24]
αv Rate at which sporozoites become in-

fectious to humans.

0.025 0.0167-1 day−1 [24]

µv Natural death rate of sporozoites. 0.0001 0.0001-0.01 day−1 [24]



Chapter 4 120

Table 4.4: Within-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source
Λl Rate of supply of uninfected liver cells. 3000 Cells per day [60]
µp Decay rate of sporozoites. 1.2× 10−11 day−1 [45]
βl Rate of infection of hepatocytes by

sporozoites.

1× 10−6 day−1 [45]

µl Natural decay rate of liver cells. 0.029 day−1 [45]
αl Rate at which infected liver cell bursts. 0.02 day−1 [45]
Nl Number of merozoites produced per

bursting pre-erythrocytes.

10 000 day−1 [45]

Λh Rate of suppy of uninfected red blood

cells.

200 100-300 cells per day [24]

βh Rate of infection of red blood cells (ery-

throcytes).

0.1 2× 10−9-0.2 day−1 [24]

αh Rate at which gametocytes develop and

become infectious within infected hu-

man.

0.4 0.01-0.9 day−1 [24, 47]

µh Natural death rate of gametocyte in-

fected erythrocytes within infected hu-

man.

0.0625 0.0600-0.0625 day−1 [24]

µb Natural decay rate of red blood cells. 0.0083 0.006-0.1 day−1 [24]
µm Natural decay rate of free merozoites 0.001 0.001-0.5 day−1

π Proportion of gametocytes infected ery-

throcytes.

0.1 0.1-0.5 day−1 [24]

Nm Number of merozoites produced per

bursting erythrocytes.

16 10-30 day−1 [24]

αm Rate at which erythrocytes burst to pro-

duce merozoites.

0.5 0.1-1.0 day−1 [24]

4.3.1 Global sensitivity analysis

Employing the tornado plot sensitivity analysis will allow us to establish which parameters influences the

model outcomes when we decrease or increase certain parameter values. We need to determine which

parameters should we target to reduce the reproductive number (R0).
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Figure 4.2: Tornado plot showing Partial Rank Correlation Coefficients of the reproductive number (R0)

In Figure (4.2), showing the global sensitivity analysis of reproductive number (R0) using the tornado

plot. If the parameter values are positive, partial rank correlation coefficients (PRCCs) has a potential to

increase the value of R0 if the parameter values are increased. The parameter values which have negative

PRCCs have influence of reducing the value ofR0 when we increase the parameter values. The parameters

ΛV , βV , αs, βl, π, ΛH , βH , αz , Nl, αl and Λl have the highest impact in raising the value of R0 when

these parameters are increased. The parameters µl, ϕH , ϕV , P0, G0, αH , µV and µp have the highest

impact in reducing the value of R0 when these parameter values are increased. The parameter values

may have either positive or negative PRCCs, it is crucial to discover whether there is an increasing or

decreasing trend when the parameter values are varied.
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4.3.2 The influence of between-human scale parameters on within-human scale variables
for malaria infection

This subsection demonstrates through numerical analysis results of coupled multiscale model (4.2.0.1) the

evidence for the influence of between-human scale parameters on within-human scale variables for malaria

infection dynamics. We evaluate the different values of between-human scale parameters (ϕH , αH , βH
and G0) and assess their influence on the dynamics of the within-human scale variables ((a) population

of infected liver-cells L∗
h, (b) population of infected red-blood cells B∗

h, (c) population of merozoites Mh

and (d) population of gametocytes Gh).

Figure 4.3: Simulation of model (4.2.0.1) showing the evolution in time of (a) population of infected liver

cellsL∗
h, (b) population of infected red blood cellsB∗

h, (c) population of merozoitesMh and (d) population

of gametocytes Gh for different values of the proportion of new incfected humans ϕH : ϕH = 0.0001,

ϕH = 0.0005 and ϕH = 0.0009.

Figure (4.3) demonstrates graphs of numerical results of the coupled multiscale model system (4.2.0.1)

presenting the dynamics on (a) population of infected liver-cells L∗
h, (b) population of infected red-blood

cells B∗
h, (c) population of merozoites Mh and (d) population of gametocytes Gh for different values of

the proportion of new infected humans ϕH : ϕH = 0.0001, ϕH = 0.0005 and ϕH = 0.0009. The results

show that as the proportion of nwe infected humans increase, there is a observable decrease in the popu-

lation of infected liver-cells and population of merozoites and there is no change in population of infected

red blood cells and population of gametocytes. Therefore, ϕH has an impact in the reduction of malaria

infection in liver cells and also in the production of merozoites.

In Figure (4.4), illustrates graphs of numerical solutions of the coupled multiscale model (4.2.0.1) showing

the changes on (a) population of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)
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population of merozoites Mh and (d) population of gametocytes Gh for different values of clearance rate

of community gametocytes load αH : αH = 0.0000913, αH = 0.000913 and αH = 0.00913. The results

in Figure (4.4) indicate that as the clearance rate of community gametocytes load αH increase, there

is observable decrease in the population of infected liver cells L∗
h and population of merozoites Mh no

changes in the population of infected red blood cells B∗
h and the population of infected gametocytes G∗

h.

This also give evidence of the influence of the between-human scale parameters on the malaria infection

dynamics at the within-human scale.

Figure 4.4: Simulation of model (4.2.0.1) showing the evolution with time of (a) population of infected

liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c) population of merozoites Mh and (d)

population of gametocytes Gh for different values of clearance rate of community gametocytes load αH :

αH = 0.0000913, αH = 0.000913 and αH = 0.00913.

Figure (4.5) demonstrates the changes in (a) population of infected liver cellsL∗
h, (b) population of infected

red blood cells B∗
h, (c) population of merozoites Mh and (d) population of gametocytes Gh for different

values of the infection rate of susceptible mosquitoes βH : βH = 0.00356, βH = 0.0356 and βH = 0.356.

The results from figure (4.5) show that as the increase in the infection rate of susceptible mosquitoes βH ,

there is also observable increase in the within human scale malaria infection (population of infected liver

cells L∗
h and population of merozoites Mh) and there is no influence on population of infected red blood

cells and population of gametocytes.
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Figure 4.5: Simulation of model (4.2.0.1) showing the evolution with time of (a) population of infected

liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c) population of merozoites Mh and (d)

population of gametocytes Gh for different values of the infection rate of susceptible mosquitoes βH :

βH = 0.00356, βH = 0.0356 and βH = 0.356.

Figure (4.6) presents graphs of numerical simulation of the coupled multiscale model (4.2.0.1) depicts the

dynamics of (a) population of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)

population of merozoites Mh and (d) population of gametocytes Gh for different values of half saturation

constant associated with the infection of mosquitoes (G0): G0 = 100000000, G0 = 500000000 and

G0 = 900000000. The results indicate that as the half saturation constant associated with the infection

of mosquitoes G0 increase, there is a noticeable decrease in in the within human malaeia infection that

is population of infected liver cells L∗
h and population of merozoites Mh and there is no difference in the

within host malaria infection dynamics on population of infected red blood cellsn B∗
h and population of

gametocytes Gh. Therefore, the between-human scale parameter will assist in administration of vaccine

which will have effect on the within-human disease dynamics. This again give evidence that the between-

human disease parameterhave influence on within-human disease processes.
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Figure 4.6: Simulation of model (4.2.0.1) showing the evolution with time of (a) the population of infected

liver cells L∗
h, (b) the population of infected red blood cells B∗

h, (c) the population of merozoites Mh and

(d) the population of gametocytes Gh for different values of half saturation constant associated with the

infection of mosquitoes G0: G0 = 100000000, G0 = 500000000 and G0 = 900000000.

4.3.3 The influence of between-human scale parameters on within-mosquito scale vari-
ables for malaria infection

In this sub-section, we examine numerically the effect of the between-human sub-model parameters (βH
and G0) on within-mosquito scale malaria infection variables ((a) population of gametocytes within in-

fected mosquitoes Gv, (b) population of gametes Gm, (c) population of zygotes Zv and (d) population of

sporozoites Pv). Figure (4.7) demonstrates graphs of numerical solutions of multiscale model (4.2.0.1)

showing the changes in (a) population of gametocytes within infected mosquitoes Gv, (b) population of

gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for different values of

half saturation constant associated with the infection of mosquitoes G0: G0 = 5000000, G0 = 50000000

and G0 = 500000000. The solutions in fig.(4.7) depict as the half saturation constant associated with the

infection rate of mosquitoes G0increase, thre is visible decrease im malaria infction on within-mosquito

dynamics (Gv, Gm, Zv and Pv). However, this between-human scale parameter is targeted for admin-

istering of vaccine which has an impact on reducing malaria infection in both between-host scale and

within-mosquito scale.
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Figure 4.7: Graphs showing the changes in (a) population of gametocytes within infected mosquitoes

Gv , (b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for

different values of half saturation constant associated with the infection of mosquitoesG0: G0 = 5000000,

G0 = 50000000 and G0 = 500000000.

Figure (4.8) examines graphs of numerical solutions of the multiscale model (4.2.0.1) presenting the

changes in (a) population of gametocytes within infected mosquitoes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv and (d) population of sporozoites Pv for different values of the clearance

rate of community gametocyte load (αH): αH = 0.0000913, αH = 0.00913 and αH = 0.913. The

results in fig.(4.8) indicate that as the clearance rate of community sporozoites load αH increase, there is

observble slightly decrease in malaioa infection on all within-mosquito scale variables ((a) population of

gametocytes within infected mosquitoes Gv, (b) population of gametes Gm, (c) population of zygotes Zv

and (d) population of sporozoites Pv).



Chapter 4 127

Figure 4.8: Graphs showing the changes in (a) population of gametocytes within infected mosquitoes Gv ,

(b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for

different values of the clearance rate of community gametocyte load (αH): αH = 0.0000913, αH =

0.00913 and αH = 0.913.

Figure(4.9) illustrates the dynamics in (a) population of gametocytes within infected mosquitoes Gv, (b)

population of gametesGm, (c) population of zygotes Zv and (d) population of sporozoites Pv for different

values of the contact rate of susceptible mosquitoes with the infectious reservoir of humans βH : βH =

0.00356, βH = 0.0356 and βH = 0.356. The results in fig.(4.9) demontrate that an increase in the contact

rate of susceptible mosquitoes with the infectious reservoir of humans βH results in an increase of malaria

infection in within-mosquito variables ((a) population of gametocytes within infected mosquitoes Gv, (b)

population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv).
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Figure 4.9: Graphs showing the changes in (a) population of gametocytes within infected mosquitoes Gv ,

(b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for

different values of the contact rate of susceptible mosquitoes with the infectious reservoir of humans βH :

βH = 0.00356, βH = 0.0356 and βH = 0.356.

4.3.4 The influence of between-mosquito scale parameters on within-human scale vari-
ables for malaria infection

In this sub-section, we examine numerically the impact of between-mosquito sub-model parameters (ϕV ,

αV , βV , δV , ΛV , µV and P0) on the within-human sub-model for malaria pathogen interacting with the

liver-cells and red-blood cells within a single infected human.Fig. (4.10)- fig.(4.16) present the influence

in the different values of between mosquito parameters (ϕV , αV , βV , δV , ΛV , µV and P0) on the malaria

infection dynamics of the within-scale variables ((a) the population of infected liver-cells L∗
h, (b) popula-

tion of infected red blood cells B∗
h, (c) population of merozoites Mh and (d) population of gametocytes

Gh).

Figure (4.10) demonstrates graphs of numerical simulations of the multiscale model (4.2.0.1) presenting

the changes in (a) the population of infected liver-cells L∗
h, (b) population of infected red blood cells B∗

h,

(c) population of merozoites Mh and (d) population of gametocytes Gh for different values of proportion

of new infected mosquitoes in the total infected mosquito population ϕV : ϕV = 0.0001, ϕV = 0.001 and

ϕV = 0.01. The simulation in figure (4.10) show that as the proportion of new infected mosquitoes in the

total infected mosquito population ϕV increase, there is observable slightly reduction in the population

of infected liver-cells L∗
h and population of merozoites Mh and there is no difference in the infected

red-blood cells B∗
h and the population of gametocytes Gh. These results indicate that the variation of
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the proportion of new infected mosquitoes for different values influence the within-huiman scale disease

dynamics on infection of liver cells and the production of merozoites. However, if there is an intervention

that increase the between-mosquito parameter ϕV will have an impact in reducing the malaria infection

on within-human scale.

Figure 4.10: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population of

infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh and

(d) population of gametocytes Gh for varying the values of proportion of new infected mosquitoes in the

total infected population ϕV : ϕV = 0.0001, ϕV = 0.001 and ϕV = 0.01.

Figure (4.11) depicts graphs of numerical simulations of the multiscale model (4.2.0.1) presenting the

varation of (a) population of infected liver-cells L∗
h, (b) population of infected red blood cells B∗

h, (c)

population of merozoites Mh and population of gametocytes Gh for different values of clearance rate of

community sporozoites αV : αV = 0.1, αV = 0.3 and αV = 0.5. The solutions in figure (4.11) indicate

that as the clearance rate of community sporozoites load αV increase, there is a visible reduction in the

population of infected liver-cells L∗
h and population of merozoites Mh and we also notice that there is

no difference on the disease dynamics of population of infected red blood cells B∗
h and population of

gametocytes Gh. Therefore, this indicate that between-mosquito scale parameter has impact on within-

human scale malaria infection dynamics.
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Figure 4.11: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population of

infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh and

(d) population of gametocytes Gh for varying the values of clearance rate of community sporozoites load

αV : αV = 0.1, αV = 0.3 and αV = 0.5.

Figure (4.12) depicts the simulations of the multiscale model (4.2.0.1) presenting the variation of (a) popu-

lation of infected liver cells L∗
h, (b) population of infected red blood cellsB∗

h, (c) population of merozoites

Mh and (d) population of gametocytes Gh for different values of contact rate of susceptible humans with

the infectious reservoir of mosquitoes βV : βV = 0.0032135, βV = 0.032135 and βV = 0.32135. The

solutions in figure (4.12) present that as the contact rate of susceptible humans with infectious reservoir

of mosquitoes βV increase, we observe an increase in the population of infected liver cells L∗
h and popu-

lation of merozoites Mh and we also observe that there is no difference in the population of infected red

blood cells B∗
h and population of gametocytes Gh. Therefore, this results gives evidence that the between

mosquito parameter has influence on the invasion of liver-cells and the production of merozoites.

Figure (4.13) presents the numerical solutions of the multiscale model (4.2.0.1) illustrating the variations

of (a) population of infected liver cells L∗
h, population of infected red blood cells B∗

h, (c) population

of merozoites Mh and (d) population of gametocytes Gh for different values of induced death rate of

infectected mosquitoes δV : δV = 0.00000426, δV = 0.000426 and δV = 0.0426. The results in figure

(4.13) demonstrate that as the induced death rate of infected mosquitoes increase, there is observable
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reduction in the malaria infection on the population of liver-cells L∗
h and the population of merozoites Mh

and there is no difference in the population of infected red-blood cells B∗
h and population of gametocytes

Gh. Therefore, any intervention that increase the death rate of mosquitoes has an impact in reducing the

malaria infection within-infected humans.

Figure 4.12: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population

of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh

and (d) population of gametocytes Gh for varying the values of contact rate of susceptible humans with

the infectious reservoir of mosquitoes βV : βV = 0.0032135, βV = 0.032135 and βV = 0.32135.

Figure (4.14) depicts the dynamics the dynamics in the (a) population of infected liver-cells L∗
h, (b) popu-

lation of infected red blood cells B∗
h, (c) population of merozoites Mh and (d) population of gametocytes

Gh for different values of supply rate of mosquitoes ΛV : ΛV = 1000, ΛV = 2000 and ΛV = 3000. The

results in fig.(4.14) show that as the supply rate of mosquitoes increase, there is observable increase in

the population of infected liver cells L∗
h and population of merozoites Mh and there is no changes in the

dynamics of the population of infected red blood cells B∗
h and population of gametocytes Gh. Therefore,

any intervention that inhibits the breeding of mosquitoes has an influence in reducing malaria infecion at

within human scale.
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Figure 4.13: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population

of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh

and (d) population of gametocytes Gh for varying the values of induced death rate of mosquitoes δV :

δV = 0.00000426, δV = 0.000426 and δV = 0.0426.

Figure (4.15) demonstrates the changes in (a) population of infected liver cells L∗
h, (b) population of

infected red blood cells B∗
h, (c) population of merozoites Mh and (d) population of gametocytes Gh

for different values of natural decay rate of mosquitoes µV : µV = 0.0012, µV = 0.012 and µV =

0.12. The results in fig.(4.15) show that as the natural death rate of mosquitoes increase, there is visible

reduction of within-human scale malaria infection on population of infected liver cells L∗
h and population

of merozoitesMh and there is no difference in the population of infected red blood cellsB∗
h and population

of gametocytes Gh. However, this indicate that the variation of natural decay rate of mosquitoes for

different values influence the within-human malaria disease dynamics only on invasion of liver cells and

production of merozoites.
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Figure 4.14: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population

of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites

Mh and (d) population of gametocytes Gh for varying the values of recruitment rate of mosquitoes ΛV :

ΛV = 1000, ΛV = 2000 and ΛV = 3000.

Figure (4.16) presents graphs of numerical simulutions of multiscale model (4.2.0.1) presenting the varia-

tion of (a) population of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c) popula-

tion of merozoitesMh and (d) population of gametocytesGh for different values of half saturation constant

associated with the infection of humans P0: P0 = 50000000, P0 = 100000000 and P0 = 150000000.

The numerical solutions in fig(4.16) depicts that as the half saturation constant associated with the in-

fection of humans P0 increase, there is visible reduction in malaria infection on population of infected

liver cells L∗
h and population of merozoites Mh and we observe that there is no difference in the malaria

disease dynamics on population of infectect red blood cells B∗
h and population of gametocytes Gh. The

administration of vaccine is effective on this between-host parameter which has an impact of reducing the

malaria infection on within human scale variables.
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Figure 4.15: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population

of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh

and (d) population of gametocytes Gh for varying the values of natural decay rate of mosquitoes µV :

µV = 0.0012, µV = 0.012 and µV = 0.12

Figure 4.16: Simulations of multiscale model (4.2.0.1) depicting the evolution in time of (a) population

of infected liver cells L∗
h, (b) population of infected red blood cells B∗

h, (c)population of merozoites Mh

and (d) population of gametocytes Gh for varying the values of half saturation constant associated with

the infection of humans P0: P0 = 50000000, P0 = 100000000 and P0 = 150000000.
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4.3.5 Assessment of the influence of between-mosquito scale parameters on within-mosquito
scale variables for malaria infection

In this sub-section, we investigate the numerically the influence of between-mosquito sub-model parame-

ters (ϕV , αV , and βV ) on within-mosquito sub-model for malaria dynamic of ((a) population of gameto-

cytes for within infected mosquitoes Gv, (b) population of gametes Gm, (c) population of zygotes Zv and

(c) population of sporozoites Pv).

Figure (4.17) demonstrates graphs of numerical results of the multiscale model (4.2.0.1) showing the

dynamics of (a) population of gametocytes within infected mosquitoes Gv, (b) population of gametes

Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for different values of proportion

of new infected mosquitoes in the total infected mosquito population ϕV : ϕV = 0.0001, ϕV = 0.0003 and

ϕV = 0.0005. From our numerical simulation in fig. (4.17), we note that as the proportion of new infected

mosquitoes in the total infected mosquito population ϕV increase, there is visible decrease in within-

mosquito scale variables ((a) population of gametocytes within infected mosquitoes Gv, (b) population

of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv). Therefore, there is

evidence that between-mosquito dynamics have an impact on within-mosquito scale malaria infection.

Figure 4.17: Graphs showing changes in (a) population of gametocytes within infected mosquitoes Gv ,

(b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for

different values of proportion of new infected mosquitoes in the total infected mosquito population ϕV :

ϕV = 0.0001, ϕV = 0.0003 and ϕV = 0.0005.

Figure(4.18) demonstrates graphs of numerical simulations of multiscale model (4.2.0.1) showing the

changes in (a) population of gametocytes within infected mosquitoes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv and (d) population of sporozoites Pv for different values of clearance rate of

community sporozoite load αV : αV = 0.1, αV = 0.3 and αV = 0.5. From the numerical solutions in fig.
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(4.18) present that as the clearance rate of community sporozoite load αV increase, there is visible slightly

decrease in tha malaria infection on within-mosquito dynamics of (a) population of gametocytes within

infected mosquitoes Gv, (b) population of gametes Gm, (c) population of zygotes Zv and (d) population

of sporozoites Pv. Therefore, any interventions that clearace the community sporozoity load has an impact

of reducing malaria infection in both between-mosquito scale and within-mosquito scale.

Figure 4.18: Graphs showing changes in (a) population of gametocytes within infected mosquitoes Gv ,

(b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporozoites Pv for

different values of clearance rate of community sporozoite load αV : αV = 0.1, αV = 0.3 and αV = 0.5.

Figure (4.19) illustrates graphs of numerical simulations of the multiscale model (4.2.0.1) showing changes

in (a) population of gametocytes within infected mosquitoes Gv, (b) population of gametes Gm, (c) popu-

lation of zygotes Zv and (d) population of sporozoites Pv for different values of contact rate of susceptible

humans with the infectious reservoir of mosquitoes βV = 0.0052135, βV = 0.052135 and βV = 0.52135.

From the numerical simulations in fig.(4.19) display that as the contact rate of susceptible humans with

the infectious reservoir of mosquitoes increase, we discover that there is an increase of malaria infec-

tion on within-mosquito scale that is on the dynamics of (a) population of gametocytes within infected

mosquitoes Gv, (b) population of gametes Gm, (c) population of zygotes Zv and (d) population of sporo-

zoites Pv. Therefore, any interventions that prevent the contact of human hosts with the mosquitoes have

an impact in reducing malaria infection on within-mosquito scale.
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Figure 4.19: Graphs showing changes in (a) population of gametocytes within infected mosquitoesGv , (b)

population of gametesGm, (c) population of zygotes Zv and (d) population of sporozoites Pv for different

values of contact rate of susceptible humans with the infectious reservoir of mosquitoes βV = 0.0052135,

βV = 0.052135 and βV = 0.52135.

4.3.6 The influence of within-human scale parameters on between-hosts scale variables
for malaria infection

In this sub-section, we illutrate the numerical results of multiscale model (4.2.0.1) present the changes

in (a) population of infected humans IH , (b) community gametocyte load GH , (c) population of infected

mosquyitoes IV and (d) community sporozoite load PV over time in days for different values of four

within-human scale selected parameters (π, αh, and µh). We demonstrate the influence of these four

within human scale malaria infection dynamics parameters (π, αh, and µh) on between host scale variables

((a) population of infected humans IH , (b) community gametocyte load GH , (c) population of infected

mosquyitoes IV and (d) community sporozoite load PV ).

Figure (4.20) presents variations in (a) population of infected humans IH , (b) community gametocyte

load GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV over time in

days for different values of proportion of gametocytes infected erythrocytes π: π = 0.1, π = 0.3 and

π = 0.5. The numerical results indicate that as the proportion of gametocytes infected erythrocytes π

within infected humans increase, there is also a visible increase in the population of infected humans IH
, community gametocyte load GH , population of infected mosquitoes IV and community sporozoite load

PV .
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Figure 4.20: Numerical solutions presenting changes in (a) population of infected humans IH , (b) commu-

nity gametocyte load GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load

PV over time in days for different values of proportion of gametocytes infected erythrocytesπ: π = 0.1,

π = 0.3 and π = 0.5.

Figure (4.21) presents dynamics of (a) population of infected humans IH , (b) community gametocyte load

GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV over time in days

for different values of rate at which gametocytes develop and become infectious within infected human αh:

αh = 0.002, αh = 0.02 and αh = 0.2. The numerical simulation results present that as the rate at which

gametocytes develop and become infectious within infected human increase, visible increase in population

of infected humans, community gametocyte load, infected mosquitoes and community sporozoite load.

The results suggest that intervention measures that aimed at reducing the shedding/excretion rate at which

gametocytes develop and become infectious within infected human which has an impact in reducing the

transmission of malaria at population-level.
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Figure 4.21: Numerical solutions presenting changes in (a) population of infected humans IH , (b) com-

munity gametocyte load GH , (c) population of infected mosquyitoes IV and (d) community sporozoite

load PV over time in days for different values of rate at which gametocytes develop and become infectious

within infected human αh: αh = 0.002, αh = 0.02 and αh = 0.2.

Figure (4.22) shows the evolution of (a) population of infected humans IH , (b) community gametocyte

load GH , (c) population of infected mosquitoes IV and (d) community sporozoite load PV over time

in days for different values of natural decay rate of gametocytes within infected human µh = 0.00625,

µh = 0.0625 and µh = 0.625. The numerical simulation results in fig. (4.22) show that as natural

decay rate of gametocytes within infected human increase, there is visible reduction on between-host

malaria dynamics of population of infected humans IH , community gametocyte load GH , population

of infected mosquitoes IV and community sporozoites load PV . The results suggest that intervention

measures targeted at giving treatments that kills gametocyte within infected humans have an impact on

reducing the transmission of malaria disease at population-level.
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Figure 4.22: Numerical solutions presenting changes in (a) population of infected humans IH , (b) com-

munity gametocyte load GH , (c) population of infected mosquyitoes IV and (d) community sporozoite

load PV over time in days for different values of natural decay rate of gametocytes within infected human

µh = 0.00625, µh = 0.0625 and µh = 0.625.

4.3.7 The influence of within-mosquito scale parameters on between-hosts scale variables
for malaria infection

In this sub-section, we illutrate the numerical results of multiscale model (4.2.0.1) present the changes

in (a) population of infected humans IH , (b) community gametocyte load GH , (c) population of infected

mosquyitoes IV and (d) community sporozoite load PV over time in days for different values of within-

mosquito scale selected parameters (Nk, αk, αs, αv, αz , Ng, µk, µs, µv and µz). We demonstrate the

influence of these within-mosquito scale malaria infection dynamics parameters (Nk, αk, αs, αv, αz , Ng,

µk, µs, µv and µz) on between host scale variables ((a) population of infected humans IH , (b) community

gametocyte load GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV ).

Figure (4.23) present the changes in (a) population of infected humans IH , (b) community gametocyte load

GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV over time in days

for different values of number of sporozoites produced per bursting oocysts within infected mosquitoes

Nk: Nk = 1000, Nk = 2000 and Nk = 3000. The numerical simulation results in fig. (4.23) present that

as the number of sporozoites produced per bursting oocysts within-infected mosquitoes increase, there is

visible increase on malaria transmission of dynamics of population of infected humans, community game-

tocyte load, population of infected mosquitoes and community sporozoites load. The results recommend

the intervention measures that targeted to reduce the number of sporozoites produced per bursting oocysts

within-infected mosquitoes which is good in reducing the malaria transmission at population-level.
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Figure 4.23: Numerical solutions of model (4.2.0.1) presenting changes in (a) population of infected

humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and (d)

community sporozoite load PV over time in days for different values of number of sporozoites produced

per bursting oocysts within infected mosquitoes Nk: Nk = 1000, Nk = 2000 and Nk = 3000.

Figure (4.24) demonstrate the dynamics of (a) population of infected humans IH , (b) community gameto-

cyte loadGH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV over time

in days for different values of bursting rate of oocysts to produce sporozoites within infected mosquitoes

αk: αk = 0.2, αk = 0.6 and αk = 1. The numerical simulation results in fig.(4.24 show that as the burst-

ing rate of oocysts to produce sporozoites within infected mosquitoes increase, there is noticable slight

increase on transmission of malaria dynamics of population of infected humans, community gametocyte

load, population of infected mosquitoes and community sporozoite load. The numerical simulation results

imply that intervention measures that targeted to reduce the bursting rate of oocysts to produce sporozoites

within infected mosquitoes have impact in reducing the malaria transmission at population level.
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Figure 4.24: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of αk: αk = 2, αk = 06 and

αk = 0.1

Figure (4.25) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquy-

itoes IV and (d) community sporozoite load PV over time in days for different values of fertilisation of

gametes within infected mosquitoes αs: αs = 0.2, αs = 0.5 and αs = 0.8. The numerical simulation

results in fig.(4.25 show that as the fertilisation of gametes within infected mosquitoes increase, there

is noticable increase on transmission of malaria dynamics of population of infected humans, community

gametocyte load, population of infected mosquitoes. The numerical simulation results imply that interven-

tion measures that targeted to reduce the fertilisation of gametes within infected mosquitoes have impact

in reducing the malaria transmission at population level.
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Figure 4.25: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of fertilisation of gametes within

infected mosquitoes αs: αs = 0.2, αs = 0.5 and αs = 0.8.

Figure (4.26) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyi-

toes IV and (d) community sporozoite load PV over time in days for different values of shedding/excretion

rate of sporozoites become infectious to humans within infected mosqiotoes αv: αv = 0.0025, αv = 0.025

and αv = 0.25. The numerical simulation results in fig.(4.26) show that as the shedding/excretion rate

of sporozoites becomes infectious to human within infected mosquitoes increase, there is noticable in-

crease on transmission of malaria dynamics of population of infected humans, community gametocyte

load, population of infected mosquitoes and community sporozoite load. The numerical simulation re-

sults imply that intervention measures that targeted to reduce the shedding/excretion rate of sporozoites

becomes infectious to human within infected mosquitoes have impact in reducing the malaria transmission

at population level.
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Figure 4.26: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of shedding/excretion rate of

sporozoites become infectious to humans within infected mosqiotoes αv: αv = 0.0025, αv = 0.025 and

αv = 0.25.

Figure (4.27) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquy-

itoes IV and (d) community sporozoite load PV over time in days for different values of progression

rate at which zygote develop into oocysts within infected mosquitoes αz: αz = 0.024, αz = 0.424 and

αz = 0.824. The numerical simulation results in fig.(4.27) show that as the progression rate at which

zygote develop into oocysts within infected mosquitoes increase, there is noticable increase on transmis-

sion of malaria dynamics of population of infected humans, community gametocyte load, population of

mosquitoes, and community sporozoite load. The numerical simulation results imply that intervention

measures that targeted to reduce the progression rate at which zygote develop into oocysts within infected

mosquitoes have impact in reducing the malaria transmission at population level.
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Figure 4.27: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of progression rate at which

zygote develop into oocysts αz: αz = 0.024, αz = 0.424 and αz = 0.824.

Figure (4.28) present the changes in (a) population of infected humans IH , (b) community gametocyte load

GH , (c) population of infected mosquyitoes IV and (d) community sporozoite load PV over time in days

for different values of gametes produced per gametocyte infectes erythrocyte within infected mosquitoes

Ng: Ng = 2, Ng = 6 and Ng = 10. The numerical simulation results in fig. (4.28) present that as the

gametes produced per gametocyte infectes erythrocyte within infected mosquitoes increase, there is visible

increase on malaria transmission of dynamics of population of infected humans, community gametocyte

load, population of infected mosquitoes, and community sporozoites load. The results recommend the

intervention measures that targeted to reduce the gametes produced per gametocyte infectes erythrocyte

within infected mosquitoes which is good in reducing the malaria transmission at population-level.



Chapter 4 146

Figure 4.28: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of number of gametes produced

per gametocyte infectes erythrocyte within infected mosquitoes Ng: Ng = 2, Ng = 6 and Ng = 10.

Figure (4.29) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyi-

toes IV and (d) community sporozoite load PV over time in days for different values of natural decay rate

of oocysts within-infected mosquitoes µk: µk = 0.01, µk = 0.1 and µk = 1. The numerical simulation

results in fig.(4.29) show that as the natural decay rate of oocysts within-infected mosquitoes increase,

there is noticable decrease on transmission of malaria dynamics of population of infected humans, com-

munity gametocyte load and community sporozoite load and we also notice that there is no difference on

the transmission of malaria dynamics on population of infected mosquitoes. The numerical simulation

results imply that intervention measures that aimed at killing of oocysts within-infected mosquitoes have

impact in reducing the malaria transmission at population level.
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Figure 4.29: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of natural decay rate of oocysts

within-infected mosquitoes µk: µk = 0.01, µk = 0.1 and µk = 1.

Figure (4.30) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyi-

toes IV and (d) community sporozoite load PV over time in days for different values of natural decay rate

of gametes within-infected mosquitoes µs: µs = 28, µs = 58 and µs = 88. The numerical simulation re-

sults in fig.(4.30) show that as the natural decay rate of gametes within-infected mosquitoes increase, there

is noticable decrease on transmission of malaria dynamics of population of infected humans, community

gametocyte load, population of infected mosquitoes and community sporozoite load. The numerical simu-

lation results imply that intervention measures that targeted for killing gametes within-infected mosquitoes

have impact in reducing the malaria transmission at population level.
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Figure 4.30: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of natural decay rate of gametes

within-infected mosquitoes µs: µs = 28, µs = 58 and µs = 88.

Figure (4.31) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyi-

toes IV and (d) community sporozoite load PV over time in days for different values of natural death rate

of sporozoites within-infected mosquitoes µv: µv = 0.01, µv = 0.1 and µv = 1. The numerical sim-

ulation results in fig.(4.31) show that as the natural death rate of sporozoites within-infected mosquitoes

increase, there is noticable decrease on transmission of malaria dynamics of population of infected hu-

mans, community gametocyte load, population of infected mosquitoes and community sporozoite load.

The numerical simulation results imply that intervention measures that aimed at killing sporozoites within

infected mosquitoes have impact in reducing the malaria transmission at population level.
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Figure 4.31: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV
and (d) community sporozoite load PV over time in days for different values of natural death rate of

sporozoites within-infected mosquitoes µv: µv = 0.01, µv = 0.1 and µv = 1.

Figure (4.32) presents the numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) pop-

ulation of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyi-

toes IV and (d) community sporozoite load PV over time in days for different values of natural death rate

of zygote within-infected mosquitoes µz: µz = 0.01, µz = 0.1 and µz = 1. The numerical simulation

results in fig.(4.32) show that as the natural death rate of zygote within-infected mosquitoes increase, there

is noticable decrease on transmission of malaria dynamics of the community sporozoite load and we also

notice that there is slightly decrease on the transmission of malaria dynamics on population of infected

humans, community gametocyte load and population of infected mosquitoes. The numerical simulation

results suggest that intervention measures that aimed at killing zygotes within infected mosquitoes have

impact in reducing the malaria transmission at population level.

In summary, the numerical results in fig.(4.3)-fig.(4.32) present that:

(1) The between-host scale influences the within-host scale through super-infection or repeated infection.

(2) When the infection of the within-host scale has successfully been established then the process of

pathogen replication will take over.

(3) Within-host scale continuously influences the dynamics of disease at the between-host scale through

shedding /excretion of pathogen throughout the infection.

(4) We notice that the model has a bidirectional flow of information.



Chapter 4 150

Figure 4.32: Numerical solutions of multiscale model (4.2.0.1) presenting changes in (a) population of

infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquyitoes IV and

(d) community sporozoite load PV over time in days for different values of natural death rate of zygote

within-infected mosquitoes µz: µz = 0.0025, µz = 0.0625 and µz = 0.1225.

4.4 Model extension

We extend the malaria model with liver stage by including the vaccination processes which are: pre-

erythrocytic vaccine (PEV), blood stage vaccine (BSV) and transmission blocking vacine (TBV). The

parameter (1− ν) can be taken as an aspect by which pre-erythrocytic vaccine (PEV) reduces invasion of

hepatocytes by the malaria sporozoites, where 0 < ν < 1 is the efficacy of the pre-erythrocytic vaccine.

ν = 1 shows that the vaccine is fully efficient (i.e. all the malaria sporozoites are cleared before or during

their development in the liver) whereas ν = 0 shows that the vaccine is totally ineffective. The eliminating

of infected hepatocytes deminishes the burst size of the infected hepatocytes. This is denoted by the term

(1 − b), where 0 < b < 1 is the probability with which the vaccine inhibits merozoite emergence from

infected liver cells. The BSV is expected to reduce the number of parasites in the blood and in so doing

deminish the severity of disease. The effects of BSV on the transmission of red blood cells is modelled by

(1 − ε), where 0 < ε < 1 is represent the efficacy of the BSV. The effect of BSV is modelled by parater

(1+θ1), where θ1 is the rate at which recovered rate of infected humans are increased, where 0 < θ1 < 1.

1 − θ2 is the rate at which the disease related death rate in infected human population is reduced due to

the effects of vaccine on blood stages of the parasite, where 0 < θ2 < 1. BSV diminishes the density of

merozoites that are discharged per bursting blood schizont, which is given by (1 − a), where 0 < a < 1

accounts for the vaccine-induced decline of merozoites discharged per bursting infected red blood cells.

The TBV seek to interrupt the life cycle of the parasite by inducing antibodies that preventthe parasite
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from maturing in the mosquito after it takes a blood meal from a vaccinated person. These will prevent

the transmission of malaria from spreading to new hosts. This effect is denoted by a parameter χ where

0 < χ < 1. The summary of the action of malaria vaccination is given in Table (4.5).

Table 4.5: Summary of the action of vaccination on malaria transmission dynamics

No. Health intervention Mechanism of intervention action Modelling effect of in-
tervention

1. Pre-erythrocytic vaccine Rate at which malaria sporozoites invade the hepato-

cytes parameter βl is reduced.

βl −→ βl(1− ν)

The rate at which vaccine-induced deminishes of mero-

zoites released per bursting size of an infected hepato-

cytes Nl.

Nl −→ Nl(1− b)

2. Blood-stage vaccine Rate at which merozoites invade the red blood cells pa-

rameter βh is reduced.

βh −→ βh(1− ε)

Rate at which recovered rate of infected humans γH are

increased.

γH −→ γH(1 + θ1)

The rate at which the disease related death rate in in-

fected humans δH is reduced.

δH −→ δH(1− θ2)

The rate of vaccine -induced reduce of merozoites re-

leased per bursting size of infected red blood cells Nm.

Nm −→ Nm(1− a)

3. Transmission blocking vaccine Reduce susceptibility to malaria infection in the sporo-

zoites community and gametocytes community by re-

ducing the susceptibility coefficient
1

P0
and

1

G0
respec-

tively and therefore increase P0 and G0 respectively.

P0 −→ P0(1 + χ1),

G0 −→ G0(1 + χ2)

The extended model is given by
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1.
dSH(t)

dt
= ΛH − βV PV (t)

P0(1 + χ1) + PV (t)
SH(t)− µHSH(t) + (1 + θ1)γHIH(t),

2.
dIH(t)

dt
=

βV PV (t)

P0(1 + χ1) + PV (t)
SH(t)− [µH + γH(1 + θ1) + δH(1− θ2)]IH(t),

3.
dPh(t)

dt
=

βV PV (t)(SH(t)− 1)

(P0(1 + χ1) + PV (t))ϕH(IH(t) + 1)
− µpPh(t),

4.
dLh(t)

dt
= Λl − (1− ν)βlPh(t)Lh(t)− µlLh(t),

5.
dL∗

h(t)

dt
= (1− ν)βlPh(t)Lh(t)− (µl + αl)L

∗
h(t),

6.
dBh(t)

dt
= Λh − (1− ε)βhMh(t)Bh(t)− µbBh(t),

7.
dB∗

h(t)

dt
= (1− ε)(1− π)βhMh(t)Bh(t)− (µb + αm)B∗

h(t),

8.
dMh(t)

dt
= (1− b)NlαlL

∗
h + (1− a)NmαmB

∗
h(t)− µmMh(t)− βhMhBh, (4.4.0.1)

9.
dGh(t)

dt
= (1− ε)πβhMh(t)Bh − (αh + µh)Gh(t),

10.
dGH(t)

dt
= Gh(t)αh(IH(t) + 1)− αHGH(t),

11.
dSV (t)

dt
= ΛV − βHGH(t)

G0(1 + χ2) +GH(t)
SV (t)− µV SV (t),

12.
dIV (t)

dt
=

βHGH(t)

G0(1 + χ2) +GH(t)
SV (t)− (µV + δV )IV (t),

13.
dGv(t)

dt
=

βHGH(t)(SV (t)− 1)

(G0(1 + χ2) +GH(t))ϕV (IV (t) + 1)
− (αg + µg)Gv(t),

14.
dGm(t)

dt
= NgαgGv(t)− (αs + µs)Gm(t),

15.
dZv(t)

dt
=

1

2
αsGm(t)− (αz + µz)Zv(t),

16.
dOv(t)

dt
= αzZv − (αk + µk)Ov(t),

17.
dPv(t)

dt
= NkαkOv(t)− (αv + µv)Pv(t),

18.
dPV (t)

dt
= Pv(t)αv(IV (t) + 1)− αV PV (t).

The effective reproduction number is given by

R0E =
1

3
Qhe +

3

√√√√27QV EQHE + 2Q3
he

54
+

√
QV EQHE

(
27QV EQHE + 2Q3

he

)
108

+
3

√√√√27QV EQHE + 2Q3
he

54
−

√
QV EQHE

(
27QV EQHE + 2Q3

he

)
108

, (4.4.0.2)



Chapter 4 153

where

Qhe =
(1− a)Nmαm

αm + µb

(1− ε)(1− π)βhΛh

µbµm + βhΛh
,

QHE =
(1− b)Nlαl

µpµl

(1− ν)βlΛl

αl + µl

αh

αh + µh

(1− ε)πβhΛh

µbµm + βhΛh

βV (ΛH − µH)

αV µHϕHP0(1 + χ1)
, (4.4.0.3)

QV E =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

βH(ΛV − µV )

µV ϕV αHG0(1 + χ2)
.

The percentage reduction of the public health measure is given by

%age reduction ofR0 =
R0 −R0V

R0
× 100%, (4.4.0.4)

where R0V is the reproductive number where the vaccine efficacy is applied. In Table (4.6), we illus-

trate the influence of vaccination processes on reproductive number (R0). As the rate of efficacy for

malaria vaccine increase, we observe that the percentage reduction of R0 also increase. We also observe

that an increase in the vaccine combination have an influence in the increase of the percentage reduc-

tion of R0. We compute the comparative effectiveness as follows: (i) low efficacy which is given by

ν = ε = χ1 = χ2 = 30%, (ii) medium efficacy is given by ν = ε = χ1 = χ2 = 60% and (iii) high

efficacy is given by ν = ε = χ1 = χ2 = 90%.

From the Table (4.6), we evaluate the comparative effectiveness of the three phases in malaria vaccination

(PEV, BSV and TBV) using the basic reproductive number as the guide of intervention effectiveness using

efficacy data. The Table (4.6) presenting the outcomes of the assessment of the comparative effectiveness

of three phases in the malaria vaccination and their related mechanisms using the percentage reduction in

the basic reproductive number as the guide on the effectiveness of malaria vaccine. From Table (4.6), we

conclude the following outcomes:

(a) Considering the use malaria vaccination as the only malaria health intervention. We note that this

intervention has three phases of malaria vaccines which are:

(i) efficacy of the PEV,

(ii) efficacy of the BSV, and

(iii) the efficacy of the TBV.

