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Abstract 

The desire of most African economic communities to introduce a common currency has persisted 

for years. As postulated by the Optimum Currency Area hypothesis, coordination of policy indicators 

among member countries is desirable for stable monetary union. In this regard, the integration of 

exchange rate markets has been studied and cited as one of the key indicators that could signal 

economic integration.  Therefore, analysis of similarities, interdependence, and information transfer 

across exchange rate markets in Southern African Development Community (SADC) is a necessity 

to measure the extent of integration in the region. However, the intrinsic complexity of exchange rate 

data generation and its stylised characteristics of non-stationarity and non-linearity influence the 

modelling of such data in terms of the accuracy of the analysis and the embedded policy direction. 

In response, this thesis proposes empirical mode decomposition-based market integration analysis 

to address the limitations of the existing literature which fails to recognise the heterogeneity of market 

participants and data generation of the exchange rate in SADC. 

The data employed for the thesis are the daily real exchange rates from 15 out of 16 member 

countries of the SADC from 3rd January, 1994 to 7th January 2019. The choice of study window and 

countries was based on the availability of adequate and consistent data for robust analysis and the 

period after South Africa, the largest economy, joined SADC. Based on the criteria, Zimbabwe was 

excluded from the analysis. 

To achieve the purpose of this thesis, a four-step approach was used. The first step reviewed and 

explored the non-stationarity and non-linearity stylised facts about the data and observed that 

exchange series in SADC are non-stationary and non-linear.  The second stage compared the 

performance of two Hilbert-Huang Transforms (EMD and EEMD) to decompose SADC exchange 

rate markets of which EEMD emerged superior. The components of the decomposed series were 

examined for dominance and ability to define the exchange rate trajectory in SADC. The residue of 

all the markets explained over 80% of the variation of the original series except Angola. The short- 

and long-term comovement was analysed through the analysis of the characteristics of IMFs and 

residues. The analysis of the IMFs and residues obtained from EEMD showed that exchange rate 

markets in SADC are driven by economic fundamentals and 12 out of 15 countries examined showed 

some level of similarity in the long-term trend. 

In the third stage, EEMD-DCCA based multifrequency network was introduced to study the dynamic 

interdependence structure of the exchange rate markets in SADC. This was done by first 

decomposing all series into intrinsic mode functions using EEMD and reconstructing the series into 

three frequency modes: high, medium, and low frequency, and residue. The DCCA method was 

used to analyse the cross-correlation between the various frequencies, residues and original series. 

These were meant to address the non-linearity and non-stationarity in observed exchange rate data. 

A correlation network was formed from the cross-correlation coefficients to reveal rich information 
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than would have been obtained from the original series. The results showed similarities between the 

nature of cross-correlation between high-frequency series mimicking the original series. There was 

also a significant cross-correlation of long-term trends of most SADC countries’ exchange rate 

markets.  

The final stage proposed EEMD-Effective transfer entropy-based model to study exchange rate 

market information transmission in SADC at various frequencies.  The combination of Ensemble 

Empirical Mode Decomposition (EEMD) and the Rényi effective transfer entropy techniques to 

investigate the multiscale information transfer helped quantify the directional flow of information at 

four frequency domains, high-, medium-, and low-frequencies, representing short-, medium-, and 

long-terms, respectively, in addition to the residue (fundamental feature). This revealed a significant 

positive information flow in the high frequency, but negative flow in the medium and low frequencies.  

Based on the findings of this thesis we recommend that EEMD based method be used in the analysis 

of financial data that susceptible to non-linearity and non-stationary to elicit the time-frequency 

information. In terms of policy towards monetary formulation, we recommend a stepwise approach 

to monetary integration in SADC. 

 

 

Keywords: Hilbert-Huang Transform; exchange rate Market integration; Empirical mode 

decomposition; wavelet; Fourier Transform. 
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modelling of some components of the market data. This complexity of financial market questioned 

the validity of natural law of scale-invariance or fractals of a self-similar process. This thesis 

contributes to the literature in this area by proposing three approaches to examine similarity in 

structure, independence, and information transfer with application with exchange rate markets in 

SADC.  The thesis is organised into seven chapters. The chapter one introduces the general 

background of the study. The review of empirical mode decompositions and its competing models 

such as Fourier transform, and variations of wavelet transforms are presented in chapter two.  The 

review showed that empirical mode decomposition outperforms Fourier and Wavelet transforms 

because of its adaptiveness, ability to handle non-linear and non-stationary series. 

In chapter three, the non-stationarity and non-linearity properties of exchange rate data were 

examined using a variety of methods.  The ADF, PP and KPSS were used to test for non-stationarity. 

The results of these tests showed that the SADC exchange rate data are non-stationary. Tests from 

BDS test, NN test, Keenan and Tsay tests, TAR-LR test and Engle LM test also showed that SADC 

exchange rate data are non-linear.  
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Chapter four proposes a new way of analysing short- and long-run comovement based on the 

analysis of the characteristics of IMFs and residue. The performance of EMD and EEMD in the 

decomposing SADC exchange rate markets was assessed and found EEMD to be superior.  The 

EEMD was then used to decompose all the exchange rate market into IMFs and residues to 

determine which component explains the exchange rate trajectory in SADC. The comparison of the 

residue showed similarity in structure in 12 out of 15 countries examined.  

In Chapter Five, a multifrequency network-based EEMD-DCCA was introduced to study the dynamic 

interdependence structure of the exchange rates market in SADC. This was done by first 

decomposing all series into intrinsic mode functions using EEMD and reconstructing the series into 

three frequency modes: high, medium and low frequency, and residue. The DCCA method was used 

to analyse the cross-correlation between the various frequencies, residues and original series. These 

were meant to address the non-linearity and non-stationarity in observed exchange rate data. A 

correlation network was formed from the cross-correlation coefficients in all cases which revealed 

richer information than would have been obtained from the original series. It was observed that 

dissimilarities in exchange rate markets are driven by high-frequency series induced by speculative 

activities.  

Chapter six introduces the EEMD-effective transfer entropy-based model to study exchange rate 

market information transmission in SADC at different frequencies.  The Ensemble Empirical Mode 

Decomposition (EEMD) and the Rényi effective transfer entropy techniques employed to investigate 

the multi-scale information that might be disregarded, and further quantify the directional flow of 

information. The study reveals a significant positive information flow in the high frequency, but 

negative flow in the medium and low frequencies. 

Finally, Chapter seven present the general conclusion in the form of contributions, 

recommendations, limitations and suggestions for further studies  
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CHAPTER 1 

General Introduction 

Chapter Summary 

This chapter presents the general framework of the thesis. The intrinsic complexity of financial 

data in general and how that could affect data modelling are discussed. The relevance of such 

modelling in Southern African Development Community (SADC) policy towards monetary 

unions was elaborated. The introduction, problem statement, rationale of the study, objectives, 

expected contributions from the study, and the scope of the study are also discussed. 

 1.1 Introduction 

The dynamics of African financial markets has witnessed increased investigation, in part due 

to its growing importance in the world economy and, more importantly, the availability of high-

frequency market data.  The availability of high-frequency financial market data allows for the 

identification of microstructures of these markets (Dacorogna et al., 2001; Nava, Di Matteo 

and Aste, 2016). The generation of financial market data results from complicated 

multiprocesses that are related to economic factors and the characteristics of the markets 

which makes its data series difficult to decompose it into its implicit categories: noise, cycles 

at different time points and trend (Di Matteo et al., 2003; Dacorogna et al., 2001). 

The complexity of financial market questions the validity of natural law of scale-invariance or 

fractals of a self-similar process, which posits that occurrence of similar patterns at different 

time scales are invariant and therefore exhibit invariant probabilistic properties at different time 

scales (Calvet and Fisher, 2002). Nava, Di Matteo, and Aste (2016) observed that financial 

time series data exhibit statistical properties which are time point variant resulting from a 

heavy-tailed probability distribution and autocorrelation structure of the data. As noted by 

Muller et al. (1993), these multiscale properties reflect the behavioural market theory of 

heterogeneous market hypothesis (HMH). The HMH sees market participant as 

heterogeneous with different information, objective and varying investment horizon ranging 

from seconds to years, and therefore react to the market differently. As a result, financial 

market time series is likely to exhibit non-linearity, non-stationarity, and long memory because 

financial markets data series are highly mixed and noisy. Nonstationarity and nonlinearity have 

thus become a stylised fact of financial time series. 