The outcomes presents that the efficacy of PEV have highest comparative effectiveness, while the

efficacy of BSV has a lowest comparative effectiveness comparing with other phases of vaccines

components as a complex malaria health intervention.

(b) Comparing the effectiveness of two stages of malaria vaccination components. The combination of

PEV and BSV has the highest comparative effectiveness while the combination of PEV and TBV

has the lowest comparative effectiveness.
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(c) The combination of three phases of malaria vaccination with comparative effectiveness efficacy of (i)

90% (at high efficacy) can reduce malaria in a particular region/community by an approximation

of 89.04% of basic reproductive number when used in combination, (ii) 60% (at medium efficacy)

can reduce malaria infection in a particular community by approximate of 62.24% of the basic

reproductive number when used in combination and (iii) 30% (at low efficacy) can reduce malaria

infection in a particular community by approximate of 32.44% of the basic reproductive number

when used in combination

Table 4.6: Indicating the results of analysis of comparative effectiveness of vaccination on malaria trans-

mission dynamics employing the percentage reduction of basic reproduction number (R0) as a guide of

malaria intervention effectiveness when each of these phases of malaria vaccination are assumed to have:

(a) low-efficacy of 30%, (b) medium-efficacy of 60% and (c) high-efficacy of 90%.

Number Parameter Calculated

R0V -Low

Ranking Calculated R0V -

Medium

Ranking Calculated

R0V -High

Ranking

1 R0 0 1 0 1 0 1
2 R0ε 11.21 2 26.33 4 53.59 4
3 R0χ1 11.24 3 21.66 2 30.96 2
4 R0χ2 11.24 3 21.66 2 30.96 2
5 R0ν 14.27 5 34.57 5 65.79 5
6 R0εχ1 21.19 6 42.28 6 67.96 6
7 R0εχ2 21.19 6 42.28 6 67.96 6
8 R0εν 23.89 8 51.8 10 84.13 10
9 R0χ1ν 23.9 9 48.74 8 76.38 8
10 R0χ2ν 23.9 9 48.74 8 76.38 8
11 R0εχ1ν 32.44 11 62.24 11 89.04 11
12 R0εχ2ν 32.44 11 62.24 11 89.04 11

The impact of vaccine-induced reduction of merozoites released per bursting size of infected red blood

cells is controlled by differentiating R0E with respect to a. We obtain

∂R0E

∂a
= −1

3

(1− ε)(1− π)NmαmβhΛh

(αm + µb)(βhΛh + µbµm)

{
1 +

(
27QV EQHE + 2Q3

he

54
+√

QV EQHE(27QV EQHE + 2Q3
he)

108

− 2
3 [

1

9
Q2

he +
1

36

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

×QV EQHEQ
2
he

]
+

27QV EQHE + 2Q3
he

54
−

√
QV EQHE(27QV EQHE + 2Q3

he)

108

− 2
3

×

[
1

9
Q2

he −
1

36
QV EQHEQ

2
he

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

]}
< 0. (4.4.0.5)

From the derivation, we observe that the vaccine reproductive number R0E decreases with the increasing

value of a.
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The impact of the vaccine-induced reduction of merozoites released per bursting size of an infected hepa-

tocytes is controlled by differentiating R0E with respect to b. We obtain

∂R0E

∂b
= −1

3
QV E

Nlαl

µlµp

(1− ν)βlΛl

αl + µl

αh

αh + µh

(1− ε)πβhΛh

µbµm + βhΛh

βV (ΛH − µH)

αV µHϕHP0(1 + χ1)

{(
27QV EQHE + 2Q3

he

54

+

√
QV EQHE(27QV EQHE + 2Q3

he)

108

− 2
3 [

1

2
+

1

2

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

×

(
27QV EQHE + 2Q3

he

108
+

1

4
QV EQHE

)]
+

(
27QV EQHE + 2Q3

he

54
−√

QV EQHE(27QV EQHE + 2Q3
he)

108

− 2
3 [

1

2
− 1

2

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

×

(
27QV EQHE + 2Q3

he

108
+

1

4
QV EQHE

)]}
< 0. (4.4.0.6)

We observe from diffentiation that the vaccine reproductive number R0E decreases with the increasing

value of b.

We differentiate R0E with respect to vaccine efficacy ν. This gives

∂R0E

∂ν
= −1

3
QV E

(1− b)Nlαl

µpµl

βlΛl

αl + µl

αh

αh + µh

(1− ε)πβhΛh

µbµm + βhΛh

βV (ΛH − µH)

αV µHϕHP0(1 + χ1)

{(
27QV EQHE + 2Q3

he

54

+

√
QV EQHE(27QV EQHE + 2Q3

he)

108

− 2
3 [

1

2
+

1

2

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

×

(
QV EQHE + 2Q3

he

108

)]
+

27QV EQHE + 2Q3
he
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−

√
QV EQHE(27QV EQHE + 2Q3

he)

108

− 2
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1
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54QV EQHE + 2Q3
he

108

(
QV EQHE(27QV EQHE + 2Q3

he)

108

)− 1
2

]}
< 0. (4.4.0.7)

We observe that R0E is a decreasing function of the pre-erythrocytic vaccine ν. The concentration of

infected hepatocytes decreases with increasing values of ν.

By differentiating R0E with respect to vaccines efficacy χ1, χ2 and ε respectively, yields
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∂R0E

∂χ1
< 0

∂R0E

∂χ2
< 0 (4.4.0.8)

∂R0E

∂ε
< 0.

We observe that R0E decreases with increasing with χ1, χ2 and ε. From our differentiation, we observe

that PEV, BST and TBV have impact in the reduction in the basic reproductive number.

In Figure (4.33) and (4.34) we show the evidence for the impact of the variation of combination of malaria

vaccines (PEV, BSV and TBV) on community gametocytes load GH . We observe that the highly effica-

cious combination of malaria vaccines has a potential to reduce the number of gametocytes in the blood

stream, thereby minimizing the community gametocytes load (GH).

In figure (4.35) we demonstrate the influence of variation in combination of malaria vaccines (PEV, bsv

and TBV) on community sporozoites load PV . We observe that an increase in the combination of malaria

vaccines will results in reduction of the community sporozoites load. In Figure (4.36) and (4.37) we

present the evidence of influence of the variation of malaria vaccines on population of merozoites (Mh).

We notice that the increase of efficacy in combination of malaria vaccines would reduce the merozoites

in the blood stream thereby minimizing parasite transmission to mosquitoes and subsequently to other

human beings. We observe from Figure (4.38) that the variation in the rate at which vaccine-induced

deminishes merozoites released per bursting size of an infected hepatocytes and also the rate of vaccine-

induced reduces of merozoites released per bursting size of infected red blood cells have influence on the

merozoites population.

In Figure (4.39) to (4.42) we demonstrate the influence of varying the efficacy of pre-erythrocytic vaccine

on infected liver cells. A highly efficacy of PEV has a potential to significantly reduce the number of

malaria sporozoites in the liver-stage, which results in minimizing the parasite transmission to mosquitoes

and subsequently to other human beings.
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1e9 Varying malaria vaccines efficacy
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Figure 4.33: The graph showing changes in Community Gametocytes Load (G∗
H) for varying all the

efficacy i.e pre-erythrocytic vaccine ν, blood stage vaccine ε, and transmission blocking vaccine χ1.
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Figure 4.34: The graph showing changes in Community Gametocytes Load (G∗
H) for varying all the

efficacy i.e pre-erythrocytic vaccine ν, blood stage vaccine ε, and transmission blocking vaccine χ2.
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Figure 4.35: The graph showing changes in Community Sporozoites Load (P ∗
V ) for varying all the efficacy

i.e pre-erythrocytic vaccine ν, blood stage vaccine ε, and transmission blocking vaccine χ2.
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Figure 4.36: The graph showing the profile of merozoites population (Mh) in the presence of malaria

vaccines. The efficacy of malaria vaccines are varied from 0 to 1.



Chapter 4 159

0 100 200 300 400 500
Time in days

0

1

2

3

4

5

6

7

8

M
e
ro
zo
it
e
s 
(M

h
)

1e9 Varying malaria vaccines efficacy

ν=χ2 =ε=0.0

ν=χ2 =ε=0.3

ν=χ2 =ε=0.6

ν=χ2 =ε=0.9

Figure 4.37: The graph showing the profile of merozoites population (Mh) in the presence of malaria

vaccines. The efficacy of malaria vaccines are varied from 0 to 1.
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Figure 4.38: The graph showing the profile of merozoites population (Mh) in the presence of malaria

vaccines. The efficacy of malaria vaccines are varied from 0 to 1.
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Figure 4.39: The graph showing changes in infected liver cells (L∗
h)for ε = χ1 = 0 with the varying

efficacy of pre-erythrocytic vaccine ν.
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Figure 4.40: The graph showing changes in infected liver cells (L∗
h)for ε = χ1 = 0.9 with the varying

efficacy of pre-erythrocytic vaccine ν.
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Figure 4.41: The graph showing changes in infected liver cells (L∗
h)for ε = χ2 = 0 with the varying

efficacy of pre-erythrocytic vaccine ν.
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Figure 4.42: The graph showing changes in infected liver cells (L∗
h)for ε = χ2 = 0.9 with the varying

efficacy of pre-erythrocytic vaccine ν.
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4.5 Summary

In this chapter, we developed a coupled multiscale model of type II vector-borne disease dynamics which

represents transmission in both mosquito and human populations. The objective of this chapter is to

investigate the influence of the human liver stage on the multiscale model for the malaria disease sys-

tem. We also investigate how the super-infection on humans has an influence on the multiscale model

of malaria disease dynamics and in which there is a pathogen replication cycle at the microscale. This

coupled multiscale model of type II vector-borne disease dynamics has developed on a combination of

two multiscale models that integrate the microscale and the macroscale. The results of an embedded

multiscale model from numerical simulation demonstrate that the transmission of the malaria disease sys-

tem at the between-host scale influences the disease dynamics at the within-host scale throughout the

infection. Sensitivity analysis of the model parameters was also executed using the reproductive number

and the community sporozoites load as the metric for infectiousness and disease transmission. From the

simulation, we observe that the activation of malaria vaccines has a considerable effect on reducing the

transmission of malaria infectious disease. The extended coupled multiscale model of the malaria disease

system results incorporates the vaccination processes at different stages of the pathogen life cycle which

are: pre-erythrocytic vaccine (PEV), blood-stage vaccine (BSV), and transmission-blocking stage (TBS).

The comparative effectiveness of the combination of malaria vaccines results in major reductions in the

transmission of malaria disease, that is, reproductive number and community pathogen loads. The results

suggest that the highest percentages of the combination of malaria vaccines have the potential to boost the

immune system, which results in the reduction of the population of infected liver cells, the population of

infected red blood cells, and merozoites. The presented multiscale model of the malaria disease system

provides helpful insight on the need to improve the efficacy of current malaria vaccines in the develop-

ment and the need to try vaccine combinations in controlling the transmission of malaria infection at the

individual level and the population level.



Chapter 5

A Multiscale Model of Malaria Disease
Dynamics With Immune Response

5.1 Introduction

This chapter extends our previous work by adding the human immune response to the multiscale models

of the malaria disease system discussed in the previous chapter. Malaria is a type II-vector-borne disease

that is caused by the Plasmodium parasite transmitted from one person to another by the bite of infected

Anopheles mosquito [35]. The Plasmodium parasite needs two hosts to successful complete its life cycle,

which is vector-host i.e. female anopheles mosquito and human-host [68]. Malaria in humans develops in

two stages, which are: the first stage is the exo-erythrocyte which involves the liver-cells and the second

stage is the erythrocyte that involves the red-blood cells. Malaria disease cause significant public health

burden in endemic areas [68]. In 2018, an estimated of 405,000 death due to malaria disease infection

were recorded worldwide from an estimated of 228 million cases worldwide [69]. When malaria para-

sites evolve in the host, they can stimulate the activation of the immune cells in the human host which

release the immune response to fight against the infection. The immune response can either prevent the

re-invasion/replication of merozoites or increase the death rate of infected red blood cells. The immune

response is stimulated by plasmodium surface antigens discharged during schizont rupture.

An understudied aspect of infectious disease systems is that their transmission is the result of complex

dynamic relationships that occur on different spatial and temporal scales [7]. Therefore, the dynamics

of infectious diseases may require an interaction between different temporal and spatial scales related to
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the levels of biological organization (i.e. cellular, tissue, organ, organism/host, community and ecosys-

tems) [7]. Recent studies demonstrate that there are 3 types of infectious disease transmission mecha-

nisms which are: (i) directly transmission mechanism, (ii) environmental transmission mechanism and

(iii) vector-borne transmission mechanism [11]. This study focus on malaria disease dynamics which is

a directly transmitted and vector-borne transmission mechanisms, with the goal to increasing understand-

ing of how the pathogen can be shared between two hosts (human and mosquito) [18]. Malaria disease

system is also a directly transmitted and the transmission models are at cellular-level. This study is be-

ing developed at the cellular level, therefore the multiscale model developed at the cellular level of an

infectious disease system describes the infection of the whole body/organism that uses the cell as the mul-

tiscale unit of analysis [3]. At the cellular level, the organization of an infectious disease system provides

another pathogenic habitat or environment in which the pathogen can survive, grow, shed/excrete, repro-

duce and be transmitted on different scales of an infectious disease system [3]. Mathematical models of

vector-borne pathogen transmission have been useful in understanding and identifying major epidemio-

logical and immunological features, to assess the transmission intensity and growth of pathogen, and also

to guide disease control programs.

Multiscale models of infectious disease system can demonstrates the replication-transmission relativity

theory, which illustrates how the disease being transmitted among humans, animals, and vectors and how

the pathogen can replicate within the infected host. This helps to identify new approaches to prevention

and control that guide in design the public health policy. Multiscale models of infectious disease testing

and analysis guide in policy making and improved in scientific understanding. The development in the

design of appropriate control measures for the prevalence of malaria disease have led to an interest in

understanding the interaction of malaria parasites and the human immune system. A complete multi-scale

model of an infectious disease system can be conceptualized as a complex system model that contains

many interactive sub-systems that are related to the four main levels of organization of an infectious dis-

ease system. These sub-systems are as follows: (a) the host/organism sub-system (human, animal, vector,

plant), (b) the pathogen sub-system (viruses, prions, helminths, protozoa, bacteria, fungi), (c) the health

interventions sub-system (medical and public health interventions), and (d) the environmental sub-system

(inside-host or biological environment and outside-host environment with all its different domains, includ-

ing physical, geographical, social, economic, etc). Each of these four organizational levels of an infectious

disease system can be decomposed into two different scales, which are: the micro-scale and the macro-

scale.

A considerable amount of literature has been published to date on mathematical modelling of malaria

disease transmission with immune response [45, 59, 70]. These studies has managed to focus on sin-

gle scale models which is under transmission mechanism theory. However, there has been relatively

few mathematical modelling on malaria disease dynamics developed to investigate the dynamics of im-

mune response on two different scales that is within-host scale and between-host scale which are under
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replication-transmission relativity theory [34, 35]. These models they did not consider the role played by

human-host liver stage on within-host dynamics. The different between our multiscale model and theirs

is that, our multiscale model uses pathogen load as a metric for infectiousness and disease transmission

potential across two scales, whilst in [34, 35], they apply within-host scale pathogen load as the metric for

pathogen transmission whereas between-host scale disease uses infected class as the metrioc for disease

transmission. Bridging the gap between two interacting scales (i.e. within-host scale and between-host

scale) that is in replication-transmission relativity theory and empirical studies is at the current heart of

the rising field of study in linking the within-host scale and between-host scale [34].

In this chapter, we develop a theoretical framework that describes the interaction of human-host immune

response system and the malaria parasite at cell-level. The objective of this study is to investigate the im-

pact of immune response on the multiscale model for malaria disease system. Therefore, in this study

we develop the coupled multiscale modelling for malaria disease system approaches that are needed

to demonstrate how immune responses at individual level/ within-human host scale can influence the

population-level/between-host scale dynamics. We extend the previous chapter of coupled multiscale

model for malaria disease dynamics which includes the human liver stage and incorporate the human

immune response.

5.2 Within-human host model

The development of malaria Plasmodium is a complex system which comprising of multiple phases that

can be decompose into sexual (sporogonic) and asexual phases. These phases take place in the Anopheles

mosquitoes and in humans respectively. We establish a within-human sub-model of malaria infection to

understand the immune system reactions that are stimulated by the malaria parasite and the development

of the infection in the host at cell-level and host-level. Plasmodium falcipalum malaria is a main trigger

of mortality in the tropics, where the transmission is through the bite of infected mosquito which releases

sporozoites into the bloodstream and migrate quickly into the human liver cells. While in the liver stage

the sporozoites infect the hepatocytes, reproducing asexually and asymptotically for an estimated period

of 6 to 15 days [70]. The infected liver cells differentiate to produce thousands of merozoites which after

bursting of their host cells, escapes into blood and infect red-blood cells (RBCs), which is the beginning

of erythrocytic stage of the Plasmodium Falcipalum life-cycle. The infected red-blood cells raptures re-

leasing merozoites daughter parasites which will repeat invade fresh erythrocytes to renew the cycle. This

repeating cycle maintains the infection and generates symptoms. This cycle repeated many times, and

some merozoites immediately generate into sexual form of the parasites called gametocytes, which are the

communicable forms of the malaria parasite from a human to a mosquito-vector. The successive erythro-

cytic cycle will lead to an increase in parasitaemia until the immune response activates.



Chapter 5 166

The within-human host sub-model that include the immune response in malaria disease dynamics is de-

rived from [24, 59] models of erythrocyte cycle, using the systems of differential equations. We develop

a within-human host sub-model with immune response that presents the dynamics of sporozoites in the

infected liver Ph(s), susceptible uninfected health liver cells Lh(s), infected liver cells L∗
h(s), population

of uninfected health red blood cells Bh(s), population of infected red blood cells B∗
h(s), population of

free merozoites Mh(s), the population of gametocytes Gh(s), concentration of immune cells D(s) and

concentration of antibodies A(s). The assumptions of within-host scale sub-model with immune response

are as follows:

(1) The sporozoites are injected into the human body at a one-off time through the bite of an infected

mosquito.

(2) Assume that the sporozoites supply rate Λh = 0.

(3) Infected red blood cells die at a constant rate and are also killed by the presence of immune effectors.

They produce merozoites by bursting.

(4) The production rate of merozoites is reduced by immune cells. These free pathogens suffer a natural

death, are eliminated from circulating by immune cells, and are also reduced through infecting red

blood cells.

(5) Immune cells are produced at a constant rate and their production is stimulated by the presence of

infected liver cells, infected red blood cells, and merozoites. They are also reduced by natural decay

at a constant rate.

(6) Antibodies that inhibit the invasion of red blood cells proliferate in the presence of merozoites. Anti-

bodies decay at a constant rate.

The within-human host model of malaria disease with immune response is given in system of equations

(5.2.0.1).
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1.
dPh(s)

ds
= −µpPh(s)− θpDh(s)Ph(s),

2.
dLh(s)

ds
= Λl −

βlPh(s)Lh(s)

1 + αaDh(s)
− µlLh(s),

3.
dL∗

h(s)

ds
=

βlPh(s)Lh(s)

1 + αaDh(s)
− αlL

∗
h(s)− θlDh(s)L

∗
h(s),

4.
dBh(s)

ds
= Λb −

βhMh(s)Bh(s)

1 + α0Ah(s)
− µbBh(s),

5.
dB∗

h(s)

ds
=

(1− π)βhMh(s)Bh(s)

1 + α0Ah(s)
− αmB

∗
h(s)− θbDh(s)B

∗
h(s), (5.2.0.1)

6.
dMh(s)

ds
=

NlαlL
∗
h(s)

1 + α2Dh(s)
+
NmαmB

∗
h(s)

1 + α1Dh(s)
− µmMh(s)− θmDh(s)Mh(s)−

βhMh(s)Bh(s)

1 + α0Ah(s)
,

7.
dGh(s)

ds
=

πβhMh(s)Bh(s)

1 + α0Ah(s)
− (αh + µh)Gh(s)− θgDh(s)Gh(s),

8.
dDh(s)

ds
= Λd +

(
ρlL

∗
h

f0 + L∗
h(s)

+
ρbB

∗
h(s)

f1 +B∗
h(s)

+
ρmMh(s)

f2 +Mh(s)

)
Dh(s)− µdDh(s),

9.
dAh(s)

ds
=

ηMh(s)Dh(s)

f2 +Mh(s)
− µaAh(s).

The first equation in model (5.2.0.1) is the dynamics of sporozoites parasites Ph(s), demonstrates the in-

jection of sporozoites into the human skin by infected Anopheles mosquito. The sporozoites are reduced

by the natural decay at a rate µp and also eliminated by immune cells θp. The second equation in the

model (5.2.0.1) is the dynamics of uninfected liver cells Lh(s). The population of uninfected liver-cells

are recruited at a constant rate Λl, liver cells become infected by sporozoites at a constant rate βl and

the rate of infection is reduced by
1

1 + αaDh(s)
, where αa is the efficiency of immune cells (Dh(s)) to

inhibit invasion of Hepatocytic liver cells (HLCs) by sporozoites. The uninfected liver-cells are reduced

by natural death at a constant rate µl. The third equation is the dynamics of infected liver cells L∗
h(s), The

infected liver cells increase through the infected of liver cells. The infected liver cells reduced through

bursting of infected liver-cells at a constant rate αm to release the meteorites into the blood stream and by

also apoptosis at a constant rate θl.

The fourth equation in the sub-model (5.2.0.1) demonstrate the dynamics of uninfected red blood cells

Bh(s). The red blood cells are supplied by bone marrow at a constant rate Λb. The number of uninfected

red are reduced by merozoites at an infection rate βh and the rate of infection is reduced by
1

1 + α0Ah(s)
,

which represents the role played by antibodies in controlling parasitemia, where α0 is the efficacy of an-

tibodies in reducing erythrocytic invasion. Uninfected red blood cells also reduced through natural death

at a constant rate µb. The fifth equation of the sub-model (5.2.0.1), describe the dynamics of merozoites

infected erythrocytes or infected red blood cells. The merozoites that infects the red-blood cells has one

or two condition (i) it may either become a trophozoite and replicate the cycle in the production of mero-

zoites, or (ii) it may change into a trophozoite and then it goes through gametocytogenesis, which is the



Chapter 5 168

process of gametocytes are formed within-host erythocyte [24]. B∗
h increase through a proportion (1− π)

of the total population of merozoite infected erythrocytes. The infected red blood cells reduced by im-

mune cells estimated by infection of red blood cells at a constant rate θb, and through bursting to produce

merozoites at a rate αm.

The sixth equation in the sub-model (5.2.0.1) models the rate of change of merozoites Mh(s). Mero-

zoites are supplied at an average rate Nl and Nm upon the bursting of infected liver cells αl and infected

red-blood cells αm, respectively. An average of Nl merozoites are released per bursting each infected

liver-cells and an average of Nm merozoites are released per bursting each red blood cells. The produc-

tion rate of merozoites by infected cells are inhibited by immune cells with a factor
1

1 + α2Dh(s)
and

1

1 + α1Dh(s)
, where α2 and α1 are the efficacy of immune cells inhibiting the production of merozoites.

The infected liver-cells rupture and merozoites are released into uninfected red blood cells. Merozoites

are reduced through natural decay at a constant rate µm and are also eliminated by immune cells at a

constant rate θm. The seventh equation of sub-model (5.2.0.1) models the rate of change of gametocytes

Gh(s). The equation describes the dynamics of remaining proportion, π, of the total population of mero-

zoite infected red-blood cells. The population of gametocytes decrease through which gametocyte within

erythrocytes mature and become infectious to mosquitoes at a constant rate αh, through natural decay at a

rate µh and also eliminated by immune cells at a rate θg.

The eighth equation in sub-model (5.2.0.1) models the rate of change of immune cellsDh(s). The immune

cells are supplied at rate Λd, which is the combined of immune cells (e.g.macrophages, natural killer-cells,

CD4+ T-cells). This stimulation term(
ρlL

∗
h(s)

f0 + L∗
h(s)

+
ρbB

∗
h(s)

f1 +B∗
h(s)

+
ρmMh(s)

f2 +Mh(s)

)
Dh(s)

for immune cells in the presence of infected liver-cells L∗
h(s), infected red-blood cells B∗

h(s) and mero-

zoites Mh(s), wherebρl, ρb and ρm represents the immunogenecity of infected liver-cells, infected red-

blood cells and merozoites respectively. The parameter f0 is the density of of infected liver-cells at which

immune cells grow in the absense of sporozoites, f1 is the density of infected red blood-cells at which

immune cells grow in the absence of merozotes and f2 is the density of merozoites at which immune cells

grow in the absence of red blood-cells. Immune cells reduced through natural death, at a rate µd. The last

equation in sub-model (5.2.0.1) describes the rate of change of antibodies. The antibodies is stimulated at

term
ηDh(s)Mh(s)

f2 +Mh(s)
, where η is the maximum rate of increase of antibodies. The antibodies are reduced

through natural death at a constant rate µa.
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5.2.1 Positivity of Solutions

The system of equations (5.2.0.1) demonstrates the dynamics of within-human sub-model and the parasite

populations and it is essential to show these compartments are positive for all time s ≥ 0. We have to

prove the following theorem.

Theorem 5.1. The solution of the system of equations (5.2.0.1) satisfy the following initial conditions with

strictly positive components i.e. (Ph > 0, Lh > 0, L∗
h > 0, Bh > 0, B∗

h > 0, Mh > 0, Gh > 0, Dh > 0,

Ah > 0) for all s > 0.

Proof. We present the following proof. This follow from system of equations in (5.2.0.1) of the solution

starts from a strictly positive point, all component positive for o ≤ s ≤ s0

dPh(s)

ds
≥ −(µp + θpDh(s))Ph(s), (5.2.1.1)

The equation (5.2.1.1) can be solve using separable variables as follows

dPh(s)

Ph(s)
≥ −(µp + θpDh(s))ds. (5.2.1.2)

By letting

ŝ = sup{s > 0 : Ph > 0, Lh > 0, L∗
h > 0, Bh > 0, B∗

h > 0,Mh > 0, Gh > 0, Dh > 0,

Ah > 0} ∈ [0, s], (5.2.1.3)

and integrating equation (5.2.1.2) and we obtain

ln(Ph(s)) ≥ −
(
µps+ θp

∫ s

0
Dh(ŝ)dŝ

)
+ ln(Ph(0))

Ph(s) ≥ Ph(0) exp

{
−
(
µps+ θp

∫ s

0
Dh(ŝ)dŝ

)}
.

It implies that

lim
s→∞

inf(Ph(s)) ≥ 0. (5.2.1.4)

Using similar method, we obtain

Lh(s) ≥ Lh(0) exp

{
−
(∫ s

0

βlPh(ŝ)

1 + αaDh(ŝ)
+ µls

)}
lim
s→∞

inf(Lh(s)) ≥ 0,

L∗
h(s) ≥ L∗

h(0) exp

{
−
(
αls+ θl

∫ s

0
Dh(ŝ)dŝ

)}
lim
s→∞

inf(L∗
h(s)) ≥ 0.
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Using the same principle, it can be shown that

Bh(s) ≥ Bh(0) exp

{
−
(∫ s

0

βhMh(ŝ)

1 + α0Ah(ŝ)
dŝ+ µbs

)}
,

lim
s→∞

inf(Bh(s)) ≥ 0.

B∗
h(s) ≥ B∗

h(0) exp

{
−
(
αms+ θb

∫ s

0
Dh(ŝ)dŝ

)}
,

lim
s→∞

inf(B∗
h(s)) ≥ 0,

Mh(s) ≥ Mh(0) exp

{
−
(
µms+ θm

∫ s

0
Dh(ŝ)dŝ+

∫ s

0

βhBh(ŝ)

1 + α0Ah(ŝ)
dŝ

)}
,

lim
s→∞

inf(Mh(s)) ≥ 0.

Gh(s) ≥ Gh(0) exp

{
−
(
(αh + µh) + θg

∫ s

0
Dh(ŝ)dŝ

)}
,

lim
s→∞

inf(Gh(s)) ≥ 0,

Dh(s) ≥ Dh(0) exp{−µds},

lim
s→∞

inf(Dh(s)) ≥ 0,

Ah(s) ≥ Ah(0) exp{−µas},

lim
s→∞

inf(Ah(s)) ≥ 0.

Thus, when starting with non-negative initial value conditions in the model system (5.2.0.1), this indicates

that the solution (Ph(s), Lh(s), L∗
h(s),Bh(s),B∗

h(s),Mh(s),Gh(s),Dh(s),Ah(s)) is always no-negative

for every s ≥ 0.

The within-host model (5.2.0.1) has a disease free equilibrium, obtained by setting the right-hand sides of

the equations in the model to zero. The equilibrium is given as

E0 = (P 0
h , L

0
h, L

∗0
h , B

0
h, B

∗0
h ,M

0
h , G

0
h, D

0
h, A

0
h),

=

(
0,

Λl

µl
, 0,

Λb

µb
, 0, 0, 0,

Λd

µd
, 0

)
. (5.2.1.5)

The linear stability of E0 can be established utilising the next generation operator approach to calculate

the basic reproductive number and we use the [71]’s approach. The model system (5.2.0.1) can be written

in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (5.2.1.6)

dZ

dt
= h(X,Y, Z),
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where

X = (Lh, Bh, Dh),

Y = (Ph, L
∗
h, B

∗
h, Gh, Ah), (5.2.1.7)

Z = (Mh).

We define g̃(X∗, Z) by

g1(X
∗, Z) = Ph = 0

g2(X
∗, Z) = L∗

h =
βlLhPh

(1 + αa)(αl + θlDh)
= 0,

g3(X
∗, Z) = B∗

h =
(1− π)βhBhµaMh(f2 +Mh)

[f2µa + (µa + α0ηDh)Mh](αm + θbDh)
,

g4(X
∗, Z) = Gh =

πβhBhµaMh(f2 +Mh)

[f2µa + (µa + α0ηDh)Mh](µh + αh + θgDh)
,

g5(X
∗, Z) = Ah =

ηDhMh

µa
,

By substituting the values of Ph, L∗
h, B∗

h, Gh and Ah and letting h1 =
dMh

dts
we obtain

h1 =
NlαlβlLhPh

(1 + αaDh)(1 + α2)(αl + θlDh)
+

(1− π)NmαmβhBhµa
(1 + α1)(αm + θbDh)

Mh(f2 +Mh)

[f2µa + (µa + α0ηDh)Mh]

− (µm + θmD + βhBh)Mh, (5.2.1.8)

∂h1
∂Mh

=
(1− π)NmαmβhBh

(1 + α1Dh)(αm + θbDh)
− (µm + θmDh + βhBh).

We compute A =M −D, where M > 0 and D > 0, a diagonal matrix.

A =
(1− π)NmαmβhBh

(1 + α1Dh)(αm + θbDh)
− (µm + θmDh + βhBh),

M =
(1− π)NmαmβhBh

(1 + α1Dh)(αm + θbDh)
,

D = (µm + θmDh + βhBh), (5.2.1.9)

D−1 =
1

(µm + θmDh + βhBh)
.

MD−1 =
(1− π)NmαmβhBh

(1 + α1Dh)(αm + θbDh)(µm + θmDh + βhBh)
.

Therefore the reproduction number is given by ℜ0 = ρ(MD−1). Therefore

ℜ0 =
(1− π)Nmαmβh

Λb
µb

(1 + α1
Λd
µd

)(αm + θb
Λd
µd

)(µm + θm
Λd
µd

+ βh
Λb
µb
)

(5.2.1.10)
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The threshold quantity ℜ0 (i.e. the basic reproduction number) measures the total number of secondary

infected red blood cells (IRBCs) produced by primary IRBC in a host at the beginning of the infection.

This local stability result indicates that, if the initial sub-population of the model is within the attraction

of E0, the pathogen can be eliminated from the bloodstream if ℜ0 < 1. To ensure that this clearance

is independent of the initial concentrations of red blood cells (RBCs), IRBC and merozoites, the global

asymptotic stability must be established for the disease free equilibrium E0.

Lemma 5.2. The disease free equilibrium E0 is locally asymptotically stable if ℜ0 < 1 and unstable if

ℜ0 > 1.

Proof. Now, we consider the local stability analysis of the disease free equilibrium in system of equations

(5.2.0.1). We first, linearize the system of equations (5.2.0.1) at infection-free equilibrium point (E0), we

yield the following Jacobian matrix:

J(E0) =



−x1 −x3 0 0 0 0 0 k2 0

−x2 −x4 0 0 0 0 0 k20

x2 x3 −y1 0 0 0 0 −βlk2 0

0 0 0 −µb 0 −m1 0 0 0

0 0 0 0 −z2 (1− π)m1 0 0 0

0 0 y2 0 z3 −m2 0 0 0

0 0 0 0 0 πm1 −k1 0 0

0 0 y3 0 z4 m3 0 −µd 0

0 0 0 0 0 m4 0 0 −µa



, (5.2.1.11)

where x1 =
βl

Λl
µl

1 + αa
Λd
µd

+µp, x2 =
βl

Λl
µl

1 + αa
Λd
µd

, x3 =
βl

Λh
µp

1 + αa
Λd
µd

, x4 =
βl

Λh
µp

1 + αa
Λd
µd

+µl, y1 =
(
αl + θl

Λd

µd

)
,

y2 =
Nlαl

1 + α2
Λd
µd

, y3 =
ρl
f0

Λd

µd
, z2 =

(
αm + θb

Λd

µd

)
, z3 =

Nmαm

1 + α1
Λd
µd

, z4 =
ρb
f1

Λd

µd
, m1 = βh

Λb

µb
,

m2 =

(
µm + θm

Λd

µd
+ βh

Λb

µb

)
, m3 =

ρm
f2

Λd

µd
, m4 =

η

f2

Λd

µd
, k1 =

(
µh + αh + θg

Λd

µd

)
and k2 =

αa
Λh
µp

Λl
µl

(1 + αa
Λd
µd

)2
.

The characteristic equation is given by |J(E0) − λI| = 0. We observe that the eigenvalues λ1 = −y1,

λ2 = −µb, λ3 = −k1, λ4 = −µd, λ5 = −µa are negative and the other remaining eigenvalues are

decided by the following characteristic equation

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, (5.2.1.12)
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where

a4 = 1,

a3 = (x1 + x4) + (z2 +m2) > 0,

a2 = [(x1x4 − x2x3) + (x1 + x4)(z2 +m2) + (m2z2 − (1− π)m1z3)(x1x4 − x3x2)],

a1 = [(x1x4 − x2x3) + (x1 + x4)(m2z2 − (1− π)m1z3)], (5.2.1.13)

a0 = [(m2z2 − (1− π)m1z3)(x1x4 − x2x3)].

Therefore

x1x4 − x2x3 =
βl

1 + αa
Λd
µd

(Λl + Λh) + µlµp > 0,

m2z2 − (1− π)m1z3 = (αm + θb
Λd

µd
)(µm + θm

Λd

µd
+ βh

Λb

µb
)(1−ℜ0). (5.2.1.14)

Clearly, if ℜ0 < 1, we have a4 > 0, a3 > 0, a2 > 0, a1 > 0 and a0 > 0. To confirm that all the

roots of the systems of equations (5.2.0.1) have negative real parts, we shall use Descartes’ Rule of signs

change, we observe that on characteristic equation (5.2.1.13) there is no sign changes in the sequence of

coefficients and so there is zero real positive roots [72, 73].

f(λ) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 (5.2.1.15)

f(−λ) = a4λ
4 − a3λ

3 + a2λ
2 − a1λ+ a0

When we find f(λ) we observe that there is no sign changes and when we find f(−λ) we observe that there

are four sign changes. Therefore, we have zero positive eigenvalalues and four real negative eigenvalues.

Then all the eigenvalues of the Jacobian matrix J(E0) are negative or have negative real real parts when

ℜ0 < 1. Which shows that the local stability of E0 is stable when ℜ0 < 1 and unstable when ℜ0 > 1.

The within-human host sub-model is in terms of fast time scale s. We can write the model (5.2.0.1) using

the slow time scale t by assuming a relation between the fast and slow time-scales to be of the form t = ϵs

[14, 24], such that the within-human host sub-model can be written in terms of the slow time-scale as
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follows:

1. ϵ
dPh(t)

dt
= −µpPh(t)− θpDh(t)Ph(t),

2. ϵ
dLh(t)

dt
= Λl −

βlPh(t)Lh(t)

1 + αaDh(t)
− µlLh(t),

3. ϵ
dL∗

h(t)

dt
=

βlPh(t)Lh(t)

1 + αaDh(t)
− αlL

∗
h(t)− θlDh(t)L

∗
h(t),

4. ϵ
dBh(t)

dt
= Λb −

βhMh(t)Bh(t)

1 + α0Ah(t)
− µbBh(t),

5. ϵ
dB∗

h(t)

dt
=

(1− π)βhMh(t)Bh(t)

1 + α0Ah(t)
− αmB

∗
h(t)− θbDh(t)B

∗
h(t), (5.2.1.16)

6. ϵ
dMh(t)

dt
=

NlαlL
∗
h(t)

1 + α2Dh(t)
+
NmαmB

∗
h(t)

1 + α1Dh(t)
− µmMh(t)− θmDh(t)Mh(t)−

βhMh(t)Bh(t)

1 + α0Ah(t)
,

7. ϵ
dGh(t)

dt
=

πβhMh(t)Bh(t)

1 + α0Ah(t)
− (αh + µh)Gh(t)− θgDh(t)Gh(t),

8. ϵ
dDh(t)

dt
= Λd +

(
ρlL

∗
h(t)

f0 + L∗
h(t)

+
ρbB

∗
h(t)

f1 +B∗
h(t)

+
ρmMh(t)

f2 +Mh(t)

)
Dh(t)− µdDh(t),

9. ϵ
dAh(t)

dt
=

ηMh(t)Dh(t)

f2 +Mh(t)
− µaAh(t),

where ϵ is a small constant number that is 0 < ϵ << 1 which highlights the fast time scale of the

within-human host sub-model compared to the slow time scale of the between-host transmission sub-

model [14, 24]. We obtain the endemic equilibrium of model (5.2.1.16) by setting the right-hand side of

the equations to zero and we obtain

E1 =
(
P̂h, L̂h, L̂

∗
h, B̂h, B̂

∗
h, M̂h, Ĝh, Ĝh, D̂h, Âh

)
. (5.2.1.17)
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The endemic equilibrium is given by

P̂h(t) = Ph(0)e
−(µp+θpDh)t,

L̂h(t) =
Λl

µl +
βlP̂h

1+αaD̂h

+

Lh(0)−
Λl

µl +
βlP̂h

1+αaD̂h

 e−(µl+
βlP̂h

1+αaD̂h
)t
,

L̂∗
h(t) =

βlP̂hL̂h

(αl + θlD̂h)(1 + αaD̂h)
+

[
L∗
h(0)−

βlP̂hL̂h

(αl + θlD̂h)(1 + αaD̂h)

]
e−(αl+θpD̂h)t,

B̂h(t) =
Λb(1 + α0Âh)

βhM̂h + µp(1 + α0Âh)
+

[
Bh(0)−

Λb(1 + α0Âh)

βhM̂h + µp(1 + α0Âh)

]
e
−(

βhM̂h+µb(1+α0Âh)

1+α0Âh
)t
,

B̂∗
h(t) =

(1− π)βhM̂hB̂h

(1− α0Âh)(αm + θbD̂h)
+

[
B̂∗

h(0)−
(1− π)βhM̂hB̂h

(1− α0Âh)(αm + θbD̂h)

]
e−(αm+θbD̂h)t

M̂h(t) =

NlαlL̂
∗
h

1+α2D̂h
+

NmαmB̂∗
h

1+α1D̂h

µm + θmD̂h +
βhB̂h

1+α0Âh

+

M̂h(0)−
NlαlL̂

∗
h

1+α2D̂h
+

NmαmB̂∗
h

1+α1D̂h

µm + θmD̂h +
βhB̂h

1+α0Âh

 e−(µh+θmD̂h+
βhB̂h

1+α0Âh
)t
,

Ĝh(t) =
πβhM̂hB̂h

(1 + α0Âh)(αh + µh + θg)
+

[
Gh(0)−

πβhM̂hB̂h

(1 + α0Âh)(αh + µh + θg)

]
e−(αh+µh+θgD̂h)t

D̂h(t) =
Λd

µd −
(

ρlL̂
∗
h

df0+L̂∗
h

+
ρbB̂

∗
h

f1+B̂∗
h

+ ρmM̂h

f2+M̂h

) + [Dh(0)−

Λd

µd −
(

ρlL̂
∗
h

df0+L̂∗
h

+
ρbB̂

∗
h

f1+B̂∗
h

+ ρmM̂h

f2+M̂h

)
 e−

(
µd−

(
ρlL̂

∗
h

df0+L̂∗
h

+
ρbB̂

∗
h

f1+B̂∗
h

+
ρmM̂h
f2+M̂h

))
t
,

Âh(t) =
ηM̂hD̂h

µa(f2 + M̂h)
+

[
Ah(0)−

ηM̂hD̂h

µa(f2 + M̂h)

]
e−µat. (5.2.1.18)

When t = 0 we obtain P̂h = Ph(0), L̂h = Lh(0), L̂∗
h = L∗

h(0), B̂h = Bh(0), B̂∗
h = B∗

h(0), M̂h =Mh(0),

Ĝh = Gh(0), D̂h = Dh(0) and Âh = Ah(0).

From the first equation of the system of equations (5.2.1.18), it implies that when s get larger, Ph(s)converges

to zero. That is

Ph(s) → 0 as s→ ∞.
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As t→ ∞, eventually, endemic equilibrium converges to the following::

P̂h(t) → 0,

L̂h(t) → Λl

µl +
βlP̂h

1+αaD̂h

,

L̂∗
h(t) → βlP̂hL̂h

(αl + θlD̂h)(1 + αaD̂h)
,

B̂h(t) → Λb(1 + α0Âh)

βhM̂h + µp(1 + α0Âh)
,

B̂∗
h(t) → (1− π)βhM̂hB̂h

(1− α0Âh)(αm + θbD̂h)
,

M̂h(t) →
NlαlL̂

∗
h

1+α2D̂h
+

NmαmB̂∗
h

1+α1D̂h

µm + θmD̂h +
βhB̂h

1+α0Âh

,

Ĝh(t) → πβhM̂hB̂h

(1 + α0Âh)(αh + µh + θg)
,

D̂h(t) → Λd

µd −
(

ρlL̂
∗
h

df0+L̂∗
h

+
ρbB̂

∗
h

f1+B̂∗
h

+ ρmM̂h

f2+M̂h

) ,
Âh(t) → ηM̂hD̂h

µa(f2 + M̂h)
. (5.2.1.19)

There is a weakness in this model. It is difficult to solve the endemic equilibrium point to an explicit

solution with only parameters.

5.3 Within-mosquito host model

We adapt the within-mosquito malaria model in chapter 3. Mosquitoes are the main host for malaria

parasites, where the sexual phase of the parasite’s life cycle occurs in a process called morphologically

different phases of life, called sporogony. This leads to the development of parasitic infections called

sporozoites. The within-mosquito malaria parasite dynamics is modelled by the following time evolution

of five different parasite stages in the infected mosquito which are the population of gametocyte infected

erythrocytes, Gv(s), the population of gametes, Gm(s), the population of zygotes, Zv(s), the population

of oocysts, Ov(s), and the population of sporozoites, Pv(s). We use the same assumptions in [24]’s work.

In the within-mosquito sub-model, we assume that there is no immune response. The within-mosquito
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malaria parasite dynamics is given by the system of equations in (5.3.0.1).

1.
dGv(s)

ds
= Λv − (αg + µg)Gv(s),

2.
dGm(s)

ds
= NgαgGv(s)− (αs + µs)Gm(s),

3.
dZv(s)

ds
=

1

2
αsGm(s)− (αz + µz)Zv(s), (5.3.0.1)

4.
dOv(s)

ds
= αzZv(s)− (αk + µk)Ov(s),

5.
dPv(s)

ds
= NkαkOv(s)− (αv + µv)Pv(s),

The first equation in system of equations (5.3.0.1) demonstrates the population of gametocytes Gv(s)

within an infected mosquito after a mosquito suck blood from an infected human host. The first term, Λv

models the super-infection of infected mosquitoes. The population of gametocytes infected erythrocytes

is reduced either by the bursting of gametocytes infected erythrocytes releasing sex cells called gametes

at a constant rate αg, or through natural decay at rate µg. The second equation of model system (5.3.0.1)

demonstrates the dynamics of the population of gametes Gm(s). The first term of the population of ga-

metes models the rate of increase of gametes within an infected mosquito, which is given by NgαgGv(s),

where Ng is the number of gametes released per each bursting gametocyte infected erythrocyte within an

infected mosquito. The population of gametes also get depleted through combination of male and female

gametes to form zygotes at a constant rate αs.

The third equation in system of equations (5.3.0.1) demonstrates the dynamics of zygotes Zv(s). The

population of zygotes within an infected mosquito increase at rate
αsGm(s)

2
, which models the group-

ing of male and female gametes and combining them to form zygotes. We assume that the population

of zygotes are reduced either through natural decay at rate µz , or through developmental changes into

oocysts at constant rate αz . The fourth equation of system of equations (5.3.0.1) describes the dynamics

of oocysts Ov(s). The first term of Ov(s) demonstrates the rate of increase of oocysts within an infected

mosquito, which is given by αzZv(s).The population of oocysts is reduced either through natural decay

at constant rate µk or through the bursting of oocysts to release sporozoites at rate αk. The last equation

of system (5.3.0.1) describe the dynamics of population sporozoites, Pv(s). The rate of increase of sporo-

zoites within infected mosquito is given by NkαkOv(s), where Nk is the number of sporozoites per each

bursting oocyst. The population of sporozoites reduced either through natural decay at constant rate µv
or through the excretion/shedding of mature sporozoites into salivary glands of an infected mosquito at

constant rate αv.

The within-mosquito malaria transmission sub-model is in terms of fast time-scale s, while the between-

host malaria transmission sub-model are in terms of a slow scale t. We simplify the model by writing

the systems of equations (5.3.0.1) using the slow time scale t by assuming a relation between the fast and
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slow time-scales to be of the form t = ϵs, such that we can write the within-mosquito malaria transmission

sub-model in slow time-scale as follows:

1. ϵ
dGv(t)

dt
= Λv − (αg + µg)Gv(t),

2. ϵ
dGm(t)

dt
= NgαgGv(t)− (αs + µs)Gm(t),

3. ϵ
dZv(t)

dt
=

1

2
αsGm(t)− (αz + µz)Zv(t), (5.3.0.2)

4. ϵ
dOv(t)

dt
= αzZv(t)− (αk + µk)Ov(t),

5. ϵ
dPv(t)

dt
= NkαkOv(t)− (αv + µv)Pv(t),

The ϵ is a small constant term, that is 0 < ϵ << 1, highlighting the fast time-scale of the within-mosquito

sub-model of relationship with the time -scale of between-host malaria transmission sub-model.

The endemic equilibrium of within-mosquito host model is given by

G̃v =
Λv

αg + µg
+

[
Gv(0)−

Λv

αg + µg

]
e−(αg + µg)t,

G̃m =
Ngαg

αs + µs
G̃v +

[
Gm(0)− Ngαg

αs + µs
G̃v

]
e−(αs + µs)t

Z̃v =
1

2

αs

αz + µz
G̃m +

[
Zv(0)−

1

2

αs

αz + µz
G̃m

]
e−(αz + µz)t, (5.3.0.3)

Õv =
αz

αk + µk
Z̃v +

[
Ov(0)−

αz

αk + µk
Z̃v

]
e−(αk + µk)t,

P̃v =
Nkαk

αv + µv
Õv +

[
Pv(0)−

Nkαk

αv + µv
Õv

]
e−(αv + µv)t.

When t = 0, we obtain

G̃v = Gv(0),

G̃m = Gm(0),

Z̃v = Zv(0), (5.3.0.4)

Õv = Ov(0),

P̃v = Pv(0).
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When t→ ∞, the endemic equilibrium state converges, which is given by

G̃v → Λv

αg + µg
,

G̃m → Ngαg

αg + µg

Λv

αs + µs
,

Z̃v → 1

2

Ngαg

αg + µg

αs

αs + µs

Λv

αz + µz
, (5.3.0.5)

Õv → 1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Λv

αk + µk
,

P̃v → 1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

Λv

αv + µv
.

5.4 Coupled Multiscale model

The between-hosts (human and mosquitoes) describe the transmission and spread of malaria dynamics

at population level. We use susceptible-infected-susceptible (SIS) model on between-human host sub-

model. This sub-model is formulated based on two dynamical population, which are susceptible humans

(SH) and infected humans infected human populations IH . We assume that the infected human classes

are associated to the within-human host dynamics of particular individual. The total human population is

given by NH(t) at time t, and now NH(t) = SH(t)+ IH(t). We adapt the assumptions of this sub-model

from [24] which are as follows:

i. The infected human population can recover naturally from malaria infection or through immune re-

sponse.

ii. The transmission to human parameter β̂V is the function of the number of infected mosquito population

that is β̂V = β̂V (IV ).

iii. The between-human host dynamics are assumed to occur at slow time scale t as compared to within-

host (human and mosquito) sub-models for malaria disease dynamics, that is SH = SH(t) and

IH = IH(t).

The assumptions above direct us to the following sub-model of between-human host of malaria disease

system.

dSH(t)

dt
= ΛH − β̂V (IV )SH(t)− µHSH(t) + ˆ̂γHIH(t),

dIH(t)

dt
= β̂V (IV )SH(t)− (µH + δ̂H + γ̂H)IH(t). (5.4.0.1)

The first equation of sub-model (5.4.0.1) models the dynamics of susceptible human population. We as-

sume the population of susceptible humans increase either through recruitment at a constant rate ΛH that

is through birth or through recovery of human infected population at a constant rate γ̂H . The population
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reduced either through the malaria infection of susceptible humans at a variable β̂V (IV ) or through natural

death at a constant rate µH . The second equation of sub-model (5.4.0.1) models the dynamics of malaria

infected human population. This population increases through malaria infection of susceptible humans

and decreases through natural death at a constant rate µH , through disease induced death at rate δ̂H and

recovery of infected population at rate γ̂H .

In a similar way, NV (t) denotes the total mosquito population size at time t. We use susceptible-infected

(SI) model for between-mosquito host sub-model, since the mosquitoes do not recover from their infection.

The population of mosquitoes is divided into susceptible mosquitoes (SV ) and malaria infected mosquitoes

(IV ). Now NV (t) = SV (t) + IV (t). For between-mosquito host sub-model, we adapt the assumptions in

[24], which are given as following:

i. Infected mosquitoes do not recover naturally from their malaria infection.

ii. The malaria transmission parameter β̂H is the function of the number of malaria infected humans,

which is given by β̂H = β̂H(IH).

iii. The dynamics of between-mosquito host sub-model is assumed to occur at slow time scale t, when

we compare with the within-host (human and mosquito) sub-models variables of malaria disease

dynamics, which is given by SV = SV (t) and IV (t).

From the assumption, the between-mosquito host sub-model is given by:

dSV (t)

dt
= ΛV − β̂H(IH)SV (t)− µV SV (t),

dIV (t)

dt
= β̂H(IH)SV (t)− (µV + δ̂V )IV (t). (5.4.0.2)

The first equation of sub-model (5.4.0.2) models the dynamics of population of susceptible mosquitoes.

The susceptible mosquitoes increase through the supply rate ΛV that is through birth. This population

decreases either through natural decay at a constant rate µV or through malaria infection by humans

at rate β̂H(IH). The second equation of system (5.4.0.2) models the dynamics of population of in-

fected mosquitoes. The population of infected mosquitoes increases though the infection of susceptible

mosquitoes and decrease either through natural death at a constant rate µV or through malaria infection

induced death at a constant rate δ̂V .

We integrate the following four sub-models (5.2.1.16), (5.3.0.2), (5.4.0.1) and (5.4.0.2) into a single cou-

pled multiscale model. We adapt the method used in [14, 24] to integrate all the four sub-models. Now we

have to illustrate how to couple the sub-models into a single multiscale model. These sub-model involves

the coupling of between-host (human and mosquito) scale to within- host (human and mosquito) scale

through the process of super-infection or infection. The within-host sub-models and between-host sub-

models are linked through the nested multiscale model, where within-host scale influence between-host
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scale through pathogen shedding/excretion whilst between-host scale influences within-host scale sub-

model through initial infection. Whereas human and mosquitoes are linked through sharing of pathogen.

We understand that,Gh,Mh and Pv integrates the within-host scale to between-host scale which illustrates

the pathogen shedding/excretion. The between-host scale parameters β̂H(IH), β̂V (IV ), δ̂H , δ̂V and γ̂H
are functions of within-host scale. Considering the ecosystems concepts, We integrate the disease induced

death rate to malaria parasite/ immune cells dynamics in the infected human host. δ̂H = δ̂H(Mh(t), D(t)),

where Mh(t) is the malaria merozoites and D(t) is the density of immune cells within symptomatically

infected humans. The recovery rate can be written as γ̂H = γ̂H(Mh, D(t)), which integrate the dynamics

of infected-host by immune-cells, Using similar way, the infection induced death of mosquito is given by

δ̂V = δ̂V (Pv(t)), where Pv is the population of sporozites within an infected mosquitoes.

We consider that the transmission of parasite in the vector-host to vertebrate host malaria transmission

dynamics is described by β̂V , which is a function of product of infected vector host (IV ) and the population

of sporozoites (Pv), which is given by β̂V = β̂V (Pv(s)IV (t)). Therefore, Pv(s)IV (t) to be the variable

at between-host scale which is denoted by PV (t), that is PV (t) = Pv(s)IV (t), which is the products of

the average number of sporozoites within an infected mosquito and the number of infected mosquitoes.

PV (t) is the total infectious reservoir of mosquitoes in the community which we refer to the community

sporozoites load. This gives β̂V = β̂V (PV (t)). The force of infection can be given by

βV λV (PV (t)) = β̂V (PV (t)) =
βV PV (t)

P0 + PV (t)
,

where βV is the contact rate to a community with population PV (t), of sporozoites per unit time, which

can be considered as the measure of vertebrate-host biting rate. P0 which is the community sporozoites

load that yields 50% chance of getting human host get infected with malaria disease system after a suc-

cessful bite by a mosquito in a certain community.

The rate at which sporozoites becomes infectious to human within an infected mosquitoes αv, integrates

the within-mosquito scale to between-host scale. The population of sporozoites Pv(s) and the shed-

ding/excretion rate of sporozoites within an infected mosquito αv in the community sporozoites load link

the within-mosquito scale variable and parameter to the between-human host scale in a uni-directional

way. The community sporozoites load is modelled by

dPV (t)

dt
= Pv(s)αvIV (t)− αV PV (t). (5.4.0.3)

The equation (5.4.0.3) demonstrate the dynamics of the community sporozoites load. The first term to
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PV (t) describes the total number of sporozoites load contributed by all infected individuals from within-

mosquito processes to the community sporozoites load pool, where Nh = P̃v(s) is defined as the mea-

sure of total volume of sporozoites produced within an infected mosquito throughout the entire period of

mosquito infectiousness and αv is the proportion of individual mosquitoes who are infected. αV is the

rate of degradation of the community sporozoites load.

Similarly, we also consider the transmission of parasite in the vertebrate-host to vector-host malaria trans-

mission dynamics is described by β̂H , which is the function of product of infected human host (IH) and

the population of gametocytes (Gh), which is given by β̂H = β̂H(Gh(s)IH(t)). This productGh(s)IH(t)

is a variable at between- host scale which is denoted by GH(t), therefore GH(t) = Gh(s)IH(t), which

is the product of the average number of gametocytes within an infected humans and the average of in-

fected humans. Where GH(t) is the community gametocytes load that is responsible for transmission of

pathogen at between-host scale from community of infectious reservoir of humans to mosquitoes. There-

fore β̂H = β̂H(GH(t)). The force of infection can be given by

βHλH(GH(t)) = β̂H(GH(t)) =
βHGH

G0 +GH(t)
,

where βH is the contact rate to the community with population GH(t) and G0 is half saturation constant

associated with infection of mosquitoes.

αh is the rate at which the gametocytes population become infectious to mosquitoes which are shed/ex-

creted into specific anatomical compartments of an infected human host [18].The population of gameto-

cytes Gh(s) and the shedding/excretion rate of gametocytes within an infected human αh in the commu-

nity gametocytes load link the within-human host scale variable and parameter to the between-mosquitoes

scale in a unidirectional way. The community gametocytes load is given by

dGH(t)

dt
= Gh(s)αhIH(t)− αHGH(t). (5.4.0.4)

The community gametocytes load is increased through shedding/ excreting the gametocytes at a rate

Gh(s)αh into specific anatomical compartment of human host.
1

αH
is the average time to eliminate

the total community gametocyte load.
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The coupled multiscale model of malaria disease system can be reduced to

1.
dSV (t)

dt
= ΛV − β̂H(GH(t))SV (t)− µV SV (t),

2.
dIV (t)

dt
= β̂H(GH(t))SV (t)−

[
µV + δ̂V (Pv(s))

]
IV (t),

3.
dPV (t)

dt
= Pv(s)αvIV (t)− αV PV (t). (5.4.0.5)

4.
dSH(t)

dt
= ΛH − β̂V (PV (t))SH(t)− µHSH(t) + γ̂H(Mh(s), D(s))IH(t),

5.
dIH(t)

dt
= β̂V (PV (t))SH(t)−

[
µH + γ̂H(Mh(s), D(s)) + δ̂H(Mh(s), D(s))

]
IH(t),

6.
dGH(t)

dt
= Gh(s)αhIH(t)− αHGH(t),

We let

γH = γ̂H(Mh(s), D(s)) a constant parameter,

δH = δ̂H(Mh(s), D(s)) a constant parameter,

δV = δ̂V (Pv(s)) a constant parameter,

Nv = P̃v, (5.4.0.6)

Nh = Ĝh,

βHGH(t)

G0 +GH(t)
= β̂H(GH(t)),

βV PV (t)

P0 + PV (t)
= β̂V (PV (t)),

the full multiscale model of malaria disease dynamics is simplified in dimension

1.
dSV (t)

dt
= ΛV − βHGH(t)

G0 +GH(t)
SV (t)− µV SV (t),

2.
dIV (t)

dt
=

βHGH(t)

G0 +GH(t)
SV (t)− [µV + δV ] IV (t),

3.
dPV (t)

dt
= NvαvIV (t)− αV PV (t). (5.4.0.7)

4.
dSH(t)

dt
= ΛH − βV PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

5.
dIH(t)

dt
=

βV PV (t)

P0 + PV (t)
SH(t)− [µH + γH + δH ] IH(t),

6.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),
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5.4.1 Disease-free equilibrium states

The disease free equilibrium points of multiscale model (5.4.0.7 is given by

E00 = (S00
V , I

00
V , P

00
V , S00

H , I
00
H , G

00
H ) =

(
ΛV

µV
, 0, 0,

ΛH

µH
, 0, 0

)
. (5.4.1.1)

5.4.2 Reproductive Number

Using the next generation operator approach to calculate the basic reproductive number and we use the

[71]’s approach. The model system (5.4.0.5) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (5.4.2.1)

dZ

dt
= h(X,Y, Z),

where

X = (SV , SH),

Y = (IV , IH), (5.4.2.2)

Z = (PV , GH).

We define g̃(X∗, Z) by

g1(X
∗, Z) = IV =

βHSVGH

(µV + δV )(G0 +GH)
,

g2(X
∗, Z) = IH =

βV SHPV

(µH + γH + δH)(P0 + PV )
. (5.4.2.3)

By substituting the value of IV and IH and letting h1 =
dPV

dt
, h2 =

dGH

dt
we obtain

h1 =
1

2

NvαvβHSVGH

(µV + δV )(G0 +GH)
− αV PV , ,

h2 =
NhαhβV SHPV

(µH + γH + δH)(P0 + PV )
− µHGH , , (5.4.2.4)

We compute A =M −D, where M > 0 and D > 0, a diagonal matrix.

A =

 ∂h1
∂PV

∂h1
∂GH

∂h2
∂PV

∂h2
∂GH

 , (5.4.2.5)
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therefore A =  −αV
NvαvβHΛV

µVG0(µV + δV )
NhαhβV ΛV

µHP0(µH + γH + δH)
−αH

 , (5.4.2.6)

where

Nv =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

Λv

αv + µv
, (5.4.2.7)

Nh = Ĝh,

M =

 0
NvαvβHΛV

µVG0(µV + δV )
NhαhβV ΛV

µHP0(µH + γH + δH)
0

 , (5.4.2.8)

D =

(
αV 0

0 αH

)
, (5.4.2.9)

D−1 =

 1

αV
0

0
1

αH

 (5.4.2.10)

and MD−1 =  0
NvαvβHΛV

µVG0αH(µV + δV )
NhαhβV ΛV

µHP0αV (µH + γH + δH)
0

 . (5.4.2.11)

R0 = (MD−1), which is given by

λ2 − NvαvβHΛV

µVG0αH(µV + δV )

NhαhβV ΛH

µHP0αV (µH + γH + δH)
= 0, (5.4.2.12)

where

Nh = Ĝh,

Nv = P̃v =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

Λv

αv + µv
. (5.4.2.13)

Therefore

R0 =

√
NvαvβHΛV

µVG0αH(µV + δV )

NhαhβV ΛH

µHP0αV (µH + γH + δH)
. (5.4.2.14)

5.4.3 The local stability analysis of disease free equilibrium state

To determine the local stability analysis of disease free-equilibrium state of the multiscale model (5.4.0.7),

we linearize equations of system of equations (5.4.0.7), to obtain the Jacobian matrix and then solve it at
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the disease free equilibrium point E00, to obtain

J(E00) =



−µV 0 0 0 0 −βHΛV

G0µV

0 −(µV + δV ) 0 0 0
βHΛV

G0µV
0 Nvαv −αV 0 0 0

0 0 −βV ΛH

P0µH
−µH γH 0

0 0
βV ΛH

P0µH
0 −(µH + γH + δH) 0

0 0 0 0 Nhαh −αH


. (5.4.3.1)

The eigenvalues of J(E00) are calculated using det(J(E00) − λI) = 0. The characteristic equation of

the eigenvalues is given by

(λ+ µV )(λ+ µH)(a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0) = 0, (5.4.3.2)

where

a4 = 1,

a3 = αV + αH + (µV + δV ) + (µH + γH + δH),

a2 = αV αH + (αV + αH)(µV + δV ) + (µH + γH + δH)[αV + αH + (µV + δV )], (5.4.3.3)

a1 = αV αH(µV + δV ) + (µH + γH + δH)[αV αH + (αV + αH)(µV + δV )],

a0 = αV αH(µV + δV )(µH + γH + δH)
[
1−R2

0

]
.

From (5.4.3.2) it is clear that two eigenvalues are equal to λ1 = −µV and λ2 = −µH . Now, the other

remaining eigenvalues are obtained from the polynomial

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, (5.4.3.4)

It is clear that a4, a3, a2 and a1 are positive and it’s also clear that a0 > 0 whenever R0 < 1 and a0 < 0

when R0 > 1. Since all the coefficient in the polynomial are positive when R0 > 1, therefore to confirm

that all the roots of the systems of equations (5.4.3.4) have negative real parts, we shall use Descartes’

Rule of signs change, we observe that on characteristic equation (5.4.3.4) there is no sign changes in

the sequence of coefficients and so there is zero real positive roots [72, 73]. Therefore we have four real

negative eigenvalues. Then all the eigenvalues of the Jacobian matrix J(E00) are negative or have negative

real parts when R0 < 1. Which shows that the local stability of E00 is stable when R0 < 1 and unstable

when R0 > 1.
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5.4.4 The global stability analysis of disease free equilibrium state

In this subsection, we perform the proof that the DFE is globally asymptotically stable, we state the

theorem below.

Theorem 5.3. The disease free equilibrium state (E00) is globally asymptotically stable in the positively

invariant region when R0 ≤ 1.

Proof. We define V: {(SV , IV , PV , SH , IH , GH ) ∈ Ω: SV > 0, SH > 0} → R by

V = SV − S00
V ln(SV ) + IV + aPV + SH − S00

H ln(SH) + IH + bGH . (5.4.4.1)

We differentiate V with respect to time and is given as follows:

dV

dt
=

dSV
dt

−
S00
V

SV

dSV
dt

+
dIV
dt

+ a
dPV

dt
+
dSH
dt

−
S00
H

SH

dSH
dt

+
dIH
dt

+ b
dGH

dt
,

=
1

SV

(
SV − S00

V

) dSV
dt

+
dIV
dt

+ a
dPV

dt
+

1

SH

(
SH − S00

H

) dSH
dt

+
dIH
dt

+ b
dGH

dt
,

=
1

SV

(
SV − S00

V

) [
ΛV − βHGHSV

G0 +GH
− µV SV

]
+
βHGHSV
G0 +GH

− (µV + δV )IV +

a(NvαvIV − αV PV ) +
1

SH

(
SH − S00

H

) [
ΛH − βV PV SH

P0 + PV
− µHSH + γHIH

]
+
βV PV SH
P0 + PV

− (µH + γH + δH)IH + b(NhαhIH − αHGH),

= −µV
SV

(
SV − S00

V

) [
SV − ΛV

µV

]
− βVGH

G0 +GH
(SV − S00

V ) +
βHGHSV
G0 +GH

−(µV + δV )IV + aNvαvIV − aαV PV − µH
SH

(
SH − S00

H

) [
SH − ΛH

µH

]
− βV PV

P0 + PV
(SV − S00

V ) +
βV PV SH
P0 + PV

+ γH
IH
SH

(SH − S00
H ) +

βV PV SH
P0 + PV

−(µH + γH + δH)IH + bNhαhIH − bαHGH ,

= −µV
SV

(
SV − S00

V

)2
+ IV [Nvαva− (µV + δV )] +GH

[
βHS

00
V

G0 +GH
− αHb

]
−µH
SH

(
SH − S00

H

)2
+ IH [Nhαhb− (µH + γH + δH)] + PV

[
βV S

00

P0 + PV
− aαV

]
+γH

IH
SH

(
SH − S00

H

)
. (5.4.4.2)

We now choose the a such that
βV S

00
H

P0 + PV
− aαV = 0, since PV = 0 at DFE, we then make a the subject

of formula and obtain a =
βV S

00
H

P0αV
.

We also choose b such that
βHS

00
V

G0 +GH
− bαH = 0, since GH = 0 at DFE and make b the subject of

formula and we obtain b =
βHS

00
V

G0αH
.
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We substitute the value of a and b into equation (5.4.4.2), we obtain.

dV

dt
= −µV

SV
(SV − S00

V )2 + IV

[
Nvαv

βV S
00
H

P0αV
− (µV + δV )

]
− µH
SH

(SH − S00
H )2

+IH

[
Nhαh

βHS
00
V

G0αH
− (µH + γH + δH)

]
+ γH

IH
SH

(SH − S00
H ),

= −µV
SV

(SV − S00
V )2 + IV

[
Nvαv

βV ΛH

P0αV µH(µV + δV )
− 1

]
(µV + δV )

−µH
SH

(SH − S00
H )2 + IH

[
Nhαh

βHΛV

G0αHµV (µH + γH + δH)
− 1

]
(µH + γH + δH)

+γH
IH
SH

(SH − S00
H ),

= −µV
SV

(SV − S00
V )2 + IV [RV H − 1] (µV + δV )−

µH
SH

(SH − S00
H )2

+IH [RHV − 1] (µH + γH + δH) + γH
IH
SH

(SH − S00
H ), (5.4.4.3)

≤ 0,

where RV H =
NvαvβV ΛH

P0αV µH(µV + δV )
, RHV =

NhαhβHΛV

G0αHµV (µH + γH + δH)
, and R0 =

√
RV HRHV .

dV

dt
= 0 when SV = S00

V and SH = S00
H and all other compartments are zero at this point. This

means that the DFE is the only equilibrium point that exists at that particular singleton and according to

LaSalle’s invariant principle and the properties of the constructed Lyapunov function, the DFE is globally

asymptotically stable when R0 ≤ 1 that is RV H ≤ 1 and RHV ≤ 1.

5.4.5 The Existence of the Endemic Equilibrium State

The endemic equilibrium is denoted by

E = (SV , IV , PV , SH , IH , GH), (5.4.5.1)

where

SV (GH) =
ΛV (G0 +GH)

βHGH + µV (G0 +GH)
,

IV (GH) =
βHΛVGH

(µV + δV )[βHGH + µV (G0 +GH)]
,

PV (GH) =
NvαvβHΛVGH

αV (µV + δV )[βHGH + µV (G0 +GH)]
, (5.4.5.2)

SH(GH) =
ΛH [b1 + (b2 +NvαvγHβHΛV βV )GH ](b3 + b4GH)

(b1 + b2GH)[µHb3 + (µHb4 + βVNvαvβHΛV )GH ]
,

IH(GH) =
NvαvβHΛV βV ΛHGH

b1 + b2GH

,
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where

a1 = µHP0(µH + γH + δH),

a2 = µH(µH + γH + δH) + βV (µH + δH),

b1 = a1αV µVG0(µV + δV ),

b2 = a1αV (µV + δV )(βH + µV ) + a2NvαvβHΛV , (5.4.5.3)

b3 = µVG0P0αV (µV + δV ),

b4 = P0αV (µV + δV )(βH + µV ) +NvαvβHΛV ,

Nh = Ĝh,

Nv = P̃v =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

Λv

αv + µv
.

By substituting the expressions in (5.4.5.2) in the equation for GH which is given by

dGH

dt
= NhαhIH − αHGH .

We obtain disease free equilibrium state given by

E00 =
(
S00
V , I

00
V , P

00
V , S00

H , I
00
H , G

00
H

)
=

(
ΛV

µV
, 0, 0,

ΛH

µH
, 0, 0

)
, (5.4.5.4)

when GH = 0.

The endemic equilibrium is given by

E = (SV , IV , PV , SH , IH , GH)

when

GH =
µHP0αHµVG0µV (µV + δV )(µH + γH + δH)[R2

0 − 1]

αHb2
, (5.4.5.5)

where b2 is define above in expression (5.4.5.3). From the expression ofGH , we conclude that there exists

one unique endemic equilibrium for the model system (5.4.0.5) whenever R0 > 1.

5.4.6 Local stability analysis of endemic equilibrium state

We establish a local stability of endemic equilibrium state using the center manifold theory [74]. We use

center manifold theorem to determine the stability of malaria disease at an endemic equilibrium state. The

bifurcation analysis is carried out at the disease-free equilibrium state by utilising the center manifold

theory as described in Castillo-Chavez and Song [74]. To using the center manifold theory, we then

introducing the following simplification and change of variables. We rewrite the model (5.4.0.5) using

the state variables of the malaria disease model and the center manifold approach on the system. We let

x1 = SV (t), x2 = IV (t), x3 = PV (t), x4 = SH(t), x5 = IH(t), x6 = GH(t), β∗ = βH and βV = kβH .
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Using vector notation, we denote X = (x1, x2, x3, x4, x5, x6)
T , the system of equations (5.4.0.5) can

written in the form F = (f1, f2, f3, f4, f5, f6)
T . By writing the system of equations (5.2.0.1) in vector

form as:

dx1
dt

= f1 = ΛV − β∗x6
G0 + x6

x1 − µV x1,

dx2
dt

= f2 =
β∗x6

G0 + x6
x1 − (µV + δV )x2,

dx3
dt

= f3 = Nvαvx2 − αV x3, (5.4.6.1)

dx4
dt

= f4 = ΛH − kβ∗x3
P0 + x3

x4 − µHx4 + γHx5,

dx5
dt

= f5 =
kβ∗x3
P0 + x3

x4 − (µH + γH + δH)x5,

dx6
dt

= f6 = Nhαhx5 − αHx6.

We consider R0 = 1 and solving β∗ as a bifurcation parameter, we obtain

β∗ =

√
µVG0αH(µV + δV )

NvαvΛV

µHαV P0(µH + γH + δH)

NhαhkΛH
. (5.4.6.2)

The Jacobian matrix at disease-free equilibrium is given by

J(E0, β
∗) =



−µV 0 0 0 0 −β
∗ΛV

µVG0

0 −(µV + δV ) 0 0 0
β∗ΛV

µVG0

0 Nvαv −αV 0 0 0

0 0 −kβ
∗ΛH

µHP0
−µH γH 0

0 0
kβ∗ΛH

µHP0
0 −(µH + γH + δH) 0

0 0 0 0 Nhαh −αH


. (5.4.6.3)

The eigenvalues of the Jacobian matrix are given by λ1 = −µV , λ2 = −µH and

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, (5.4.6.4)
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where

a4 = 1,

a3 = (µV + δV ) + αV + αH + (µH + γH + δH),

a2 = αV (µV + δV ) + αH [(µV + δV + αV )] + (µH + γH + δH)[(µV + δV ) + αV + αH ],

a1 = αHαV (µV + δV ) + (µH + γH + δH)[αV (µV + δV ) + (5.4.6.5)

αH [(µV + δV ) + αV ]],

a0 = αHαV (µV + δV )(µH + γH + δH)[1−R2
0].

We notice that a4 > 0, a3 > 0, a2 > 0 and a1 > 0. a0 > 0 when R0 < 1, a0 < 0 when R0 > 1 and when

R0 = 1 a0 = 0.

WhenR0 = 1 we can clearly notice that the Jacobian of the linearized system has a simple zero eigenvalue

and all other eigenvalues are negative or have negative real parts. Therefore, the center manifold theory is

the appropriate to use in analysing the dynamics of the system of equations (5.4.0.5). When R0 = 1, It is

clear that the Jacobian matrix has a right eigenvector that is associated to the zero eigenvalue, given by

W = (w1 w2 w3 w4 w5 w6)
T .

We obtain

w1 = −β
∗ΛV

µ2VG0
w6,

w2 =
β∗ΛV

µVG0(µV + δV )
w6,

w3 =
Nvαvβ

∗ΛV

αV µVG0(µV + δV )
w6, (5.4.6.6)

w4 = − kβ∗ΛH(µH + δH)

µ2HP0(µH + γH + δH)

Nvαvβ
∗ΛV

αV µVG0(µV + δV )
w6,

w5 =
kβ∗ΛH

µHP0(µH + γH + δH)

Nvαvβ
∗ΛV

αV µVG0(µV + δV )
w6,

(5.4.6.7)

and we let w6 = w6 > 0.

Similarly, we denote

V =



v1

v2

v3

v4

v5

v6



T

,
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as the left eigenvector associated to the zero eigenvalue. We obtain

v1 = v4 = 0,

v2 =
Nvαvkβ

∗ΛH

αV µHP0(µV + δV )

Nhαh

(µH + γH + δH)
v6, (5.4.6.8)

v3 =
Nhαhkβ

∗ΛH

αV µHP0(µH + γH + δH)
v6,

v5 =
Nhαh

µH + γH + δH
v6,

and we let v6 = v6 > 0.

Using the condition W · V = 1 to obtain the values of v6 and w6. Therefore, we obtain

v6 =
αV (µV + δV )(µH + γH + δH)

w6[(µH + γH + δH){αHαV + (µV + δV )(αH + αV )}+ αHαV (µV + δV )]
.

We set w6 = 1. Thus

v6 =
αV (µV + δV )(µH + γH + δH)

[(µH + γH + δH){αHαV + (µV + δV )(αH + αV )}+ αHαV (µV + δV )]
. (5.4.6.9)

We shall demonstrate the conditions on parameter values a bifurcation to occur in the system, based on

the use of center Manifold theory, from the work in [74]. We compute the bifurcation coefficients a and

b, for the transformed system (5.4.6.1), and are defined as follows:

a =

6∑
i,j,k=1

vkwiwj
∂k(E0, β

∗)

∂xi∂xj
, (5.4.6.10)

b =
6∑

i,k=1

vkwi
∂2fk(E0, β

∗)

∂xi∂β∗

Now,

a =
6∑

i,j,k=1

v2w1w6
∂2f2
∂x1∂x6

+
6∑

i,j,k=1

v5w3w4
∂2f5
∂x3∂x4

+
6∑

i,j,k=1

v2w
2
6

∂2f2
∂x26

+
6∑

i,j,k=1

v5w
2
3

∂2f5
∂x23

,

= − Nvαvkβ
∗ΛV

αV µHP0(µV + δV )

Nhαhβ
∗2ΛV v6w

2
6

µ2VG
2
0(µV + γH + δH)

[
1 +

Nvαvkβ
∗ΛV (µH + δH)

αV P0(µV + δV )

]
−2

Nhαhβ
∗ΛH

µH + γH + δH

Nvαvkβ
∗ΛV

µHαV µVG2
0P0(µV + δV )

v6w
2
6

[
1 +

Nvαvβ
∗ΛV

αV µV P0(µV + δV )

]
. (5.4.6.11)

b =
6∑

i,k=1

v2w6
∂2f2
∂x6∂β∗

+
6∑

i,k=1

v5w3
∂2f5
∂x3∂β∗

,

= 2
Nvαvkβ

∗ΛH

αV µV P0(µV + δV )

NhαhΛV

µVG0(µH + γH + δH)
v6w6. (5.4.6.12)
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We notice that the bifurcation coefficients a < 0 and b > 0, then it follows that the model will undergo

trans-critical bifurcation at R0 = 1. We can conclude that the locally stability of the presents of malaria

disease equilibrium state of system (5.2.0.1) is stable when R0 > 1 but close to 1.

5.4.7 Global stability analysis of endemic equilibrium state

Theorem 5.4. The endemic equilibrium state is globally asymptotically stable when R0 > 1.

Proof. We prove the global stability analysis of endemic equilibrium state by using the definition of

lyapunov function [75].

V =

∫ SV

S∗
V

(
1−

S∗
V

x

)
dx+

∫ IV

I∗V

(
1−

I∗V
x

)
dx+ a

∫ PV

P ∗
V

(
1−

P ∗
V

x

)
dx+

∫ SH

S∗
H

(
1−

S∗
H

x

)
dx

+

∫ IH

I∗H

(
1−

I∗H
x

)
dx+ a

∫ GH

G∗
H

(
1−

G∗
H

x

)
dx. (5.4.7.1)

The derivative of V is given by:

dV

dt
=

(
1− SV

SV

)
dSV
dt

+

(
1− IV

IV

)
dIV
dt

+ a

(
1− PV

PV

)
dPV

dt
+

(
1− SH

SH

)
dSH
dt(

1− IH
IH

)
dIH
dt

+ b

(
1− GH

GH

)
dGH

dt
. (5.4.7.2)

At the endemic equilibrium, we consider the following:

ΛV =
βHGHSV

G0 +GH

+ µV SV ,

(µV + δV ) =
βHGHSV

(G0 +GH)IV
,

αV =
NvαvIV

PV

,

ΛH =
βV PV SH

P0 + PV

+ µHSH − γHIH , (5.4.7.3)

(µH + γH + δH) =
βV PV SH

P0 + PV

,

αH =
NhαhIH

GH

.
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Using (5.4.7.2) and (5.4.7.3), we obtain

dV

dt
=

(
1− SV

SV

)[
βHGHSV

G0 +GH

+ µV SV − βHGHSV
G0 +GH

− µV SV

]
+

(
1− IV

IV

)[
βHGHSV
G0 +GH

− βHGHSV

G0 +GH

IV

IV

]
+ a

(
1− PV

PV

)[
NvαvIV −NvαvIV

PV

PV

]
+

(
1− SH

SH

)[
βV PV SH

P0 + PV

+ µHSH − γHIH − βV PV SH
P0 + PV

− µHSH + γHIH

]
(5.4.7.4)

+

(
1− IH

IH

)[
βV PV SH
P0 + PV

− βV PV SH

P0 + PV

IH

IH

]
+ b

(
1− GH

GH

)[
NhαhIH −NhαhIH

GH

GH

]
,

dV

dt
= −µV

SV
(SV − SV )

2 − µH
SH

(SH − SH)2 + 2
βHGHSV

G0 +GH

− βHGHSV

G0 +GH

SV
SV

+
βHGHSV
G0 +GH

SV
SV

−βHGHSV
G0 +GH

IV
IV

+ IV

[
aNvαv −

βHGHSV

(G0 +GH)IV

]
− aNvαvIH

PV

PV
− aNvαvIV

PV

PV

+aNvαvIV + 2
βV PV SH

P0 + PV

+
βV PV SH
P0 + PV

SH
SH

− βV PV SH

P0 + PV

SH
SH

− βV PV SH
P0 + PV

IH
IH

+IH

[
bNhαh −

βV PV SH

(P0 + PV )IH

]
+ γHIH − γHIH + γHIH

SH
SH

− γHIH
SH
SH

− bNhαhIH
GH

GH

−bNhαhIH
GH

GH
+ bNhαhIH . (5.4.7.5)

We let

aNvαv −
βHGHSV

(G0 +GH)IV
= 0,

then we solve for a and we obtain

a =
βHGHSV

Nvαv(G0 +GH)IV
. (5.4.7.6)

We also let

bNhαh −
βV PV SH

(P0 + PV )IH
= 0,

then we solve for b and obtain

b =
βV PV SH

Nhαh(P0 + PV )IH
. (5.4.7.7)
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We substitute (5.4.7.6) and (5.4.7.7) into (5.4.7.2), and we obtain(
1− SV

SV

)
dSV
dt

=

(
1− SV

SV

)[
ΛV − βHGHSV

G0 +GH
− µV SV

]
=

(
1− SV

SV

)[
βHGHSV

G0 +GH

+ µV SV − βHGHSV
G0 +GH

− µV SV

]
(5.4.7.8)

=

(
1− SV

SV

)[
µV SV − µV SV

]
+

(
1− SV

SV

)[
βHGHSV

G0 +GH

− βHGHSV
G0 +GH

]
= −µV SV

(
1− SV

SV

)2

+ λHSV

(
1− SV

SV

)[
1− λHSV

λHSV

]
≤ λHSV

(
1− SV

SV

)[
1− λHSV

λHSV

]
≤ λHSV

[
1− λHSV

λHSV
− SV
SV

+
λH

λH

]
,

(
1− IV

IV

)
dIV
dt

=

(
1− IV

IV

)[
βHGHSV
G0 +GH

− (µV + δV )IV

]
=

(
1− IV

IV

)[
βHGHSV
G0 +GH

− βHGHSV

G0 +GH

IV

IV

]
(5.4.7.9)

= λHSV

(
1− IV

IV

)(
λHSV

λHSV
− IV

IV

)
= λHSV

[
λHSV

λHSV
− IV

IV
− λHSV IV

λHSV IV
+ 1

]
,

βHGHSV

Nvαv(G0 +GH)IV

(
1− IV

IV

)
PV

dt
=

βHGHSV

Nvαv(G0 +GH)IV

(
1− IV

IV

)
[NvαvIV − αV PV ]

=
βHGHSV

Nvαv(G0 +GH)IV

(
1− IV

IV

)[
NvαvIV −NvαvIV

PV

PV

]
= λHSV

(
1− PV

PV

)(
IV

IV
− IV

PV

)
(5.4.7.10)

= λHSV

[
IV

IV
− PV

PV

− PV IV

PV IV
+ 1

]
,
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(
1− SH

SH

)
dSH
dt

=

(
1− SH

SH

)[
ΛH − βV PV SH

P0 + PV
− µHSH + γHIH

]
=

(
1− SH

SH

)[
βV PV SH

P0 + PV

+ µHSH − γHIH − βV PV SH
P0 + PV

− µHSH + γHIH

]
=

(
1− SH

SH

)(
βV PV SH

P0 + PV

− βV PV SH
P0 + PV

)
+

(
1− SH

SH

)[
µHSH − µHSH

]
+

(
1− SH

SH

)[
γHIH − γHIH

]
(5.4.7.11)

= λV SH

(
1− SH

SH

)(
1− λV SH

λV SH

)
− µHSH

(
1− SH

SH

)2

+

γHIH

(
1− SH

SH

)(
IH

IH
− 1

)
≤ λV SH

(
1− SH

SH

)(
1− λV SH

λV SH

)
+ γHIH

(
1− SH

SH

)(
IH

IH
− 1

)
≤ λV SH

[
1− λV SH

λV SH
− SH
SH

+
ΛV

λV

]
+ γHIH

[
IH

IH
− 1− SHIH

SHIH
+
SH
SH

]
,

(
1− IH

IH

)
dIH
dt

=

(
1− IH

IH

)[
βV PV SH
P0 + PV

− (µH + γH + δH)IH

]
=

(
1− IH

IH

)[
βV PV SH
P0 + PV

− βV PV SH

P0 + PV

IH

IH

]
(5.4.7.12)

= λV SH

(
1− IH

IH

)(
λV SV

λV SH
− IH

IH

)
=

[
λV SV

λV SH
− IH

IH
− λV SV IH

λV SHIH
+ 1

]
,

and

b

(
1− GH

GH

)
dGH

dt
=

βV PV SH

Nhαh(P0 + PV )IH

(
1− GH

GH

)
[NhαhIH − αHGH ]

=
λV SH

NhαhIH

(
1− GH

GH

)[
NhαhIH −NhαhIH

GH

GH

]
(5.4.7.13)

= λV SH

(
1− GH

GH

)[
IH

IH
− GH

GH

]
= λV SH

[
IH

IH
− GH

GH

− GHIH

GHIH
+ 1

]
.
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dV

dt
≤ λHSV

[
1− λHSV

λHSV
− SV
SV

+
λH

λH

]
+ λHSV

[
λHSV

λHSV
− IV

IV
− λHSV IV

λHSV IV
+ 1

]
+

λHSV

[
IV

IV
− PV

PV

− PV IV

PV IV
+ 1

]
+ λV SH

[
1− λV SH

λV SH
− SH
SH

+
ΛV

λV

]
+

γHIH

[
IH

IH
− 1− SHIH

SHIH
+
SH
SH

]
+

[
λV SV

λV SH
− IH

IH
− λV SV IH

λV SHIH
+ 1

]
+

λV SH

[
IH

IH
− GH

GH

− GHIH

GHIH
+ 1

]
. (5.4.7.14)

≤ λHSV

[
2− SV

SV
+
λH

λH
− IV

IV
− λHSV IV

λHSV IV

]
+ λHSV

[
IV

IV
− PV

PV

− PV IV

PV IV
+ 1

]
λV SH

[
2− SH

SH
+
λV

λV
− IH

IH
− λV SHIH

λV SHIH

]
+ λV SH

[
IH

IH
− GH

GH

− GHIH

GHIH
+ 1

]
γHIH

[
IH

IH
− 1− SHIH

SHIH
+
SH
SH

]
.