The non-linearity in the data generating process of financial time series data makes the use 

of a standard linear models inappropriate for modelling financial time series. The performance 

of existing tests for non-linearity in detecting diverse types of the artificially generated non-
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linear structure have been reviewed and critiqued by Chen et al. (2001). The complex nature 

of the financial time series data has increased the use of time-frequency representations 

recently. The frequently used representations include short time Fourier transform (STFT) 

(Gröchenig, 2001), Wavelet transform (WT) (Szu, Sheng & Chen, 1992), S-transform (ST) 

(Stockwell et al., 1996), Wigner–Ville distribution (WVD) (Chen, 2007; Lokenath, 2002), 

matching pursuit (Chen et al., 2007;  Stéphane and Zhang, 1993), adaptive optimum kernel 

time-frequency representation (Liu et al., 2008) and Smoothed Pseudo Wigner distribution 

(SPWD) (Qiao, 2010). They are used to model the behaviour of the series via identifying which 

frequencies are present, the strength of the frequencies, and the variation over time (Nava, Di 

Matteo and Aste, 2018a; 2018b). However, these methods have been found to be deficient in 

handling the complex dynamics of financial data. For example, Fourier analysis and the S 

transform are effective in studying periodic and stationary time series whose properties are 

time-invariant. On the other hand, under noisy conditions, the wavelet transform is inaccurate 

in detecting the complete properties. The limitations of these methods are apparent in the 

literature (Azeemsha and Nasimudeen, 2012; Manjula and Sarma, 2012; Xiao et al., 2017)   In 

addition, these methods require a priori-basis selection, which confounds the economic 

interpretation or meaning of the results of the analysis. 

Apparently, the above methods have been used extensively in analysing financial market data 

integration in Africa despite their weaknesses discussed. This leads to inaccurate identification 

of hidden structures embedded in the data. Thus, this brings to the fore the validity of a 

conclusion drawn from such an analysis and its policy implications. 

 

1.2 Problem Statement 

Huang et al. (1996, 1998, 1999) proposed Hilbert–Huang transforms (HHT) for analysing 

signals characterised by non-linear and non-stationary behaviour; and it has become the focus 

of recent literature. HHT consists of two parts: empirical mode decomposition (EMD) and 

Hibert transform (HT). The uniqueness of HHT is the formation of the concept of intrinsic mode 

function (IMF) as the basis function of EMD (Addison et al., 2009; Macelloni et al., 2011; Yang 

et al., 2007; Wang et al., 2012). The EMD is a multiresolution decomposition method that 

decomposes non-stationary and non-linear signals into basis functions, IMFs, that are adapted 

from the signals themselves (Ayenu-Prah and Attoh-Okine, 2009).  Then, the Hilbert transform 

(HT) is afterwards executed. By these approaches, the rational physical significance of the 

instantaneous amplitude and instantaneous frequency obtained by each component is 

ensured (Wang et al., 2012).  Furthermore, because EMD uses an adaptive basis which is 

extracted from the data itself to transform, no a priori basis functions are defined for 
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decomposition. These address the weakness of competing models in correctly identifying the 

hidden structures embedded in the time series data. Despite these strengths, the standard 

EMD suffers from mode-mixing, making the physical meaning of individual IMF unclear.  

A class of empirical mode decompositions which are improvements to the standard empirical 

mode decomposition (EMD) is introduced to address the shortcoming of EMD. The ensemble 

empirical mode decomposition (EEMD) corrects the issue of mode mixing but introduces the 

problem of exact reconstruction of signals. Wei et al. (2013) observed through empirical 

analysis that performance in reconstructing frequencies does not follow the extension 

sequence. This implies that the performance of these classes depends on the behaviour of 

the financial time series. Although EMD and its improved versions are seen to provide a 

meaningful and superior understanding of time series, its application in financial time series is 

minimal and non-existent in exchange rate markets. The exchange rate markets provide 

understanding of inflation and interest rate dynamics in most African economies. In addition 

to providing important transmission channel for monetary policy, it is key indicator that facilitate 

monetary integration. The volatile nature of exchange rate markets in most African countries 

and the heightened interest of economic blocs in Africa toward currency union make exchange 

analysis timely. 

The purpose of this study is to assess the performance of a class of empirical mode 

decomposition methods in modelling of selected exchange rate markets and comovements of 

the decompositions from a class of empirical mode decomposition.  

 

1.3. Rationale of the Study 

The growth in African financial market relative to the global financial market and availability of 

data has attracted the interest of global investors, policymakers and academics. The perceived 

less integrated African financial market compared to the global market offer a diversification 

opportunity for global investors and, therefore, a complete understanding of these markets is 

necessary for portfolio selection (Agyei-Ampoma, 2011; Adam and Gyamfi, 2015). 

Furthermore, the seemingly interest of regional blocs in the formation of currency unions in 

Africa requires a complete understanding of the interaction of the financial markets to aid 

policymakers. The exchange rate is influenced by the extent to which domestic prices adjust 

to exchange rate changes to provide understanding of inflation dynamics. Most especially, it 

provides an important transmission channel for monetary policy, in addition to the standard 

aggregate demand channel (Frimpong & Adam, 2010). 
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This study questions the ability of empirical mode decomposition to reveal the hidden patterns 

in different frequency modes. This has implications for the correct understanding of the 

behaviors of the African financial market for both policy and theoretical formulation. 

1.4 The Aim of the Study   

The study aims at identifying the driving force of the financial market series data generation 

process in Africa by applying the H-H transform to reveal hidden patterns in the African high-

frequency financial markets series data. The nature of integration of the financial market series 

data at various time points is also investigated.  

 

 

1.5 The Objective of the Study 

The following broad objectives are considered. 

 

1. Assess the performance of a class of empirical mode decompositions in decomposing 

Africa exchange rate series data  

2. Examine the intra-SADC exchange rate series data integration using a class of 

empirical mode decomposition 

1.6 Specific Objectives of the Study 

The study addresses the following specific objectives. 

1. Compare EMD and EEMD to investigate the underlying factors affecting the exchange 

rate markets and propose a framework for examining similarities in economic 

structures. 

2. Develop a EEMD-cross-correlation-based network for analysis of multi-frequency 

comovement of exchange rate markets. 

3. Introduce empirical mode decomposition based non-linear information flow method to 

analyse the interdependence of exchange rate markets. 

 

1.7 Contributions from the Study 

This thesis makes important contribution to literature and in practice, especially, in areas of 

financial markets interconnectedness modelling and implied policies. The study will provide 
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further insight into the ongoing debate in literature about modelling asymmetric relationships, 

similarity, interdependence, and information transfer in financial markets. Firstly, the correct 

formulation of a policy thrives on the accuracy of information emanating from the analytical 

framework. Understanding the intrinsic characteristics of exchange rate data could inform 

policymakers' decision toward monetary integration. Secondly, the proposed model for 

examining the long term fundamental dependencies and information transfer will contribute to 

literature on time-frequency domain analysis in this area and could form the basis for further 

literature development in this area. Thirdly, the models developed could be useful in providing 

a clearer picture of the readiness of the SADC to form the monetary union. Lastly, the findings 

of this research have implications for practical implementation of the trading strategy of the 

exchange rate market participants in SADC.  

 1.8 Scope of the Thesis 

The analytical framework proposed in this study are multistage instead of integrative. The 

accuracy of the model hinges much on the adequacy of the selected decomposition approach, 

which is EEMD.  The independence and information transfer will be in the reconstructed series 

from group IMFs which could confound some details of the original series data. This was partly 

due to the variation of the original series explained by the individual IMFs. The data used 

covered daily real exchange rates from 15 out of 16 member countries of the SADC from 3 

January 1994 to 7 January 2019. The SADC was selected for this study because of its level 

of integration and level of intra-regional community trade. According to UNCTAD (2019) 

economic development report, SADC recorded highest intra-regional community trade at 

$34.7 billion and deeper levels of integration of about 84.9 per cent. In addition, SADC has 

made significant strides toward currency union formation. These make SADC an ideal bloc 

with respect study of exchange markets connectedness. The choice of study window and 

countries is based on the availability of adequate and consistent data for robust analysis and 

the period after South Africa, the largest economy, joined SADC. Based on these criteria, 

Zimbabwe was excluded from the analysis. 

 

1.9 Conclusion 

In this chapter we have been introduced to the data driven in financial markets such as 

exchange rate due to the heterogeneity of its participants and possibly stylised fact of such 

data. The discussion on rationale of the study, problem statement, research objectives which 

include both broad and specific objectives, scope, and expected contributions of the study to 

the literature set the tone for the thesis.  
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CHAPTER 2 

Literature Review 

Chapter Summary 

This chapter presents the review of the empirical mode decomposition and its competing 

models, Fourier and Wavelet transforms. The various forms of Fourier and wavelet are 

discussed. We finally compare the performance of EMD to Fourier and wavelet on the basis 

of its adaptiveness, ability to handle non-linear data, localisation of frequency, and leads to an 

empirical inquiry which is verifiable. 