Let g(x) = 1 − x + ln(x), and as we know that x > 0, therefore g(x) ≤ 0. And when x = 1, then

g(x) = 0.

dV

dt
≤ λHSV

[
g

(
SV
SV

)
+ ln

(
SV
SV

)
− IV

IV
+ g

(
λHSV IV

λHSV IV

)
+ ln

(
λH

λH

)
− ln

(
SV
SV

)
− ln

(
IV

IV

)
+
λH

λH

]
+λHSV

[
IV

IV
− PV

PV

+ g

(
PV IV

PV IV

)
+ ln

(
PV IV

PV IV

)]
+ λV SH

[
g

(
SH
SH

)
+ ln

(
SH
SH

)
− IH

IH
+

g

(
λV SHIH

λV SHIH

)
+ ln

(
λV

λV

)
− ln

(
SH
SH

)
− ln

(
IH

IH

)
+
λV

λV

]
+ λV SH

[
IH

IH
− GH

GH

+ g

(
GHIH

GHIH

)
+ ln

(
GHIH

GHIH

)]
+ γHIH

[
IH

IH
+ g

(
SHIH

SHIH

)
+ ln

(
SHIH

SHIH

)
+
SH
SH

− 2

]
, (5.4.7.15)

≤ λHSV

[
g

(
λHSV IV

λHSV IV

)
+ g

(
SV
SV

)
− IV

IV
− ln

(
IV

IV

)
− ln

(
GH

GH

)
− GH

GH

+
GH

GH

+ g

(
G0 +GH

G0 +GH

)
−G0 +GH

G0 +GH

− GH(G0 +GH)

GH(G0 +GH)
+ 1

]
+ λHSV

[
g

(
IV PV

IHPV

)
+
IV

IV
− PV

PV

+ ln

(
IV

IV

)
− ln

(
PV

PV

)]
+λV SH

[
g

(
λV SHIH

λV SHIH

)
+ g

(
SH
SH

)
− IH

IH
− ln

(
IH

IH

)
+ ln

(
PV

PV

)
− PV

PV

PV

PV

+ g

(
P0 + PV

P0 + PV

)
−P0 + PV

P0 + PV

− PV (P0 + PV )

PV (P0 + PV )
+ 1

]
+ λV SH

[
g

(
IHGH

IHGH

)
+
IH

IH
− GH

GH

+ ln

(
IH

IH
− ln

(
GH

GH

))]
+γHIH

[
IH

IH
+ g

(
SHIH

SHIH

)
+ ln

(
SH
SH

)
+ ln

(
IH

IH

)
+
SH
SH

− 2

]
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dV

dt
≤ λHSV

[
g

(
λHSV IV

λHSV IV

)
+ g

(
SV
SV

)
− IV

IV
− ln

(
IV

IV

)
+ ln

(
PV

PV

)
+
PV

PV

]
+λHSV

[
g

(
G0 +GH

G0 +GH

)
− G0 +GH

G0 +GH

− GH(G0 +GH)

GH(G0 +GH)
− PV

PV

+ 1

]
+

λHSV

[
g

(
IV PV

IV PV

)
+
IV

IV
− PV

PV

+ ln

(
IV

IV

)
− ln

(
PV

PV

)]
+ λV SH

[
g

(
λV SHIH

λV SHIH

)
+g

(
SH
SH

)
− IH

IH
− ln

(
IH

IH

)
+ ln

(
GH

GH

)
+
IH

IH

]
+ λV SH

[
g

(
P0 + PV

P0 + PV

)
− P0 + PV

P0 + PV

+
PV (P0 + PV )

PV (P0 + PV )
− GH

GH

+ 1

]
+ λV SH

[
g

(
IHGH

IHGH

)
+
IH

IH
− GH

GH

+ ln

(
IH

IH

)
− ln

(
GH

GH

)]
+γHIH

[
IH

IH
+ g

(
SHIH

SHIH

)
+ ln

(
SH
SH

)
+ ln

(
IH

IH

)
+
SH

SH
− 2

]
.

Consequently, we gain

dV

dt
≤ λHSV

[
PV

PV

− IV

IV
− ln

(
IV

IV

)
+ ln

(
PV

PV

)]
+ λHSV

[
IV

IV
− PV

PV

+ ln

(
IV

IV

)
− ln

(
PV

PV

)]
+λV SH

[
GH

GH

− IH

IH
+ ln

(
GH

GH

)
− ln

(
IH

IH

)]
+ λV SH

[
IH

IH
− GH

GH

+ ln

(
IH

IH

)
− ln

(
GH

GH

)]
.

(5.4.7.16)

Hence,
dV

dt
≤ 0 for all (SV , IV , PV , SH , IH , GH )> 0 and

dV

dt
= 0 only when SV = SV , IH = IV ,

PV = PV , SH = SH , IV = IH andGH = GH . It is clear that the largest invariant subset, where
dV

dt
= 0,

isE. Applying the LaSalle’s invariance principle [76] we conclude that the endemic equilibrium state (E)

is globally asymptotically stable when R0 > 1.

5.5 Numerical Simulation

In this section, we perform the numerical simulation for the coupled multiscale model (5.2.0.1) using

Matlab version 2019 and python 2.7 with built-in function of Odeint, which implements the version of

Runge-kutta scheme. The parameter values that we use for numerical simulations are estimates from

published studies. These parameter values we use are in Tables (5.1)-(5.5). We use the following initial

conditions SV (0) = 100000, IV (0) = 200, PV = 40000, SH(0) = 10000, IH(0) = 70, Ph(0) = 45,

Lh(0) = 400, L∗
h(0) = 50, Bh(0) = 500, B∗

h(0) = 5, Mh(0) = 50, Gh(0) = 15, D(0) = 30, A(0) = 10

and GH(0) = 1000. However, this coupled multiscale model forecasts on the outcome of immune system

have when contacts with the pathogen and determine its influence on the host-level. Our key focus is on

the parameters associated with immune response and determine how they have influence on between-host

scale malaria infection dynamics of (a) population of infected humans (IH ), (b) community gametocyte

load (GH), (c) population of infected mosquitoes (IV ) and (d) community sporozoite load (PV ).
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Table 5.1: Between-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source

ΛV Rate of recruitment of susceptible

mosquitoes.

6000 5000-7000 Mosquitoes per

day

[24]

βV Contact rate of susceptible humans with

the infectious reservoir of mosquitoes.

0.52135 2.7× 10−3-0.64 day−1 [35]

µV Natural death rate of mosquitoes. 0.12 0.033-0.3 day−1 [24]

δV induced death rate of infected

mosquitoes.

0.00000426 4.26 × 10−6 −
5.33× 10−6

day−1 [24]

P0 Half saturation constant associated with

the infection of humans.

1× 107 1×106−5×108 day−1 Assumed.

αV Rate of clearance of community sporo-

zoite load.

0.3 0.09-0.99 day−1 [24]

Table 5.2: Between-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

ΛH Rate of recruitment of Susceptible hu-

mans.

1000 1000-2000 Human per day [24]

βH Infection rate of susceptible

mosquitoes.

0.556 0.072-0.64 day−1 [35]

µH Natural death rate of humans. 0.004 0.00001-0.008 day−1 Assumed

δH Disease induced death rate of humans. 0.03454 1 × 10−15 −
4.1× 10−2

day−1 [35]

γH Natural recovery rate of humans. 0.025 0.0014-0.037 day−1 Assumed

G0 Half saturation constant associated with

the infection of mosquitoes.

5× 107 1×106−1×109 day−1 Assumed.

αH Rate of clearance of community game-

tocyte load.

0.0000913 0.0000467-

0.000274

day−1 [24]
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Table 5.3: Within-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source

Λv The rate of supply of gametocytes

within infected mosquitoes.

3000 100-3000 Gametocytes

per day

Assumed

αg Rate at which gametocyte infected ery-

throcytes burst within ifected mosquito.

96 90-100 day−1 [24]

µg Decay rate of gametocytes within in-

fected mosquito.

0.0625 0.0326-0.0725 day−1 [24]

Ng Number of gametes produced per ga-

metocyte infected erythrocyte within

infected mosquito.

2 1-3 Gametes per

day

[24]

αz Rate at which zygote develop into

oocysts.

0.4240 0.01-0.5 day−1 [24]

µz Natural death rate of zygote. 1 1-4 day−1 [24]

αs Fertilisation of gametes. 0.2 0.01-0.2 day−1 [24]

µs Natural death rate of gametes. 58 40-129 day−1 [24]

αk Bursting rate of oocysts to produce

sporozoites.

0.2 0-1 day−1 [24]

Nk Number of sporozoites produced per

bursting oocysts.

3 000 1000-10000 Sporozoites per

day

[24]

µk Natural death rate of oocysts. 0.01 0.071-0.143 day−1 [24]

αv Rate at which sporozoites become in-

fectious to humans.

0.025 0.0167-1 day−1 [24]

µv Natural death rate of sporozoites. 0.0001 0.0001-0.01 day−1 [24]
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Table 5.4: Within-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

Λh The rate of injection of sporozoites into

pre-erythrocytes due to mosquito bites

30 18-35 Sporozoites per

day

[45]

θl Destruction rate of sporozoites 0.03 0.001- 0.9 day−1 Assumed.

Λl Rate of supply of uninfected liver cells. 3000 1000- 10000 Cells per day [60]

µp Decay rate of sporozoites. 1.2× 10−3 10−12 − 10−1 day−1 Assumed

βl Rate of infection of hepatocytes by

sporozoites.

1× 10−1 10−6- 0.1 day−1 [45]

µl Natural decay rate of liver cells. 0.029 0.001- 0.1 day−1 [45]

αl Rate at which infected liver cell bursts. 0.02 0.01- 0.1 day−1 [45]

Nl Number of merozoites produced per

bursting pre-erythrocytes.

1 000 1000-10000 Merozoites per

day

[45]

Λb Rate of suppy of uninfected red blood

cells.

200 100-300 Cells per day [24]

βh Rate of infection of red blood cells (ery-

throcytes).

0.3 2× 10−9-0.4 day−1 Assumed

θb The destruction rate of merozoites into

infected red-blood cells

0.03 (10−8 − 0.06)

cells

day−1 [35].

αh Rate at which gametocytes develop and

become infectious within infected hu-

man.

0.4 0.01-0.9 day−1 [24]

µh Natural death rate of gametocyte in-

fected erythrocytes within infected hu-

man.

0.0625 0.0600-0.0625 day−1 [24]

µb Natural decay rate of red blood cells. 0.0083 0.006-0.1 day−1 [24]

µm Natural decay rate of free merozoites 0.001 0.001-0.5 day−1 [24]

π Proportion of gametocytes infected ery-

throcytes.

0.4 0.1-0.5 day−1 [24]

Nm Number of merozoites produced per

bursting erythrocytes.

16 10-30 Merozoites per

day

[77]

αm Rate at which erythrocytes burst to pro-

duce merozoites.

0.5 0.1-1.0 day−1 [24].
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Table 5.5: Within-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

θm Destruction rate of merozoites by im-

mune cells

0.06 (10−8 − 0.12)

cells

day−1 [35].

θg Destruction rate of gametocytes by im-

mune cells.

0.03 (10−8 − 0.06)

cells

day−1 [35].

Λd Supply rate of immune cells 30 1-300 day−1 [70].

ρl Immunogenecity of infected hepato-

cytes.

0.001 0.001- 0.1 Assumed

ρb Immuno-sensitivity of infected red-

blood-cells.

0.06 (2 × 10−8 −
0.12) cells

day−1 [35].

ρm Immuno-sensitivity of merozoites cells 0.6 (3×10−8−1.2)

cells

day−1 [35].

µd decay rate of immune cells
1

20

(
1

25
− 3

50

)
day−1 [35].

η The maximum rate of increase of anti-

bodies.

0.6 0.01- 0.9 day−1 [70].

µa Decay rate of antibodies 0.4 0.01- 0.9 day−1 [70].

αa Inhibition rate of immune cells re-

sponse in infected liver-cells

0.5 0.001- 0.7 day−1 Assumed.

α0 Efficiency of antibodies in infected red-

blood cells

0.6 0.01-0.8 day−1 [59]

α1 Rate of parasite production by infected

red-blood cells is inhibited

0.85 0.1-0.9 day−1 [59]

α2 The rate of parasite production by in-

fected liver cells is inhibited.

0.55 0.05- 0.9 day−1 Assumed.

f0 Stimulation constant for immune cells

due to infected liver-cells.

1700 1000- 2000 Cells per day Assumed.

f1 Stimulation constant for immune cells

due to infected red-blood cells.

2000 1000- 3000 Cells per day [59]

f2 Stimulation constant for immune cells

due to merozoites

1500 500- 2000 Merozoites per

day

[77]

5.5.1 The influence of within-human host parameters on between host dynamics

In this section, we explore the influence of within-human host scale parameters on between-host (humans

and mosquitoes) scale malaria infection dynamics of (a) population of infected humans (IH), (b) commu-

nity gametocyte load (GH), (c) population of infected mosquitoes (IV ) and (d) community sporozoite load

(PV ). Applying the categorization of multiscale models of infectious disease system presented in [3, 7],

the coupled multiscale model in (5.4.0.7) is classified as a nested multiscale model of malaria disease dy-

namics. Hence, the flow of information in uni-directionally linked in that the within-host scale sub-model

influences the between-host scale sub-model without any reciprocal feedback. We demonstrate the effects
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of key within-human host scale parameters that associated with immune response on between-host scale

variables (IH , GH , IV and PV ).
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Figure 5.1: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the variation in values of the efficacy

of immune cells inhibiting the production of merozoites α2: α2 = 0.0055, α2 = 0.055 and α2 = 0.55.

In figure (5.1), displays variation of population of infected humans (IH), community gametocytes load

(GH), population of infected mosquitoes (IV ) and community sporozoites load (PV ) for different values

of the efficacy of immune cells inhibiting the production of merozoites (α2): α2 = 0.0055, α2 = 0.055

and α2 = 0.55. The simulations display that these four between- host scale variables (IH , GH , IV and

PV ) are influenced by the within-host scale parameter α2. The simulation indicates that as the efficacy

of immune cells inhibiting the production of merozoites increases, (IH , GH , IV and PV ) also decreases.

Hence, health interventions that inhibits merozoites within-human host scale will likely to minimize the

transmission of malaria disease dynamics at between-host scale.

Figure (5.2) indicates the time evolution of between-host scale malaria infection dynamics of ((a) popula-

tion of infected humans IH , (b) community gametocyte loadGH , (c) population of infected mosquitoes IV
and (d) community sporozoites load PV ) for different values of the supply of immune cells Λd: Λd = 30,

Λd = 60 and Λd = 90. The simulations indicates that the four between-host scale malaria infection dy-

namics of ((a) population of infected humans IH , (b) community gametocyte load GH , (c) population of

infected mosquitoes IV and (d) community sporozoite load PV ) are influenced by the within-human host

scale parameter Λd. Hence, we observe that as the supply rate of immune cells increases, the transmis-

sion of malaria disease dynamics at between-host scale malaria infection dynamics of (IH , GH , IV and
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PV ) also decreases. Therefore, health interventions that promotes the supply of immune cells have the

potential to reduce the transmission of malaria disease dynamics at between-host scale.
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Figure 5.2: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the different values of the supply of

immune cells Λd: Λd = 30, Λd = 60 and Λd = 90.

Figure (5.3) illustrates the changes in between-host scale for malaria ifction dynamics of ((a) population

of infected humans IH , (b) community gametocyte load GH , (c) population of infected mosquitoes IV
and (d) community sporozoites load PV ) for different values of the destruction rate of merozoites into red

blood cells (θb): θb = 0.003, θb = 0.03 and θb = 0.3). The graphs also indicate that the rate of destruction

of infected red-blood cells increases, we notice a slightly decrease on between-host scale variables (IH ,

GH , IV and PV ). The solutions imply that control measures aimed at giving health interventions that

kills the infected red-blood cells within-the infected human red-blood cells, which also be good for the

community in that they reduce the transmission of malaria disease at between-host scale.

Figure (5.4) displays the numerical solutions of the multiscale model (5.4.0.7) showing the dynamics of

(a) population of infected humans IH , (b) community gametocyte load GH , (c) population of infected

mosquitoes IV and (d) community sporozoite load PV for different values of the killing rate of the ga-

metocytes by human immune cellsθg: θg = 0.003, θg = 0.03 and θg = 0.3. The numerical results in

figure (5.4) indicate that the between-host malaria dynamics of (a) population of infected humans IH , (b)

community gametocyte load GH , (c) population of mosquitoes IV and community sporozoites load PV

decrease in respond to the increase of killing rate of gametocytes by immune cells within-infected hu-

man.The results desplay that the killing of gametocytes by immune cells on the last life stage of pathogen
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life cycle within-infected human has an impact in reducing the transmission of malaria at community

level. Hence, any intervention methods that is intendd to kill the gametocytes within infected humans has

significant effect on reducing the transmission of malaria infection at community level.
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Figure 5.3: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the variation in values of the destruc-

tion rate of merozoites into red-blood cells by immune cells θb: θb = 0.003, θb = 0.03 and θb = 0.3.

Figure (5.5) displays the numerical solution of the multiscale model (5.4.0.7) showing variation of (a) pop-

ulation of infected humans IH , (b) community gametocyte loadGH , (c) population of infected mosquitoes

IV and (d) community sporozoite load PV for different values of the killing rate of sporozoites in liver-

cells by human immune cells (θl): θl = 0.01, θl = 0.03 and θl = 0.06. From the numerical results

in figure (5.5) presents that as the killing rate of sporozoites in the liver cells by human immune cells

increase, there is observable reasonable decrease in the transmission of malaria infection on the dynamics

of (a) population of infected humans IV , (b) community gametocytes load GH , (c) population of infected

mosquitoes and (d) community sporozoites load PV . However, any intervention that kills the sporozoites

within-the human liver cells has significant effect in reducing malaria transmission at community level

and at also population level.

Figure (5.6) displays the numerical results of multiscale model (5.4.0.7) displaying the variation of (a) pop-

ulation of infected humans IH , (b) community gametocyte loadGH , (c) population of infected mosquitoes

IV and (d) community sporozoites load PV for diffent values of killing rate of merozoites by immune cells

within-infected human θm: θm = 0.006, θm = 0.06 and θm = 0.6. The numerical results in figure (5.6)
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present that the between-host scale malaria dynamics of (a) population of infected humans IH , (b) commu-

nity gametocyte load GH , (c) population of infected mosquitoes IV and (d) community sporozoites load

PV decrease in response to the increase of killing rate of merozoites by human immune cells. This implies

that immune response has a significant influence on transmission of malaria infection on population level.
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Figure 5.4: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the variation in values of the destruc-

tion rate of gametocytes by immune cells θg: θg = 1e− 08, θg = 0.0003 and θg = 0.03.

Figure (5.7) pictures the numerical results of multiscale model (5.4.0.7) displaying the variation of (a) pop-

ulation of infected humans IH , (b) community gametocyte loadGH , (c) population of infected mosquitoes

IV and (d) community sporozoites load PV for different values of the efficacy of antibodies in reducing

erythrocytic invasion α0: α0 = 0.01, α0 = 0.6 and α0 = 0.8. The numerical simulations in figure (5.7)

display that the between-host scale malaria dynamics of (a) population of infected humans IH , (b) com-

munity gametocyte load GH , (c) population of infected mosquitoes IV and (d) community sporozoites

load PV decrease slightly in response to the increase in the values of the efficacy of antibodies in reducing

erythrocytic invasion α0 at within-infected human. From these analysis we observe that the immune re-

sponse have significant influence in reducing the transmission of malaria disease dynamics at population

level.
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Figure 5.5: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the different values of the destruction

rate of sporozoites in liver-cells by immune cells θl: θl = 0.01, θl = 0.03 and θl = 0.06.

In summary, the numerical results demonstrated in this chapter on the within-human scale parameters for

immune cells are helpfull when considering the vaccination intervention as a way of preventive measures

against malaria infection. The preventive health intervention by vaccination of an infectious disease sys-

tem will help to boost the effectiveness of the immune system on fight against the disease infection which

will likely reduce the transmission of the infection to others. This confirms that during malaria transmis-

sion dynamics within-host scale has a significant influence on the between-host scale for malaria infection

dynamics.
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Figure 5.6: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the different values of the destruction

rate of merozoites by immune cells θm: θm = 0.006, θm = 0.06 and θm = 0.6.
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Figure 5.7: Graphs illustrating changes in Infected Humans (IH), Community gametocytes load (GH),

Infected mosquitoes (IV ) and Community sporozoites load (PV ) for the variation in values of the efficacy

of antibodies in reducing erythrocyte invasion α0: α0 = 0.01, α0 = 0.6 and α0 = 0.8.
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5.6 Summary

In this study, we displayed a multiscale model of malaria disease dynamic which is type II vector-borne

disease, in which pathogen replication cycle is at the within-human host scale and no pathogen replication

at the within-mosquito scale. A coupled multiscale model for malaria disease system dynamics was devel-

oped utilising the modelling framework. The coupled multiscale model was used to examine the influence

of immune response on malaria disease systems at population level. The community pathogen load (com-

munity gametocyte load or community sporozoite load) were used to assess the human community-level

infectious or mosquito community-level infectious. This community pathogen load were obtained by up-

scaling of within-host (human and mosquito) scale infectious to between-host (human and mosquito) scale

infectiousness.Our results suggest that malaria disease in the inside-host (human) and at the population

level can be controlled by reducing the number of sporozoites in the liver cells and merozoites in the red

blood cells. Sporozoites invade the liver cells to release merozoites and the meroroides invade the red

blood cells, the replication process in the infected red blood cells continuously produce more merozoites,

making the disease more difficult to control. Most available antimalarial drugs work only by slowing

down the replication process of merozoites, but the liver will continue to depositing merozoites in the red

blood cells. Drugs that directly kill sporozoites, as well as those that delay the development of merozoites,

should also be available for treatment to be more effective. We demonstrated the role played by the human

immune response in fight against malaria parasite which has an influence at population-level. This study

assist in identify the vaccines that boost the human immune response in fight against malaria parasite

stages which have an impact on reduction of malaria disease at population-level. The numerical results

recommend that the coupled multiscale model of malaria disease system with human immune response

can be used to guide the effectiveness control of malaria disease system in the community. We expected

that the numerical solutions shown in this work will enlighten in making decisions about malaria disease

control, elimination and eradication. This multiscale model for malaria disease in general help in devel-

oping strategies for their control, advising disease management, recognising the targets for new drugs and

vaccines, and in turn assessing the effect of these medical interventions.
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A Multiscale Model of Malaria Disease
Dynamics that incorporate the Effects of
Temperature Changes

6.1 Introduction

The malaria disease system is the major public health challenge in most parts of the world. Mosquitoes

are vectors that cause malaria transmission and are the main targets of public health interventions. Malaria

disease is a type II vector-borne disease, where vector-borne diseases are infectious disease systems that

caused by infectious agents (viruses, bacteria, protozoa, and helminths), have a complex life cycle, that

requiring two hosts (e.g., vertebrate host and host vector). Malaria disease system is transmitted through

the blood meal of infectious female mosquitoes called Anopheles. Global warming can significantly have

effect on the spread and severity of malaria disease worldwide, especially in mosquito-borne diseases

are extremely sensitive to climate change [78]. Even though representing only one source of possible in-

creases in death rates and the rate of disease in a population, changes in the severity and global distribution

of vector-borne diseases are believed to represent a significant biological influence of this change.

In this work, we consider the replication-transmission multiscale cycle of the type II vector-borne disease

system in which there is no pathogen replication cycle on the within-vector host scale and where there is
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pathogen replication cycle on the within-human host scale. The multi-scale model of malaria disease sys-

tem presented in this work is a coupled multi-scale model that has combination of nested multi-scale mod-

els on humans and embedded multi-scale models on mosquitoes. Multiscale model of infectious diseases

system are complex systems caused by the interaction of three sub-systems that are (i) the host sub-system

(i.e human-host subsystem and mosquito-host subsystem), (ii) the pathogenic subsystem and (ii) the envi-

ronmental subsystem [38]. In general an infectious disease system has seven main levels of organisation

which are: the cell level, the tissue level, the organ level, the micro-ecosystem level, the host level, the

community level, and the macro-ecosystem level, with each level reduced into two adjacent scales, that

is, the cell level as the lowest organisational level that is decomposed into two adjacent scales which are

within-cell scale and between-cell scale and the macro-ecosystem level as the highest level of organisation

and that is decomposed into the within-macro-ecosystem scale and the between- macro-ecosystem scale.

The pathogen subsystem consists of two main levels of organisation, where each level is being the same as

a scale, namely, single pathogen species/strain level/scale and the multiple pathogen species/strains lev-

el/scale. The environmental subsystem consists of a main level of organisation which is the environmental

level that can be decomposed into two limiting scales which are (a) the micro-environmental scale which

is the inside-host environmental scale (i.e. the biological environment), and (b) the macro-environmental

scale which is the outside-host environmental scale (geographical environment) [7]. This work consists of

two hosts subsystems (mosquitoes and humans), single pathogen species/strain level/scale and utilises the

inside-host environment as the environmental subsystem.

The main objective of this chapter is to investigate the influence of climate changes effect on the multi-

scale model for malaria disease system. This study examines the influence of environmental changes on

the mosquito life cycle and the growth of the malaria parasite at the individual level, and the transmis-

sion of malaria at the population level. Environmental change system is a type of functionally organised

complex system that consists of two main levels/scales [38] which are:

(i) The micro-environmental change level/scale which takes place at the inside-host environment, which

includes the use of drugs, immune response, etc.

(ii) Macro-environmental change level/scale that occurs at the outside-host environmental scale and the

factors influences the infectious disease system are (a) caused by a naturally induced mechanism or

(b) caused by human-induced mechanisms [7, 38]. These can influence the presence and growth of

populations, survival and reproductive capacity of vectors and pathogens on a macro-environmental

scale [38]. Examples of macro-environmental scales are as follows: temperature, rainfall, humidity,

population growth, extreme weather events, natural disasters, climate change, agriculture, etc. This

work is on macro-environmental change level/scale where we evaluate the impact of temperature

changes on malaria disease systems.
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A considerable amount of literature has been published on mathematical modelling on the effect of

weather and climate changes on malaria transmission, focusing primarily on temperature and precipi-

tation and how anthropogenic climate changes could influence the (potential) burden of the illness and

these models are on transmission mechanism theory [39, 78–80]. Climate changes are expected to influ-

ence malaria disease system because the vector and parasite have a life cycle that is highly dependent on

temperature and rainfall. Anthropogenic climate change can alter the (potential) distribution of malaria

diseases, which has been central to many mechanistic (or process-based) models of malaria transmission.

In other studies on replication-transmission multiscale cycle of infectious disease system, the mosquito

life cycle is generally ignored because eggs, larvae, and pupae are not directly involved in the transmis-

sion cycle [24, 35]. The mosquito life cycle is a useful simplification of the system, but the results of

these models unfortunately cannot predict the intensity of malaria in most endemic areas. There are some

mathematical models on transmission mechanism theory that focus on mosquito populations and/or the

impact of environmental managers, such as temperature and precipitation. From these mathematical mod-

els, those that include temperature predict a spike in vector abundance at higher temperatures than those

observed in combination with malaria transmission in the field. The influences of temperature on the

mosquito life cycle and malaria parasite development have been recognized for many years but are rarely

used in multiscale models to predict parasite growth and malaria transmission. The multiscale model for

evaluating the influences of temperature change on malaria disease consists of several related systems: the

climate system, the malaria system (which is divided between the human host sub-system and mosquito-

host sub-system), and the impact system [81].

In this study, we develop a multiscale model of the malaria disease system that begins with the complex

nonlinear temperature relationships that exist throughout the mosquito life cycle, as well as the growth of

parasites and transmission of the malaria disease between two hosts (human and mosquito). The multiscale

model of malaria disease dynamics with two hosts, which are human host and mosquito host, where

mosquitoes are formulated in a similar fashion but rely on two compartments: one for the aqueous phases

of mosquitoes (eggs, larvae and pupae ) and one for the terrestrial (adult) mosquito stages, which consists

of parasite growth on within-mosquito host scale and the malaria transmission on between-mosquito host

scale. Temperature is included in all stages of development, spawning and mortality. Temperature affects

the potential for malaria transmission in the mosquito population at population-level and the growth of the

parasite at individual-level.

6.2 Mathematical Model

The aim of this study is to use the concept of two potential impacts of temperature change that does have

influence in malaria growth and transmission, using ordinary non-linear differential equations. We are

developing a multiple model of human dynamics (within-human host and between-human host scales)
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and mosquito dynamics (or within-mosquito host and between-mosquito host scales) for malaria disease

systems. We consider the conditions of the parasite to depend on the temperature and not the life cycle of

the mosquito. This study incorporates the juvenile stage of the mosquito into malaria growth and trans-

mission dynamics which is highly dependent on the surrounding environmental conditions.

In developing a framework for understanding the influence of temperature on malaria dynamics, a de-

terministic transmission model is developed. We present a multiscale model based on monitoring the

dynamics of between-mosquito host model at slow-time scale (t), where the mosquito is divided into

immature mosquito i.e. the juvenile mosquito (LM (t)) and adult mosquito population of which are

susceptible mosquitoes (SV (t)), infected mosquitoes (IV (t)) and community sporozoites load (PV (t)),

within-mosquito host dynamics at slow-time scale (t), which are population of erythrocyte gametocytes

within-infected mosquito (Gv(t)), population of gametes (Gm(t)), population of zygotes (Zv(t)), pop-

ulation of oocysts (Ov(t)) and population of sporozoites (Pv(t)). The dynamics of between-host scale

are modelled at slow-time scale t, which are: susceptible humans (SH(t)), infected humans (IH(t))

and community gametocytes load (GH(t)) and within-human host dynamics are modelled at fast-time

scale (s), which are uninfected red-blood cells (Rh(s)), infected red-blood cells (Rm(s)), population of

merozoites (Mh(s)) and population of gametocytes (Gh(s)). The total mosquito population is given by

NV (t) = SV (t) + IV (t) and the total human populations is given by NH(t) = SH(t) + IH(t). The rate

of infection of a susceptible humans is dependent on the mosquito’s biting rate a(T ) and the proportion

of bites by infected mosquitoes on susceptible humans that produce infection bH . Blood meal taken by an

infectious female anopheles mosquito on a susceptible human will cause sporozoites to be injected into

the human bloodstream and will be carried to the liver stage.

The female Anopheles mosquitoes rest for a few days after taking blood meal from the human host. The

mosquito digests blood and develops eggs, the process of which depends on temperature. The dynamics

of juvenile mosquitoes (LM (t)) increase through the logistic growth rate for immature mosquitoes and is

represented by ΛL(T )

(
1− LM (t)

K

)
NV (t) where k is the carrying capacity and ΛL(T ) is the deposition

rate for susceptible and infected mosquitoes [79]. The dynamics of juvenile mosquito is decrease through

the temperature dependent natural decay at a rate µL(T )
(
1− LM (t)

K

)
LM (t), through temperature de-

pendent maturation at a rate αL(T ) and death rate due to other things (δL). The single compartment

LM (t) represents the three aquatic stages of mosquitoes, i.e., egg, larva, and pupa.

The susceptible mosquitoes SV (t) increase through the development of juvenile mosquitoes to adult

mosquitoes at rate αL(T ). The susceptible mosquitoes decrease either through temperature dependent

natural decay at a rate µV (T ) or through malaria infection by humans at rate
βH(T )GH(t)

G0 +GH(t)
, where βH(T )

is temperature dependent contact rate of susceptible mosquitoes with infected humans and G0 is the half

saturation constant associated with the infection of mosquitoes. The third equation of model (6.2.1.12)
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demonstrates the dynamics of infected mosquitoes (IH(t)). The infected mosquitoes increase through the

infection of susceptible mosquitoes and decrease either through natural decay at a rate µV (T ) or through

malaria induced death rate δV .

The fourth equation in the model (6.2.1.12) describes the dynamics of erythrocytic gametocytes within-

infected mosquitoes (Gv(t)). Gv(t) is the first life stage of the pathogen at within-mosquito scale. The

first -life stage increase through super-infection at a rate λh(T )Sv =
βH(T )GH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
, which

is the down-scaling of pathogen from between-host scale to within-mosqito scale. Gv(t)decrease either

through natural decay at a rate µg or through proceed to the first intermediate life stage at rate αg. αg

is the rate at which gametocytes within-infected mosquito burst releasing sex cells called gametes (either

male or female). The fifth equation in model (6.2.1.12) models the dynamics of population of gametes

(Gm(t)). Gm(t) is the first intermediate life stage at within-mosquito scale. The first intermmediate life

stage increase by NgαgGv(t), where we assume that for every bursting gametocytes within an infected

mosquito, it releases han average of Ng gametes upon bursting. The gametes population decrease either

through natural decay at rate µs or at rate αs, where gametes get depleted through male and female ga-

metes fusing to form zygotes which is the second intermediate life stage.

The second intermediate life-stage for within-infected mosquito is represented by the population of zy-

gotes (Zv(t)). Zv(t) increase through the developmental processes done by gametes to mature and pair-up

and fuse to form zygotes at a rate
αs

2
Gm(t). The population of zygotes decrease either through natural

decay at a rate µz or through the progression of zygote into oocysts at a rate αz . The last intermediate life

stage at within-infected mosquito scale is given byOv, which is the population of oocysts. The population

of oocysts increase through the progression from zygotes into ookinetes to become oocusts at αzZv(t).

The last intermediate life stage decrease either through natural decay at a rate µk or through the progres-

sion to sporozoites population at a rate αk, which is the bursting of oocysts to release sporozoites.

The last life-stage on within-mosquito scale is given by Pv, which is the population of sporozoites. Pv(t)

increase by NkαkOv(t), where each oocyst bursts at a rate of αk to producing an average of Nk sporo-

zoites upon bursting. The last life stage of within-infected mosquito scale decrease either through natural

decay or through the excretion/shedding of mature sporozoites the the community sporozoity load at αv.

The ninth equation in system (6.2.1.12) describes the dynamics of community sporozoites load (PV ). The

community sporozoites load increase through up-scaling of individual excretion/shedding of pathogen

which is modelled by Pv(t)αv(IV (t) + 1). The influence of within-mosquito scale on between-mosquito

scale through pathogen shedding/excretion can be modelled by up-scaling individual host excretion/shed-

ding of the pathogen from within-mosquito scale at a rate αvPv(t) to between-mosquito scale [11, 24].
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The tenth equation of system (6.2.1.12) describe the rate of change in time, of the susceptible human

population (SH(t)). The SH(t) increase through supply rate/ birth at a constant rate ΛH and the number

of infected individual humans who recovered from malaria infection and join the susceptible human class

at a rate γH . Susceptible humans decreases due to natural death at a rate µH and through infection sus-

ceptible humans at a rate λV (T ) =
βV (T )PV

P0 + PV
, with temperature dependent parameter βV (T ) being the

contact rate of susceptible humans with the infectious reservoir of mosquitoes and P0 is the half saturation

constants associated with the infection of humans. The eleventh equation in system (6.2.1.12) describes

the changes in time of the population of infected humans (IH(t)). Infected humans increase through the

infection of susceptible humans and proceed to infected class at a constant rate λV (t). The population of

infected human class reduces due to natural death at a rate µH , or through disease induced death at a rate

δH or through the recovered of infected humans to join the SH(t) at a rate γH .

The last equation of system (6.2.1.12) describes the dynamics of community gametocytes load (GH(t)).

Community gametocytes load increase through shedding/excretion of the pathogen from within-infected

human to between-host scale modelled by NhαhIH(t). αh is the excretion/shedding rate of last-life stage

of within-infected human into the layer of the skin andNh is the average number of within-infected human

gametocytes pathogen load excreted into the layer of each infected individuals [18, 24]. Nhαh used to

links the within-human scale to between-host scale. The community gametocytes load decreases through

decay at a constant rate αH .

We adapt the method used in [24] to demonstrate the dynamics of within-host scales and also the linking

method applied to couple the within-host scale and between host scale.
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1.
dLM (t)

dt
= [ΛL(T )NV (t)− µL(T )LM (t)]

(
1− LM (t)

K

)
− (αL(T ) + δL)LM (t),

2.
dSV (t)

dt
= ΛV (T )−

βH(T )GH(t)SV (t)

G0 +GH(t)
− µV (T )SV (t),

3.
dIV (t)

dt
=

βH(T )GH(t)SV (t)

G0 +GH(t)
− (µV (T ) + δV )IV (t),

4.
dGv(t)

dt
=

βH(T )GH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t),

5.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t),

6.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

7.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

8.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t), (6.2.0.1)

9.
dPV (t)

dt
= Pv(t)αv(IV (t) + 1)− αV PV (t),

10.
dSH(t)

dt
= ΛH − βV (T )PV (t)SH(t)

P0 + PV (t)
− µHSH(t) + γHIH(t),

11.
dIH(t)

dt
=

βV (T )PV (t)SH(t)

P0 + PV (t)
− (µH + γH + δH)IH(t),

12.
dRh(s)

ds
= Λh − βhRh(s)Mh(s)− µbRh(s),

13.
dRm(s)

ds
= (1− π)βhRh(s)Mh(s)− αmRm(s),

14.
dMh(s)

ds
= NmαmRm(s)− µmMh(s),

15.
dGh(s)

ds
= πβhRh(s)Mh(s)− (αh + µh)Gh(s),

16.
dGH(t)

dt
= Gh(s)αhIH(t)− αHGH(t),

where

ΛV (T ) =
αL(T )LM (t)

2
.

6.2.1 Analysis of the multi-scale model using fast-slow time-scale analysis

We observe from the embedded multi-scale model of system (6.2.0.1) that at mosquito-host level has same

time scales which involved the between-mosquito host time scale (t) which associated with transmission at

the population-level and the within-mosquito host time scale (t) associated with the growth of sporozoites

population at the individual-level. We also note from the nested multi-scale model system (6.2.0.1) that

at human host level, has different time scale which are the between-human host time scale (t) which

associated with the transmission of malaria disease system and within-human host time scale (s) which
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associated with the replication of merozoites at an individual level. The analysis of the multi-scale model

system (6.2.0.1) and can be simplified by expressing the slow-time scale and fast time scale in terms of

each other by using the form t = ϵs such that the within-human-malaria disease dynamics can be written

in the from of slow time scale as follows:

6.2.1.1 Within-human malaria parasite population model

The within-host scale model is given by following ordinary differential equations

1. ϵ
dRh(t)

dt
= Λh − βhRh(t)Mh(t)− µbRh(t),

2. ϵ
dRm(t)

dt
= (1− π)βhRh(t)Mh(t)− αmRm(t), (6.2.1.1)

3. ϵ
dMh(t)

dt
= NmαmRm(t)− µmMh(t),

4. ϵ
dGh(t)

dt
= πβhRh(t)Mh(t)− (αh + µh)Gh(t),

where ϵ is a small constant number that is 0 < ϵ ≪ 1 which highlights the fast time scale of the

within-human host sub-model compared to the slow time scale of the between-host transmission sub-

model [14, 24].

We use the next generation operator approach to obtain the basic reproductive number of the within-human

host model (6.2.1.1). The model (6.2.1.1) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z),

DZ

dt
= h(X,Y, Z),

where

X = (Rh),

Y = (Rm, Gh), (6.2.1.2)

Z = (Mh).

We define g̃(X∗, Z) by

g1(X
∗, Z) = Rm =

(1− π)βhRhMh

αm
,

g2(X
∗, Z) = Gh =

πβhRhMh

αh + µh
. (6.2.1.3)
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By substituting the values of Rm and Gh and letting h1 =
dMh

dt
we obtain

h1 =
dMh

dt
= NmαmRm − µmMh,

therefore

h1 =
(1− π)NmαmβhΛhMh

αmµb
− µmMh,

A =
∂h1
∂Mh

=
(1− π)NmαmβhΛh

αmµb
− µm, (6.2.1.4)

where

A = M −D,

M =
(1− π)NmαmβhΛh

αmµb
,

D = µm,

D−1 =
1

µm
, (6.2.1.5)

MD−1 =
(1− π)NmαmβhΛh

αmµbµm
.

Therefore ℜ0 = ρ(MD−1), the reproductive number is given by

ℜ0 =
(1− π)NmβhΛh

µbµm
. (6.2.1.6)

The basic reproductive number number (ℜ0) of the within-human host submodel measures the total num-

ber of secondary infected red blood cells (IRBCs) produced by primary IRBCs in a host at the beginning

of the infection.