2.1. Introduction  

The quest to understand the data generating structure to detect and investigate any cyclical 

behaviour of its generating process at different time scales has heightened the interest of the 

econometrics community in spectral theory (Lacobucci, 2003). This is evidenced by the 

increase in spectral analysis methods in financial time series studies. The behaviour of 

financial time series may be decomposed into three main parts: long-run, medium-run and 

short-run behaviours; reflecting the heterogeneous agents contributing to the generation of 

financial time series (Muller et al., 1993). These three parts are respectively associated with 

slowly evolving secular movements (the trend), a faster-oscillating part (the seasonality) and 

a rapidly varying, often irregular component (the noise). In the absence of testable a priori 

hypothesis on the data generating process, this separation is very complicated. 

The use of a single spectral frequency to study the properties of such time series can be 

misleading. Therefore, recent empirical studies have relied on ad hoc detrending and 

smoothing techniques to extract the business cycle. Despite its fundamental correctness, 

these techniques cannot exactly decompose the series. Also, they inaccurately define the 

business cycle based on some required and adjustable characteristics. This has increased 

the number of spectral analysis tools used.   Fourier and wavelet transforms are the most 

common for spectral analysis. Although substantial studies have used Fourier transform to 

analyse financial time series data, Wavelet transform has assumed importance over Fourier 

transform because of its attractiveness to uniquely provide a complete representation of a time 

series from both the time and the frequency domains.  The application of wavelet analysis in 

the finance literature is enormous (Owusu Junior, Adam and Tweneboah, 2017; Owusu, 

Tweneboah and Adam, 2019). The introduction of HHT by Huang et al. (1998) as a complete 

adaptive time-frequency representation has come as an improvement in spectral analysis. 

The following sections review the commonly used transforms in the finance literature which 
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are: Fourier, wavelet, and Hilbert-Huang transforms. 

 

2.2 Fourier Series  

A real-valued periodic function 𝑓(𝑡)  can be represented by a Fourier series as: 

                  𝑓(𝑡) =
𝑎0

2
+ ∑ 𝑎𝑘

∞
𝑘=1 cos(𝑘𝜔0𝑡) + ∑ 𝑏𝑘

∞
𝑘=1 sin⁡(𝑘𝜔0𝑡),               2.1                                   

where  𝜔0 =
2𝜋

𝑇
 is the fundamental frequency. The real quantities 𝑎0, 𝑎𝑘 and 𝑏𝑘 are defined as 

                                                          𝑎0 =
2

𝑇
∫ 𝑓(𝑡)𝑑𝑡
𝑇

0
    2.2 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑘 =
2

𝑇
∫ 𝑓(𝑡) cos(𝑘𝜔0𝑡) 𝑑𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑇

0
2.3                                  

                                                       𝑏𝑘 =
2

𝑇
∫ 𝑓(𝑡)sin⁡(𝑘𝜔0𝑡)𝑑𝑡
𝑇

0
                         2.4 

  

with 𝑘 = 1, 2, …… ,∞ 

2.2.1 The Fourier Transform 

For a function 𝑓(𝑡) ∈ 𝐿2(𝑅) of a real variable t , the Fourier transform is defined by the integral 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞
,      2.5 

that is, for a frequency 𝜔, the function 𝑓(𝜔) represents the components of 𝑓(𝑡) at 𝜔. If the 

determination of all the frequency components of 𝑓(𝑡) is possible, the original function should 

be reconstructed by a superposition of all these components as: 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑡) =
1

2𝜋
+ ∫ 𝑓(𝜔)𝑒+𝑖𝜔𝑡𝑑𝜔

+∞

−∞
,                                               2.6           

If the variable 𝑡 represents time then, 𝑓(𝜔) is spectrum of 𝑡.  The major weakness of Fourier 

transform is the inability of the Fourier spectrum to provide any time domain information.  The 

combination of both the time and frequency localisations, and a possible solution to this is the 

short-time Fourier transform.  

 

2.2.2 The Short-Time Fourier Transform 

Assume that a signal 𝑓(𝑡)  is stationary when seen through a window 𝜙(𝑡), centred at a time 

location 𝑏, the Fourier transform of the windowed segment 𝑓(𝑡)𝜙(𝑡 − 𝑏) is the short-time 

Fourier transform (STFT) defined as  

𝑆𝐹(𝜔, 𝑏) = ∫ 𝑓(𝑡)𝜙(𝑡 − 𝑏)𝑒−𝑖2𝜋𝜔𝑡𝑑𝑡
+∞

−∞
                                   2.7                                                    

and reconstructed signal from the transform is given by 

𝑓(𝑡) = ∫ ∫ 𝑆𝐹(𝜔, 𝑏)𝜙(𝑡 − 𝑏)𝑒𝑖2𝜋𝜔𝑡𝑑𝑏𝑑𝜔
+∞

−∞

+∞

−∞
,                                    2.8 

where the window function 𝜙(𝑡) is allowed to be complex and must have a non-zero spectrum 

at 𝜔 = 0, hence behaving like a low-pass filter. The window function 𝜙(𝑡) can be the 
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rectangular, the Hanning, the Hamming or Gaussian window (Durak & Arikan, 2003). The 

length of the window function determines the time and the frequency resolution. As indicated 

by the Heisenberg-Gabor uncertainty principle, the shorter the window the fine the 

representation in time but coarse in the frequency domain, and the vice-versa for both time 

and frequency domains (Goswani and Chan, 2011).  Consequently, wavelet analysis was 

introduced to improve time-frequency localization (Gossmann and Morlet, 1994). 

 

2.3 The Wavelet Transforms 

Wavelet transforms are based on group theory and square integrable representations, which 

allow one to unfold a signal, or a field, into both time and frequency. Wavelet transforms use 

analytical functions, called wavelets, which are localized in space and gives both good 

frequency and temporal resolutions (Farge, 1992; Ayenu-Prah and Attoh-Okine, 2010).  

Mathematically, a wavelet function 𝜓(𝑡) ∈ 𝐿2(ℝ) has an average value equal to zero, 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞
, which the admissibility condition and the square of 𝜓(𝑡) integrates to unity, 

∫ 𝜓2(𝑡)𝑑𝑡 = 1
+∞

−∞
 (Vidakovic, 2009). The function 𝜓(𝑡) is called “mother wavelet”, and 

generates the family of continuously translated with a factor, dilated with a scale 𝜆, and rotated 

wavelets: 

𝜓𝑘,𝜆(𝑡) =
1

√𝜆
𝜓(

𝑡−𝑘

𝜆
) , where 𝑘, 𝜆 ∈ ℝ.                                                                             2.9 

This implies that the wavelet transforms of a time series evolving in time is a function of two 

variables, time and frequency. 

The use of the translated version of the mother wavelet helps to achieve time localisation. The 

translated version as well as the scale version of mother wavelets, are used to measure the 

correlation of the time series to be analysed. The coarse features of the input time series are 

highlighted if the signal correlates at large scales. On the other hand, a strong correlation 

recorded at small scales reveals fine features of the input time series.  

The wavelet differs from the STFT by the shapes of the analytical functions, as the wavelet 

transform uses width adapted functions, the STFT uses functions with the same width.  

Vidakovic (2009) noted that low-frequency wavelets are broader compared to high-frequency 

wavelets Two wavelet transforms are commonly discussed: continuous wavelet transform, 

and discrete wavelet transform 

 

 

2.3.1 Continuous Wavelet Transforms (CWT) 
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For a function 𝑓(𝑡) ∈ 𝐿2(ℝ) CWT is defined as a function of two variables, k (time) and λ 

(scale), as: 

𝑊𝜓,𝑓(𝑘, 𝜆) =
1

𝜆
∫ 𝑓(𝑠)𝜓̅𝑘,𝜆(𝑠)𝑑𝑠
+∞

−∞
                                                                 2.10 

 

where the wavelet function 𝜓 has a complex conjugate, denoted by 𝜓̅. The wavelet function 

is dilated, as 𝜆 is increased, and when 𝑘 is varied, the wavelet is translated in time. The 

implication is that function 𝑊𝜓,𝑓 can be computed on the entire time-frequency plane when 

(𝑘, 𝜆) changes (Vidakovic, 2009). 

The function 𝑓(𝑡)  can be reconstructed from its wavelet transform when the admissibility 

condition ⁡𝐶𝜓 = ∫
|𝜓𝜔|

2

𝜔
𝑑𝜔 < ∞

+∞

−∞
                                                                                                  2.11 

of Fourier transform 𝜓(𝜔) is satisfied, and the reconstruction is given by (Vidakovic, 2009): 

𝑓(𝑡) =
1

𝐶𝜓
∫ ∫

1

𝜆2
+∞

−∞

+∞

−∞
𝑊𝜓,𝑓(𝑘, 𝜆)𝜓̅𝑘,𝜆(𝑡)𝑑𝑘𝑑𝜆.                                      2.12 

The parameters 𝜆 and 𝑘 vary continuously (with the constraint 𝜆 = 0) making the continuous 

wavelet transform a redundant transformation. The correlation information can be minimized 

by selecting discrete values for 𝑘 and 𝜆.  

2.3.2 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) (Mallat, 1989) was obtained by discretizing the 

parameters a and b. In its most common form, the DWT employs a dyadic sampling with 

parameters 𝜆  and 𝑘 based on powers of two: 𝜆 = 2𝑗, and 𝑘 = 𝑚2𝑗⁡, 𝑤𝑖𝑡ℎ⁡⁡𝑗,𝑚 ∈ ℤ. By 

substituting in 𝜓𝑘,𝜆(𝑡) =
1

√𝜆
𝜓(

𝑡−𝑘

𝜆
) , where 𝑘, 𝜆 ∈ ℝ., we obtained the dyadic wavelets: 

𝜓𝑗,𝑚(𝑡) = 2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑚).                                                                                            2.13 

The DWT can be written as  

𝑑𝑗,𝑚 = ∫ 𝑓(𝑡)2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑚)𝑑𝑡 = 〈𝑓(𝑡), 𝜓𝑗,𝑚(𝑡)〉
+∞

−∞
                                                       2.14 

where 𝑑𝑗,𝑚 are known as wavelet coefficients at level ⁡ 𝑚. These coefficients are used to 

construct the future series. 

The main drawback of the wavelet transform is that its performance depends on the explicit 

and a priori selection of the mother wavelet. This selection may influence the frequency 

analysis. The Hilbert-Huang transform proposed by Huang et al. (1998) was introduced as a 

complete adaptive method to address this weakness. 

 

2.4 Hilbert-Huang Transform 
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The Hilbert-Huang transform was designed as an alternative analysis tool to analyse non-

linear and non-stationary time series. The HHT consists of two components: a decomposition 

algorithm called empirical mode decomposition (EMD) and a spectral analysis tool called 

Hilbert transform (HT) (Huang et al., 1998). The HHT is a decomposition based on the local 

characteristics of the data and it is able to capture non-linear characteristics with respect to 

amplitude and frequency. These characteristics make HHT attractive and appealing in many 

research areas. 

2.4.1 Empirical mode decomposition 

EMD is a dyadic filter bank in the frequency domain (Flandrin, Rilling and Goucalves, 2004). 

The goal of the empirical mode decomposition is to decompose the original data (non-

stationary and non-linear data) into the IMFs and the residue. The EMD is a fully data-driven 

decomposition method and IMFs are derived directly from the signal itself.  As indicated by 

Huang et al. (1998). An IMF must satisfy two criteria: 

1. The number of extrema and the number of zero crossings must either be equal or differ 

at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

The first condition forces an IMF to be a narrow-band signal with no riding waves. The second 

condition ensures that the instantaneous frequency will not have fluctuations arising from an 

asymmetric waveform (Huang et al,1998). 

The IMFs are obtained through a process called the sifting process which uses local extrema 

to separate oscillations starting with the highest frequency. Given a time series 𝑥(𝑡), 𝑡 =

1,2,3,… . , 𝑁,  the process decomposes it into a finite number of functions, denoted by 

𝐼𝑀𝐹𝑘(𝑡), 𝑘 = 1, 2, 3, … . . , 𝑛 and a residue 𝑟𝑛(𝑡). The residue is the non-oscillating drift of the 

data. If the decomposed data consist of uniform scales in the frequency space, the EMD acts 

as a dyadic filter and the total number of IMFs is approximately equal to 𝑛 = 𝑙𝑜𝑔2(𝑁) (Flandrin, 

Rilling and Goucalves, 2004). At the end of the decomposition process, the original time series 

can be reconstructed as: 

                                      𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑘(𝑡)
𝑛
𝑖=1 + 𝑟𝑛(𝑡).                                                    2.15 

According to Huang et al. (1998), the EMD comprises the following steps. 

1. Initialise the residue to the original time series 𝑟0(𝑡) = 𝑥(𝑡) and set the IMF index 𝑘 =

1. 

2. To extract the kth IMF: 

(a) initialise ℎ0(𝑡) = 𝑟𝑘−1(𝑡) and the iteration counter 𝑖 = 1; 

(b) find the local maxima and the local minima of ℎ𝑖−1(𝑡); 
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(c) create the upper envelope 𝐸𝑢(𝑡) by interpolating between the local maxima 

(lower envelope 𝐸𝑙(𝑡) by interpolating the local minima, respectively); 

(d) calculate the mean of both envelopes as 𝑚𝑖−1(𝑡) =
𝐸𝑢(𝑡)+𝐸𝑙(𝑡)

2
; 

(e) subtract the envelope mean from the input time series, obtaining ℎ𝑖(𝑡) =

ℎ𝑖−1(𝑡) − 𝑚𝑖−1(𝑡); 

(f) verify if ℎ𝑖(𝑡) satisfies the IMFs conditions: 

 

• If ℎ𝑖(𝑡) does not satisfy the 𝐼𝑀𝐹′𝑠 conditions, increase 𝑖 = 𝑖 + 1 and repeat the 

shifting process from step 2b; 

• If ℎ𝑖(𝑡) satisfies the 𝐼𝑀𝐹′𝑠 conditions, set 𝐼𝑀𝐹𝑘(𝑡) = ℎ𝑖(𝑡) and let 𝑟𝑘(𝑡) =

𝑟𝑘−1(𝑡) − 𝐼𝑀𝐹𝑘(𝑡). 

3. When the residue 𝑟𝑘(𝑡) is either a constant, a monotonic slope or contains only one 

extrema, stop the process, otherwise continue the decomposition from step 2, setting 

𝑘 = 𝑘 + 1. 

The standard form of EMD has a problem called mode mixing. This is defined as either a 

single IMF consisting of widely disparate scales, or a signal of similar scale captured in 

different IMFs. To overcome the problem of mode mixing, Ensemble Empirical Mode 

Decomposition (EEMD) method emerged as improvement of EMD. The EEMD adds a fixed 

percentage of white noise to the signal before decomposing it and thus solves the mode-

mixing problem. For a time series 𝑥(𝑡), the EEMD includes the following steps: 

a. Generate a new signal 𝑦(𝑡) by adding to 𝑥(𝑡) a randomly generated white noise with 

amplitude equal to certain percentage of the standard deviation of 𝑥(𝑡). 

b. Apply the EMD algorithm on 𝑦(𝑡) to obtain the IMFs, 

c. Repeat steps a to b for 𝑚 times with white noise with different standard deviations to 

obtain an ensemble of IMFs {𝐼𝑀𝐹𝑘
1(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, {𝐼𝑀𝐹𝑘

2(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, . .., 

{𝐼𝑀𝐹𝑘
𝑚(𝑡), 𝑘 = 1, 2, . . . , 𝑛}. 

d. Calculate the average of IMFs {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 2, . . . , 𝑛}, where  {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1 𝑚⁄ ∑ 𝐼𝑀𝐹𝑘
𝑖𝑚

𝑖 (𝑡)}. 

The intuition of the process is that observed data are a combination of true time series and 

noise and that the ensemble means of data with different noises are closer to the true time 

series. Therefore, the addition of white noise as  an additional step to EMD steps may help to 

extract the true IMF by offsetting the noise through ensemble averaging (Chen and Pan, 

2016).  

The choice of empirical mode decomposition is justified by the accuracy in detecting the event 

under noisy conditions. 
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2.4.2 Hilbert Transform 

The Hilbert transform can then be performed on the collection of IMFs that result from the 

EMD process. This is the second part of the HHT algorithm. The Hilbert transform defined in 

the time domain is a convolution between the Hilbert transformer 1 𝜋𝑡⁄  and a function 𝑓(𝑡) 

(Allez and Bouchaud, 2011). The Hilbert transform 𝑓(𝑡) of a function 𝑓(𝑡) is defined for all 𝑡  

by  

𝑓(𝑡) =
𝑃

𝜋
∫

𝑓(𝜏)

𝑡−𝜏

+∞

−∞
𝑑𝜏                                                                                          2.16 

when the integral exists.  

It is normally not possible to calculate the Hilbert transform as an ordinary improper integral 

because of the pole at 𝜏 = 𝑡. However, the 𝑃 before the integral denotes the Cauchy principal 

value that expands the class of functions for which the integral defined exists. 

  

The conclusion from the review of Fourier, wavelet and Hilbert-Huang transforms are 

presented in Table 2.1 below. The summary matrix shows that Hilbert-Huang transform 

outperforms Fourier and Wavelet transforms because of its adaptiveness, ability to handle 

non-linear data, localisation of frequency and empirically focused. Therefore, using Hilbert-

Huang transform as a transformation technique in financial time series will improve the 

accuracy of the results and implied policy. 