Since 0 < ϵ ≪, we let ϵ = 0 so that the within-human host sub-model becomes independent of time and

which is given by:

Λh − βhRhMh − µbRh = 0,

(1− π)βhRhMh − αmRm = 0, (6.2.1.7)

NmαmRm − µmMh = 0,

πβhRhMh − αhGh = 0.
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The disease free equilibrium point of the within-human scale model, where there is no pathogen exists to

infect the inside-host environment (human-host). The D.F.E is given by

E0 =
(
R0

h, R
0
m,M

0
h , G

0
h

)
,

=

(
Λh

µb
, 0, 0, 0

)
. (6.2.1.8)

The endemic equilibrium point of the within-human scale model, where the pathogen exists to infect the

inside-host environment. The endemic equilibrium point is given by

E1 = (Rh, Rm,Mh, Gh), (6.2.1.9)

where

Rh =
Λh

µbℜ0
,

Rm =
µmµb

βhNmαm
(ℜ0 − 1), (6.2.1.10)

Mh =
µb
βh

(ℜ0 − 1),

Gh =
πΛh

ℜ0(αh + µh)
(ℜ0 − 1),

where

ℜ0 =
(1− π)NmβhΛh

µbµm
. (6.2.1.11)

The within-human host sub-model has a unique positive endemic equilibrium point when ℜ0 > 1 and no

positive equilibrium point when ℜ0 < 1.

We note that from the multiscale model (6.2.0.1), the total number of gametocytes shed/excreted by each

infected human in the environment (community gamocytes load) NhIH is now approximated by GhIH .

Application of the notation Nh = Gh, which is the average number of the within-human host scale of

the gamotocytes load (Gh) at the endemic equilibrium point is available for shedding/excretion into the

community gametocyte load by each infected human. The multi-scale model (6.2.0.1) of the malaria

disease system has been simplified to:
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1.
dLM (t)

dt
= [ΛL(T )NV (t)− µL(T )LM (t)]

(
1− LM (t)

K

)
− (αL(T ) + δL)LM (t),

2.
dSV (t)

dt
= ΛV (T )−

βH(T )GH(t)

G0 +GH(t)
SV (t)− µV (T )SV (t),

3.
dIV (t)

dt
=

βH(T )GH(t)

G0 +GH(t)
SV (t)− [µV (T ) + δV ] IV (t),

4.
dGv(t)

dt
=

βH(T )GH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t), (6.2.1.12)

5.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t),

6.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

7.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

8.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

9.
dPV (t)

dt
= Pv(t)αv (IV (t) + 1)− αV PV (t),

10.
dSH(t)

dt
= ΛH − βV (T )PV (t)

P0 + PV (t)
SH(t)− µHSH(t) + γHIH(t),

11.
dIH(t)

dt
=

βV (T )PV (t)

P0 + PV (t)
SH(t)− [µH + γH + δH ] IH(t),

12.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),

where

ΛV (T ) =
αL(T )LM (t)

2
,

Nh = G∗
h =

π

(1− π)

[
(1− π)NmβhΛh − µbµm

Nmβh(αh + µh)

]
=

πΛh

(αh + µh)ℜ0
[ℜ0 − 1] ,

(6.2.1.13)

ℜ0 =
(1− π)NmβhΛh

µbµm
.

Nh is the average number of the within-human host scale for malaria causing gametocytes load (at the

within-human host endemic equilibrium) shed/excrete into the between-host scale by each infected hu-

mans. ℜ0 is the reproductive number of the within an infected human.

6.2.2 Feasible region of the coupled multiscale model

We now consider that all parameters and state variables for multiscale model (6.2.1.12) are assumed to be

positive to be consistent with human (within-human and between-human scales) and mosquito juvenile

and adult (within-mosquito and between-mosquito scales).
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We consider NH(t) denote the total number of humans, whereby NH(t) = SH(t) + IH(t). Therefore

dNH(t)

dt
= ΛH − µH(SH(t) + IH)− δHIH ,

= ΛH − µHNH − δHIH , (6.2.2.1)

≤ ΛH − µHNH .

This implies that

lim
t−→∞

sup(NH(t)) ≤ ΛH

µH
. (6.2.2.2)

It also implies that

LM ≤ K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
. (6.2.2.3)

We let NV (t) denote the total number of mosquitoes, such that NV (t) = SV (t) + IV (t). Therefore

dNV (t)

dt
= ΛV (T )− µV (T )(SV (t) + IV (t))− δV IV (t)

=
αL(T )LM (t)

2
− µV (T )NV − δV IV (t) (6.2.2.4)

≤ αL(T )LM (t)

2
− µV (T )NV .

It implies that

lim
t−→∞

sup(NV (t)) ≤ αL(T )LM (t)

2µV (T )
, (6.2.2.5)

NV (t) ≤ αL(T )

2µV (T )

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
.

6.2.3 The disease free equilibrium state for coupled multiscale model

At disease-free eduilibrium (DFE) there is no infection. Thus, no pathogen exists to infect the mosquito-

hosts and also the human-hosts.

E00 = (L00
M , S

00
V , I

00
V , G

00
v , G

00
m , Z

00
v , O

00
v , P

00
v , P 00

V , S00
H , I

00
H , G

00
H ), (6.2.3.1)

where

L00
M =

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
,

S00
V =

ΛV (T )

µV (T )
=

αL(T )

2µV (T )

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
,

S00
H =

ΛH

µH
, (6.2.3.2)

I00V = G00
v = G00

m = Z00
v = O00

v = P 00
v = P 00

V = I00H = G00
H = 0.
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6.2.4 The reproductive number of coupled multiscale model

We use next-generation operator approach to compute the basic reproductive number and we use the [61]’s

approach. The systems of equations (6.2.1.12) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (6.2.4.1)

dZ

dt
= h(X,Y, Z),

where

X = (LM , SV , SH)

Y = (IV , Gv, Gm, Zv, Ov, Pv, IH), (6.2.4.2)

Z = (PV , GH).

We denote g̃(X∗, Z) by

g̃1(X
∗, Z) = IV =

βH(T )SVGH

(µV (T ) + δV )(G0 +GH)
,

g̃2(X
∗, Z) = Gv =

1

αg + µg

βH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
,

g̃3(X
∗, Z) = Gm =

Ngαg

αg + µg

1

αs + µs

βH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
,

g̃4(X
∗, Z) = Zv =

1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

βH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
, (6.2.4.3)

g̃5(X
∗, Z) = Ov =

1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

βH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
,

g̃6(X
∗, Z) = Pv =

1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv

βH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
,

= Pv =
NvβH(T )GH(SV − 1)

(G0 +GH)ϕV (IV + 1)
,

g̃7(X
∗, Z) = IH =

1

µH + γH + δH

βV (T )SHPV

P0 + PV
,

where

Nv =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv
. (6.2.4.4)
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Let h1 =
dPV

dt
and h2 =

dGH

dt
and we obtain

h1 =
NvαvβH(T )GH(SV − 1)

(G0 +GH)ϕV
− αV PV ,

h2 =
NhαhβV SHPV

(µH + γH + δH)(P0 + PV )
− αHGH . (6.2.4.5)

We assume that A =M −D, where M ≥ 0 and D ≥ 0, a diagonal matrix.

A =

 ∂h1
∂PV

∂h1
∂GH

∂h2
∂PV

∂h2
∂GH

 ,

then

A =

 −αV
NvαvβH(T )(S00

V − 1)

G0ϕV
NhαhβV (T )ΛH

(µH + γH + δH)µHP0
−αH

 , (6.2.4.6)

M =

 0
NvαvβH(T )(S00

V − 1)

G0ϕV
NhαhβV (T )ΛH

(µH + γH + δH)P0µH
0

 , (6.2.4.7)

D =

(
αV 0

0 αH

)
D−1 =

 1

αV
0

0
1

αH

 ,

MD−1 =

 0
NvαvβH(T )(S00

V − 1)

αHG0ϕV
NhαhβV (T )ΛH

(µH + γH + δH)P0µHαV
0

 . (6.2.4.8)

R0 = ρ(MD−1)

R0 =

√
Nhαh

µH + γH + δH

βH(T )(S00
V − 1)

G0αH
.
NvαvβV (T )ΛH

ϕV P0µHαV
,

=
√
RHVRV H , (6.2.4.9)

RHV =
Nhαh

µH + γH + δH

βH(T )(S00
V − 1)

G0αH
,

RV H =
NvαvβV (T )ΛH

ϕV P0µHαV
,
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where

Nh = Gh =
πΛh

ℜ0(αh + µh)
(ℜ0 − 1),

Nv =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv
, (6.2.4.10)

S00
V =

αL(T )

2µV (T )

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
.

RHV is the human-host to vector (mosquito) reproductive number. RV H is the vector to human reproduc-

tive number. ℜ0 is the reproductive number for within-human host model. Our R0 consist of parameters

which are from within-host and between-host scales.

6.2.5 Local Stability Analysis of the Disease-free Equilibrium (D.F.E)

We determine the local stability analysis of the D.F.E point of the multiscale model (6.2.1.12), the D.F.E.

is asymptotically stable when R0 < 1 and unstable when R0 > 1. We linearize the multiscale model

(6.2.1.12), to obtain the Jacobian matrix and then compute at the D.F.E (E00), to obtain by J(E00) =



−c1 0 0 0 0 0 0 0 0 0 0 0
αL(T )

2
−µV (T ) 0 0 0 0 0 0 0 0 0 −c3

0 0 −c2 0 0 0 0 0 0 0 0 c3

0 0 0 −a1 0 0 0 0 0 0 0 c4

0 0 0 Ngαg −a2 0 0 0 0 0 0 0

0 0 0 0
1

2
αs −a3 0 0 0 0 0 0

0 0 0 0 0 αz −a4 0 0 0 0 0

0 0 0 0 0 0 Nkαk −a5 0 0 0 0

0 0 0 0 0 0 0 αv −αV 0 0 0

0 0 0 0 0 0 0 0 −
βV (T )S

00
H

P0
−µH γH 0

0 0 0 0 0 0 0 0
βV (T )S

00
H

P0
0 −a6 0

0 0 0 0 0 0 0 0 0 0 Nhαh −αH



,

where a1 = (αg + µg), a2 = (αs + µs), a3 = (αz + µz), a4 = (αk + µk), a5 = (αv + µv), a6 =

(µH +γH + δH), c1 =
ΛL(T )αL(T )

2µV (T )
, c2 = (µV (T )+ δV ), c3 =

βH(T )S00
V

G0
and c4 =

βH(T )(S00
V − 1)

G0ϕV
.
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We obtain the eigenvalues of J(E00) by computing the det(J(E00)−λI) = 0. The characteristic equation

of the eigenvalues is given by

(λ+ c1)(λ+µV (T ))(λ+ c2)(λ+µH)[b8λ
8+ b7λ

7+ b6λ
6+ b5λ

5+ b4λ
4+ b3λ

3+ b2λ
2b1λ1+ b0] = 0.

(6.2.5.1)

We obtain λ1 = −c1, λ2 = −µV (T ), λ3 = −c2, λ4 = −µH and λ5...λ12 is given by the equation

b8λ
8 + b7λ

7 + b6λ
6 + b5λ

5 + b4λ
4 + b3λ

3 + b2λ
2b1λ1 + b0 = 0. (6.2.5.2)

b8 = 1 > 0,

b7 = a1 + a2 + a3 + a4 + a5 + a6 + αV + αH > 0,

b6 = a1a2 + a1a3 + a1a4 + a1a5 + a1a6 + a1αV + a1αH + a2a3 + a2a4 + a2a5 + a2a6 + a2αV

+a2αH + a3a4 + a3a5 + a3a6 + a3αV + a3αH + a4a5 + a4a6 + a4αV + a4αH + a5a6 + a5αV

+a5αH + a6αV + a6αH + αV αH > 0,

b5 = a1a2a3 + a1a2a4 + a1a2a5 + a1a2a6 + a1a2αV + a1a2αH + a1a3a4 + a1a3a5 + a1a3a6 +

a1a3αV + a1a3αH + a1a4a5 + a1a4a6 + a1a4αV + a1a4αH + a1a5a6 + a1a5αV + a1a5αH +

a1a6αV + a1a6αH + a1αV αH + a2a3a4 + a2a3a5 + a2a3a6 + a2a3αV + a2a3αH + a2a4a5 +

a2a4a6 + a2a4αV + a2a4αH + a2a5a6 + a2a5αV + a2a5αH + a2a6αV + a2a6αH + a2αV αH

+a3a4a5 + a3a4a6 + a3a4αV + a3a4αH + a3a5a6 + a3a5αV + a3a5αH + a3a6αV + a3a6αH

+a3αV αH + a4a5a6 + a4a5αV + a4a5αH + a4a6αV + a4a6αH + a4αV αH + a5a6αV + a5a6αH

+a5αV αH + a6αV αH > 0,

b4 = a1a2a3a4 + a1a2a3a5 + a1a2a3a6 + a1a2a3αV + a1a2a3αH + a1a2a4a5 + a1a2a4a6 + a1a2a4αV

+a1a2a4αH + a1a2a5a6 + a1a2a5αV + a1a2a5αH + a1a2a6αV + a1a2a6αH + a1a2αV αH +

a1a3a4a5 + a1a3a4a6 + a1a3a4αV + a1a3a4αH + a1a3a5a6 + a1a3a5αV + a1a3a5αH + a1a3a6αV

+a1a3a6αH + a1a3αV αH + a1a4a5a6 + a1a4a5αV + a1a4a5αH + a1a4a6αV + a1a4a6αH +

a1a4αV αH + a1a5a6αV + a1a5a6αH + a1a5αV αH + a1a6αV αH + a2a3a4a5 + a2a3a4a6 +

a2a3a4αV + a2a3a4αH + a2a3a5a6 + a2a3a5αV + a2a3a5αH + a2a3a6αV + a2a3a6αH +

a2a3αV αH + a2a4a5a6 + a2a4a5αV + a2a4a5αH + a2a4a6αV + a2a4a6αH + a2a4αV αH +

a2a5a6αV + a2a5a6αH + a2a5αV αH + a2a6αV αH + a3a4a5a6 + a3a4a5αV + a3a4a5αH +

a3a4a6αV + a3a4a6αH + a3a4αV αH + a3a5a6αV + a3a5a6αH + a3a5αV αH + a3a6αV αH +

a4a5a6αV + a4a5a6αH + a4a5αV αH + a4a6αV αH + a5a6αV αH > 0, (6.2.5.3)
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b3 = a1a2a3a4a5 + a1a2a3a4a6 + a1a2a3a4αV + a1a2a3a4αH + a1a2a3a5a6 + a1a2a3a5αV +

a1a2a3a5αH + a1a2a3a6αV + a1a2a3a6αH + a1a2a3αV αH + a1a2a4a5a6 + a1a2a4a5αV +

a1a2a4a5αH + a1a2a4a6αV + a1a2a4a6αH + a1a2a4αV αH + a1a2a5a6αV + a1a2a5a6αH +

a1a2a5αV αH + a1a2a6αV αH + a1a3a4a5a6 + a1a3a4a5αV + a1a3a4a5αH + a1a3a4a6αV +

a1a3a4a6αH + a1a3a4αV αH + a1a3a5a6αV + a1a3a5a6αH + a1a3a5αV αH + a1a3a6αV αH +

a1a4a5a6αV + a1a4a5a6αH + a1a4a5αV αH + a1a4a6αV αH + a1a4a5αV αH + a2a3a4a5a6 +

a2a3a4a5αV + a2a3a4a5αH + a2a3a4a6αV + a2a3a4a6αH + a2a3a4αV αH + a2a3a5a6αV +

a2a3a5a6αH + a2a3a5αV αH + a2a3a6αV αH + a2a4a5a6αV + a2a4a5a6αH + a2a4a5αV αH +

a2a4a6αV αH + a2a5a6αV αH + a3a4a5a6αV + a3a4a5a6αH + a3a4a5αV αH + a3a4a6αV αH +

a3a5a6αV αH + a4a5a6αV αH > 0,

b2 = a1a2a3a4a5a6 + a1a2a3a4a5αV + a1a2a3a4a5αH + a1a2a3a4a6αV + a1a2a3a4a6αH +

a1a2a3a4αV αH + a1a2a3a5a6αV + a1a2a3a5a6αH + a1a2a3a5αV αH + a1a2a3a6αV αH +

a1a2a4a5a6αV + a1a2a4a5a6αH + a1a2a4a5αV αH + a1a2a4a6αV αH + a1a2a5a6αV αH +

a1a3a4a5a6αV + a1a3a4a5a6αH + a1a3a4a5αV αH + a1a3a4a6αV αH + a1a3a5a6αV αH +

a1a4a5a6αV αH + a2a3a4a5a6αV + a2a3a4a5a6αH + a2a3a4a5αV αH + a2a3a4a6αV αH +

a2a3a5a6αV αH + a2a4a5a6αV αH + a3a4a5a6αV αH > 0, (6.2.5.4)

b1 = a1a2a3a4a5a6αV + a1a2a3a4a5a6αH + a1a2a3a4a5αV αH + a1a2a3a4a6αV αH +

a1a2a3a5a6αV αH + a1a2a4a5a6αV αH + a1a3a4a5a6αV αH + a2a3a4a5a6αV αH > 0,

b0 = a1a2a3a4a5a6αV αH

(
1− c4

αV

Ngαg

a1

αs

2a2

αz

a3

Nkαk

a4

αv

a5

βV (T )S
00
H

P0αV

Nhαh

a6

)
,

= a1a2a3a4a5a6αV αH

(
1−R2

0

)
.

Table 6.1: Possible number of positive roots of equation (6.2.5.2)

b7 b6 b5 b4 b3 b2 b1 b0 The number of positive roots

R0 < 1 + + + + + + + + 0

R0 > 1 + + + + + + + - 1

Using Descarte’s law of signs to determine the possible number of positive roots of equation (6.2.5.2) as

shown in table (6.1). It is clear that b7 > 0, b6 > 0, b5 > 0, b4 > 0, b3 > 0, b2 > 0 and b1 > 0. When

R0 < 1 we notice that b0 > 0 and there is no change of sign and conclude that the equation (6.2.5.2)

has zero positive roots. When R0 > 1, we observe that b0 < 0, and there is only one change of sign

and conclude that the characteristic equation (6.2.5.2) has atleast one positive root. The roots of equation



Chapter 6 227

(6.2.5.2) are all negative or have negative real parts. We shown that there is no change of sign when

R0 < 1, and confirms that the disease free equilibrium is locally asymptotically stable and unstable when

R0 > 1.

6.2.6 Global Stability of Disease-Free Equilibrium (D.F.E)

We determine the global stability of D.F.E by following Castillo-Chavez’s approach [71]. We rewrite the

model system (6.2.1.12) in the form

dX

dt
= F (X,Z),

dZ

dt
= G(X,Z), (6.2.6.1)

G(X, 0) = 0,

where X = (LM , SV , SH) ∈ R3
+- comprises of the uninfected components and

Z = (IV , Gv, Gm, Zv, Ov, Pv, PV , IH , GH) ∈ R9
+ comprises of the infected and infectious components.

We let

E00 = (X∗, 0) = (L00
M , S

00
V , 0, 0, 0, 0, 0, 0, 0, S

00
H , 0, 0)

to denote the disease free equilibrium of the multiscale model. The conditions of H1 and H2 must holds,

for E00 to be globally asymptotically stable:

H1: For
dX

dt
= F (X, 0), X∗ is globally asymptotically stable,

H2: G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ R12
+ ,

where A = DZG(X, 0), is an M matrix (the off diagonal elements 0f A are non-negative) and R12
+ is the

region where the model is meaningful biologically.

Theorem 6.1. The fixed point E00 is a globally asymptotically stable equilibrium point of the model

(6.2.1.12) provided R0 < 1 and assumptions H1 and H2 hold.

Proof. Using the multiscale model (6.2.1.12), we determine if the conditionsH1 andH2 hold. We observe

that

F (X, 0) =



[ΛL(T )NV − µL(T )LM ]

(
1− LM

K

)
− (αL(T ) + δL)LM

αL(T )

2

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
− µV (T )SV

ΛH − µHSH


,
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and the matrix A is given by

−b1 0 0 0 0 0 0 0
βH(T )S00

V

G0

0 −b2 0 0 0 0 0 0
βH(T )(S00

V − 1)

G0ϕV
0 Ngαg −b3 0 0 0 0 0 0

0 0
1

2
αs −b4 0 0 0 0 0

0 0 0 αz −b5 0 0 0 0

0 0 0 0 Nkαk −b6 0 0 0

0 0 0 0 0 αv −αV 0 0

0 0 0 0 0 0
βV (T )S

∗
H

P0
−b7 0

0 0 0 0 0 0 0 Nhαh −αH


where b1 = (µV (T ) + δV ), b2 = (αg + µg), b3 = (αs + µs), b4 = (αz + µz), b5 = (αk + µk),

b6 = (αv + µv) and b7 = (µH + γH + δH).

The matrices of AZ and G(X,Z) are given by

AZ =



−(µV (T ) + δV )IV +
βH(T )GHS

00
V

G0

−(αg + µg)Gv +
βH(T )GH(S00

V − 1)

ϕVG0

NgαgGv − (αs + µs)Gm

1

2
αs − (αz + µz)Zv

αzZv − (αk + µk)Ov

NkαkOv − (αv + µv)Pv

αvPv − αV PV

βV (T )PV S
00
H

P0
− (µH + γH + δH)IH

NhαhIH − αHGH



and G(X,Z) =



βH(T )GHSV
G0 +GH

− (µV (T ) + δV )IV

βHGH(SV − 1)

(G0 +GH)ϕV (IV + 1)
− (αg + µg)Gv

NgαgGv − (αs + µs)Gm

1

2
αsGm − (αz + µz)Zv

αzZv − (αk + µk)Ov

NkαkOv − (αv + µv)Pv

Pvαv(IV + 1)− αV PV

βV (T )PV SH
P0 + PV

− (µH + γH + δH)IH

NhαhIH − αHGH
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Therefore, Ĝ(X,Z) = AZ −G(X,Z),

Ĝ(X,Z) =



(
s00V
G0

− SV
G0 +GH

)
βH(T )GH

(
(S00

V − 1)

G0
− (SV − 1)

(G0 +GH)(IV + 1)

)
βH(T )GH

ϕV

0

0

0

0

0

(
S00
H

P0
− SH
P0 + PV

)

0



,

where Ĝ(X,Z) ≥ 0 for all X,Z ∈ R12
+ , if

(
s00V
G0

≥ SV
G0 +GH

)
,
(
(S00

V − 1)

G0
≥ (SV − 1)

(G0 +GH)(IV + 1)

)
and

(
S00
H

P0
≥ SH
P0 + PV

)
. Therefore, it is clear thatA is anM -matrix because of the off diagonal elements

of A are non-negative, , so the condition is satisfied. Hence, the disease-free equilibrium point is globally

asymptotically stable.

6.3 Endemic equilibrium point for coupled multiscale model

We define

V ∗∗ = λV (T ) =
βV (T )P

∗∗
V

P0 + P ∗∗
V

,

H∗∗ = λH(T ) =
βH(T )G∗∗

H

G0 +G∗∗
H

. (6.3.0.1)
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We obtain the equilibrium points by equating the right hand side of system of equations (6.2.1.12) to zero

and solve the simultaneous equations.

[ΛL(T )N
∗∗
V (t)− µL(T )L

∗∗
M ]

(
1−

L∗∗
M

K

)
− (αL(T ) + δL)L

∗∗
M = 0,

ΛV (T )−H∗∗S∗∗
V − µV (T )S

∗∗
V = 0,

H∗∗S∗∗
V − (µV (T ) + δV )I

∗∗
V = 0,

H∗∗(S∗∗
V − 1)

ϕV (I∗∗V + 1)
− [αg + µg]G

∗∗
v = 0,

NgαgG
∗∗
v − [αs + µs]G

∗∗
m = 0, (6.3.0.2)

ψv − [αz + µz]Z
∗∗
v = 0,

αzZ
∗∗
v − [αk + µk]O

∗∗
v = 0,

NkαkO
∗∗
v − [αv + µv]P

∗∗
v = 0,

P ∗∗
v αv(I

∗∗
V + 1)− αV P

∗∗
V = 0,

ΛH − V ∗∗S∗∗
H − µHS

∗∗
H + γHI

∗∗
H = 0,

V ∗∗S∗∗
H − (µH + γH + δH)I∗∗H = 0,

NhαhI
∗∗
H − αHG

∗∗
H = 0,

where

Nh = Gh =
πΛh

ℜ0(αh + µh)
(ℜ0 − 1),

ℜ0 =
(1− π)NmβhΛh

µbµm
, (6.3.0.3)

ΛV (T ) =
αLL

∗∗
M

2
.

ψv =
αsG

∗∗

2
.

The disease free equilibrium point can be simplified when H∗∗ = 0 and V ∗∗ = 0 to obtain

E00 = (L00
M , S

00
V , I

00
V , G

00
v , G

00
m , Z

00
v , O

00
v , P

00
v , P 00

V , S00
H , I

00
H , G

00
H ), (6.3.0.4)

where

L00
M =

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
,

S00
V =

ΛV (T )

µV (T )
=

αL(T )

2µV (T )

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
,

S00
H =

ΛH

µH
, (6.3.0.5)

I00V = G00
v = G00

m = Z00
v = O00

v = P 00
v = P 00

V = I00H = G00
H = 0.
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The endemic equilibrium point can be simplified in terms of H∗∗ and V ∗∗ to obtain

E2 = (L∗∗
M , S

∗∗
V , I

∗∗
V , G

∗∗
v , G

∗∗
m , Z

∗∗
v , O

∗∗
v , P

∗∗
v , S∗∗

H , I
∗∗
H , G

∗∗
H ), (6.3.0.6)

where

L∗∗
M =

b±
√
b2 − 4KΛL(T )N∗∗

V µL(T )

2µL(T )

S∗∗
V =

αL(T )L
∗∗
M

2(H∗∗ + µV (T ))
,

I∗∗V =
H∗∗

µV (T ) + δV

αL(T )L
∗∗
M

2(H∗∗ + µV (T ))
,

G∗∗
v =

1

αg + µg

H∗∗

ϕV (I∗∗V + 1)

[
αL(T )L

∗∗
M

2(H∗∗ + µV (T ))
− 1

]
G∗∗

m =
Ngαg

αg + µg

1

αs + µs

H∗∗

ϕV (I∗∗V + 1)

[
αL(T )L

∗∗
M

2(H∗∗ + µV (T ))
− 1

]
,

Z∗∗
v =

ψv

αz + µz
,

Ov =
αz

αz + µz

ψv

αk + µk
,

P ∗∗
v =

αz

αz + µz

Nkαk

αk + µk

ψv

αv + µv
,

P ∗∗
V =

NvαvH
∗∗

αV ϕV

[
αL(T )L

∗∗
M

2(H∗∗ + µV (T ))
− 1

]
, (6.3.0.7)

S∗∗
H =

ΛH(µH + γH + δH)

µH(µH + γH + δH) + V ∗∗(µH + δH)
,

I∗∗H =
ΛHV

∗∗

µH(µH + γH + δH) + V ∗∗(µH + δH)
,

G∗∗
H =

Nhαh

αH

ΛHV
∗∗

[µH(µH + γH + δH) + V ∗∗(µH + δH)]
,

where

Nh = Gh =
πΛh

ℜ0(αh + µh)
(ℜ0 − 1),

ΛV (T ) =
αL(T )LM

2
,

ψv =
αsG

∗∗

2
,

Nv =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv
, (6.3.0.8)

b = [ΛL(T )N
∗∗
V +K(µL(T ) + αL(T ) + δL)],

N∗∗
V =

αL(T )

2µV (T )

K[ΛL(T )αL(T )− 2µV (T )(µL(T ) + αL(T ) + δL)]

ΛL(T )αL(T )− 2µL(T )µV (T )
. (6.3.0.9)

The positivity of the endemic equilibrium of the systems of equations (6.2.1.12) can be obtained by eval-

uating the fixed points of H∗∗ and V ∗∗ in equations (6.3.0.1) and substituting the results into systems of
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equations (6.3.0.7) [82, 83]. The expressions of H∗∗ and V ∗∗ are given by

H∗∗ =
βH(T )NhαhΛHV

∗∗

G0αH [µH(µH + γH + δH) + V ∗∗(µH + δH)] +NhαhΛHV ∗∗ , (6.3.0.10)

V ∗∗ =
NvαvβV (T )H

∗∗[αL(T )L
∗∗
M − 2(H∗∗ + µV (T ))]

2P0ϕV αV (H∗∗ + µV (T )) +NvαvH∗∗[αL(T )L∗∗
M − 2(H∗∗ + µV (T ))]

, (6.3.0.11)

We define (
H∗∗

V ∗∗

)
= f(H,V ) =

(
f1(V )

f2(H)

)
.

When H∗∗ = 0 and V ∗∗ = 0 is a fixed point of f1(V ) and f2(H) which match up with the disease

free equilibrium point. We develop conditions which illustrate that f has a unique nonzero fixed point

corresponding to the positive endemic equilibrium point whose coordinates are equations (6.2.1.12) [84].

f1(V ) =
βH(T )NhαhΛHV

G0αH [µH(µH + γH + δH) + V (µH + δH)] +NhαhΛHV
, (6.3.0.12)

Since f1(0) = 0 and lim
V→∞

f1(V ) =
βH(T )Nhαh

G0αH(µH + δH) +NhαhΛH
< ∞, then 0 ≤ f1(V ) < ∞. This

signify that f1(V ) is bounded. Therefore

∂f1
∂V

=
G0αHβH(T )NhαhΛHµH(µH + γH + δH)

[G0αH [µH(µH + γH + δH) + V (µH + δH)] +NhαhΛHV ]2
> 0, (6.3.0.13)

∂2f1
∂V 2

=
−2G0αHβH(T )NhαhΛHµH(µH + γH + δH)[G0αH(µH + δH) +NhαhΛH ]

[G0αH [µH(µH + γH + δH) + V (µH + δH)] +NhαhΛHV ]3
,

< 0. (6.3.0.14)

This demonstrates that f1(V ) is an increasing concave down function which has no convexity. So there is

a unique positive V ∗∗ such that f1(V ∗∗) = H∗∗ > 0.

The function f2(H) produces the function

f2(H) =
βV (T )NvαvH[ΛV (T )− (H∗∗ + µV (T ))]

P0ϕV αV (H + µV (T )) +NvαvH[ΛV (T )− (H + µV (T ))]
. (6.3.0.15)

Since f2(0) = 0 and lim
H→∞

f2(H) = βV (T ) < ∞. Thus, 0 ≤ f2(H) < ∞. This indicate that f2(H) is

bounded.

∂f2(H)

∂H
=

ψ1ψ2ψ4βV (T )

(ψ1(H + µV (T )) + ψ2ψ3H)2
, (6.3.0.16)

∂2f2(H)

∂H2
= −

2ψ1ψ2βV (T )
[
ψ1(H + µV (T ))

2 + ψ1ψ4 + ψ2ψ3ψ4 + ψ2ΛV (T )H
2
]

(ψ1(H + µV (T )) + ψ2ψ3H)3
,(6.3.0.17)
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where

ψ1 = P0ϕV αV ,

ψ2 = Nvαv,

ψ3 = [ΛV (T )− (H + µV (T ))], (6.3.0.18)

ψ4 = [µV (T )ΛV (T )− (H + µV (T ))
2].

∂f2(H)

∂H
> 0,

∂2f2(H)

∂H2
< 0,

when ΛV (T ) > (H + µV (T )) and µV (T )ΛV (T ) > (H + µV (T ))
2.

This indicates that f2(H) is an increasing concave down function which has no change of convexity.

Therefore, there exist a unique positive H∗∗ such that f2(H∗∗) = V ∗∗ > 0. However, (H∗∗, V ∗∗) is a

fixed point of which correspond to an endemic state E2 of the multiscale model (6.2.1.12).

For testing the stability of (H∗∗, V ∗∗), we expect that |f ′(H∗∗, V ∗∗)| < 1 and for when there is instability

of (H∗∗, V ∗∗), we expect that |f ′(H∗∗, V ∗∗)| > 1. The Jacobian matrix of f at (H∗∗, V ∗∗) is given by

J∗∗ =


∂f1(V )

∂V |(H∗∗,V ∗∗)

∂f1(V )

∂H |(H∗∗,V ∗∗)
∂f2(H)

∂V |(H∗∗,V ∗∗)

∂f2(H)

∂H |(H∗∗,V ∗∗)

 , (6.3.0.19)

Therefore,

∂f1(V )

∂V
=

G0αHβH(T )NhαhΛHµH(µH + γH + δH)

[G0αH [µH(µH + γH + δH) + V (µH + δH)] +NhαhΛHV ]2
> 0,

∂f1(V )

∂H
= 0,

∂f2(H)

∂V
= 0, (6.3.0.20)

∂f2(H)

∂H
=

ψ1ψ2ψ4βV (T )

[ψ1(H + µV (T )) + ψ2ψ3H]2
> 0.

∣∣∣∣∣∣∣
∂f1(V )

∂V
− λ 0

0
∂f2(H)

∂H
− λ

∣∣∣∣∣∣∣ = 0. (6.3.0.21)
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Thus, (
∂f1(V )

∂V
− λ

)(
∂f2(H)

∂H
− λ

)
= 0,

λ2 −
(
∂f1(V )

∂V
+
∂f2(H)

∂H

)
λ+

∂f1(V )

∂V

∂f2(H)

∂H
= 0. (6.3.0.22)

The solution of equation (6.3.0.22) is given by

D1 =
1

2

(∂f1(V )

∂V
+
∂f2(H)

∂H

)
+

√(
∂f1(V )

∂V
+
∂f2(H)

∂H

)2

− 4
∂f1(V )

∂V

∂f2(H)

∂H


D2 =

1

2

(∂f1(V )

∂V
+
∂f2(H)

∂H

)
−

√(
∂f1(V )

∂V
+
∂f2(H)

∂H

)2

− 4
∂f1(V )

∂V

∂f2(H)

∂H

 .(6.3.0.23)

Therefore

D1 =
1

2

(∂f1(V )

∂V
+
∂f2(H)

∂H

)
+

√(
∂f1(V )

∂V
− ∂f2(H)

∂H

)2


D2 =
1

2

(∂f1(V )

∂V
+
∂f2(H)

∂H

)
−

√(
∂f1(V )

∂V
− ∂f2(H)

∂H

)2
 , (6.3.0.24)

where

D1 =
∂f1(0)

∂V
=

NhαhβH(T )ΛH

G0αHµH(µH + γH + δH)
= R0H ,

D2 =
∂f2(0)

∂H

NvαvβV (T )[ΛV (T )− µV (T )]

P0ϕV αV µV (T )
= R0V . (6.3.0.25)

The fact that det(J∗∗) > 0 implies that

∣∣∣∣∂f1(V )

∂V
+
∂f2(H)

∂H

∣∣∣∣ >

√(
∂f1(V )

∂V
− ∂f2(H)

∂H

)2

,(
∂f1(V )

∂V
+
∂f2(H)

∂H

)2

>

(
∂f1(V )

∂V
− ∂f2(H)

∂H

)2

,

∂f1(V )

∂V

∂f2(H)

∂H
> 0. (6.3.0.26)

Thus, both D1 > 0 and D2 > 0. Since Di = ρ(J(H∗∗, V ∗∗)) is the dominant eigenvalue of the Ja-

cobian matrix where i = 1, 2, then the fixed point (H∗∗, V ∗∗) asymptotically stable when the dominant

eigenvalue Di < 1 (i.e D1 = R0H < 1 and D2 = R0V < 1) and unstable when Di > 1.
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6.4 Numerical results

We perform numerical simulations using the Runge-Kutta scheme in Python version 2.7 to verify some

of the analytical results for stability of the system of equations (6.2.1.12). The parameter values that we

utilise for numerical simulations are in Tables (6.2) - (6.4). For numerical simulations, the following

initial values are used: LM (0) = 300000, SV (0) = 100000, IV = 200, Gv(0) = 100, Gm(0) = 100,

Zv(0) = 10, Ov = 10, Pv(0) = 10, PV (0) = 40000, SH(0) = 10000, IH(0) = 70, Rh(0) = 500,

Rm(0) = 5, Mh(0) = 50, Gh(0) = 15 and GH(0) = 1000.

Table 6.2: Parameter values and their description.

Parameter Description Value Source

a(T ) Mosquito biting rate. 0.000203T (T − 11.7)
√

(42.3− T ) [79]

ΛL(T ) Recruitment by birth of juveniles 2.325a(T ) [79]

αL(T ) The rate at which juveniles develops

into adult.

2.325a(T )

10
[79]

µL(T ) Mortality rate of juveniles. 0.0025T 2 − 0.094T + 1.0257 [79]

µV (T ) Mortality rate of mosquitoes. − ln(exp{ −1

−0.03T 2 + 1.31T − 4.4
}) [79]

bV Proportion of bites by susceptible

mosquitoes on infected humans that

produce infection.

0.04 [79]

bH Proportion of bites by infectious

mosquitoes on susceptible humans that

produce infection.

0.09 [79]

δL The rate at which larvae reduced by

other species.

0.08 Estimated

βV (T ) Contact rate of susceptible humans with

the infectious reservoir of mosquitoes.

a(T )bH

βH(T ) Infection rate of susceptible mosquitoes

which depends on temperature.

a(T )bV

ϕV Proportion of new infected mosquitoes

in the total infected mosquito popula-

tion.

0.0001 [24]

δV induced death rate of infected

mosquitoes.

0.00000426 [24]

P0 Half saturation constant associated with

the infection of humans.

1× 106 Estimated.

αV Rate of clearance of community sporo-

zoite load.

0.3 [24]
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Table 6.3: Parameter values and their description.

Parameter Description Initial Value Range Units Source

ΛH Rate of recruitment of Susceptible hu-

mans.

600 10-800 Humans per

day

[35]

µH Natural death rate of humans. 0.00004 0.00001-

0.00008

day−1 [24]

δH Disease induced death rate of humans. 0.0003454 1 × 10−15 −
4.1× 10−4

day−1 [35]

γH Natural recovery rate of humans. 0.0092 0.0014-0.017 day−1 [35]

G0 Half saturation constant associated with

the infection of mosquitoes.

5× 106 1×106−1×109 day−1 [24]

αH Rate of clearance of community game-

tocyte load.

0.0000913 0.0000467-

0.000274

day−1 [24]

Λv The rate of supply of gametocytes

within infected mosquitoes.

3000 100-3000 Gametocytes

per day

Assumed

αg Rate at which gametocyte infected ery-

throcytes burst within ifected mosquito.

96 90-100 day−1 [24]

µg Decay rate of gametocytes within in-

fected mosquito.

0.0625 0.0326-0.0725 day−1 [24]

Ng Number of gametes produced per ga-

metocyte infected erythrocyte within

infected mosquito.

2 1-3 Gametes per

day

[24]

αz Rate at which zygote develop into

oocysts.

0.4240 0.01-0.5 day−1 [24]

µz Natural death rate of zygote. 1 1-4 day−1 [24]

αs Fertilisation of gametes. 0.2 0.01-0.2 day−1 [24]

µs Natural death rate of gametes. 58 40-129 day−1 [24]

αk Bursting rate of oocysts to produce

sporozoites.

0.2 0-1 day−1 [24]

Nk Number of sporozoites produced per

bursting oocysts.

3 000 1000-10000 Sporozoites per

day

[24]

µk Natural death rate of oocysts. 0.01 0.071-0.143 day−1 [24]

αv Rate at which sporozoites become in-

fectious to humans.

0.025 0.0167-1 day−1 [24]

µv Natural death rate of sporozoites. 0.0001 0.0001-0.01 day−1 [24]

Λh Rate of suppy of uninfected red blood

cells.

200 100-300 Cells per day [24]
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Table 6.4: Between-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

βh Rate of infection of red blood cells (ery-

throcytes).

0.3 2× 10−9-0.4 day−1 Assumed

αh Rate at which gametocytes develop and

become infectious within infected hu-

man.

0.4 0.01-0.9 day−1 [24]

µh Natural death rate of gametocyte in-

fected erythrocytes within infected hu-

man.

0.0625 0.0600-0.0625 day−1 [24]

µb Natural decay rate of red blood cells. 0.0083 0.006-0.1 day−1 [24]

µm Natural decay rate of free merozoites 0.001 0.001-0.5 day−1 [24]

π Proportion of gametocytes infected ery-

throcytes.

0.4 0.1-0.5 day−1 [24]

Nm Number of merozoites produced per

bursting erythrocytes.

16 10-30 Merozoites per

day

[77]

αm Rate at which erythrocytes burst to pro-

duce merozoites.

0.5 0.1-1.0 day−1 [24].

In figure (6.1), we notice the effects of varying temperature on the between-human host model (Juvenile

mosquitoes LM , susceptible mosquitoes SV , infected mosquitoes IV and community sporozites load PV ).

We notice that as we increase the temperature values, the variables LM , SV , IV and PV also increases

until it reach an optimal level as the temperature is between 280C and 320C. When the temperature is

32 and above, we notice the decline of population of LM , SV , IV and PV . Therefore, the increase in

temperature have an influence of increasing the spread of malaria disease system in the community.

Figure (6.2) demonstrates the influence of varying temperature on between-human host scale variables(i.e.

susceptible humans (SH ), infected humans (IH ) and community gametocytes load (GH )). We discover

that as temperature increases from 180C-340C, there is a decrease in susceptible humans. We notice that

susceptible humans reach a minimum when the temperature is around 360C. The susceptible humans

starts to increase when the temperature is above 360C. When temperature increase from 180C-360C, we

observe a slightly increase in infected human (IH) and community gametocytes load (GH) and when the

temperature continues to increase after 360C, we notice decline in IH and GH . Therefore, temperature

has an influence in transmission of malaria disease system in the community.

Figure (6.3) indicates the time evolution of within-mosquito vector scale variables (i.e. erythrocytes game-

tocytes within infected mosquitoes (Gv), the population of gametes (Gm), population of zygotes (Zv) and

the population of sporozoites (Pv)), for changes in temperature. The numerical results also indicate that
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the four variables (Gv, Gm, Zv and Pv), are sensitive to temperature changes. As temperature increases

we observe that the erythrocytes gametocytes within-infected mosquito (Gv), the population of gametes

(Gm) and the population of zygotes (Zv) quickly reach the peak of the graph or takes shorter time to reach

the peak. We also notice that as temperature increases, the peak of the graph also rise. The results also

implies that as the temperature increases, we also observe an increase in population of sporozoites. There-

fore, temperature changes have an influence in the malaria parasite growth within the infected mosquito,

which have an effect in malaria transmission at community level.