 

Table 2.1 Comparison of Fourier, Wavelet and Hilbert-Huang Transforms 

Note: Presentation energy-frequency means displays both energy and frequency whereas 

energy-time-frequency denotes energy, time and frequency  

 

 

 

Transform Fourier Wavelet Hilbert-Huang 

Basis a priori a priori adaptive 

Frequency 
convolution: global, 

uncertainty 

convolution: regional, 

uncertainty 

differentiation: local, 

certainty 

Presentation energy-frequency energy-time-frequency energy-time-frequency 

Non-linear No no yes 

Non-stationary No yes yes 

Feature Extraction No 
discrete: no, 

continuous: yes 
yes 

Theoretical Base theory complete theory complete empirical 
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2.5 Conclusion 

In this chapter, the literature on empirical mode decompositions including its variants were 

reviewed and compared to its competitors such as the Fourier transform and the wavelet 

transform. We assessed the performance of EMD relative to others and observed that Huang 

transform outperforms Fourier and Wavelet transforms. This is because Huang transform is 

effective for adaptiveness, handling non-linear data, localisation of frequency, and useful for 

most financial time series to warrant its empirical basis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

CHAPTER 3 

Statistical properties of SADC Exchange rate markets 

Chapter Summary 

The statistical properties of financial data play key role in its modelling (Adam and Owusu 

Junior, 2017). As discussed in the previous chapters the financial market time series is likely 

to exhibit non-linearity, non-stationarity and long memory because financial markets data 

series is highly mixed and noisy. Non-stationarity and non-linearity have thus become a 

stylised fact of financial time series. These stylised facts in the data generating process of 

financial time series influence the appropriateness of the use of certain class of models in 

modelling financial time series. In this chapter, stationarity and linearity properties of exchange 

rate series data are explored.  

3.1 Stationarity Tests 

Stationarity is a term used in empirical time series econometrics. Most financial time series 

data are collected as discrete data over time, and every individual observation in a time series 

is viewed as “just happen to be” or random or stochastic. Therefore, a time series is a collection 

of values of random variables orderred in time. Although all the individual observations are 

good representatives of their populations at particular values of, to be able to generalise this 

representativeness to other or future times, the order of “the representativeness” in time is 

required to be well behaved. That is, the mean, the variance and the covariance of the time 

series are required to be constant over time. The covariance is allowed to vary if and only if 

the covariance is across two or more time periods. If the above requirements are not satisfied, 

the time series is called a non-stationary time series. Studies using non-stationary time series 

data become ad hoc studies and the results cannot be generalised to other time periods 

(Gujarati, 2003, p.798). 

Several techniques can be employed to investigate the stationarity properties of a time series. 

The simplest method would be the graphical examination of the series against time and/or the 

autocorrelation function of the time series. 

The graphical examinations of time series are normally not sufficient, and further investigation 

into the stationarity by a number of tests required. Several unit root test methods have been 

proposed to test for stationarity such as the Dickey-Fuller (DF) test, the Augmented Dickey-

Fuller (ADF) test, the Phillips-Perron (PP) test, the Kwiatkowski, Phillips, Schmidt, and Shin 

(KPSS) test, the Elliot, Rothenberg and Stock (ERS) point optimal test, and the Ng-Perron 
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(NP) test. Some of the tests are specific to a particular time series scenario and their 

application is limited. For example, the ERS point optimal test cannot be used if a time series 

has less than 50 observations. For simplicity and practicality, we discuss the ADF test, the PP 

test and the KPSS test which have been widely used. Both the ADF and the PP test assume 

a nonstationary series under the null hypothesis (unit root under the null hypothesis). The ADF 

test is a simpler and straightforward test, and the PP test produces more conservative test 

results, which tend to identify a time series as a unit root process where the ADF test fails to 

identify. Unlike the ADF and the PP tests, the KPSS test assumes no unit root process in the 

time series (stationary under the null hypothesis). We first test the individual country data 

series with the popular ADF test and then the PP test. Any series found to have no unit root 

process by the ADF test and/or the PP test will be further tested by the KPSS test. The reason 

for employing this procedure is that we want to be sure that those series found to be stationary 

by the ADF test, and the PP tests are really stationary. Thus, the ADF and the PP tests serve 

as screening procedures. However, the screening may still have some chance to go wrong. 

In order to verify the test results, we redefine the null hypothesis and then test it by the KPSS 

test. 

We now provide a detailed discussion of the test procedures and their results. The popular 

procedure to test stationarity is to investigate the  coefficient in the following autoregressive 

model: 

ttt tYY  ++= −1 ,  11 −  , 3.1 

where t  is an exogenous variable, such as constant and/or constant and trend, and t  is 

pure random error. If 1= , that is, the relation between an observation at time t  and 

observation Y at time 1−t  is unitary, then tY  is a unit root non-stationary stochastic process. 

For simplicity and in line with other coefficient tests in regressions analysis, subtract 1−tY  from 

both sides of Equation (3.1) to get: 

ttttt tYYYY  ++−=− −−− 111 ,   3.2 

 

which can be written as: 
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ttt tYY  ++= −1 ,
   

   3.3 

where  is the first difference operator and )1( −=  . The null hypothesis which says that 

the series has a unit root is equivalent to 0=  which is the same as 1= , and it is the unit 

root test null hypothesis of the DF test. In this regard, rejection of the null hypothesis means 

that the series has no unit root. 

3.1.1 Augmented Dickey Fuller (ADF) test 

The first unit root test to be considered is the Augmented Dickey Fuller test which is the 

modified version of the Dickey Fuller test (DF test) proposed by Dickey and Fuller (1979). The 

DF test is based on the regression equation 

  ttt YtY  ++= −1   where t ~ ),0( 2

N , 3.4 

The null hypothesis in the DF test is presence of unit root 0:0 =H  against the alternative 

hypothesis of no unit root 0:1 H . Hence, rejection of the null hypothesis means that the 

series has no unit root. The Dickey Fuller test based on AR(1) model (3.4) assumes that error 

term t  follows a white noise process. The ADF test t-statistic for an AR(p+1) model coupled 

with a trend is developed as  

t

p

i

ititt YtYY  
=

−− +++=
1

1 ,                                                                           3.5 

 where t  is time trend.                                

Like the DF test, the ADF test also tests for the presence of unit root 0:0 =H  against the 

alternative hypothesis of no unit root 0:1 H . Also, rejection of the null hypothesis of the 

ADF test t-statistic means that the series has no unit root. The ADF test with or without trend 

does not follow standard t-distribution, the critical values are derived by simulation. 

3.1.2 Phillips and Perron (PP) test 

An alternative unit root test that controls serial correlation in the error term was proposed by 

Phillips and Perron (1988). Unlike the ADF, The Phillips-Perron test (PP test) is based on a 

nonaugmented Dickey Fuller test equation that allows for autocorrelated residuals as follows  
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ttt YtY  ++= −1 ,                                                                                               3.6 

where t ~serially correlated. 

The PP test modifies the t-ratio of   such that the asymptotic distribution of the test statistic 

is not affected by the serial correlation. The PP test t-statistic is calculated as  






0

00

0

0

2

)(

h

rh
t

h

r
t

−
−= ,                                                                                        3.7 

where 0r  is the estimate of the variance of ( 1−− tt YY ), 0h  is the estimate of the variance of (

ntt YY −− ). The t  and   are the t-statistics and standard error of   respectively. Like the 

DF test and the ADF tests, the PP also tests for the presence of unit root 0:0 =H  against 

the alternative hypothesis of no unit root 0:1 H .  Therefore, rejection of the null 

hypothesis of the PP test t-statistic means that the series has no unit root. 

3.1.3 The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

The KPSS test (1992) reversed the null hypothesis by assuming that the series is stationary 

(in contrast to the ADF test with the null hypothesis of nonstationarity). In this manner, rejection 

of the null hypothesis of the KPSS test t-statistic means that the series has a unit root. It is a 

Lagrange Multiplier (LM) test based on the Ordinary Least Squares (OLS) residuals from the 

regression of 

tt tY  += ,                                                                                                                  3.8 

Since t is the exogenous term of either constant or constant and trend specification, model 

(3.8) is of two forms 

ttt rY += ,                                                                                                                3.9           

where tr  is a random walk, t is a stationary error, and time Tt ,...,1=  

and 

ttt trY  ++= ,                                                                                                        3.10 

Where t deterministic trend 
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The test statistic is:` 

0

2

1

2

fT

S

LM

T

t

t
== ,                                                                                                             3.11 

where 0f is  an estimator of the residual spectrum and 
=

=
t

r

rtS
1

̂  

To specify the KPSS test, similar to the PP test, there is a need to specify whether an intercept 

or a trend and intercept are present in the test regression. There is also a need to select the 

method of estimating 0f . 

 

3.2 Testing Linearity 

The second documented stylised fact about financial time series is non-linearity. This can 

greatly influence the choice of a model to alter the behaviour of the financial time series. It is 

imperative to investigate this characteristic of financial time series.  The next sections review 

the various tests employed in this study under the general hypotheses 

 

{
𝐻0: 𝑇ℎ𝑒⁡𝑠𝑒𝑟𝑖𝑒𝑠⁡𝑖𝑠⁡𝑙𝑖𝑛𝑒𝑎𝑟⁡⁡⁡⁡⁡⁡⁡⁡
𝐻1: 𝑇ℎ𝑒⁡𝑠𝑒𝑟𝑖𝑒𝑠⁡𝑖𝑠⁡𝑛𝑜𝑡⁡𝑙𝑖𝑛𝑒𝑎𝑟

.   