In Figure (6.4) demonstrates the changes in within-human host variables (i.e uninfected erythrocytes (Rh),

infected erythrocytes (Rm), population of merozoites (Mh) and population of gametocytes (Gh)), for

temperature variations. The numerical results show that the four within-human scale variables (Rh, Rm,

Mh and Gh) are not sensitive to temperature changes.
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Figure 6.1: Graphs illustrating changes in Juvenile mosquitoes, susceptible mosquitoes, infected

mosquitoes and community sporozoites load as temperature varies T : T = 16, T = 20, T = 24, T = 28,

T = 32, T = 36
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Figure 6.2: Graphs illustrating changes in susceptible Humans, infected humans and community gameto-

cytes load as temperature varies T : T = 18, T = 22, T = 26, T = 30, T = 34, T = 38
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Figure 6.3: Graphs illustrating changes in population of gametocytes with infected mosquitoes, population

of gametes, population of zygotes and population of sporozoites as temperature varies T : T = 16, T = 20,

T = 24, T = 28, T = 32, T = 36
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Figure 6.4: Graphs illustrating changes in uninfected erythrocytes, infected erythrocytes, population of

merozoites and population of sporozoites as temperature varies T : T = 16, T = 20, T = 24, T = 28,

T = 32, T = 36

6.5 Summary

In this study, we presented a multiscale model of malaria disease system to explore the impact of tempera-

ture changes on malaria pathogen replication-transmission using system of ordinary differential equations.

The multi-scale model of malaria disease system we formulate in this study, explicitly traces the malaria

pathogen life cycle between the two hosts (i.e human and mosquito) and on both scales (i.e. within-host

scale and between-host scale). The disease-free equilibrium state was noted to be locally asymptotically

stable. Using the fixed-point theorem, the stability of the endemic equilibrium was observed to be stable.

The results from the graphs indicated that as the temperature increases the population of infected hu-

mans, population of infected mosquitoes, community gametocytes load and community sporozoites load

increases and reach at maximum when temperature is around 320C and then decreases. These conclude

that temperature have influence in increasing the malaria transmission. We also noticed that temperature

have influence on increasing malaria progression for within-mosquito host scale. One of the key interven-

tion controls recommended by World Health Organisation (WHO) in areas with high temperatures is the

use of long-lasting insecticides treated nets (LLINs) for individuals and communities that are at high risk

of malaria disease is one of the effective measures in malaria control. By considering the juvenile stage of

mosquitoes in addition to the adult mosquito model enables to better understand the mosquito population

dynamics and their impact on human population dynamics for malaria transmission dynamics. The incor-

poration of such juvenile stage may also provide some insights into designing larval control strategies in
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reducing the spread of malaria disease. Therefore insecticides-treated bed nets use is one of the effective

measures in malaria control. In conclusion, the results presented in this study are useful in advice the

policy-makers and those who are responsible to implement the effective malaria health interventions in

endemic regions with malaria disease and to adopt better strategies for improving controlling of malaria

diseases.



Chapter 7

A Multiscale Model of Malaria Disease
Dynamics with Mosquito life-cycle

7.1 Introduction

Infectious disease remains a significant public health challenge worldwide, despite the major development

in the prevention and treatment [85]. Participating in battling against an infectious disease system involves

combining the effort, among which incorporate a holistic understanding of the infectious mechanisms.

Infectious disease system is the result of the interaction of three main sub-systems which are: (i) the

host sub-system, (ii) the pathogen sub-system, and (iii) the environmental sub-system. These sub-systems

result in infectious disease systems being structured into multi-level and multi-scale complex systems,

where levels of organization range from the cell-level, tissue-level, organ-level, micro-ecosystem level,

host-level, community-level, and macro-ecosystem level, which are demonstrated in the diagram (1.2). In

this study, we describe the approach for the development of a multiscale model of type II vector-borne

disease system, that is, we consider the malaria disease system as a case study. The malaria disease system

is caused by a parasite called Plasmodium Falciparum. The parasite life cycle is strictly internal of the

two inside-host environments (that is, within-human host scale and within-mosquito host scale) that are

related to malaria transmission of multi-hosts infection [18]. There are two groups of type II vector-borne

disease systems which are demonstrated in [18] which are:

(a) The type II vector-borne diseases with no pathogen replication cycle at the within-host scale (that is,

there is no pathogen replication at the within-mosquito scale). The within-host scale pathogen load

will increase through super-infection, which makes use of the embedded multiscale model.
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(b) The other group of type II vector-borne disease systems with pathogen life stages has a pathogen-

replication cycle at the within-host scale (that is, there is a replication cycle of merozoites at the

within-human scale).

Our coupled multiscale model of malaria infectious disease system will use the combination of these two

groups of type II vector-borne disease systems. The objective of this chapter is to investigate the influence

of the mosquito life cycle on the multiscale model of the malaria disease system. Our multiscale model of

malaria disease system with mosquito life cycle consists of three parts which are: (a) immature mosquito

population, (b) mature mosquito population (within-mosquito scale and between-mosquito scale, and (c)

human population (within-human scale and between-human scale).

The studies done on the mathematical models of mosquito life cycle are as follows: Abdelrazec [86]

developed a mathematical model on transmission mechanism theory that incorporates the dynamics of

immature and female adult Anopheles mosquitoes. They assess the impact of changes in temperature and

rainfall on the density of mosquitoes in the community. White [87] develops a mathematical model us-

ing transmission mechanism theory to compare the influence of vector interventions applied against adult

mosquitoes using long-lasting treated nets (LLNs), indoor residual spraying (IRS), and also used against

immature mosquito stages, alone and in combination with mature mosquito density. These studies were

only concentrated on transmission mechanism theory on the mosquito life cycle. Koutou ([88] presented

a mathematical model of malaria disease system on transmission mechanism theory. Their model is an

autonomous system constructed by considering two models, which are (i) model of vector population

which includes immature and adult population, and (ii) model of pathogen transmission using the trans-

mission mechanism theory on the between-host scale. The model on transmission mechanism theory in

[89] present a mathematical model of malaria transmission dynamics with age-structured for the vector

population (that is, immature and adult female Anopheles mosquitoes) and aperiodic biting rate of female

Anopheles mosquitoes. In the human population, they use the between-host scale model where they di-

vided the population into two major categories which are: the most vulnerable called non-immune, and

the least vulnerable called semi-immune. We found out that majority of the models developed of malaria

disease systems that include the mosquito life cycle focused on a single scale infection, that is, between-

host (mosquito and human) scale.

From the previous works on pathogen replication transmission relativity theory of type II vector-borne dis-

eases, there is none that consider the work on immature and adult mosquito stages (that is, within-mosquito

scale and between-mosquito scale) in the control of malaria disease dynamics. Although most models on

mosquitoes and vertebrate hosts dynamics are usually neglected the immature mosquito stage that could

have an influence on malaria disease incidence in both spatial and temporal scales. There are models

which are among the most significant novelties that address multiscale models (that is, pathogen repli-

cation transmission relativity theory) of the malaria parasite population dynamics within-infected human

scale that includes human immunity and progression from infection of the individual host to between-host
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scale [90]. The studies were done in [35] and [24] demonstrate on pathogen replication transmission rel-

ativity theory on malaria infectious disease dynamics, of which none address the influence of immature

mosquito stage on the progression of malaria disease system.

Based on our coupled multiscale mode, we apply the intervention methods that will target stages in the

mosquito life cycle that is the immature and the adult mosquitoes. and parasite life cycle. For intervention

method for the immature mosquito stage will target the eggs, larva, and pupa. Intervention method tar-

geted at the adult mosquito using community sporozoite load as a measure of intervention effectiveness.

The intervention method targeted the human host population using the community gametocyte load as a

measure of intervention effectiveness. The intervention method targeted the gametocytes and merozoites

within the infected human scale, which helps to investigate the efficacy of the different drug interventions

acting on multiple stages. These intervention methods have an impact on the reduction in transmission of

malaria disease within the community. These will help to understand the impact of the mosquito life cycle

on the multiscale model of the malaria disease system.

7.2 Model formulation

When the Anopheles mosquitoes get blood meal from biting human host population, they migrate to

aquatic environment to lay their eggs, after about two-three days the eggs hatch into larval. The immature

phase of the mosquito population is observed as the source of malaria disease system. The mosquito to

pass through four separate and different phases of its life-cycle and these stages are as follows: eggs,

larval, pupa and adult. Each of these phases can be easily recognised by its special appearance. All the

female anopheles mosquitoes lay their eggs in a variety of water surfaces (aquatic environment). Anophe-

les mosquitoes can either lay their eggs one at a time or in groups called a raft every ten to fourteen days.

Most eggs can survive the winter and hatch in spring. Most eggs hatch within a period of two days of

being laid, the mosquito eggs hatch into larvae. The larvae live at the surface of the water and breathe

through an air tube called a siphon. As they grow and develop, the larvae shed their skin several times.

In the final underwater phase of development, the larvae develop into pupae, this process lasts between

four to five days. They float to the surface of the water and breathe through the two small tubes called

trumpets. At the end of this stage, the pupae encase themselves within a pupal case where they transform

into adult mosquitoes. The complete developed mosquito then crawls to a protected place and rests while

its external skeleton hardens. Once dry, the mature mosquito flies away to feed and seek a mate. While

males feed on plants juices with their shorter mouth parts, females feed on human and animal blood with

their longer mouth parts (proboscis). After feeding the females lay their eggs and the cycle will continues

if the female Anopheles mosquito lives. Adult mosquito most especially anopheles’ mosquito cannot sur-

vive in the absence of human and vertebrate host. When the human population and the female Anopheles

mosquito population interact cause malaria which leads to serious sickness and death to the human host
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population.

This model describes a mathematical dynamic model for mosquito-vector population, where their life-

cycle is divided into two phases, the acquatic environment that is immature mosquito is divided into three

subpopulation: eggs (EE(t)), larval (LW (t)) and pupal (PM (t)), the aerial environment that is adult

mosquito is divided into two sub-populations: Susceptible mosquito populations SV (t), infected mosquito

populations (IV (t)) and community sporozoites load (PV (t)), within-infected mosquito variables: popu-

lation of gametocytes within infected adult mosquito (Gv(t)), population of gametes (Gm(t)), population

of zygotes (Zv(t)), population of ookynetes (Ov(t)), and population of sporozoites within infected adult

mosquito (Pv(t)), between-humans population includes: susceptible human populations (SH(t)), infected

human populations (IH(t)) and community gametocytes loadGH(t) and within-infected human variables

includes: uninfected red-blood cells (Rh(s)), infected red blood cells (Rm(s)), merozoites populations

(Mh(s)) and gametocytes populations within infected-humans (Gh(s)). This multiscale model of malaria

disease system with mosquito life cycle has the following assumptions:

(a) There is no vertical transmission of the malaria disease system.

(b) The transmission of malaria disease is only caused through mosquito bites when the mosquito takes a

blood meal, which is direct transmission.

(c) The infected mosquito population does not recover naturally from their infection, whilst the infected

human population recovers naturally from their infection.

(d) All the newly supplied humans are assumed to be healthy and have not been previously contacted or

exposed to malaria disease and also the newly supplied susceptible mosquitoes are assumed to be

healthy and have been previously exposed to malaria disease.

(e) The supply of susceptible mosquito population are only mature female Anopheles mosquitoes.

(f) The supply of eggs is from both susceptible and infected mosquito populations, that is, the total pro-

duction of eggs from the total population of mosquitoes (NV ).

Based on the assumptions above and the flow diagram displayed in (7.1), the coupled multiscale model

of malaria disease system with mosquito cycle is given by the system of non-linear ordinary differential

equations given in system of equation (7.2.0.1).
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Figure 7.1: A conceptual diagram of the multiscale model of malaria disease dynamics with mosquito life

cycle
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1.
dEE(t)

dt
= ΛE − (µE + θE)EE(t),

2.
dLW (t)

dt
= θEEE(t)− (µW + αW + δW )LW (t),

3.
dPM (t)

dt
= αWLW (t)− (µM + αM + δM )PM (t),

4.
dSV (t)

dt
=

αMPM (t)

2
− βHGH(t)SV (t)

G0 +GH(t)
− µV SV (t),

5.
dIV (t)

dt
=

βHGH(t)SV (t)

G0 +GH(t)
− (µV + δV )IV (t),

6.
dGv(t)

dt
=

βHGH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t),

7.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t), (7.2.0.1)

8.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

9.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

10.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

11.
dPV (t)

dt
= Pv(t)αv(IV (t) + 1)− αV PV (t).

12.
dSH(t)

dt
= ΛH − βV PV (t)SH(t)

P0 + PV (t)
− µHSH(t) + γHIH(t),

13.
dIH(t)

dt
=

βV PV (t)SH(t)

P0 + PV (t)
− (µH + γH + δH)IH(t),

14.
dRh(s)

ds
= Λh − βhRh(s)Mh(s)− µbRh(s),

15.
dRm(s)

ds
= (1− π)βhRh(s)Mh(s)− αmRm(s),

16.
dMh(s)

ds
= NmαmRm(s)− µmMh(s),

17.
dGh(s)

ds
= πβhRh(s)Mh(s)− [αh + µh]Gh(s),

18.
dGH(t)

dt
= Gh(s)αhIH(t)− αHGH(t).

The first equation in system of equation (7.2.0.1) describe the dynanics of mosquito egg stage (EW (t)).

The first term on the right hand side of the mosquito egg stage is the supply of eggs from the total mosquito

population NV (t) at a rate ΛE . The mosquito egg stage is reduced by the natural decay at a rate µE and

also by developing into larval at a rate θE . The second equation of the model (7.2.0.1) demonstrate the

dynamics of mosquito larval stage (LW (t)). The mosquito larval stage increase through the egg devel-

opment at a rate θE and decrease by natural decay at a rate µW , by other species that feeds on larval

mosquitoes at a rate δW , and through the development of larval into pupa at a rate αW . The third equation

of the model (7.2.1.1) describe the dynamics of mosquito pupa stage (PM (t)). The first term on the right
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hand side of the mosquito pupa stage increase through the larval development into pupa at a rate αW

and decrease through natural decay at a rate µM , through species that feeds on mosquito pupa at a rate

δM , and through development of pupa into adult mosquito at a rate αM . The fourth equation of model

(7.2.0.1) demonstrate the dynamics of adult susceptible mosquito population (SV (t)). The adult suscep-

tible mosquito population is supplied by constant term
αM

2
, which is the rate of development of pupal

mosquito into adult female Anopheles mosquito. The adult susceptible mosquito population is depleted

through infection of adult susceptible mosquito at a variable rate
βHGH(t)SV (t)

G0 +GH(t)
and natural death at a

constant rate µV , where βH is the contact rate of susceptible mosquito with the human infectious reservoir.

The fifth equation in system (7.2.0.1) demonstrates the dynamics of infected mosquitoes. This equation

increase through the infection of susceptible mosquitoes and also decreased through natural death rate µV
and also disease induced death rate δV .

The sixth equation in system (7.2.0.1) demonstrates the dynamics of gametocytes infected erythrocytes

within an infected mosquito after a mosquito gets a blood meal from an infected human. The first term

on the right-hand-side of this equation is the new infection at an individual mosquito at a variable rate
βHGH(t)(SV (t)− 1)

(G0 +GH(t))(IV (t) + 1)
. This equation depleted through natural decay rate of gametocyte infected

erythrocytes within an infected mosquito µg and also through αg the rate at which gametocyte infected

erythrocytes burst releasing sex cells called gametes. The seventh equation (7.2.0.1) describes the dynam-

ics of the population of gametes within an infected mosquito. The first term of this equation is the rate

of increase of gametes within an infected mosquito. The gametes decay at a rate µs and also depleted

through male and female gametes fusing to form zygotes at a constant rate αg. The eighth equation of

system (7.2.0.1) demonstrates the dynamics of zygotes. The equation increase through gametes fuse to

form zygotes at a rate
αs

2
and depleted through natural decay µz and also through develop into oocysts

at a rate αs. The ninth equation of system (7.2.0.1) illustrates the dynamics of the population of oocysts

in an infected mosquito. The first term in the right-hand-side of the ninth equation represent the rate of

increase where the ookinetes transform into early oocysts. The second term is the rate of reduction of this

population through either natural decay at a rate µk or burst and release sporozoites at a rate αk. The tenth

equation of system (7.2.0.1) describes the dynamics of sporozoites population in an infected mosquito.

The first term of the RHS of the tenth equation is given by each oocysts bursts at a rate αk releasing an

average of Nk sporozoites upon bursting. Therefore, the rate of increase in sporozoites within an infected

mosquito is given by NkαkOv. The tenth equation is reduced through either natural decay at a rate αv

or through the rate at which sporozoites mature and become infectious to humans and migrate to sali-

vary glands of the infected mosquito. The eleventh equation of system (7.2.0.1) describes the community

sporozoites load PV . The equation increase by the up-scaling of within-host scale excretion/shedding of

pathogen which is given by Pvαv(IV + 1) and reduced by αV the rate of sporozoites eliminated from

geographical area/ community area.

The twelveth equation in system (7.2.0.1) describes the dynamics of uninfected humans (susceptible)
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SH(t).The population is assumed to increase at a constant rate ΛH through birth and immigrants and

also increase through natural recovered of infected individual at a rate γH . This population is reduced

through infection of susceptible humans at a rate to
βV PV (t)

P0 + PV (t)
, where βV is the contact rate to a com-

munity sporozoite load PV (t) per unit time, P0 is the community sporozoite load that yields 50% chance

of getting a human host infected with malaria after a bite by a mosquito in a particular community. This

equation also decreased by natural death at a constant rate µH . The thirteenth equation in system (7.2.0.1)

demonstrates the dynamics of infected individuals. The equation increases through infection of suscepti-

ble humans and also depleted through natural death rate µH , recovery of the infected individual at rate γH
and through disease induced death rate δH . The eighteenth equation in system (7.2.0.1), demonstrates the

dynamics of the community gametocyte load (GH). The first term in the right-hand-side of this equation

describes the total number of gametocytes load contributed by all infected individuals from within-host

process to the community gametocytes load pool, where Nh = G̃h is defined as the measure of the total

volume of gametocytes produced within an infected host throughout the entire period of host infectious-

ness and αh is the proportion of individuals who are infected. αH is the rate of degradation of this class.

The fourteenth equation in the system of equations (7.2.0.1), describes the dynamics of uninfected red

blood cells within infected human (Rh(s)). The population of uninfected red blood cells is assumed to

increase through the supply of red blood cells from the bone marrow at a rate Λh and the population of

uninfected red blood cells decrease through the infection of red blood cells. βhRh(s)Mh(s) models the

rate at which the merozoites get contact with the uninfected red blood cells, where βh is the infection

rate or contact rate. The susceptible erythrocytes are also reduced through natural decay at a constant

rate µb. The fifteenth equation of sub-model (7.2.0.1) illustrates the dynamics of merozoites infected red

blood cells within infected human (Rm(s)). The dynamics of merozoites infected red blood cells increase

through infection of susceptible red-blood cells with a propotion of (1−π) and reduced through bursting of

infected red blood cells to produce merozoites at a rate αm. The sixteenth equation of sub-model (7.2.0.1)

demonstrate the dynamics of population of merozoites. The dynamics of merozoites increase through

the average number of merozoites releasedm in the human blood stream through bursting of infected red

blood cells at a rate NmαmRm(s). The population of merozoites reduced through natural decay at a rate

µm. The last equation of sub-model (7.2.0.1) describe the dynamics of the population of gametocytes.

The population of gametocytes increase through the population of gametocyte infected erythrocytes at a

proportion π and the sub-model decrease through natural decay of gametocytes at a rate µh and through

shedding/excretion of gametocytes at a rate αh.
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7.2.1 Simplification of the multiscale model

We adapt the simplifaction method in chapter 3 and the simplified multiscale model of model (7.2.0.1) is

given by

1.
dEE(t)

dt
= ΛE − (µE + θE)EE(t),

2.
dLW (t)

dt
= θEEE(t)− (µW + αW + δW )LW (t),

3.
dPM (t)

dt
= αWLW (t)− (µM + αM + δM )PM (t),

4.
dSV (t)

dt
=

αMPM (t)

2
− βHGH(t)SV (t)

G0 +GH(t)
− µV SV (t),

5.
dIV (t)

dt
=

βHGH(t)SV (t)

G0 +GH(t)
− (µV + δV )IV (t),

6.
dGv(t)

dt
=

βHGH(t)(SV (t)− 1)

(G0 +GH(t))ϕV (IV (t) + 1)
− [αg + µg]Gv(t),

7.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t), (7.2.1.1)

8.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

9.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

10.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

11.
dPV (t)

dt
= Pv(t)αv(IV (t) + 1)− αV PV (t).

12.
dSH(t)

dt
= ΛH − βV PV (t)SH(t)

P0 + PV (t)
− µHSH(t) + γHIH(t),

13.
dIH(t)

dt
=

βV PV (t)SH(t)

P0 + PV (t)
− (µH + γH + δH)IH(t),

14.
dGH(t)

dt
= NhαhIH(t)− αHGH(t),

where Nh is a composite parameter that summarise the disease dynamics within an infected individual

host. Nh models the average number of within-human host malaria parasite load available to be excreted

into the between-host scale by each infected humanat a rate αh. We make use of Nh obtained in chapter

3. Where

Nh = G̃h =
π

(1− π)

[
(1− π)NmβhΛh − µbµm

Nmβh(αh + µh)

]
. (7.2.1.2)

7.2.2 Positivity of Solutions

The system of equations (7.2.1.1) illustrates the dynamics of human, mosquito and parasite populations

and it is essential to show that these populations are positive for all time t ≥ 0. We have to prove the

following theorem.
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Theorem 7.1. The solutions of the system of equations (7.2.1.1) satisfy the following initial conditions

with strictly positive components i.e. (EE > 0, LW > 0, PM > 0, SV > 0,IV > 0, Gv > 0, Gm > 0,

Zv > 0 Ov > 0, Pv > 0, PV > 0, SH > 0,IV > 0 and GH > 0) for all t > 0.

Proof. We prove that the solution of system of equations (7.2.1.1) of which the solution starts from a

strictly positive point, all components are positive for 0 ≤ t ≤ t0

dEE(t)

dt
≥ −(µE + θE)EE(t).

The equation can be solved by the separation of variables as follows

dEE(t)

EE(t)
=≥ −(µE + θE)dt, (7.2.2.1)

By letting

t̂ = sup{t > 0 : EE > 0, LW > 0, PM > 0, SV > 0, IV , Gv > 0, Gm > 0, Zv > 0,

Ov > 0, Pv > 0, PV , SH > 0, IH > 0, GH > 0} ∈ [0, t],

and integrating equation (7.2.2.1), and we obtain

ln(EE(t)) ≥ −(µE + θE)t+ ln(EE(0)),

EE(t) ≥ EE(0) exp{−(µE + θE)t}

> 0

It implies that

lim
t→∞

inf(EE(t)) ≥ 0.

Using the similar method , it can be shown that

lim
t→∞

inf(LW (t)) ≥ 0,

lim
t→∞

inf(PM (t)) ≥ 0.

Using the similar method, we obtain

SV (t) ≥ SV (0). exp

{
−
(
µV t+

∫ t

0
λH(t̂)dt̂

)}
, (7.2.2.2)

lim
t→∞

inf(SV (t)) ≥ 0. (7.2.2.3)
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Using the similar method, we obtain

IV (t) ≥ IV (0). exp{−(µV t+ δV (t))}, (7.2.2.4)

lim
t→∞

inf(IV (t)) ≥ 0. (7.2.2.5)

Using the same principle, it can be shown that

lim
t→∞

inf(Gv(t)) ≥ 0,

lim
t→∞

inf(Gm(t)) ≥ 0,

lim
t→∞

inf(Zv(t)) ≥ 0,

lim
t→∞

inf(Ov(t)) ≥ 0,

lim
t→∞

inf(Pv(t)) ≥ 0,

lim
t→∞

inf(PV (t)) ≥ 0,

lim
t→∞

inf(SH(t)) ≥ 0,

lim
t→∞

inf(IH(t)) ≥ 0,

lim
t→∞

inf(GH(t)) ≥ 0.

Thus, when starting with non-negative initial value conditions in the systems of equations (7.2.1.1), the

solutions of the model will remain non-negative for all t ≥ 0, and this completes the proof.

7.2.3 Feasible region of the equilibrium of the model

All the parameters and state variables for the model system (7.2.1.1) are assumed to be non-negative to be

consistent with human and mosquito populations. Further, it can be verified that for system of equations

(7.2.1.1), all solutions with non-negative initial conditions remain bounded and non-negative. We define

NV as the total mosquito population, NH as the total human population and they are given by

NV = SV + IV

NH = SH + IH . (7.2.3.1)

dNV (t)

dt
=

dSV (t)

dt
+
dIV (t)

dt
,

=
1

2

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
− µVNV (t)− δV IV (t), (7.2.3.2)

≤ 1

2

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
− µVNV (t).



Chapter 7 253

Therefore lim
t−→∞

Sup(NV (t)) =
1

2

1

µV

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
.

dNH(t)

dt
=

dSH(t)

dt
+
dIH(t)

dt
,

dNH(t)

dt
= ΛH − µHNH(t)− δHIH(t), (7.2.3.3)

≤ ΛH − µHNH(t).

Therefore lim
t−→∞

Sup(NH(t)) =
ΛH

µH
.

Therefore all feasible solutions of the model system (7.2.1.1) are positive and eventually enter the invariant

attracting region

Ω = (EE , LW , PM , SV , IV , Gv, Gm, Zv, Ov, Pv, PV , SH , IH , GH), (7.2.3.4)

where

0 ≤ SV + IV ≤ 1

2

1

µV

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
,

0 ≤ Gv ≤ 1

αg + µg

βH (αMαW θEΛE −A)

AϕV (IV + 1)

GH

G0 +GH
,

0 ≤ Gm ≤ Ngαg

αg + µg

1

αs + µs

βH (αMαW θEΛE −A)

AϕV (IV + 1)

GH

G0 +GH
,

0 ≤ Zv ≤ 1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

βH (αMαW θEΛE −A)

AϕV (IV + 1)

GH

G0 +GH
,

0 ≤ Ov ≤ 1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

βH (αMαW θEΛE −A)

AϕV (IV + 1)

GH

G0 +GH
, (7.2.3.5)

0 ≤ Pv ≤ Nv
βH (αMαW θEΛE −A)

AϕV (IV + 1)

GH

G0 +GH
,

0 ≤ PV ≤ Nvαv

αV

βH (αMαW θEΛE −A)

AϕV

GH

G0 +GH
,

0 ≤ SH + IH ≤ ΛH

µH
,

0 ≤ GH ≤ Nhαh

αH

ΛH

µH
,

where

A = 2µV (µM + αM + δM )(µW + αW + δW )(µE + θE),

(7.2.3.6)

Nv =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv
.
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7.2.4 Disease free Equilibrium

The disease free equilibrium point of the system of equations (7.2.1.1) is obtained by setting the right

hand sides of differential equations (7.2.1.1) to zero and and assume that IV = GH = IH = PV = Gv =

Gm = Zv = Ov = Pv = 0. We obtain

E0 = (E0
E , L

0
W , P

0
M , S

0
V , I

0
V , G

0
H , S

0
H , I

0
H , P

0
V , G

0
v, G

0
m, Z

0
v , O

0
v , P

0
v ). (7.2.4.1)

= (E0
E , L

0
W , , P

0
M , S

0
V , 0, 0,

ΛH

µH
, 0, 0, 0, 0, 0, 0, 0),

Where

E0
E =

ΛE

(µE + θE)

L0
W =

ΛE

(µE + θE)

θE
(µW + αW + δW )

P 0
M =

ΛE

(µE + θE)

θE
(µW + αW + δW )

αW

(µM + αM + δM )
(7.2.4.2)

S0
V =

αM

2µV

αW

(µM + αM + δM )

θE
(µW + αW + δW )

ΛE

(µE + θE)
.

7.2.5 Reproductive Number

We use the next-generation operator approach to compute the basic reproductive number and we use the

[71]’s approach. The systems of equations (7.2.1.1) can be written in the form

dX

dt
= f(X,Y, Z),

dY

dt
= g(X,Y, Z), (7.2.5.1)

dZ

dt
= h(X,Y, Z),

where

i. X = (EE , LW , PM , SV , SH) represents the compartments of susceptible individuals.

ii. Y = (IV , IH , Gv, Gm, Zv, Ov, Pv) represents compartments of infected individuals that are not infec-

tious.

iii. Z = (GH , PV ) represents compartments which are infectious who are capable of transmitting other

diseases.
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We define g̃(X∗, Z) by

g̃1 =
βHSV

(µV + δV )

GH

(G0 +GH)
,

g̃2 =
1

αg + µg

βH(SV − 1)

ϕV (IV + 1)

GH

(G0 +GH)
,

g̃3 =
Ngαg

αg + µg

1

αs + µs

βH(SV − 1)

ϕV (IV + 1)

GH

(G0 +GH)
,

g̃4 =
1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

βH(SV − 1)

ϕV (IV + 1)

GH

(G0 +GH)
, (7.2.5.2)

g̃5 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

βH(SV − 1)

ϕV (IV + 1)

GH

(G0 +GH)
,

g̃6 =
Nvαv

ϕV

βH(SV − 1)

(IV + 1)

GH

(G0 +GH)
,

g̃7 =
βV SH

(µH + γH + δH)

PV

(P0 + PV )
.

Let h1 =
dGH

dt
and h2 =

dPV

dt
and we obtain

h1 =
Nhαh

µH + γH + δH

βV ΛH

µH

PV

(P0 + PV )
− αHGH , (7.2.5.3)

h2 = Nvαv
βH(SV − 1)

ϕV

GH

(G0 +GH)
− αV PV .

We assume that A can be written in the form A =M −D, where M ≥ 0 and D ≥ 0, a diagonal matrix.

A =

 ∂h1
∂GH

∂h1
∂PV

∂h2
∂GH

∂h2
∂PV

 ,

then

A =

 −αH
Nhαh

µH + γH + δH

1

P0

βV ΛH

µH
Nvαv

ϕV

βHq1
2µVG0q2

−αV

 .

We deduce matrices

M =

 0
Nhαh

µH + γH + δH

1

P0

βV ΛH

µH
Nvαv

ϕV

βHq1
2µVG0q2

0
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and

D =

(
αH 0

0 αV

)
=⇒ D1 =

 1

αH
0

0
1

αV

 . (7.2.5.4)

The basic reproductive number is the special radius (dominant eigenvalue) of the matrix MD−1 that is

R0 = ρ(MD−1) (7.2.5.5)

=

√[
1

2

Nvαv

(µE + θE)(µW + αW + δW )(µM + αM + δM )

1

P0

1

αV

βV ΛH

µH

] [
Nhαh

µH + γH + δH

1

G0

1

αH

βHq1
µV ϕV

]
,

R0 =
√
R0V HR0HV .

(7.2.5.6)

where

Nv =
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

1

αv + µv
,

q1 = (αMαW θEΛE − 2µV (µE + θE)(µW + αW + δW )(µM + αM + δM )),

αMαW θEΛE ≥ 2µV (µE + θE)(µW + αW + δW )(µM + αM + δM ), , (7.2.5.7)

R0V H =
1

2

Nvαv

(µE + θE)(µW + αW + δW )(µM + αM + δM )

1

P0

1

αV

βV ΛH

µH
,

R0HV =
Nhαh

µH + γH + δH

1

G0

1

αH

βHq1
µV ϕV

.

We deduce that the basic reproductive number has components of immature mosquito parameters, adult

mosquito parameters and human parameters and also have the components of both within-host (mosquito

and human) scale parameters and between host (mosquito and human) scale parameters.

7.2.6 Endemic equilibrium Points

The equilibrium points are obtained by setting the right-hand-side of systems of equations (7.2.1.1) to zero

and we obtain

E∗ = (E∗
E , L

∗
W , P

∗
M , S

∗
V , I

∗
V , G

∗
v, G

∗
m, Z

∗
v , O

∗
V , P

∗
v , P

∗
V , S

∗
H , I

∗
H , G

∗
H),

where
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E∗
E =

ΛE

µE + θE
,

L∗
W =

1

µW + αW + δW

θEΛE

µE + θE
,

P ∗
M =

1

µM + αW + δM

αW

µW + αW + δW

θEΛE

µE + θE
,

S∗
V =

αMαW θEΛE [NhαhβV ΛHP
∗
V + αHG0[a1(P0 + P ∗

V ) + a2P
∗
V ]]

a3
[
NhαhβV ΛHP ∗

V (βH + µV ) + µV αHG0[a1(P0 + P ∗
V ) + a2P ∗

V ]
] ,

(7.2.6.1)

I∗V =
NhαhβHαMαW θEΛEβV ΛHP

∗
V

a3(µV + δV )
[
NhαhβV ΛHP ∗

V (βH + µV ) + µV αHG0[a1(P0 + P ∗
V ) + a2P ∗

V ]
] ,

Gv =
1

αg + µg

NhαhβHβV ΛHP
∗
V [b1P

∗
V + b2]

a3ϕV (I∗V + 1)
[
b3P ∗

V + µV αHa1G0P0

] [
b4P ∗

V + αHa1G0P0

] ,
G∗

m =
Ngαg

αg + µg

1

αs + µs

NhαhβHβV ΛHP
∗
V [b1P

∗
V + b2]

a3ϕV (I∗V + 1)
[
b3P ∗

V + µV αHa1G0P0

] [
b4P ∗

V + αHa1G0P0

] ,
Z∗
v =

1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

NhαhβHβV ΛHP
∗
V [b1P

∗
V + b2]

a3ϕV (I∗V + 1)
[
b3P ∗

V + µV αHa1G0P0

] [
b4P ∗

V + αHa1G0P0

] ,

O∗
v =

1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

NhαhβHβV ΛHP
∗
V [b1P

∗
V + b2]

a3ϕV (I∗V + 1)
[
b3P ∗

V + µV αHa1G0P0

] [
b4P ∗

V + αHa1G0P0

] ,
P ∗
v = Nv

NhαhβHβV ΛHP
∗
V [b1P

∗
V + b2]

a3ϕV (I∗V + 1)
[
b3P ∗

V + µV αHa1G0P0

] [
b4P ∗

V + αHa1G0P0

] ,
S∗
H =

ΛH(µH + γH + δH)(P0 + P ∗
V )

a1(P0 + P ∗
V ) + a2P ∗

V

,

I∗H =
βV ΛHP

∗
V

a1(P0 + P ∗
V ) + a2P ∗

V

,

G∗
H =

NhαhβV ΛHP
∗
V

αH [a1(P0 + P ∗
V ) + a2P ∗

V ]
,

P ∗
V =

−c2 +
√
c22 − 4c1c3
2c1

,
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where

a1 = µH(µH + γH + δH),

a2 = βV (µH + δH),

a3 = 2(µM + αM + δM )(µW + αW + δW )(µE + θE),

b1 = NhαhβV ΛH [αMαW θEΛE − a3(βH + µV )] + αHG0(a1 + a2)[αMαW θEΛE − a3µV ] > 0,

b2 = αHa1G0P0[αMαW θEΛE − a3µV ] > 0, (7.2.6.2)

b3 = NhαhβV ΛH(βH + µV ) + µV αHG0(a1 + a2) > 0,

b4 = NhαhβV ΛH + αHG0(a1 + a2) > 0,

c1 = αV ϕV a3b3b4 > 0,

c2 = NhαhβV ΛHa1a3µV αV αHϕVG0P0[2−R2
0] + α2

HG
2
0(a1 + a2)a1a3µV αV ϕV P0[2−R2

0],

+Nhαha3βV ΛHβH [αV ϕV a1a3αHG0P0 +NvαvNhαhβHβV ΛH ] ,

c3 = −µV αV ϕV a3a
2
1α

2
HG

2
0P

2
0 [R

2
0 − 1] < 0.

Therefore P ∗
V is positive when R0 > 1, c1 > 0, c3 < 0 and c2 could be either positive or negative.

Therefore, we conclude that there exist a positive endemic equilibrium points when R0 > 1.

7.3 Stability analysis

7.3.1 Local stability of disease free equilibrium (DFE)

In this sub-section, we determine the local stability of the DFE of the coupled multiscale model (7.2.1.1),

where we linearize the multiscale model in order to obtain a Jacobian matrix. We examine the Jacobian

matrix at the DFE.

E0 = (EE0, LW0, PM0, SV 0, IV 0, GH0, SH0, IH0, PV 0, Gv0, Gm0, Zv0, Ov0, Pv0). (7.3.1.1)

= (EE0, LW0, , PM0, SV 0, 0, 0,
ΛH

µH
, 0, 0, 0, 0, 0, 0, 0),

Where

EE0 =
ΛE

(µE + θE)

LW0 =
ΛE

(µE + θE)

θE
(µW + αW + δW )

PM =
ΛE

(µE + θE)

θE
(µW + αW + δW )

αW

(µM + αM + δM )
(7.3.1.2)

SV 0 =
αM

2µV

αW

(µM + αM + δM )

θE
(µW + αW + δW )

ΛE

(µE + θE)
.
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We denote the DFE of the multiscale model (7.2.1.1). For examining the stability analysis, we use the

basic reproductive number R0, where R0 is a threshold value that is used in public health to assess the

transmission of a disease in a given community.

The Jacobian matrix of the model (7.2.1.1) computed at the DFE is given by J(E0) =

−F1 0 0 0 0 0 0 0 0 0 0 0 0 0

θe −F2 0 0 0 0 0 0 0 0 0 0 0 0

0 αW −F3 0 0 0 0 0 0 0 0 0 0 0

0 0
αM

2
−µV 0 0 0 0 0 0 0 0 0 −G1

0 0 0 0 −F4 0 0 0 0 0 0 0 0 G1

0 0 0 0 0 −F5 0 0 0 0 0 0 0 G2

0 0 0 0 0 Ngαg −F6 0 0 0 0 0 0 0

0 0 0 0 0 0 0.5αs −F7 0 0 0 0 0 0

0 0 0 0 0 0 0 αz −F8 0 0 0 0 0

0 0 0 0 0 0 0 0 Nkαk −F9 0 0 0 0

0 0 0 0 Pvαv 0 0 0 0 αv −αV 0 0 0

0 0 0 0 0 0 0 0 0 0
−βV SH0

P0
−µH γH 0

0 0 0 0 0 0 0 0 0 0
βV SH0

P0
0 −F10 0

0 0 0 0 0 0 0 0 0 0 0 0 Nhαh −αH



,

(7.3.1.3)

where

F1 = θE + µE , F2 = αW + δW + µW , F3 = αM + δM + µM , F4 = δV + µV ,

F5 = αg + µg, F6 = αs + µs, F7 = αz + µz, F8 = αk + µk,

F9 = αv + µv F10 = δH + γH + µH , G1 =
βHSV 0

G0
, G2 =

βH(SV 0 − 1)

G0ϕV
.

The characteristic equation at the equilibrium E0 is given by

|J(E0)− λI| = 0,

(F1 + λ)(F2 + λ)(F3 + λ)(F4 + λ)(µV + λ)(µH + λ)
[
λ8+

b1λ
7 + b2λ

6 + b3λ
5 + b4λ

4 + b5λ
3 + b6λ

2 + b7λ+ b8
]

= 0, (7.3.1.4)
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where

b1 = αH + αV + F5 + F6 + F7 + F8 + F9 + F10, (7.3.1.5)

b2 = αHαV + αHF5αHF6 + αHF7 + αHF8 + αHF9 + αHF10 + αV F10 + αV F5 + αV F6

= +αV F7 + αV F8 + αV F9 + αV F10 + F5F6 + F5F7 + F5F8 + F5F9 + F5F10 + F6F7

+F6F8 + F6F9 + F6F10 + F7F8 + F7F9 + F7F10 + F8F9 + F8F10 + F9F10, (7.3.1.6)

b3 = αHαV F5 + αHαV F6 + αHαV F7 + αHαV F8 + αHαV F9 + αHαV F10 + αHF5F6

+αHF5F7 + αHF5F8 + αHF5F9 + αHF5F10 + αHF6F7 + αHF6F8 + αHF6F9 +

αHF6F10 + αHF7F8 + αHF7F9 + αHF7F10 + αHF8F9 + αHF8F10 + αHF9F10 +

αV F5F6 + αV F5F7 + αV F5F8 + αV F5F9 + αV F5F10 + αV F6F7 + αV F6F8 + αV F6F9

+αV F6F10 + αV F7F8 + αV F7F9 + αV F7F10 + αV F8F9 + αV F8F10 + αV F9F10 +

αV F6F7 + αV F6F8 + αV F6F9 + F5F6F7 + F5F6F8 + F5F6F9 + F5F6F10 + F5F7F8 +

F5F7F9 + F5F7F10 + F5F8F9 + F5F9F10 + F6F7F8 + F6F7F9 + F6F7F10 + F7F8F9 +

F7F8F10 + F7F9F10 + F8F9F10,

b4 = αHαV F5F6 + αHαV F5F7 + αHαV F5F8 + αHαV F5F9 + αHαV F5F10 + αHαV F6F7 +

αHαV F6F8 + αHαV F6F9 + αHαV F6F10 + αHαV F7F8 + αHαV F7F9 + αHαV F7F10

+αHαV F8F9 + αHαV F8F10 + αHαV F9F10 + αHF5F6F7 + αHF5F6F8 + αHF5F6F9 +

αHF5F6F10 + αHF5F7F8 + αHF5F7F9 + αHF5F7F10 + αHF5F8F9 + αHF5F8F10 +

αHF5F9F10 + αHF6F7F8 + αHF6F7F9 + αHF6F7F10 + αHF6F8F9 + αHF6F8F10 +

αHF6F9F10 + αHF7F8F9 + αHF7F8F10 + αHF7F9F10 + αHF8F9F10αHF5F6F7 +

αHF5F6F8 + αHF5F6F9 + αV F5F6F10 + αV F5F7F8 + αV F5F7F9 + αV F5F7F10 +

αV F5F8F9 + αV F5F8F10 + αV F5F9F10 + αV F6F7F8 + αV F6F7F9 + αV F6F7F10 +

αV F6F8F9 + αV F6F8F10 + αV F6F9F10 + αV F7F8F9 + αV F7F8F10 + αV F7F9F10 +

αV F8F9F10 + F5F6F7F8 + F5F6F7F9 + F5F6F7F10 + F5F6F8F9 + F5F6F8F10 + F5F6F9F10

+F5F7F8F9 + F5F7F8F10 + F5F7F9F10 + F5F8F9F10 + F6F7F8F9 + F6F7F8F10 + F6F7F9F10

+F6F8F9F10 + F7F8F9F10, (7.3.1.7)

b5 = αHαV F5F6F7 + αHαV F5F6F8 + αHαV F5F6F9 + αHαV F5F6F10 + αHαV F5F7F8 +

αHαV F5F7F9 + αHαV F5F7F10 + αHαV F5F8F9 + αHαV F5F8F10 + αHαV F5F9F10 +

αHαV F6F7F8 + αHαV F6F7F9 + αHαV F6F7F10 + αHαV F6F8F9 + αHαV F6F8F10 +

αHαV F6F9F10 + αHαV F7F8F9 + αHαV F7F8F10 + αHαV F7F9F10 + αHαV F8F9F10 +

αHF5F6F7F8 + αHF5F6F7F9 + αHF5F6F7F10 + αHF5F6F8F9 + αHF5F6F8F10 +

αHF5F6F9F10 + αHF5F7F8F9 + αHF5F7F8F10 + αHF5F8F9F10 + αHF6F7F8F9 +

αHF6F7F8F10 + αHF6F7F9F10 + αHF6F8F9F10 + αHF7F8F9F10 + αV F5F6F7F8 +

αV F5F6F7F9 + αV F5F6F7F10 + αV F5F6F8F9 + αV F5F6F8F10 + αV F5F6F9F10 +

αV F5F7F8F9 + αV F5F7F8F10 + αV F5F8F9F10 + αV F6F7F8F9 + αV F6F7F8F10 +

αV F6F7F9F10 + αV F6F8F9F10 + αV F7F8F9F10 + F5F6F7F8F9 + F5F6F7F8F10 +

F5F6F7F9F10 + F5F6F8F9F10 + F5F7F8F9F10 + F6F7F8F9F10, (7.3.1.8)
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b6 = αHαV F5F6F7F8 + αHαV F5F6F7F9 + αHαV F5F6F7F10 + αHαV F5F6F8F9 +

αHαV F5F6F9F10 + αHαV F5F7F8F9 + αHαV F5F7F8F10 + αHαV F5F7F9F10 +

αHαV F5F8F9F10 + αHαV F6F7F8F9 + αHαV F6F7F8F10 + αHαV F6F7F9F10 +

αHαV F6F8F9F10 + αHαV F7F8F9F10 + αHF5F6F7F8F9 + αHF5F6F7F8F10 +

αHF5F6F7F9F10 + αHF5F6F8F9F10 + αHF5F7F8F9F10 + αHF6F7F8F9F10 +

αV F5F6F7F8F9 + αV F5F6F7F8F10 + αV F5F6F7F9F10 + αV F5F6F8F9F10 +

αV F5F7F8F9F10 + αV F6F7F8F9F10 + F5F6F7F8F9F10, (7.3.1.9)

b7 = αHαV F5F6F7F8F9 + αHαV F5F6F7F8F10 + αHαV F5F6F7F9F10 +

αHαV F5F6F8F9F10 + αHαV F5F7F8F9F10 + αHαV F6F7F8F9F10 +

αHF5F6F7F8F9F10 + αV F5F6F7F8F9F10, (7.3.1.10)

b8 = αHαV (αg + µg)(αs + µs)(αz + µz)(αk + µk)(αv + µv)(δH + γH + µH)(1−R2
0).(7.3.1.11)

The eigenvalues are given by

λ1 = −F1, λ2 = −F2,

λ3 = −F3, λ4 = −F4,

λ5 = −µV , λ8 + b1λ
7 + b2λ

6 + b3λ
5 + b4λ

4 + b5λ
3 + b6λ

2 + b7λ+ b8 = 0

The disease free equilibrium is stable when all the eigenvalues obtain from J(E0) are negatives or have

negative real parts. λ1, λ2, λ3, λ4 and λ5 are strictly negatives and the disease free equilibrium points are

stable if and only if

λ8 + b1λ
7 + b2λ

6 + b3λ
5 + b4λ

4 + b5λ
3 + b6λ

2 + b7λ+ b8 = 0 (7.3.1.12)

has negative eigenvalues. The polynomial have negative eigenvalues if b1 > 0, b2 > 0, b3 > 0, b4 > 0,

b5 > 0, b6 > 0, b7 > 0 and b8 > 0. Therefore the coefficients b1, b2, b3, b4, b5, b6 and b7 are clearly

positive and coefficient b8 > 0 when R0 < 1.

Table 7.1: Possible number of positive roots of equation (6.2.5.2)

b8 b7 b6 b5 b4 b3 b2 b1 b0

R0 < 1 + + + + + + + + + 0 positive roots

R0 > 1 + + + + + + + + - 1 positive roots

f(λ) + + + + + + + + + 0 positive roots

f(−λ) + - + - + - + - + 8 or 6 or 4 or 2 or 0 negative eigenvalues

Using descartes sign rule of change show that whenR0 < 1, there is no change of sign of the characteristic

equation and conclude that there are no positive roots. When R0 > 1, we observe that there is only one
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change of sign and conclude that the characteristics has one positive root. When we find f(λ), we notice

that there is no change of sign which mean that there is no positive roots. f(−λ) has 8 change of sign

which means that the characteristic equation has 8 negative eigenvalues. Therefore, the DFE is locally

asymptotically stable when R0 < 1 and unstable when R0 > 1.

7.3.2 Global Stability of the disease free equilibrium

We obtain the global stability of disease free equilibrium of system of equations 7.2.1.1 using the next

generation operator [71]. We can rewrite the system of equations 7.2.1.1 in the form

dX

dt
= F (X,Z),

dY

dt
= G(X,Z), (7.3.2.1)

G(X, 0) = 0.

where

X = (EE , LW , PM , SV , SH) ,

comprises of the uninfected components and

Z = (IV , Gv, Gm, Zv, Ov, Pv, PV , IH , GH)

comprises of the infected and infectious components.

We let

E0 = (X∗, 0),

=

(
ΛE

µE + thetaE
,

1

µW + αW + δW

θEΛE

µE + θE
,

1

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
,

1

2µV

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
, 0, 0, 0, 0, 0, 0, 0,

ΛH

µH
, 0, 0

)
,

represent the disease-free equilibrium (DFE) of the system of equations 7.2.1.1. Where for X∗ to be

globally asymptotically stable, the following conditions H1 and H2 must be satisfied.

H1. For
dX

dt
= F (X, 0), X∗ is globally asymptotically.

H2. G(X,Y ) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ R14
+ , where A = DZG(X

∗, 0), which is an
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M-matrix and R14
+ is the region where the model makes biological sense.

F (X, 0) =



ΛE − (µE + θE)EE

θEΛE

µE + θE
− (µW + αW + δW )LW

αW

µW + αW + δW

θEΛE

µE + θE
− (µM + αM + δM )PM

1

2

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
− µV SV

ΛH − µHSH



, (7.3.2.2)

and the matrix A is given by

A =



−F4 0 0 0 0 0 0 0 G1

0 −F5 0 0 0 0 0 0 G2

0 Ngαg −F6 0 0 0 0 0 0

0 0
αs

2
−F7 0 0 0 0 0

0 0 0 αz −F8 0 0 0 0

0 0 0 0 Nkαk −F9 0 0 0

0 0 0 0 0 αv αV 0 0

0 0 0 0 0 0
βV SH
P0

−F10 0

0 0 0 0 0 0 0 Nhαh −αH



, (7.3.2.3)

and

Ĝ(X,Z) = AZ −G(X,Z) (7.3.2.4)

=



βHGH

[
1

2µVG0

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
− SV
G0 +GH

]
βHGH

ϕV

[
(S0

V − 1)

G0
− (SV − 1)

(G0 +GH)(IH + 1)

]
0

0

0

0

0

βV PV

[
ΛH

µHP0
− SH
P0 + PV

]
0



.
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Since
[

1

2µVG0

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
≥ SV
G0 +GH

]
,
[
(S0

V − 1)

G0
≥ (SV − 1)

(G0 +GH)(IH + 1)

]
and

[
ΛH

µHP0
≥ SH
P0 + PV

]
, it clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R14

+ . It is also clear that A is an M-

matrix, since the off diagonal elements of A are non-negative. So, we state a theorem which summarises

the above results.

Theorem 7.2. The fixed point

E0 = (X∗, 0),

is global asymptotically stable equilibrium of the system of equations (7.2.1.1) when R0 < 1 and then the

assumptions (H1) and (H2) are satisfied.

7.3.3 Local stability of endemic equilibrium

We establish a local stability of the endemic equilibrium state by applying the center manifold theory

[50, 91], as illustrated in [74]. We use the center manifold theory to obtain the local asymptotic stability

of the endemic equilibrium points.

By applying the center manifold theory, We then introducing the change of variables. We let EE = x1,

LW = x2, PM = x3, SV = x4, IV = x5, Gv = x6, Gm = x7, Zv = x8, Ov = x9, Pv = x10, PV = x11,

SH = x12, IV = x13, GH = x14, β∗ = βV and βH = kβV and let β be the bifurcation parameter.

We denote x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14)
T , then the model (7.2.1.1) can

be written in the form

dX

dt
= (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14)

T ,
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as follows

f1 =
dx1
dt

= ΛE − (µE + θE)x1,

f2 =
dx2
dt

= θEx1 − (µW + αW + δW )x2,

f3 =
dx3
dt

= αWx2 − (µM + αM + δM )x3,

f4 =
dx4
dt

=
αMx1

2
− kβ∗x14x4
P0 + x14

− µV x4,

f5 =
dx5
dt

=
kβ∗x14x4
P0 + x14

− (µV + δV )x5,

f6 =
dx6
dt

=
kβ∗x14(x4 − 1)

(P0 + x14)ϕV (x5 + 1)
− (αg + µg)x6,

f7 =
dx7
dt

= Ngαgx6 − (αs + µs)x7 (7.3.3.1)

f8 =
dx8
dt

=
αsx7
2

− (αz + µz)x8,

f9 =
dx9
dt

= αzx8 − (αk + µk)x9,

f10 =
dx10
dt

= Nkαkx9 − (αv + µv)x10,

f11 =
dx11
dt

= x10αv(x5 + 1)− αV x11,

f12 =
dx12
dt

= ΛH − β∗x11x12
P0 + x11

− µHx12 + γHx13,

f13 =
β∗x11x12
P0 + x11

− (µH + γH + δH)x13,

f14 =
dx14
dt

= Nhαhx13 − αHx14.

By considering R0 = 1, and solving for β∗, we obtain

β∗ =

√[
2(µE + θE)(µW + αW + δW )(µM + αM + δM )

Nvαv

P0

1

αV

1

µH
ΛH

] [
µH + γH + δH

Nhαh

G0

1

αH

1

ϕV µV
kq1

]
,

(7.3.3.2)

where

q1 = αHαW θEΛE − 2µV (µE + θE)(µW + αW + δW )(µM + αM + δH), (7.3.3.3)

Nv =
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

1

αv + µv
, (7.3.3.4)

Nh =
π

(1− π)

[
(1− π)NmβhΛh − µbµm

Nmβh(αh + µh)

]
. (7.3.3.5)

We linearize matrix of system of equations (7.3.3.1) around the DFE when βV = β and βH = kβV

which is similar to J(E0) in system (7.3.1.3). The right eigenvector are associated with zero eigenvalue

and is given by W = (w1, w2, w3, w4, w5, w6, w7, w
8, w9, w11, w12, w13, w14)

T . We determine the right
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eigenvector by saying (J(E0))W = 0. We obtain

w1 = w2 = w3 = 0,

w4 = −kβ
∗x04

G0µV
,

w5 =
kβ∗x04

G0(µV + δV )
,

w6 =
1

αg + µg

kβ∗(x04 − 1)

G0ϕV
,

w7 =
Ngαg

αg + µg

1

αs + µs

kβ∗(x04 − 1)

G0ϕV
,

w8 =
1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

kβ∗(x04 − 1)

G0ϕV
, (7.3.3.6)

w9 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

kβ∗(x04 − 1)

G0ϕV
,

w10 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

1

αv + µv

kβ∗(x04 − 1)

G0ϕV
,

w11 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

1

αV

kβ∗(x04 − 1)

G0ϕV
,

w12 = −1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

µH + δH
µH + γH + δH

1

αV

kβ∗(x04 − 1)

G0ϕV

β∗X0
12

P0
,

w13 =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

Nkαk

αk + µk

αv

αv + µv

1

µH + γH + δH

1

αV

kβ∗(x04 − 1)

G0ϕV

β∗x012
P0

,

w14 = 1.

We denote

V = (v1, v2, v3, v4, v5, v6, v7, v8, v
′
9v10, v11, v12, v13, v14)

T

as the left eigenvector associated with zero eigenvalue. To find V , we employ

V T (J(E0, β
∗)) = 0,

where J(E0;β∗) is the Jacobian matrix at the disease free equilibrium point when R0 = 1, where 0 is the

zero vector.

v1 = v2 = v3 = v4 = V5 = v12,

v6 =
Ngαg

αg + µg
,

v7 = 1,

v8 =
Ngαg

αg + µg

Nhαh

µH + γH + δH

Nkαk

αk + µk

αz

αz + µz

αv

αv + µv

kβ∗(x04 − 1)

G0ϕV αH

β∗x012
αV P0

,

v9 =
Ngαg

αg + µg

Nhαh

µH + γH + δH

Nkαk

αk + µk

αv

αv + µv

kβ∗(x04 − 1)

G0ϕV αH

β∗x012
αV P0

, (7.3.3.7)
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v10 =
Ngαg

αg + µg

Nhαh

µH + γH + δH

αv

αv + µv

kβ∗(x04 − 1)

G0ϕV αH

β∗x012
αV P0

,

v11 =
Ngαg

αg + µg

Nhαh

µH + γH + δH

kβ∗(x04 − 1)

G0ϕV αH

β∗x012
αV P0

,

v13 =
Ngαg

αg + µg

Nhαh

µH + γH + δH

kβ∗(x04 − 1)

G0ϕV αH
,

v14 =
Ngαg

αg + µg

kβ∗(x04 − 1)

G0ϕV αH
, (7.3.3.8)

where

x04 =
1

2µV

αM

µM + αM + δM

αW

µW + αW + δW

θEΛE

µE + θE
,

x12 =
ΛH

µH
. (7.3.3.9)

The bifurcation coefficients, a and b are defined as follows

a =

14∑
k,i,j=1

vkwiwj
∂2fk

∂wi∂wj
(E0), (7.3.3.10)

b =
14∑

k,i,j=1

vkwi
∂2fk
∂xi∂β

(E0). (7.3.3.11)

Since v1 = v2 = v3 = v4 = v5 = v12 = 0, we have to compute the non-zero partial derivatives of F at

disease free equilibrium are given by

∂2f6
∂x4∂x14

(E0) =
∂2f6

∂x14∂x4
(E0) =

kβ∗

ϕVG0
,

∂2f6
∂x214

(E0) = −2kβ∗(x04 − 1)

G2
0ϕV

,

∂2f6
∂x5∂x14

(E0) =
∂2f6

∂x14∂x5
(E0) = −kβ

∗(x04 − 1)

G0ϕV
,

∂2f11
∂x5∂x10

(E0) =
∂2f11
∂x10∂x5

(E0) = αv,

∂2f13
∂x211

(E0) = −2β∗x012
P 2
0

,
∂2f13

∂x11∂x12
(E0) =

∂2f13
∂x12∂x11

(E0) =
β∗

P0
,

∂2f6
∂x14∂β

(E0) =
k(x∗4 − 1)

G0ϕV
,

∂2f13
∂x11∂β

(E0) =
X0

12

P0
.

It follows that

a = v6w4w14
∂2f6

∂x4∂x14
(E0) + v6w

2
14

∂2f6
∂x214

(E0) + v6w5w14
∂2f6

∂x5∂x14
(E0) + v13w

2
11

∂2f13
∂x211

(E0)

+v11w5w10
∂2f11
∂x5∂x10

(E0) + v13w11w12
∂2f13
∂x5∂x12

(E0),
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a = − Ngαg

αg + µg

kβ∗

ϕVG2
0

[
kβ∗x04
µV

+ 2(x04 − 1) +
kβ∗x04(x

0
4 − 1)

µV + δV

]
−1

2

(
Ngαg

αg + µg

kβ∗(x04 − 1)

G0ϕV

)3
Nhαhβ

∗x012
µH + γH + δH

(
Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

αv

αv + µv

1

αV P0

)2

−1

2

(
Ngαg

αg + µg

kβ∗(x04 − 1)

G0ϕV

)2
Nhαh

µH + γH + δH

Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

αv

αv + µv

1

αV

kβ∗2x012
G0P0

[.

Nvαv

αV

β∗(x04 − 1)

P0ϕV αH

µH + δH
µH + γH + δH

− x04
µV + δV

]
(7.3.3.12)

a < 0

when
Nvαv

αV

β∗(x04 − 1)

P0ϕV αH

µH + δH
µH + γH + δH

≥ x04
µV + δV

.

It also follows that

b = v6w14
∂2f6
∂x14∂β

(E0) + v13w11
∂2f13
∂x11∂β

(E0)

=
Ngαg

αg + µg

k(x04 − 1)

G0ϕV
[1+ (7.3.3.13)

1

2

Ngαg

αg + µg

kβ∗(x04 − 1)

G0ϕV

Nhαh

µH + γH + δH

Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

αv

αv + µv

β∗x∗12
P0αV

]
,

b > 0.

Thus, a < 0 and b > 0, it follows that the model will undergo a trans-critical bifurcation at R0 = 1. By

using item (iv) of Theorem (4.1). in [74], we can conclude that the endemic equilibrium points of system

of equations (7.2.1.1) is locally asymptotically stable when R0 > 1 but close to 1. We summarize the

results using the following theorem.

Theorem 7.3. The presents of malaria infection equilibrium is locally asymptotically stable whenR0 > 1

but close to 1.

7.4 Numerical results

In this section, we display out numerical simulations of the mosquito life cycle model for malaria infec-

tious disease systems, with the aim of validating some of the critical results of the coupled multiscale

model (7.2.1.1). We perform numerical simulations using Python program version 2.7 and Matlab version

2019, using the windows operating system (Windows 10). We utilise a package called odeint function in

the python-scipy that solve any system of differentiated equations. The parameter values utilised in the

model simulations are in Tables (7.2, 7.3, 7.4 , 7.5, 7.6). The parameter values employed in this study

were taken from published literatures on mathematical and computational models and some parameter

values were estimated from empirical studies.
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Table 7.2: Between-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source

βV Contact rate of susceptible humans with

the infectious reservoir of mosquitoes.

0.52135 2.7× 10−3-0.64 day−1 [35]

µV Natural death rate of mosquitoes. 0.12 0.033-0.3 day−1 [24]

δV induced death rate of infected

mosquitoes.

0.00000426 4.26 × 10−6 −
5.33× 10−6

day−1 [24]

P0 Half saturation constant associated with

the infection of humans.

1× 108 17 − 5× 108 day−1 [24]

ϕV Proportion of new infected mosquitoes

in the total infected mosquito popula-

tion.

0.0001 0.0001-0.01 day−1 assumed

αV Rate of clearance of community sporo-

zoite load.

0.3 0.09-0.99 day−1 [24]

Table 7.3: Immature mosquito parameter values and their description.

Parameter Description Initial Value Range Units Source

ΛE Rate at which mosquitoes lay eggs. 200 100-4000 Eggs per day Assumed

θE Hatching rate of eggs into larvae. 0.6 0.01-0.6 day−1 [88]

µE Mortality rate of eggs. 0.3 0.01-0.56 day−1 [88]

αW The rate at which larvae develops into

pupae.

0.4 0.14-0.4 day−1 [88]

µW Natural death rare of larvae. 0.3 0.05-0.3 day−1 [88]

δW The rate at which larvae reduced by

other species.

0.08 0.01-0.1 day−1 Assumed

αM The rate at which pupae develops into

adult.

0.25 0.25-0.5 day−1 [88]

µM Mortality rate of pupae. 0.15 0.15-0.37 day−1 [88]

δM The rate at which pupae reduced by

other species.

0.08 0.01-0.1 day−1 Assumed
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Table 7.4: Between-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

ΛH Rate of recruitment of Susceptible hu-

mans.

400 10-800 Humans per

day

[35]

βH Infection rate of susceptible

mosquitoes.

0.356 0.072-0.64 day−1 [35]

µH Natural death rate of humans. 0.00004 0.00001-

0.00008

day−1 [24]

δH Disease induced death rate of humans. 0.003454 1 × 10−15 −
4.1× 10−4

day−1 [35]

γH Natural recovery rate of humans. 0.0092 0.0014-0.017 day−1 [35]

G0 Half saturation constant associated with

the infection of mosquitoes.

5× 108 1×108−1×109 day−1 [24]

ϕH Proportion of new infected humans in

the total infected human population.

0.0001 0.0001-0.01 day−1 Assumed

αH Rate of clearance of community game-

tocyte load.

0.0000913 0.0000467-

0.000274

day−1 [24]
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Table 7.5: Within-mosquito scale parameter values and their description.

Parameter Description Initial Value Range Units Source

Λv The rate of supply of gametocytes

within infected mosquitoes.

300 100-300 Gametocytes

per day

[24]

αg Rate at which gametocyte infected ery-

throcytes burst within ifected mosquito.

96 90-100 day−1 [24]

µg Decay rate of gametocytes within in-

fected mosquito.

0.0625 0.0326-0.0725 day−1 [24]

Ng Number of gametes produced per ga-

metocyte infected erythrocyte within

infected mosquito.

2 1-3 Gametes per

day

[24]

αz Rate at which zygote develop into

oocysts.

0.4240 0.01-0.5 day−1 [24]

µz Natural death rate of zygote. 1 1-4 day−1 [24]

αs Fertilisation of gametes. 0.08 0.01-0.2 day−1 [24]

µs Natural death rate of gametes. 58 40-129 day−1 [24]

αk Bursting rate of oocysts to produce

sporozoites.

0.2 0-1 day−1 [24]

Nk Number of sporozoites produced per

bursting oocysts.

3 000 1000-10000 Sporozoites per

day

[24]

µk Natural death rate of oocysts. 0.01 0.071-0.143 day−1 [24]

αv Rate at which sporozoites become in-

fectious to humans.

0.025 0.0167-1 day−1 [24]

µv Natural death rate of sporozoites. 0.0001 0.0001-0.01 day−1 [24]



Chapter 7 272

Table 7.6: Within-human scale parameter values and their description.

Parameter Description Initial Value Range Units Source

Λh Rate of supply of uninfected red blood

cells.

200 100-300 Cells per day [24]

βh Rate of infection of red blood cells (ery-

throcytes).

0.1 2× 10−9-0.2 day−1 [24]

αh Rate at which gametocytes develop and

become infectious within infected hu-

man.

0.02 0.01-0.9 day−1 [24]

µh Natural death rate of gametocyte in-

fected erythrocytes within infected hu-

man.

0.0625 0.0600-0.0625 day−1 [24]

µb Natural decay rate of red blood cells. 0.0083 0.006-0.1 day−1 [24]

µm Natural decay rate of free merozoites 0.001 0.001-0.5 day−1

π Proportion of gametocytes infected ery-

throcytes.

0.1 0.1-0.5 day−1 [24]

Nm Number of merozoites produced per

bursting erythrocytes.

16 10-30 Merozoites per

day

[24]

αm Rate at which erythrocytes burst to pro-

duce merozoites.

0.5 0.1-1.0 day−1 [24]

7.4.1 Sensitivity Analysis

This subsection provides some results concerning the sensitive of the model reproductive number (R0)

along with the community sporozoites load (P ∗
V ) and community gametocytes load (G∗

H) when the multi-

scale model parameters changes. By using the partial rank correlation coefficients (PRCCs), we investigate

the sensitivity of model parameter variations on R0, P ∗
V and G∗

H . PRCCs rank each parameter by the im-

pact it has on the results when all other parameters are kept at median values. We explore the influence of

each model parameters on the model R0, P ∗
V and G∗

H . The solutions of the simulations of global sensi-

tivity analysis of parameters on R0, P ∗
V and G∗

H are shown I the tornado plots diagrams in Figures (7.2),

(7.3) and (7.4), respectively.

From Figure(7.2)-figure (7.4), we present the degree of sensitivity of every parameter on R0, P ∗
V and

G∗
H , respectively. We observed that some of the parameters have positive PRCCs and some have negative

PRCCs. The parameters with having positive PRCCs will increase the value of R0, P ∗
V and G∗

H when the

parameter values are increased, whilst the parameters with negative PRCCs will reduce the value of R0,

P ∗
V and G∗

H when the parameter values are increased.
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Figure 7.2: Global Sensitivity for Reproductive number (R0)

In Figures (7.2), we present the global sensitivity analysis of R0 using the tornado plot. The parameters

βV , ΛH , ΛE , βH , π, αs, Nk and αz have the high impact in in raising the value of R0 when these pa-

rameters values are increased. The parameters µV , P0, ϕV , αV , µV , γV , G0, αH , µz and µs have the

high effect in reducing the value of R0 when these parameter values are increased. The parameter values

may have either positive or negative PRCCs, it is important to notice whether there is an increasing or

decreasing trend when parameter values are varied.

In Figure (7.3), we present the tornado plot which showing the PRCCs of the community sporozoites load

(PV ). The parameters P0, ΛE , θE , Ng, αz , αs, αk and Nk have more influence in increasing the value of

PV when these parameter values are increased. Whilst these parameters βV , µV , ϕV , αV , µE , µW , δW ,

βh, µs and µz have more impact on reducing the value of PV , when the parameter values are increased.

Figure (7.4) illustrates on tornado plot which showing the PRCCs of the GH . The parameters βV , ΛH , π

and Λh have the influence in raising the value of GH when the parameter values are increased. Whereas

the parameters αH , µV , P0, ϕV and αV have more influence in reducing the value of GH when these

parameter values are increased.
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Figure 7.3: Global Sensitivity analysis for Community Sporozoites Load (PV )

Figure 7.4: Global Sensitivity analysis for Community Gametocytes Load (GH)
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7.4.2 The Influence of Immature Mosquito Parameter on Within-Mosquito Scale Vari-
ables

In this sub-section, we examine through numerical simulation of the coupled multiscale model (7.2.1.1)

the influence of immature mosquito parameters on the withi-mosquito scale sub-model dynamics of

malaria. Figure (7.5)-figure (7.13) present the evidence of influence in the variation of immature mosquito

scale parameters on the dynamics of within-mosquito variables ((a) population of gametocytes Gv, (b)

population of gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv).

Figure 7.5: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of hatching of mosquito eggs into larvae at constant rate (θE) at the within-mosquito scale dynamics of

(a) population of gametocytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d)

population of sporozoites Pv for different values of θE : θE = 0.2, θE = 0.4 and θE = 0.6

Figure (7.5) demonstrates the results of numerical simulation presenting the dynamics of (a) populations

of gametocytes Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of

sporozoites Pv for different values of hatching of eggs into larvae at a rate θE : θE = 0.2, θE = 0.4, and

θE = 0.6. The results present that as the hatching of eggs into mosquito larvae increase, there is also vis-

ible increase in the malaria infection at the within-mosquito scale (that is, (a) population of gametocytes

Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv).

The results indicate that control measures that reduce the hatching of eggs or increase the mortality of laid

eggs has an impact in reducing the malaria infection at both within-mosquito scale and at community-level.

Figure (7.6) illustrates the solutions of numerical simulation showing the dynamics of (a) population of

gametocytes Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of
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sporozoites Pv for different values of development of pupae into adult mosquito at a constant rate αM :

αM = 0.25, αM = 0.35, and αM = 0.45. The results present that as the rate of development of pupae into

adult mosquito increase, there is a significant increase in the dynamics of (a) population of gametocytes

Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv.

The results suggest that interventions that kills the pupae have an impact of reducing the mosquito density

which has an influence in reducing malaria infection at both within-hosquito scale and between host scale.

Figure 7.6: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of pupae develops into adult mosquito at a constant rate (αM ) at the within-mosquito scale dynamics of

(a) population of gametocytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d)

population of sporozoites Pv for different values of (αM ): αM = 0.25, αM = 0.35 and αM = 0.45

Figure (7.7) presents variations in (a) population of gametocytes Gv, (b) population of gametes Gm, (c)

population of zygotes Zv, and (d) population of sporozoites Pv for different values of development of

larvae into mosquito pupae at a rate αW : αW = 0.2, αW = 0.4, and αW = 0.6. From the results in figure

(7.7), we observe that as the rate of development of larvae into mosquito pupae increase, we also observe

an increase in the malaria infection on the dynamics of (a) population of gametocytes Gv, (b) population

of gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv. The results suggest

that control measures that targets the killing of larvae have an impact of reducing malaria infection at

within-mosquito scale and also at population-level.
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Figure 7.7: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of larvae develops into pupae (αW ) at the within-mosquito scale dynamics of (a) population of gameto-

cytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d) population of sporozoites

Pv for different values of (αW ): αW = 0.2, αW = 0.4 and αW = 0.6

Figure (7.8) illustrates the variations in (a) population of gametocytes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of pupae reduced

by other species feed on them at a constant rate δM : δM = 0.008, δM = 0.08, and δM = 0.8. From the

results in figure (7.8), we observe that as the rate of pupae reduced by other species feed on them increase,

there is a visible reduction in the malaria infection on the dynamics of within mosquito variables (that is,

(a) population of gametocytes Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d)

population of sporozoites Pv). The results suggests that interventions that aimed at increase the mortality

of pupae have an impact in reducing the density of mosquitoes which results in reduction of malaria in-

fection at both within-mosquito scale and at community-level.

Figure (7.9) demonstrates the dynamics of (a) population of gametocytes Gv, (b) population of gametes

Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv for differet values of reduction

of larvae by other species that feeds on them at a rate δW : δW = 0.008, δW = 0.08, and δW = 0.8.

The results present that as the rate of larvae being reduced by other species that feeds on them increase,

there is a significant reduction on the dynamics of (a) population of gametocytes Gv, (b) population of

gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv. The results suggest that

the intervention that increase the mortality of the larvae have an impact of reducing the mosquito density

which have an effect in reducing the malaria infection at both within-mosquito scale and at population

level.
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Figure 7.8: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of pupae reduced species that feeds on them at a rate (δM ) at the within-mosquito scale dynamics of

(a) population of gametocytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d)

population of sporozoites Pv for different values of (δM ): δM = 0.008, δM = 0.08 and δM = 0.8

Figure (7.10) demonstrates the dynamics of (a) population of gametocytes Gv, (b) population of gametes

Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of which

mosquitoes lay eggs at a constant rate ΛE : ΛE = 100, ΛE = 200, and ΛE = 300. The results in figure

(7.10) pictures that as the rate at which mosquitoes lay eggs increase, there is visible increase in the dy-

namics of within-mosquito scale (that is, (a) population of gametocytesGv, (b) population of gametesGm,

(c) population of zygotes Zv, and (d) population of sporozoites Pv). The results suggest that interventions

that destroys the laid eggs has an impact of reducing the mosquito density which also have influence in

reduction of malaria infection on within-mosquito scale and at community level.

Figure (7.11) displays the dynamics of (a) population of gametocytes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of natural mortal-

ity rate Figure (7.10) demonstrates the dynamics of (a) population of gametocytes Gv, (b) population of

gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of

which mosquitoes lay eggs at a constant rate ΛE : ΛE = 100, ΛE = 200, and ΛE = 300. The results

in figure (7.10) pictures that as the rate at which mosquitoes lay eggs increase, there is visible increase

in the dynamics of within-mosquito scale (that is, (a) population of gametocytes Gv, (b) population of

gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv). The results suggest that

interventions that destroys the laid eggs has an impact of reducing the mosquito density which also have
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influence in reduction of malaria infection on within-mosquito scale and at community level.

Figure (7.11) displays the dynamics of (a) population of gametocytes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv, and (d) po of mosquito eggs µE : µE = 0.3, µE = 0.6, and µE = 0.9. The

results present that as the natural mortality of mosquito eggs increase, there is a significant reduction in

the malaria dynamics of within-mosquito scale (that is, (a) population of gametocytes Gv, (b) population

of gametes Gm, (c) population of zygotes Zv, and (d) population of sporozoites Pv). The results imply

that the interventions that aimed at the killing of the mosquito eggs have an influence in reducing the

density of mosquitoes which have an effect of reducing the malaria infection in within-mosquito scale and

at community-level.

Figure 7.9: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of larvae reduced by species that feeds on them at a rate (δW ) at the within-mosquito scale dynamics of

(a) population of gametocytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d)

population of sporozoites Pv for different values of (δW ): δW = 0.008, δW = 0.08 and δW = 0.8

Figure (7.12) Presents the dynamics of (a) population of gametocytes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of natural mortality

rate of pupae µM : µM = 0.15, µM = 0.35, and µM = 0.55. From the results in figure (7.12) show as the

natural mortality of pupae increase, we also notice that there is reduction in the dynamics of (a) population

of gametocytes Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of

sporozoites Pv. The results indicate that interventions that targets the killing of mosquito pupae has an

impact in reducing the mosquito density which have influence in the reduction of malaria infection in both

within-mosquito scale and between-host scale.
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Figure 7.10: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of vari-

ation of mosquitoes lay eggs at a rate (ΛE) at the within-mosquito scale dynamics of (a) population of

gametocytesGv , (b) population of gametesGm, (c) population of zygotesZv , and (d) population of sporo-

zoites Pv for different values of (ΛE): ΛE = 100, ΛE = 200 and ΛE = 300

Figure (7.13) presents the dynamics of (a) population of gametocytes Gv, (b) population of gametes Gm,

(c) population of zygotes Zv, and (d) population of sporozoites Pv for different values of natural death

rate of mosquito larvae µW : µW = 0.1, µW = 0.3, and µW = 0.5. The results desplay that as the

natural decay of mosquito larvae increase, there is a visible reduction on the dynamics of (a) population

of gametocytes Gv, (b) population of gametes Gm, (c) population of zygotes Zv, and (d) population of

sporozoites Pv. The results indicate that the health interventions that target the killing of larvae that is use

of larvicides which have an impact in reducing the density of mosquitoes.
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Figure 7.11: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of mortality rate of eggs (µE) at the within-mosquito scale dynamics of (a) population of gametocytes

Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d) population of sporozoites Pv for

different values of (µE): µE = 0.3, µE = 0.6 and µE = 0.9

Figure 7.12: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of mortality rate of pupae (µM ) at the within-mosquito scale dynamics of (a) population of gametocytes

Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d) population of sporozoites Pv for

different values of (µM ): µM = 0.15, µM = 0.35 and µM = 0.55
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Figure 7.13: Graphs of numerical results of multiscale model (7.2.1.1) presenting the influence of variation

of natural death rate of larvae (µW ) at the within-mosquito scale dynamics of (a) population of gameto-

cytes Gv , (b) population of gametes Gm, (c) population of zygotes Zv , and (d) population of sporozoites

Pv for different values of (µW ): µW = 0.1, µW = 0.3 and µW = 0.5

7.4.3 The Influence of Immature Mosquito Parameters on Between-Host Scale Variables.

In this sub-section, we use numerical results to demonstrate the influence of immature mosquito param-

eters on the between-host scale variables ((a) population of infected humans IH , (b) community gameto-

cytes load GH , (c) population of infected mosquitoes IV , and (d) community sporozoites load PV ). The

immature mosquito parameters were used to demonstrate the effect of immature mosquito on between-

host scale malaria infection dynamics. Figures (7.14)—(7.19), showing the evidence of the impact for

immature-mosquito scale parameters (θE , αM , αW , δM , δW , ΛE , µE , µM , µW ) on between- human scale

variables ((a)infected-human populations (IH) and (b) community gametocytes load (GH)) and also on

between-mosquito scale variables ((c)infected-mosquito populations (IV ) and (d) community sporozoites

load (PV )) using the coupled multiscale model (7.2.1.1) for malaria disease systems.

Figure (7.14) demonstrates the changes in (a) population of infected humans IH , (b) community game-

tocytes load GH , (c) population of infected mosquitoes IV , and (d) community sporozoites load PV for

different values of hatching of mosquito eggs θE : θE = 0.02, θE = 0.04, and θE = 0.06. The results in

figure (7.14) present that the increase in the hatching of mosquito eggs has an impact in the increasing the

dynamics of (a) population of infected humans IH , (b) community gametocytes load GH , (c) population
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of infected mosquitoes IV , and (d) community sporozoites load PV . The results suggest that any inter-

vention that increase the mortality of mosquito eggs have an impact in reducing malaria transmission at

between-host scale.

Figure 7.14: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected humans

(IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and community sporo-

zoites load (PV ) for distinct values of hatching rate of eggs into larvae (θE): θE = 0.02, 0.04 and 0.06.

Figure (7.15) demonstrates the numerical simulation of multiscale model (7.2.1.1) presenting the dynam-

ics of (a) population of infected humans IH , (b) community gametocytes load GH , (c) population of

sporozoites load IV , and (d) community sporozoites load PV for different values of development of pupae

into adult mosquitoes αM : αM = 0.25, αM = 0.35, and αM = 0.45. From the results in Figure (7.15)

present that as the rate of progression of pupae into adult mosquitoes increase, there is visible increase on

the dynamics of (a) population of infected humans IH , (b) community gametocytes load GH , (c) popula-

tion of infected mosquitoes IV , and (d) community sporozoites load PV .

Figure (7.16) demonstrates the numerical simulation of multiscale model (7.2.1.1) presenting the dynam-

ics of (a) population of infected humans IH , (b) community gametocytes load GH , (c) population of

sporozoites load IV , and (d) community sporozoites load PV for different values of the progression rate

of larvae into mosquito pupae αW : αW = 0.2, αW = 0.4 and αW = 0.6. These results in figure (7.16)

present that as the progression rate of larval mosquito into pupae increases, we notice that malaria trans-

mission at between-human scale and between-mosquito scale also increases. Therefore, any intervention

that targets the larval and reduce the progression of larval into pupae have impact in reducing malaria

transmission at population-level.
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Figure 7.15: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected

humans (IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and com-

munity sporozoites load (PV ) for distinct values of rate at which pupae develop into adult (αM ):

αM = 0.25, 0.35 and 0.45.

Figure (7.17) illustrates the numerical simulation of multiscale model (7.2.1.1) presenting the dynamics

of (a) population of infected humans IH , (b) community gametocytes load GH , (c) population of sporo-

zoites load IV , and (d) community sporozoites load PV for different values of mortality of pupae due to

species that feeds on them δM : δM = 0.008, δM = 0.08, and δM = 0.8. From the results in figure (7.8),

we observe that as the mortality of pupae due to species that feeds on them increase, there is also visible

reduction in the dynamics of (a) population of infected humans IH , (b) community gametocytes load GH ,

(c) population of infected mosquitoes IV , and (d) community sporozoites load PV . These results suggest

that use of pupacides has an impact of increasing the mortality of pupae have an impact on reducing the

malaria transmission at the between-human-scale dynamics (that is, (a) population of infected humans and

(b) community gametocyte load) and between-mosquito scale (i.e., (c) population of infected mosquitoes

and (d) community sporozoites load).

Figure (7.18) describes the numerical simulation of multiscale model (7.2.1.1) presenting the changes (a)

population of infected humans IH , (b) community gametocytes load GH , (c) population of sporozoites

load IV , and (d) community sporozoites load PV for different values of mortality rate of larval due to

species feeds on them δW : δW = 0.008, δW = 0.08 and δW = 0.8. The results in figure (7.18) present that

an increase in the mortality of larvae due to species feeds on them has an impact on the reduction of malaria

transmission on the dynamics of (a) population of infected humans IH , (b) community gametocytes load

GH , (c) population of infected mosquitoes IV , and (d) community sporozoity load PV . The results suggest
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that the use of larvicides or interventions that increase the mortality of larval have an influence of reducing

malaria transmission at the population-level.

Figure 7.16: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected

humans (IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and com-

munity sporozoites load (PV ) for distinct values of rate at which larvae develop into pupae (αW ):

αW = 0.2, 0.4 and 0.6.

Figure (7.19) demonstrate the numerical simulation of multiscale model (7.2.1.1) presenting changes in

(a) population of infected humans IH , (b) community gametocytes loadGH , (c) population of sporozoites

load IV , and (d) community sporozoites load PV for different values of mosquitoes laying eggs ΛE :

ΛE = 1000, ΛE = 2000 and ΛE = 3000. The results in figure (7.19) present that increasing the rate of

mosquito laying eggs has an effect of increasing the malaria transmission dynamics of (a) population of

infected humans IH , (b) community gametocytes load GH , (c) population of sporozoites load IV , and (d)

community sporozoites load PV . Therefore, the intervention that increasing the mortality of the mosquito

eggs has an effect of reducing the malaria transmission at population-level.
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Figure 7.17: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected hu-

mans (IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and commu-

nity sporozoites load (PV ) for distinct values of rate at which pupae reduced by other species (δM ):

δM = 0.008, 0.08 and 0.8.

Figure 7.18: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected hu-

mans (IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and commu-

nity sporozoites load (PV ) for distinct values of rate at which larvae reduced by other species (δW ):

δW = 0.008, 0.08 and 0.8.
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Figure 7.19: Simulation of multiscale model (7.2.1.1) presenting changes in population of infected

humans (IH ), community gametocytes load (GH ), population of infected mosquitoes (IV ) and com-

munity sporozoites load (PV ) for distinct values of rate at which mosquitoes lay eggs (ΛE): ΛE =

1000, 2000 and 3000.

7.5 Extended Model

We extend the multiscale model (7.2.1.1) and to incorporates the effects of three malaria health interven-

tions: (i) larvicides and pupacides, (ii) long-lasting insecticidal bed nets (LLINs) and (iii) artemisinin-

based combination therapy (ACT). These malaria health interventions are employed at different scale

domains of malaria infectious disease systems with larval source management functioning at immature

mosquitoes population, LLINs functioning at between-host scale for adult mosquitoes and humans, and

ACT functioning at within-infected human. In this section, we need the best strategies for controlling

malaria disease systems by targeting immature and adult mosquitoes and treatment of infected humans.

We extend model (7.2.1.1) for the dynamics of mosquito-human population and malaria transmission

to includes: control strategies in targeting immatures mosquito population, control strategies in targeting

adult mosquito population and also protection of humans from contacts with human populations and lastly

treatment of infected-humans (i.e. within human-host scale). The number of malaria infected population

increases due to the growth of mosquito population. We illustrate what will happen if we destroy the im-

mature mosquitoes by drawing stagnant water where mosquitoes lay their eggs, control adult mosquitoes

and protecting and treating the human population. The controlling of immature and adult mosquitoes is

for aiming to reduce the mosquito vector population.
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The control strategy of larval source management involves the methods such as the destroying of breeding

sites of mosquitoes to reduce the densities of mosquitoes. These will result in experience an increase in

eggs, larvae and pupae mortality rates. Destroying immature stages at eggs, larval and pupal stages has

an impact in reducing the density of mosquitoes. By preventing their successful development into adult

mosquito will also results in reduction of malaria transmission in the area or community.