              

3.12 

 

3.2.1 BDS Interdependence test 

The Broock, Dechert and Scheinkman (BDS) test by Broock et al. (1996) is one of the most 

popular tests for non-linearity. It is rooted within chaos theory and a nonparametric test. 

Originally, the BDS test was developed to test for independence and identical distribution 

(𝑖𝑖𝑑), but it has shown to have power against a large number of linear and non-linear 

alternatives (Brock and Dechert, 1991). The BDS statistic is based on the correlation integral, 

which is a measure of how many times a temporal pattern appears in the data. Consider a 

time series 𝑋𝑡 , 𝑡 = 1, 2, … , 𝑛, and define its m-history as 𝑋𝑡
𝑚 = (𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑚+1), the 

correlation integral at the embedding dimension m is 

𝐶𝑚,𝑇(𝜖) = ∑ 𝐼𝜖(𝑋𝑡
𝑚, 𝑋𝑠

𝑚)⁡𝑡<𝑠 {
2

𝑇𝑚(𝑇𝑚−1)
} ,                                                                  3.13 

where 𝑇𝑚 = 𝑇 − (𝑚 − 1) and 𝐼𝜖(𝑋𝑡
𝑚, 𝑋𝑠

𝑚)⁡is an indicator function which equals 1 if the sup norm 

‖𝑋𝑡
𝑚 − 𝑋𝑠

𝑚‖ < 𝜖 and equals 0 otherwise. Fundamentally, 𝐶𝑚,𝑇(𝜖) counts the number of m-

histories that lie within a hypercube of size of each other. Thus, the correlation integral 
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estimates the probability that any two m-dimensional points are within a distance of 𝜖 of each 

other, i.e., 

𝑃(|𝑋𝑡 − 𝑋𝑠| < 𝜖, |𝑋𝑡−1 − 𝑋𝑠−1| < 𝜖,… , |𝑋𝑡−𝑚+1 − 𝑋𝑠−𝑚+1| < 𝜖).                               3.14 

If the 𝑋𝑡 are 𝑖𝑖𝑑, this probability should be equal to the following in the limiting case 

𝐶1,𝑇(𝜖)
𝑚 = 𝑃(|𝑋𝑡 − 𝑋𝑠| < 𝜖)𝑚.                                                                                3.15 

Broock et al. (1996) define the BDS statistic as 

𝑉𝑚𝜖 = √𝑇
𝐶𝑚,𝑇(𝜖)−𝐶1,𝑇(𝜖)

𝑚

𝑆𝑚,𝑇
,                                                                               3.16 

where 𝑆𝑚,𝑇 is the standard deviation and can be estimated reliably as documented by Broock 

et al. (1996). Under moderate regularity conditions, the BDS statistic converges in distribution 

to a 𝑁(0, 1) distribution. The BDS test has a null hypothesis of a linear series. Therefore, 

rejection of the null hypothesis of the BDS test means that the series is nonlinear. 

3.2.3 White (1989) and Terasvirta et al. (1993) Neural Network tests 

The Neural Network (NN) Test for Neglected Non-linearity (White, 1989) is based on neural 

network models. The most common is the single hidden layer feedforward network where a 

unit input sends a vector of signals 𝑋𝑖, 𝑖⁡ = ⁡1, … , 𝑘, along links (connections) that attenuate or 

amplify the original signals by a factor 𝛾𝑖𝑗 (weights). The intermediate or hidden processing 

unit 𝑗⁡receives the signals 𝑋𝑖𝛾𝑖𝑗 , 𝑖 = ⁡1,… , 𝑘 and processes them. In general, the incoming 

signals are summed by the hidden units, and an activation function is used to generate an 

output Φ(𝑋̃′, 𝛾𝑗), where Φ is typically the logistic function and  𝑋̃ = (1, 𝑋1, … , 𝑋𝑘), passed to the 

output layer  

𝑓(𝑋, 𝜹) = 𝛽0 + ∑ 𝛽𝑗
𝑞
𝑗=1 Φ(𝑋̃′𝛾𝑗),⁡⁡⁡𝑞⁡𝜖⁡𝑁,                                                           3.17 

where 𝛽0, … , 𝛽𝑞 are hidden to output weights and 𝜹 = (𝛽0, … , 𝛽𝑞 , 𝛾1
′ , … , 𝛾𝑞

′)′. 

The NN test, in particular, uses a single hidden layer network with input-to-output links. The 

output 𝑜 of the network is 

𝑜 = ⁡ 𝑋̃′𝜃 + 𝑞∑ 𝛽𝑗
𝑞
𝑖=1 Φ(𝑋̃′𝛾𝑗)⁡                                                                              3.18 

and the null hypothesis of linearity corresponds to the optimal weights of the network being 

equal to zero, that is the null hypothesis of the NN test is 𝛽𝑗 = 0 for 𝑗 = 1, 2, … , 𝑞  for given 𝑞 

and 𝛾𝑗. Hence, rejection of the null hypothesis of the NN test means that the series is nonlinear. 

 

Operatively, the NN test can be implemented as a Lagrange multiplier test 

{
𝐻0: 𝐸(Φ𝑡𝑒𝑡

∗) = 0⁡⁡⁡⁡⁡⁡⁡

𝐻1: 𝐸(Φ𝑡𝑒𝑡
∗) ≠ 0⁡⁡⁡⁡⁡⁡

,                                                                                        3.19 
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where the element 𝚽𝒕 ≡ (Φ(𝑋̃𝑡
′Γ1, … ,Φ(𝑋̃𝑡

′Γ𝑞)) and 𝚪 ≡ (Γ1, … , Γ𝑞) are chosen a priori, 

independently of 𝑿𝒕
′ and for given 𝑞. To practically carry out the test, the element 𝑒𝑡

∗ are 

replaced by the OLS residuals 𝑒𝑡 = 𝑦𝑡 − 𝑋̃′𝜃, to obtain the test statistic 

𝑀𝑛 = (𝑛−1/2∑ Φ𝑡𝑒̂𝑡
𝑛
𝑡=1 )

′
𝑊̂𝑛

−1(𝑛−1/2∑ Φ𝑡𝑒̂𝑡
𝑛
𝑡=1 ),                                                          3.20 

where 𝑾̂ is a consistent estimator of 𝑾∗ = 𝑐𝑜𝑣𝑎𝑟(𝑛−
1

2∑ Φ𝑡𝑒̂𝑡
𝑛
𝑡=1 ). Under 𝐻0 𝑀𝑛 𝑥2→

𝑑 (𝑞). To 

circumvent multicollinearity of Φ𝑡 with themselves and 𝑿𝒕
′ as well as computational issues 

when obtaining  𝑊̂𝑛, two practical solutions are adopted. First, the test is conducted for 𝑞∗ < 𝑞 

principal components of Φ𝑡 , Φ𝑡𝑒̂𝑡
∗. Second, to avoid having to calculate, the following 

equivalent test statistic is employed of 𝑊̂𝑛 

𝑛𝑅2 𝑥2→
𝑑 (𝑞),                                                                                                      3.21 

where 𝑅2 is the uncentred squared multiple correlation from a standard linear regression of 

𝑒̂𝑡 on Φ𝑡, 𝑋̃𝑡. 

Teräsvirta et al. (1993) demonstrated that the presence of the intercept in the power of the 

logistic function used as activation function affects the outcome of this test. Furthermore, he 

verified a loss of power because of the 𝛾 parameters being chosen at random. Building on 

this, Teräsvirta et al. (1993) replaced the expression q∑ 𝛽𝑗
𝑞
𝑖=1 Φ(𝑋̃′𝛾𝑗) in Eq. (3.18) with an 

approximation based on the Taylor expansion and derived an alternative LM test that has 

been shown to have better power properties. 

 

3.2.4 Keenan's (1985) and Tsay's (1986) tests 

Keenan (1985) proposed a non-linearity test for time series that uses 𝑋̂𝑡
2 only and modifies the 

second step of the Regression Equation Specification Error Test (RESET) test to avoid 

multicollinearity between 𝑋̂𝑡
2 and 𝑋𝑡−1. Keenan (1985) assumed that the series can be 

approximated (Volterra expansion) as follows 

𝑋𝑡 = 𝜇 +∑ ∑ 𝜃𝑢
∞
𝑣=−∞ 𝑎𝑡−𝑢 +

∞
𝑢=−∞ ∑ ∑ 𝜃𝑢𝑣

∞
𝑣=−∞ 𝑎𝑡−𝑢𝑎𝑡−𝑣

∞
𝑢=−∞ ⁡⁡.        3.22 

Clearly, if ∑ ∑ 𝜃𝑢𝑣
∞
𝑣=−∞ 𝑎𝑡−𝑢𝑎𝑡−𝑣

∞
𝑢=−∞  is zero, the approximation is linear, so Keenan's idea 

shares the principle of an F test. The process is similar to Ramsey's test in terms of steps. 

Firstly, select (with a selection criterion, for example Akaike Information Criterion (AIC)) the 

value 𝑝 of the number of lags involved in the regression, then fit 𝑋𝑡 on (1, 𝑋𝑡−1, … , 𝑋𝑡−𝑝)  to 

obtain the fitted values (𝑋̂𝑡), the residuals set (𝑎̂𝑡) and the residual sum of squares regression 

(SSR). Then regress 𝑋̂𝑡
2 on (1, 𝑋𝑡−1, … , 𝑋𝑡−𝑝)   to obtain the residuals set (𝜁𝑡). Finally calculate 

𝜂̂𝑡 =
∑ 𝑎̂𝑡𝜁̂𝑡
𝑛
𝑡=𝑝+1

∑ 𝜁̂𝑡
2𝑛

𝑡=𝑝+1

.                                                                                       3.23 

The test statistic equals 
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𝐹̂ =
(𝑛−2𝑝−2)𝜂̂2

(𝑆𝑆𝑅−𝜂̂2)
.                                                                              3.24 

Under the null hypothesis of linearity, i.e., 

𝐻0 :⁡ ∑ ∑ 𝜃𝑢𝑣

∞

𝑣=−∞

𝑎𝑡−𝑢𝑎𝑡−𝑣

∞

𝑢=−∞

= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡3.25 

and the assumption that (𝑎𝑡) are independent and identically distributed Gaussian, 

asymptotically 𝐹̂⁡~⁡𝐹1,𝑛−2𝑝−2. In this regard, rejection of the null hypothesis of the Keenan 

(1985) test means that the series is nonlinear. 

Tsay (1986) improved on the power of the Keenan (1985) test by allowing for disaggregated 

non-linear variables (all cross products 𝑋𝑡−𝑖𝑋𝑡−𝑗, 𝑖, 𝑗 = 1,… , 𝑝) thus generalising Keenan test 

by looking for quadratic serial dependence in the data. While the first step of Keenan test is 

unchanged, in the second step of Tsay test, instead of (𝑋̂𝑡)
2, the products 𝑋𝑡−𝑖𝑋𝑡−𝑗, 𝑖, 𝑗 =

1,… , 𝑝 are regressed on (1, 𝑋𝑡−1, … , 𝑋𝑡−𝑝). Hence, the corresponding test statistic 𝐹̂ is 

asymptotically distributed as 𝐹𝑚,𝑛−𝑚−𝑝−1,, where 𝑚 = 𝑝(𝑝 − 1)/2, but with the same decision 

decision rule as the Keenan (1985) test. 

 

3.2.5 TAR-Likelihood Ratio test 

For discerning a specific subset of the self-exciting Threshold Autoregressive (TAR) models, 

Chan and Tong (1986) offer a likelihood ratio (LR) test, i.e., TAR(2, p, p) from linear AR models 

when 𝑝,⁡⁡and 𝑑 are known (or assumed). Using the identical notation as in the preceding 

section, 𝐻0: 𝑋𝑡~𝐴𝑅(𝑝), is tested against 𝐻1: 

𝑋𝑡 = {
𝜙1,0 + ∑ 𝜙1,𝑖𝑋𝑡−𝑖 + 𝑎1,𝑡⁡⁡⁡⁡𝑖𝑓⁡𝑋𝑡−𝑑 < 𝑟

𝑝
𝑖=1

𝜙2,0 + ∑ 𝜙2,𝑖𝑋𝑡−𝑖 + 𝑎2,𝑡 ⁡⁡⁡⁡𝑖𝑓⁡𝑋𝑡−𝑑 ≥ 𝑟
𝑝
𝑖=1

⁡⁡,           3.26 

where 𝑟 is the threshold. Assuming that 𝑎𝑡 is 𝑖𝑖𝑑 independent of 𝑋𝑠, 𝑆 < 𝑡, the Chan 

and Tong LR test is given by 

𝐿𝑅1 = {
𝜎2(𝑁𝐿,𝑟)

𝜎2
}

𝑛−𝑝+1

2
⁡⁡,             3.27  

 where 𝜎2(𝑁𝐿, 𝑟) and 𝜎2 are the respective estimators of the error variance from 𝑇𝐴𝑅(2, 𝑝, 𝑝) 

and 𝐴𝑅(𝑝) models. Under the null hypothesis of linearity, the AR coefficients in the TAR 

regimes will not significantly be different, i.e., 𝐻0:⁡𝜙𝑖
1 = 𝜙𝑖

2⁡(i = 0,1, … , 𝑝), and −2log⁡(𝐿𝑅1) is 

asymptotically distributed as 𝑥𝑝+1
2 . In practice, 𝑟 is generally unknown and needs to be 

estimated. The LR test becomes 

𝐿𝑅2 = {
𝜎2(𝑁𝐿)

𝜎2
}

𝑛−𝑝+1

2
.                                                                        3.28 
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As a consequence, the likelihood function is irregular, and the asymptotic distribution of the 

statistics is no longer 𝑥2. However, Chan and Tong (1986) provide a numerical estimate of the 

likelihood function and a likelihood ratio test based on it. Theoretical results allow tabulation 

of the asymptotic null distribution of 𝐿𝑅2 (see Moeanaddin and Tong, 1988; Chan and Tong, 

1990). 

3.2.6 Engle (1982) LM test 

Engle (1982) developed the Lagrange multipliers (LM) test of test for ARCH effects, mostly 

because to its computational simplicity as the LM test only requires estimation of the linear 

model. It is analogous to the F statistic in the regression of the squared residuals from the fit 

of a linear model on the lagged (up to m) values of the same squared residuals to test for the 

null hypothesis of the coefficients in eqn 3.29 which indicates that the coefficients are not 

substantially different from zero. 

𝑎̂𝑡
2 = 𝑎0 + 𝑎1𝑎̂𝑡−1

2 +⋯+ 𝜖𝑡 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 = 𝑚 + 1,… , 𝑛                                        3.29 

Once the quantities 𝑆𝑆𝑅0 = ∑ (𝑎𝑡
2𝑛

𝑡=𝑚+1 − 𝑎̅)2 and 𝑆𝑆𝑅1 = ∑ 𝜖̂𝑛
𝑡=𝑚+1

2
 are computed, the F 

statistic is given by eqn 3.30 

𝐹 =
(𝑆𝑆𝑅0−𝑆𝑆𝑅1)/𝑚

𝑆𝑆𝑅1/(𝑛−2𝑚−1)
 ,                                                                                   3.30 

which is asymptotically distributed as 𝑋𝑚. Consider that, as it is an LM test, it is possible to 

resort to 𝑛𝑅2 that asymptotically has the same distribution 𝐹. 

  

3.3 Data  

The data employed for the study is daily real exchange rates series of 15 out of 16 member 

countries of the SADC from 3rd January, 1994 to 7th January 2019, obtained from Thomson 

Reuters DataStream. Daily local currency per USD for Angola, Comoros, Botswana, 

Democratic Republic of Congo, Eswatini (formerly Swaziland), Lesotho, Madagascar, Malawi, 

Mauritius, Mozambique, Namibia, Seychelles, South Africa, Tanzania and Zambia were used. 

The choice of the study window and countries was informed by the availability of data and the 

period South Africa joined SADC. Based on these inclusion criteria, Zimbabwe was excluded 

from the analysis.  The real exchange rate (Rex) used was nominal domestic currency per US 

dollar (USD) multiplied by the domestic consumer price index divided by the US consumer 

price index (US CPI), i.e. 

 𝑅𝑒𝑥 =
𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐⁡𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦

𝑈𝑆⁡𝐷𝑜𝑙𝑙𝑎𝑟
⁡ .
𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐⁡𝐶𝑃𝐼

𝑈𝑆⁡𝐶𝑃𝐼
⁡.                                                                     3.31  

The choice of USD for this analysis is justified by the dominance of USD in international trade 

by these countries and the extent of dollarisation of most SADC countries. In spite of recent 
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de-dollarisation in Angola, Mozambique and Zambia, the dollar remains dominant in 

international trade globally including SADC and provides a means of standardising units of 

pairs of currencies (Corrales et al., 2016). 