The second control strategy is long-lasting insecticides-treated bed nets (LLINs) which reduce the trans-

mission of malaria between human-populations and adults mosquito populations. We assume that LLINs

have the influences on the adult mosquito populations. (i) It has impact on directly killing of adult

mosquitoes that come to contact with nets, (ii) repelling of adult mosquitoes from house and diverting

them to an animal blood meal host due to insecticides irritation or physical blockades of nets and (iii)

increasing the duration of the gonotrophic cycle that directing to a reduction of oviposition rate.

The third and last control strategy that we are going to employ to our work is artemisinin-based combi-

nation therapy (ACT) which is the treatment process of within-infected humans. ACT has an impact on

killing gametocytes and also killing merozoites populations. These will have an influence in reducing the

malaria transmission in the community.The parameters of coupled multiscale model system (7.2.1.1)are

modified as follows:

(i) Larvicides and pupacides: Killing effects on eggs by re, then µE is modified such that µE −→ µE(1+

re). Killing effect on larva by rw, then µW is modified such that µW −→ µW (1 + rw). Killing

effect on pupa rm, then µM −→ µM (1 + rm).

(ii) Long-lasting insecticide-treated nets.

(a) Directly killing of mosquitoes with killing efficacy of κ, then µV is modified to µV −→ µV (1+

κ),

(b) The effect of mosquito repellent of υ, βV is modified to βV −→ βV (1−υ), and βH is modified

to βH −→ βH(1− υ),

(c) Protective efficacy of humans from mosquito bites φ, βV is modified to βV −→ βV (1 − φ),

and βH is modified to βH −→ βH(1− φ).

(iii) First line treatment by ACT

(a) Killing efficacy on gametocytes is given by g, µh is modified to µh −→ µh(1 + g).

(b) killing efficacy on merozoites is given by m, µm] is modified to µm −→ µm(1 +m)

(c) Emergent effect on reducing the disease induce death rate, δH −→ δH(1− ρ).

(d) Emergent effect on increase the patient’s recovery rate, γH −→ γH(1 + θ).
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The model below is an extension of model (7.2.1.1) which incorporates the impacts of malaria health

interventions, which is given by

1.
dEE(t)

dt
= ΛE − (µE(1 + re) + θE)EE(t),

2.
dLW (t)

dt
= θEEE(t)− (µW (1 + rw) + αW + δW )LW (t),

3.
dPM (t)

dt
= αWLW (t)− (µM (1 + rm) + αM + δM )PM (t),

4.
dSV (t)

dt
=

αMPM (t)

2
− βH(1− υ)(1− φ)GH(t)SV (t)

G0 +GH(t)
− µV (1 + κ)SV (t),

5.
dIV (t)

dt
=

βH(1− υ)(1− φ)GH(t)SV (t)

G0 +GH(t)
− (µV (1 + κ) + δV )IV (t),

6.
dGv(t)

dt
=

βH(1− υ)(1− φ)GH(t)(SV − 1)

(G0 +GH)ϕV (IV + 1)
− [αg + µg]Gv(t),

7.
dGm(t)

dt
= NgαgGv(t)− [αs + µs]Gm(t), (7.5.0.1)

8.
dZv(t)

dt
=

1

2
αsGm(t)− [αz + µz]Zv(t),

9.
dOv(t)

dt
= αzZv(t)− [αk + µk]Ov(t),

10.
dPv(t)

dt
= NkαkOv(t)− [αv + µv]Pv(t).

11.
dPV (t)

dt
= Pvαv(IV (t) + 1)− αV PV (t).

12.
dSH(t)

dt
= ΛH − βV (1− υ)(1− φ)PV (t)SH(t)

P0 + PV (t)
− µHSH(t) + γH(1 + θ)IH(t),

13.
dIH(t)

dt
=

βV (1− υ)(1− φ)PV (t)SH(t)

P0 + PV (t)
− [µH + γH(1 + θ) + δH(1− ρ)] IH(t),

14.
dGH(t)

dt
= NheαhIH(t)− αHGH(t),

where Nhe is the effective amount of malaria pathogens produced, during the entire period of host infec-

tiousness after implementing the various health interventions and is given by

Nhe =
π

(1− π)

[
(1− π)NmβhΛh − µbµm(1 +m)

Nmβh(αh + µh(1 + g))

]
. (7.5.0.2)

The reproductive number of extended model (7.5.0.1) is given by

RE =
√
RV HRHV . (7.5.0.3)
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where

RV H =
1

2

Nvαv

QD

1

P0

1

αV

βV (1− υ)(1− φ)ΛH

µH
,

RHV =
Nheαh

µH + γH(1 + θ) + δH(1− ρ)

1

G0

1

αH

βH(1− υ)(1− φ)q1e
µV (1 + κ)ϕV

.

Nv =
1

2

Ngαg

αg + µg

Nkαk

αk + µk

αz

αz + µz

αs

αs + µs

1

αv + µv
, (7.5.0.4)

q1e = (αMαW θEΛE − 2µV (1 + κ)QD),

αMαW θEΛE ≥ 2µV (1 + κ)QD,

QD = [µE(1 + re) + θE ][µW (1 + rw) + αW + δW ][µM (1 + rm) + αM + δM ],

whereR0E is the effective reproductive number with various malaria health interventions which is derived

from model (7.5.0.1), RV H is vector to human effective reproductive number with various malaria heath

interventions and RHV is human to vector effective reproductive number with various malaria health in-

terventions.

The disease free equibrium state of extended model (7.5.0.1) is given by

E0 = (E0
E , L

0
W , P

0
M , S

0
V , I

0
V , G

0
v, G

0
m, Z

0
v , O

0
v , P

0
v , P

0
V , S

0
H , I

0
H , G

0
H). (7.5.0.5)

= (E0
E , L

0
W , P

0
M , S

0
V , 0, 0, 0, 0, 0, 0, 0, S

0
H , 0, 0),

Where

E1
E =

ΛE

(µE + θE)
,

L1
W =

ΛE

(µE + θE)

θE
(µW + αW + δW )

,

P 1
M =

ΛE

(µE + θE)

θE
(µW + αW + δW )

αW

(µM + αM + δM )
, (7.5.0.6)

S1
V =

αM

2µV

αW

(µM + αM + δM )

θE
(µW + αW + δW )

ΛE

(µE + θE)
,

S1
H =

ΛH

µH
.

The malaria health intervention induced endemic equilibrium states is given by

E = (EE , LW , PM , SV , IV , Gv, Gm, Zv, P v, P V , SH , IH , GH),
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where

EE =
ΛE

µE(1 + re) + θE
,

LW =
1

µW (1 + rw) + αW + δW

θEΛE

µE(1 + re) + θE
,

PM =
αW θEΛE

QD
,

SV =
αMαW θEΛE

[
NheαhβV (1− υ)(1− φ)ΛHP V + αHG0[a1e(P0 + P V ) + a2eP V ]

]
a3eQM

,

(7.5.0.7)

IV =
NheαhβH(1− υ)(1− φ)αMαW θEΛEβV (1− υ)(1− φ)ΛHP V

a3e(µV (1 + κ) + δV )QM
,

Gv =
1

αg + µg

NheαhβH(1− υ)2(1− φ)2βV ΛHP V [b1eP V + b2e]

a3eϕV (IV + 1)QN

,

Gm =
Ngαg

αg + µg

1

αs + µs

NheαhβH(1− υ)2(1− φ)2βV ΛHP V [b1eP V + b2e]

a3eϕV (IV + 1)QN

,

Zv =
1

2

Ngαg

αg + µg

αs

αs + µs

1

αz + µz

NheαhβH(1− υ)2(1− φ)2βV ΛHP V [b1eP V + b2e]

a3eϕV (IV + 1)QN

,

Ov =
1

2

Ngαg

αg + µg

αs

αs + µs

αz

αz + µz

1

αk + µk

NheαhβH(1− υ)2(1− φ)2βV ΛHP V [b1eP V + b2e]

a3eϕV (IV + 1)QN

,

P v = Nv
NheαhβH(1− υ)2(1− φ)2βV ΛHP V [b1eP V + b2e]

a3eϕV (IV + 1)QN

,

P V =
−c2e +

√
c22e − 4c1ec3e
2c1e

,

SH =
ΛH(µH + γH(1 + θ) + δH(1− ρ))(P0 + P V )

a1e(P0 + P V ) + a2eP V

,

IH =
βV (1− υ)(1− φ)ΛHP V

a1e(P0 + P V ) + a2eP V

,

GH =
NheαhβV (1− υ)(1− φ)ΛHP V

αH [a1e(P0 + P V ) + a2eP V ]
,
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where

QM = NheαhβV (1− υ)(1− φ)ΛHP V (βH(1− υ)(1− φ) + µV (1 + κ))

+µV (1 + κ)αHG0[a1e(P0 + P V ) + a2eP V ]

QN =
[
b3eP V + µV (1 + κ)αHa1eG0P0

] [
b4eP V + αHa1eG0P0

]
a1e = µH [µH + γH(1 + θ) + δH(1− ρ)],

a2e = βV (1− υ)(1− φ)[µH + δH(1− ρ)],

a3e = 2QD,

b1e = NheαhβV (1− υ)(1− φ)ΛH [αMαW θEΛE − a3(βH(1− υ)(1− φ) + µV (1 + κ))]

+αHG0(a1e + a2e)[αMαW θEΛE − a3eµV (1 + κ)] > 0,

b2e = αHa1eG0P0[αMαW θEΛE − a3eµV (1 + κ)] > 0, (7.5.0.8)

b3e = NheαhβV (1− υ)(1− φ)ΛH(βH(1− υ)(1− φ) + µV (1 + κ))

+µV (1 + κ)αHG0(a1e + a2e) > 0,

b4e = NheαhβV (1− υ)(1− φ)ΛH + αHG0(a1e + a2e) > 0,

c1e = αV ϕV a3eb3eb4e > 0,

c2e = NheαhβV (1− υ)(1− φ)ΛHa1ea3eµV (1 + κ)αV αHϕVG0P0[2−R2
E ] + α2

HG
2
0(a1e + a2e)×

a1ea3eµV (1 + κ)αV ϕV P0[2−R2
E ] +Nheαha3eβV (1− υ)2(1− φ)2ΛHβH [αV ϕV a1ea3eαHG0P0

+NvαvNheαhβH(1− υ)2(1− φ)2βV ΛH

]
,

c3e = −µV (1 + κ)αV ϕV a3ea
2
1eα

2
HG

2
0P

2
0 [R

2
E − 1] < 0.

From model (7.5.0.1) we also deduce that there exist a unique positive endemic equilibrium state when-

ever RE > 1.

The comparative effectiveness of the different malaria health interventions in this model is assessed using

RE , P V and GH of equations (7.5.0.3) and (7.5.0.7), as an indication of the effectiveness of the interven-

tion. We specially use these quantities (RE , P V and GH ) to relate the efficiency at the individual level

to population/ community level relative effectiveness of the health interventions against malaria disease

system and certain results from combined interventions. We calculate the percentage reduction (%age) of

R0, P ∗
V and G∗

H due to interventions that reduce them to RE , P V and GH at three different efficiency lev-

els, which (a) is the comparative effectiveness at low efficacy (CEL ) of 0.3, (b) comparative effectiveness

at medium efficacy (CEM) of 0.6 and comparative effectiveness at high efficacy (CEH) of 0.9 using the

different health interventions utilising the expressions
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%age reduction of R0 =

[
R0 −RE

R0

]
× 100,

%age reduction of P ∗
V =

[
P ∗
V − P V

P ∗
V

]
× 100, (7.5.0.9)

%age reduction of G∗
H =

[
G∗

H −GH

G∗
H

]
× 100,

where RE , P V and GH are the effective reproductive number, the intervention induced endemic value of

community sporozoites load and the intervention induced endemic value of the community gametocytes

load, respectively. We assess the influence of health intervention components for malaria disease system

by comparing their effectiveness when they are individual and even when they are combined using RE ,

P V and GH as indicators. For each efficiency level, we rank the reduction percentages of R0, P ∗
V and

G∗
H in ascending order from 1 to 37 corresponding to the different combinations of 8 health interventions

considered in this work.

7.5.1 The impact of health intervention strategies against malaria disease using RE as
indicator of intervention effectiveness

Table (7.7) indicates the results of assessment of the comparative effectiveness of single and combined

health intervention strategies of the percentage reduction of R0 when the efficacy of each single and

combined health intervention components are set to (a) comparative effectiveness at low efficacy level,

(b) comparative effectiveness at medium efficacy level, and (c) comparative effectiveness at high efficacy

level.

(i) From the results in the table (7.7), we can easily observe that when each of the health intervention

components efficacy are set to CEL efficacy level, CEM efficacy level, and CEH efficacy level,

respectively. The effect of mosquito repellent and protective efficacy of humans by the use of

LLINs have the highest efficacy and equal comparative effectiveness whereas killing of merozoites

by treating within within-infected human using ACT has the least comparative effectiveness that

can lead a reduction of R0. The killing of merozoites by using ACT does not show the influences

of using this health intervention component.

(ii) The results from the table (7.7) also shows the assessment of the effectiveness of the combination of

two health intervention strategies on the percentage reduction of R0 when each of the health inter-

vention components efficacy are set at (a) CEL efficacy level, (b) CEM efficacy level, and (c) CEH

efficacy level. Comparing the results of the effectiveness of the possible combination of two health

intervention components, we observe that the combination of direct killing of adult mosquitoes and

protective efficacy of humans intervention strategies have highest comparative effectiveness in each

efficacy level, followed by the combination of the killing effects on eggs for immature mosquitoes
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and the efficacy of mosquito repellents by LLINs, followed by combination of killing effects on

pupa for immature mosquitoes and the protective efficacy of humans by LLINs. The least combina-

tion of two health intervention components are killing efficacy on gametocytes and killing efficacy

on merozoites by the ACT.

(iii) The results shows that the assessment of the comparison of combined three health intervention

strategies for malaria disease system and when all interventions are combined on the reduction of

R0, when each of the combination interventions efficacy are set at (a) CEL efficacy level, (b) CEM

efficacy level, and (c) CEH efficacy level. By comparing the outcome of the effectiveness of the pos-

sible combination of three health intervention components and we can easily identify that when the

combination of killing efficacy of eggs of immature mosquitoes, the effects of mosquito repellent by

LLINs and killing efficacy of merozoites by ACT has the highest comparative effectiveness that can

lead to the reduction of R0, whilst the least comparative effectiveness have a combination of health

intervention components which are the killing efficacy of eggs for immature mosquitoes, killing

efficacy of larval of immature mosquitoes and the killing efficacy of pupa of immature mosquitoes.

(iv) When we consider all eight health intervention components are implemented together at a time, we

observe from the table (7.7) that this combination has the highest comparative effectiveness that

lead to the reduction of R0 than any other combination interventions which were presented in this

work for assumed efficacy level.
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Table 7.7: Results of the assessment of comparative effectiveness of Malaria interventions using percent-

age reduction of basic reproductive number (R0) as the indicator of intervention effectiveness when each

of the interventions is assumed to have: (a) low efficacy of 0.30, (b) medium efficacy of 0.60, and (c) high

efficacy 0f 0.90. rate.

No. Indicator of Inter-
vention effective-
ness

Calculated
R0-L-eff

CEL Calculated
R0-M-eff

CEM Calculated
R0-H-eff

CEH

1 R0 0.0 1 0.0 1 0.0 1

2 Rre 4.69 6 8.77 6 12.38 6

3 Rrw 5.35 7 9.93 7 13.91 7

4 Rrm 4.41 5 8.29 5 11.74 5

5 Rκ 12.38 13 21.1 13 27.67 12

6 Rυ 30.0 25 60.0 25 90.0 25

7 Rφ 30.0 25 60.0 25 90.0 25

8 Rm 0.0 1 0.0 1 0.0 1

9 Rg 1.97 3 3.82 3 5.58 3

10 Rrerw 9.79 11 17.85 11 24.6 11

11 Rrerm 8.89 9 16.35 9 22.69 9

12 Rrwrm 9.53 10 17.41 10 24.04 10

13 Rreκ 16.5 16 28.06 16 36.69 15

14 Rreυ 33.28 28 63.51 28 91.24 28

15 Rrwκ 17.08 17 28.97 17 37.8 17

16 Rrwm 5.35 7 9.93 7 13.91 7

17 Rrmφ 33.09 27 63.32 27 91.17 27

18 Rκφ 38.67 30 68.44 30 92.77 30

19 Rmg 1.97 3 3.82 3 5.58 3

20 Rrerwrm 13.78 14 24.68 14 33.5 14

21 Rrerwκ 20.98 19 35.25 19 45.59 19

22 Rrermκ 20.19 18 34.06 18 44.2 18

23 Rreυm 33.28 28 63.51 28 91.24 28

24 Rrerwrmκ 24.48 21 40.67 21 52.09 21

25 Rrerwκφ 44.69 32 74.1 32 94.56 32

26 Rrerwκg 22.53 20 37.72 20 48.63 20

27 Rrerwmg 11.56 12 20.99 12 28.8 13

28 Rrerwrmκυ 47.14 33 76.27 33 95.21 33

29 Rrerwrmκg 25.97 23 42.94 23 54.76 23

30 Rrerwrmφg 40.83 31 71.03 31 93.72 31

31 Rrerwrmmg 15.47 15 27.56 15 37.21 16

32 Rrerwrmκυφ 63.0 35 90.51 35 99.52 35

33 Rrerwrmκυm 24.48 21 40.67 21 52.09 21

34 Rrerwrmκmg 25.97 23 42.94 23 54.76 23

35 Rrerwrmκυφm 63.0 35 90.51 35 99.52 35

36 Rrerwrmκυmg 48.18 34 77.18 34 95.48 34

37 Rrerwrmκυφmg 63.72 37 90.87 37 99.55 37
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7.5.2 The impact of health intervention strategies against malaria disease using commu-
nity sporozoite load as indicator of intervention effectiveness

In this subsection, we investigate the impact of the health intervention components for malaria disease

system by comparative effectiveness using the %age reduction in endemic value of community sporozoite

load (P ∗
V ) as an indicator. We compar the effectiveness of the health intervention components when they

are single and even when they are combined using P ∗
V as an indicator. Table (7.8) shows the results

of assessment of the comparative effectiveness of the 37 different combinations of malaria interventions

which are considered. We assess the effectiveness of single and combined health intervention strategies

on the %age reduction of P ∗
V when the efficacy of each of the health intervention components are set to

(a) CEL efficacy level, (b) CEM efficacy level, and (c) CEH efficacy level.

(i) From the single interventions, we observe that when each of the health intervention components are

set to low, medium, and high efficacy level, respectively: the killing efficacy on larva has the highest

comparative effectiveness on CEL efficacy level whilst the effect of mosquito repellent and protec-

tive efficacy of humans by the LLINs have the highest and equal comparative effectiveness on CEM

and CEH efficacy levels, that can lead to the reduction of P ∗
V . We also notice that killing efficacy

on merozoites and killing efficacy on gametocytes by ACT interventions has the least comparative

effectiveness in all efficacy levels that can lead to reduction of P ∗
V .

(ii) When considering the combination of two health interventions at the same time, where each combi-

nation is coming from the eight individual health intervention strategies, we observe that the combi-

nation of killing efficacy of eggs of immature mosquitoes and killing efficacy of larva of immature

mosquitoes has the highest comparative effectiveness on CEL efficacy level whilst the combination

of direct killing efficacy of adult mosquitoes and the protective efficacy of humans by LLINs has the

highest comparative effectiveness on CEM and CEH efficacy levels that can lead to the reduction of

P ∗
V . It then followed by the ranking of two health interventions, the combination of killing efficacy

of larva and killing efficacy of pupa for immature mosquitoes in the CEL efficacy level whilst the

combination of killing efficacy of eggs for immature mosquitoes and the effect of adult mosquito

repellent by LLINs has the second highest comparative effectiveness on CEM and CEH efficacy

levels that can lead to the reduction of P ∗
V . Whereas the combination of killing efficacy of mero-

zoites and killing efficacy of gametocytes has the least comparative effectiveness in the reduction of

P ∗
V .

(iii) When we take into account three health intervention strategies at the same time with each combina-

tion of three interventions coming from the eight individual malaria health intervention components,

we observe that the combination of the killing efficacy of eggs, the killing efficacy of larva and the

killing efficacy of pupa for immature mosquitoes has the highest compative effectiveness on CEL

and CEM efficacy levels while the combination of killing efficacy of eggs for immature mosquitoes,

the efficacy of adult mosquito repellent by LLINs and killing efficacy of merozoites by ACT has the
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highest comparative effectiveness on CEH efficacy level in the reduction of P ∗
V . The combination

of the killing efficacy of eggs for immature mosquitoes, the efficacy of adult mosquito repellent by

LLINs and the killing efficacy of merozoites by ACT has the least comparative effectiveness on

CEL and CEM efficacy level whilst the combination of killing efficacy of eggs, killing efficacy of

pupa for immature mosquitoes and the direct killing of adult mosquitoes by LLINs has the least

comparative effectiveness on CEH efficacy level in the reduction of P ∗
V .

(iv) Lastly, when we take into account the comparative effectiveness of malaria interventions when all

the eight malaria intervention components are implemented at a time, we observe from the results

that this combination has the highest comparative effectiveness in all efficacy levels in the reduction

of P ∗
V .
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Table 7.8: Results of the assessment of comparative effectiveness of Malaria interventions using per-

centage reduction of endemic value of community sporozoites load (P ∗
V ) as the indicator of intervention

effectiveness when each of the interventions is assumed to have: (a) low efficacy of 0.30, (b) medium

efficacy of 0.60, and (c) high efficacy 0f 0.90. rate.

No. Indicator of Inter-
vention effective-
ness

Calculated
P ∗
V -L-eff

CEL Calculated
P ∗
V -M-eff

CEM Calculated
P ∗
V -H-eff

CEH

1 PV 0.0 1 0.0 1 0.0 1

2 PV re 9.34 9 17.12 7 23.71 7

3 PV rw 10.63 10 19.26 8 26.42 8

4 PV rm 8.81 6 16.22 6 22.55 6

5 PV κ 7.22 5 13.5 5 19.0 5

6 PV υ 9.19 7 26.54 10 68.84 25

7 PV φ 9.19 7 26.54 10 68.84 25

8 PV m 0.0 1 0.0 1 0.0 1

9 PV g 0.0 1 0.0 1 0.0 1

10 PV rerw 19.0 20 33.18 16 44.03 14

11 PV rerm 17.35 15 30.64 14 41.06 12

12 PV rwrm 18.52 19 32.45 15 43.18 12

13 PV reκ 15.91 12 28.37 12 38.33 10

14 PV reυ 17.62 17 38.97 19 76.1 28

15 PV rwκ 17.11 13 30.23 13 40.54 11

16 PV rwm 10.63 10 19.26 8 26.42 8

17 PV rmφ 17.14 14 38.32 18 75.74 27

18 PV κφ 17.43 10 42.6 24 81.72 30

19 PV mg 0.0 1 0.0 1 0.0 1

20 PV rerwrm 26.18 25 44.16 25 56.92 19

21 PV rerwκ 24.89 23 42.32 22 54.89 17

22 PV rermκ 23.35 22 40.12 21 52.47 16

23 PV reυm 17.62 17 38.97 19 76.1 28

24 PV rerwrmκ 31.56 27 51.86 27 65.4 21

25 PV rerwκφ 33.06 32 61.49 32 89.67 32

26 PV rerwκg 24.89 23 42.32 22 54.89 17

27 PV rerwmg 19.0 20 33.18 16 44.03 14

28 PV rerwrmκυ 38.96 33 67.74 33 92.0 33

29 PV rerwrmκg 31.56 27 51.86 27 65.4 21

30 PV rerwrmφg 32.82 31 58.59 31 86.26 31

31 PV rerwrmmg 26.18 25 44.16 25 56.92 19

32 PV rerwrmκυφ 47.3 35 82.52 35 99.09 35

33 PV rerwrmκυm 31.56 27 51.86 27 65.4 21

34 PV rerwrmκmg 31.56 27 51.86 27 65.4 21

35 PV rerwrmκυφm 47.3 35 82.52 35 99.09 35

36 PV rerwrmκυmg 38.96 33 67.74 33 92.0 33

37 PV rerwrmκυφmg 47.3 35 82.52 35 99.09 35
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7.5.3 The impact of health intervention strategies against malaria disease using commu-
nity gametocyte load as indicator of intervention effectiveness

In this subsection, we assess the impact of the eight health intervention components for malaria disease

system by comparing their effectiveness when they are single and even when they are combined using the

endemic value of community gametocyte load (G∗
H) as an indicator of intervention effectiveness. Table

(7.9) shows the results of the assessment of the comparative effectiveness of the malaria health intervention

components using the %age reduction in the community gametocyte load as an indicator of intervention

effectiveness. Community gametocyte load is a measure of the total infectious reservoir in humans, which

we also propose in this study as an appropriate measure for public health to assess the overall performance

of malaria health interventions targeted at the human host [24]. Community gametocyte load is useful in

targeting the control and elimination of malaria in a given geographical environment as an indication of

infectivity and the likelihood that malaria can be transmitted to mosquitoes.

a. By take into account the use of Larvicides and pupacides which has (i) killing efficacy on eggs,

(ii) the killing efficacy on larva and (iii) the killing efficacy on pupa for immature mosquitoes.

The results indicate that the killing efficacy on larva has the highest comparative effectiveness,

followed by the killing efficacy on eggs while the killing efficacy of pupa have the least comparative

effectiveness on larvicides and pupacides as a malaria health intervention.

b. When we take into account the use of LLINs as the only malaria health intervention, this inter-

vention has three components which are (i) directly killing of adult mosquitoes, (ii) the effect of

mosquito repellent and (iii) the protective efficacy of humans from mosquito bites. The results indi-

cates that the effect of mosquito repellent and the protective efficacy of humans from mosquito bites

have the highest but equal comparative effectiveness while the directly killing of adult mosquitoes

has the least comparative effectiveness in reducing the G∗
H .

c. When we consider the use of ACT as the only malaria health intervention, we observe that this

intervention has two components which are (i) the killing efficacy on gametocytes, and (ii) the

killing efficacy of killing merozoites. We notice that the killing efficacy on gametocytes have higher

comparative effectiveness than the killing efficacy of merozoites.

d. When we consider the comparative effectiveness of two components at a time of the malaria health

interventions we observe the following results:

i. The combination of the killing efficacy of merozoites and the killing efficacy of gametocytes

has highest comparative effectiveness on CEL and CEM efficacy levels and the combination

of directly killing of adult mosquitoes and the protective efficacy of humans from mosquito

bites has also the highest comparative effectiveness on CEH efficacy level.

ii. We consider the combination of the killing efficacy of eggs of immature mosquitoes and the

effect of mosquito repellent on CEL and CEH efficacy levels and the combination of the direct
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direct killing of adult mosquitoes and the protective efficacy of humans from mosquito bites on

CEM efficacy level has the second highest comparative effectiveness that can lead to reduction

of G∗
H .

iii. We consider the combination of directly killing of adult mosquitoes and the protective efficacy

of humans from mosquito bites on CEL efficacy level, and on the other side the combination

of the killing effecacy on eggs for immature mosquitoes and the effect of mosquito repellent

on CEM efficacy level, and the combination of killing efficacy on pupa and the protective effi-

cacy of humans from mosquito bites on CEH efficacy level has the third highest comparative

effectiveness that can lead to the reduction of G∗
H .

iv. Furthermore, we observe that the combination of the killing efficacy of larva and the killing

efficacy of merozoites has the lowest comparative effectiveness that can lead to the reduction

of G∗
H .

e. When we take into account the comparative effectiveness of three intervention components which

will be implemented at the same time of malaria health interventions, we observe the following

results. The combination of the killing efficacy on eggs, the effect of mosquito repellent, and the

killing efficacy on merozoites has the highest comparative effectiveness that can lead to the re-

duction of G∗
H . Whilst the combination of the killing efficacy on eggs, killing efficacy on pupa

for immature mosquitoes and the directly killing of adult mosquitoes has the lowest comparative

effectiveness that can lead to the reduction of G∗
H .

f. Lastly, when we consider the comparative effectiveness of all the intervention components of malaria

health interventions are implemented at a time, we observe from the results that this combination

has the highest comparative effectiveness compared to other combinations.
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Table 7.9: Results of the assessment of comparative effectiveness of Malaria interventions using percent-

age reduction of endemic value of community gametocytes load (G∗
H ) as the indicator of intervention

effectiveness when each of the interventions is assumed to have: (a) low efficacy of 0.30, (b) medium

efficacy of 0.60, and (c) high efficacy 0f 0.90. rate.

No. Indicator of Inter-
vention effective-
ness

Calculated
G∗

H -L-eff
CEL Calculated

G∗
H -M-eff

CEM Calculated
G∗

H -H-eff
CEH

1 GH 0.0 1 0.0 1 0.0 1

2 GHre 0.19 5 0.37 5 0.56 5

3 GHrw 0.21 6 0.43 6 0.64 6

4 GHrm 0.17 4 0.35 4 0.52 4

5 GHκ 0.14 3 0.28 3 0.42 3

6 GHυ 1.15 18 4.58 18 37.08 25

7 GHφ 1.15 18 4.58 18 37.08 25

8 GHm 0.0 1 0.0 1 0.0 1

9 GHg 3.9 26 7.5 24 10.84 18

10 GHrerw 0.42 12 0.89 12 1.4 12

11 GHrerm 0.38 10 0.79 10 1.24 10

12 GHrwrm 0.41 11 0.86 11 1.35 11

13 GHreκ 0.34 8 0.71 8 1.11 8

14 GHreυ 1.44 22 5.71 21 43.36 28

15 GHrwκ 0.37 9 0.78 9 1.22 9

16 GHrwm 0.21 6 0.43 6 0.64 6

17 GHrmφ 1.42 20 5.64 20 43.0 27

18 GHκφ 1.43 21 6.12 23 49.95 30

19 GHmg 3.9 26 7.5 24 10.84 18

20 GHrerwrm 0.64 15 1.41 15 2.33 15

21 GHrerwκ 0.6 14 1.31 14 2.15 14

22 GHrermκ 0.55 13 1.2 13 1.96 13

23 GHreυm 1.44 22 5.71 21 43.36 28

24 GHrerwrmκ 0.83 16 1.91 16 3.3 16

25 GHrerwκφ 2.13 24 9.4 31 63.76 32

26 GHrerwκg 4.47 29 8.71 27 12.76 21

27 GHrerwmg 4.3 28 8.32 26 12.09 20

28 GHrerwrmκυ 2.49 25 11.23 32 69.41 33

29 GHrerwrmκg 4.69 31 9.27 29 13.79 23

30 GHrerwrmφg 5.93 35 15.57 33 61.64 31

31 GHrerwrmmg 4.51 30 8.8 28 12.92 22

32 GHrerwrmκυφ 5.22 33 39.17 35 99.5 35

33 GHrerwrmκυm 0.83 16 1.91 16 3.3 16

34 GHrerwrmκmg 4.69 31 9.27 29 13.79 23

35 GHrerwrmκυφm 5.22 33 39.17 35 99.5 35

36 GHrerwrmκυmg 6.29 36 17.89 34 72.72 34

37 GHrerwrmκυφmg 8.91 37 43.74 37 99.55 37
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7.6 Summary

In this chapter, we developed a multiscale model that described the replication-transmission multiscale

cycle of type II- vector-borne disease system at the host level, and that incorporates the mosquito life

cycle that is, immature mosquitoes and adult mosquitoes, using malaria as a reference. We applied the

embedded multiscale on mosquito dynamics to investigate the effect of super-infection, whereas at human

dynamics we used the nested multiscale model as a way to investigate the influence of initial infection

on the multiscale model malaria disease system. The multiscale model was developed based on the com-

bination of type I reciprocal influence between macro-scale and micro-scale on the human host, where

there is a pathogen replication cycle at the within-host scale, and also based on type II reciprocal influ-

ence of between macro-scale and micro-scale, where there is no pathogen replication at the within-host

scale. We performed the global sensitivity analysis of the basic reproductive number the community ga-

metocytes load, and the community sporozoites load. We conducted the global sensitivity analysis as a

way of identifying the parameters which have an influence on increasing or decreasing the disease dy-

namics. The results from mathematical analysis and numerical analysis present that immature mosquitoes

have an influence on the dynamics of the malaria disease system. We extended the multiscale model of

malaria disease dynamics with the mosquito life cycle by incorporating malaria health interventions. This

multiscale model present allowed us to use the comparative effectiveness of malaria health interventions

with associated of three different perspectives: (i) ACTs were applied at a within-human scale for killing

merozoites and gametocytes which is a way of reducing or preventing the pathogen replication cycle pro-

cess, (ii) LLINs were used at between-host scale for preventing the transmission cycle process, and (iii)

the use of larvicides and pupacides targeted at the immature mosquitoes. In addition, we examined the

effects of different possible combinations of malaria health interventions on the replication-transmission

multiscale cycle of malaria among individuals in the community, and we learn that the combination of

all three malaria health interventions can lead to significant elimination of malaria infections. The results

of comparative effectiveness of malaria health interventions imply that the use of LLINs has the highest

comparative efficacy, followed by the use of larvicides and pupacides and finally the use of ACT. The

results of this study are useful for policymakers and members of the community in malaria-endemic areas

to use better strategies in improving disease management.
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Conclusion and Future Research Direction

8.1 Conclusion

In this chapter, we summarized all the findings of this study and offer some recommendations that can

be considered for preventing and controlling the pathogen replication-transmission and spread of malaria

transmission at the individual level and at the population level. This study aimed at developing cou-

pled multiscale models of type II vector-borne disease system that consider the replication-transmission

relativity theory. We developed coupled multiscale models of type II vector-borne disease systems that

demonstrate the pathogen replication-transmission multiscale cycle using the malaria disease system as

an example. The coupled multiscale model developed has a combination of two other categories of mul-

tiscale models, which are as follows: (i) nested multiscale model and (ii) embedded multiscale model.

We selected coupled multiscale model for the type II vector-borne disease system because of the complex

life cycle which needs multiple hosts infection e.g., for malaria disease needs two hosts (human host and

mosquito host) for the parasite to complete the life cycle of the infectious disease system. These coupled

multiscale models considered the combination of sub-models with the following reciprocal influences:

(i) type I reciprocal influence between the macroscale and microscale and this type of reciprocal influ-

ence has a replication cycle at the micro-scale, and (ii) type II reciprocal influence between-macroscale

and microscale and this type of reciprocal influence has no pathogen replication at the microscale. This

coupled multiscale model of the malaria disease system was derived from a general multiscale model of

vector-borne diseases [18] and a coupled multiscale model of malaria disease [24].
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In Chapter 2, we presented a single-scale model that was formulated based on the transmission mecha-

nism theory of type II vector-borne disease systems. The single-scale models demonstrate the traditional

methods which were used previously, and which can be tracked to Sir Ronald Ross. We introduced the

disease dynamics transmission mechanism theory. We discuss the transmission mechanism’s limitations

and suggest a new modeling science for directly transmitted infectious diseases that is similar to an exist-

ing science for environmentally transmitted infectious diseases that considers pathogen load in both the

host and the environment. We introduced a new epidemiological variable called community pathogen load

(CPL), which is then utilized to define the force of infection and transmission probability. The single-scale

model used Nh and Nv as the phenomenological parameters which were the production of community

pathogen load coming from the within-infected host scale. The traditional method concentrates only on

the transmission process which takes place at the microscale and neglects the replication process which

happens at the microscale. The numerical results of the single-scale model were carried out based on the

parameters which were more sensitive to the reproductive number R0 and the endemic of the community

pathogen loads (GH and PV ).

In Chapter 3, we presented a basic coupled multiscale model of the malaria disease system, with the main

objective of the study is to examine the influence of super-infection in mosquitoes has on the dynamics

of type II vector-borne disease transmission without pathogen replication-cycle at the microscale and also

to investigate the influence of initial infection in humans has on the dynamics of a multiscale model of

malaria disease system with pathogen replication cycle at the microscale. This model presented described

the application of pathogen replication-transmission relativity theory which incorporates events (that is,

pathogen replication) that give rise to the transmission and thus accommodate variation in time and space.

We analyzed the multiscale model on a fast-slow time scale by reducing the dimensions of the full nested

multiscale model into a simplified multiscale model. We proved the feasible region where the model is

mathematical well-posed. The equilibrium states were determined and the local stability of the model

was established using the basic reproductive number. From the numerical simulation, we discovered

that the nested multiscale model has a unidirectional flow of information, that is, the within-human scale

influences the between-host scale throughout the infection whereas the between-host scale influences the

within-human scale through initial infection and the within-human pathogen load is then maintained by the

pathogen replication cycle. On the embedded multiscale model, we observed that there is a bi-directional

flow of information, that is, the within-mosquito scale influences the between host scale throughout the

infection, whilst the between-host scale influences the within-host scale through super-infection.

In Chapter 4, we presented a coupled multiscale model of the malaria disease system, with the objective of

the study being to examine the influence of the human liver stage on the multiscale model for the malaria

disease system. We proved the invariant region and feasible region where the model is mathematical

well-posed. The multiscale model has a weakness in expressing the endemic equilibrium state in terms
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of explicit parameters and the known reproductive number. We extended the multiscale model by incor-

porating the vaccine health intervention and used the comparative effectiveness on three subunits which

are: (i) erythrocytic vaccine, (ii) blood-stage vaccine, and (iii) transmission-blocking stage vaccine. The

results indicated that the combination of these vaccine interventions has the highest impact of reducing

the reproductive number R0. The combination of all three vaccine interventions has the transmission on

both individual-level and at population-level.

In Chapter 5, we presented a coupled multiscale model of the malaria disease system with the human im-

mune system. We used a coupled multiscale model of malaria with a combination of two nested multiscale

models in human-host where there is pathogen replication cycle at the within-human scale and mosquito-

host where there is no pathogen replication at the within-mosquito scale. We used the fast-slow time scale

analysis to reduce the dimensions of the full-nested multiscale model into a simplified nested multiscale

model. The role played by immune cells is to fight against the malaria parasite. From the numerical

results, we discovered that the immune cells parameters have an influence on the reduction of malaria

transmission at the community level. The results will help to identify the vaccines that boost the immune

cells in the fight against malaria parasite at three sub-units stages which has an impact in reducing malaria

at the individual level and at the population level. The results also suggested that malaria transmission can

be controlled by reducing the rate of sporozoites that invades the human liver cells, which will lead to the

reduction of merozoites that invade the red blood cells.

In Chapter 6, we presented a coupled multiscale model of the malaria disease system to explore the ef-

fect of temperature changes on the malaria pathogen replication transmission using a system of ordinary

differential equations. The multiscale model formulated in this study explicitly traces the malaria para-

site life cycle between two hosts (human host and mosquito host) and on two interacting scales (that is,

within-host scale and between host scale). It was established with the aid of Castillo-Chavez’s approach

that the infection-free state is globally asymptotically stable when the basic reproductive number (R0) is

less than unity and also proved that the infection-free state is locally asymptotically stable when the basic

number is less than unity. It was also proved with the aid of fixed point theory that the endemic equilib-

rium state is asymptotically stable when the R0 is greater than unity. The existence and uniqueness of the

endemic equilibrium state were proved. The numerical simulation of the multiscale model was conducted

to explore the influence of temperature on the malaria transmission dynamics at the individual level and

at the population level. From the numerical simulation, we observed that as the temperature increases,

malaria transmission also increases at the population level and reaches a maximum when the temperature

is between 320C and 340C. When the temperature continues to increase above 340C then the malaria

transmission begins to decline at the population level. Therefore, the temperature changes influence in-

creasing or reducing the malaria parasite replication and transmission cycle. The recommended control

measures in areas of high temperatures are the use of LLINS to prevent the transmission of malaria and

also the use of ACTs drugs and vaccines which are more effective on the within-human scale to prohibit
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the replication cycle.

In Chapter 7, we presented a coupled multiscale model of the malaria disease system that incorporates

the mosquito life cycle (that is, immature mosquitoes and adult mosquitoes). We examined the influ-

ence of the mosquito life cycle on the multiscale model of malaria transmission at the individual level

and the population level. The mathematical properties of the multiscale model were investigated. The

local stability and global stability of the disease-free equilibrium state were analyzed whenever R0 is less

than unity. The conditions for the existence and uniqueness of the endemic equilibrium state were well-

posed. The result from the center Manifold theory shows that the model has endemic equilibrium which

is asymptotically stable whenever the R0 is greater than unity. The numerical results show that as the rate

of immature mosquitoes developed to adult mosquitoes increased has an impact of increasing the density

of mosquitoes, which will result in an increase in malaria transmission at the population level. The nu-

merical results suggested that as more mosquitoes being mature there are more cases of malaria infection

at the community level. Therefore, to rescue the life of the community, in the fight against malaria by

reducing the number of mosquitoes from breeding sites by destroying eggs, larvae, and pupae, the use

of recommended chemicals for protection, use of LLINs, and ACTs. The model suggests that the use of

health interventions for malaria has an impact on reducing the transmission of malaria and the associated

disease burden. We extended the multiscale model of the malaria disease system with mosquito life cycle

by incorporating the three malaria health interventions: (i) larvicides and pupacides, (ii) LLINs, and (iii)

ACTs. We used the comparative effectiveness of the combination of malaria health interventions targeting

immature and adult mosquitoes, and humans, where these interventions work on both the within-host scale

and between-host scale. From the results, the comparative effectiveness of the combination of all malaria

health interventions (ACTs, LLINs, and larvicides/pupacides) has the greatest impact on the control of

malaria transmission at the individual and population level.

8.2 Future Research Directions

Since the aim of this study was on development of coupled multiple models of malaria disease system.

There are various aspects of the malaria disease system that are not considered in this study. Future

research directions in which the following aspects can be taken into account:

1. Taking into account the immune response in humans and vectors against parasites. Since vectors

have DNA like humans, they develop antibodies against malaria diseases.

2. It is important to study the coupled multiscale model of malaria disease system with multiple malaria

patches that is when considering multiple geographical environments that have influence on con-

trolling imported pathogens from other communities or countries.
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3. The multiple scale model of chapter 4 did not take into account the other environmental effects

that determine the dynamics of malaria disease such as precipitation and humidity, which play an

important role in the population density of the vector. Since the rainfall plays an important role in

the reproduction of vectors.

4. Inclusion of resistance to malaria drugs or consideration of multiple pathogen infections in disease

dynamics. This includes the development of a multi-scale model of malaria parasites that studies

the role of an antimalarial drug concentration gradient on the evolutionary dynamics of malaria

parasites.
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