 

3.4 Results of the Unit Root tests for Stationarity 

Table 3.1 presents the results of the stationarity tests. The outcomes of the stationarity tests 

– Philip Peron (PP), Augmented Dicky-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) are presented. It can be seen in Table 3.1 that almost all the conclusions from 

the ADF, the PP and the KPSS that the series are not stationary at levels. This is contrary to 

the conclusions from the ADF, the PP and the KPSS at first difference, indicating that the 

series are stationary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

 

Table 3.1: Results of Unit root tests for stationarity of exchange rates series of SADC  

Philip Peron (PP) 

Country At Level At First Difference 

 with 
constant 

with 
constant & 

trend 

without 
constant & 

trend 

with 
constant 

with 
constant & 

trend 

without 
constant & 

trend 

Ang -
15.6059*** 

-15.7253*** -15.5583*** 
-173.3063*** -173.1426*** -173.3355*** 

Bot -0.7001 -2.5896  1.3528 -77.717*** -77.7097*** -77.4364*** 
Com -2.1903 -1.8711  0.1683 -72.8918*** -72.875*** -72.8961*** 
DRC  0.1166 -1.3081  3.1359 -78.2157*** -78.2424*** -78.1626*** 
Esw -0.9914 -1.9254  0.6512 -70.0845*** -70.0832*** -70.0829*** 
Les -0.9175 -1.9469  0.5730 -69.3417*** -69.3418*** -69.3192*** 
Mad -0.0902 -2.3154  1.7923 -100.0044*** -100.0246*** -99.7446*** 
Mal  0.8217 -1.2986  2.6497 -85.9553*** -85.675*** -86.5336*** 
Mau -2.1124 -2.985  0.6906 -104.5472*** -104.5406*** -104.4732*** 
Moz  0.3627 -0.8981  2.3315 -94.9533*** -95.0093*** -94.4992*** 
Nam -0.9175 -1.9469  0.5730 -69.3417*** -69.3418*** -69.3192*** 
Sey -0.9175 -1.9469  0.5730 -69.3417*** -69.3418*** -69.3192*** 
SA -1.3897 -2.5673  0.2915 -94.6826*** -94.6733*** -94.6468*** 
Tanz  0.1504 -2.1539  3.1748 -85.5764*** -85.6723*** -83.7848*** 
Zam  0.0613 -1.4376  1.4814 -64.0479*** -64.0542*** -64.0109*** 

Augmented Dicky-Fuller (ADF) 

Ang -9.68*** -9.9009*** -9.605*** -26.8917*** -26.8888*** -26.8945*** 
Bot -0.7257 -2.3064  1.3216 -77.4437*** -77.4364*** -77.416*** 
Com -2.129 -1.829  0.1776 -72.8498*** -72.8653*** -72.8543*** 
DRC  0.1728 -1.2022  3.2975 -54.1718*** -54.1719*** -53.9776*** 
Esw -1.0067 -1.9656  0.6512 -70.0842*** -70.0832*** -70.0826*** 
Les -0.9764 -1.9955  0.5199 -69.2846*** -69.2841*** -69.2822*** 
Mad  0.1278 -2.0174  2.0942 -49.676*** -49.6842*** -49.61*** 
Mal  0.7415 -1.3372  2.5012 -16.1313*** -16.2073*** -15.9016*** 
Mau -2.0132 -2.7375  0.6394 -22.6497*** -22.6479*** -22.636*** 
Moz  0.4176 -0.8074  2.4452 -31.0641*** -31.0847*** -30.9473*** 
Nam -0.9764 -1.9955  0.5199 -69.2846*** -69.2841*** -69.2822*** 
Sey -0.9764 -1.9955  0.5199 -69.2846*** -69.2841*** -69.2822*** 
SA -1.3736 -2.4655  0.3083 -59.2319*** -59.226*** -59.2277*** 
Tanz  0.1665 -1.8867  3.1593 -17.7017*** -17.7142*** -17.3821*** 
Zam  0.0599 -1.4424  1.4704 -64.0034*** -64.0164*** -63.9746*** 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

Ang  0.7491***  0.2828*** N/A  0.0257  0.0258 N/A 
Bot  7.6516***  0.9922*** N/A  0.0578  0.0452 N/A 
Com  2.3178***  1.7544*** N/A  0.2162  0.0352 N/A 
DRC  7.4896***  0.4155*** N/A  0.1565  0.1285 N/A 
Esw  5.0280***  1.3384*** N/A  0.1011  0.0444 N/A 
Les  5.1245***  1.4219*** N/A  0.1091  0.0420 N/A 
Mad  7.5338***  0.6975*** N/A  0.1034  0.0382 N/A 
Mal  7.1360***  1.9163*** N/A  0.4164*  0.0867 N/A 
Mau  4.6719***  0.4521*** N/A  0.0430  0.0432 N/A 
Moz  5.7232***  1.1159*** N/A  0.2863  0.1319 N/A 
Nam  5.1245***  1.4219*** N/A  0.1091  0.0420 N/A 
Sey  5.1245***  1.4219*** N/A  0.1091  0.0420 N/A 
SA  7.1517***  0.7332*** N/A  0.0484  0.0454 N/A 
Tanz  8.0756***  1.2200*** N/A  0.1059  0.0443 N/A 
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Zam  6.0056***  1.5316*** N/A  0.1903  0.0429 N/A 

Note: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%. 

3.5 Results of the Non-linearity Test  

Table 3.2 shows the results of the univariate non-linearity tests – Teraesvirta's Neural Network 

test, White Neural Network test, Keenan's one-degree test for non-linearity, Tsay's Test for 

non-linearity and the Likelihood ratio test for threshold non-linearity. The non-linearity tests 

indicate that most of the country exchange rate series exhibit non-linear relationships at 

varying levels of significance.  

 

Table 3.2: Results of nonlinearity tests for exchange rates series of SADC 

Returns Teraesvirta's 

Neural Network 

test 

White 

Neural 

Network 

test 

Keenan's one-

degree test for 

non-linearity 

Tsay's Test 

for non-

linearity 

Likelihood ratio 

test for 

threshold non-

linearity 

Ang 228.45*** 74.896*** 10.291** 41.610*** 29.375*** 

Bot 2.151 2.278 46.189*** 25.520*** 63.569*** 

Com 5.182* 3.952 4.038** 5.374*** 86.450*** 

DRC 3.861 3.791 18.714*** 0.695 3.190 

Esw 5.064* 3.706 1.204 0.005 6.419 

Les 5.064* 3.742 1.204 0.005 6.419 

Mad 30.408*** 19.918*** 0.249 9.123*** 116.923*** 

Mal 5.576* 5.763* 1.029 49.75*** 91.950*** 

Mau 4.846* 4.349 6.131** 3.995*** 161.598*** 

Moz 11.211*** 12.156*** 0.661 80.380 147.825*** 

Nam 5.064* 4.411 1.204 0.005 6.419 

Sey 40.534*** 45.139*** 2.572 18.350*** 303.000*** 

SA 5.064* 4.309 1.204 0.005 6.419 

Tanz 0.788 1.389 0.878 16.200*** 36.161*** 

Zam 11.691*** 10.291** 0.328 1.431 13.159** 

[*], [**], and [***] indicate significance at 10%, 5% and 1% levels respectively for the logged 
series. 
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The BDS test in Table 3.3 is shown to assess the independent and identically distributed 

assumption of time series (Adam and Owusu Junior, 2017). This test further detects non-linear 

structures within the observations. The result in Table 3.3 reports the BDS statistic for 

embedding dimensions 2 and 3 for epsilon values from 1 to 4. The BDS test in Table 3.3 

strongly rejects the null hypothesis of independent and identically distributed exchange rates 

fluctuations at 1% significance level.  

Consequently, the nonstationarity and nonlinearity of the exchange rate in SADC require that 

they be modelled with techniques that capture the influence of noise and are able to deal with 

non-stationarity (Chevallier, 2011; Owusu Junior et al., 2021; Enayayi Taebi et al., 2021) to 

ensure reliable estimates for policy decision making.  In response to this, the current study 

proposes empirical based models to study similarities, interdependency and information 

transfer with SADC exchange rate markets. 
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Table 3.3: Results of BDS test for nonlinearity of the exchange rate series of SADC 

m eps statistic eps statistic eps statistic eps statistic 

Ang 

2 1 105.519*** 2 97.067*** 3 89.007*** 4 82.764*** 

3 1 119.990*** 2 97.414*** 3 85.232*** 4 76.943*** 

Bot 

2 1 1252.868*** 2 575.875*** 3 342.600*** 4 263.050*** 

3 1 2549.866*** 2 772.030*** 3 377.230*** 4 259.091*** 

Com 

2 1 435.935*** 2 220.095*** 3 175.203*** 4 169.169*** 

3 1 797.863*** 2 274.234*** 3 185.893*** 4 166.465*** 

DRC 

2 1 195.753*** 2 102.398*** 3 80.340*** 4 88.133*** 

3 1 256.345*** 2 102.698*** 3 77.676*** 4 84.605*** 

Esw 

2 1 559.246*** 2 475.830*** 3 304.879*** 4 221.935*** 

3 1 1042.189*** 2 617.942*** 3 335.802*** 4 221.560*** 

Les 

2 1 559.246*** 2 475.830*** 3 304.879*** 4 221.935*** 

3 1 1042.189*** 2 617.942*** 3 335.802*** 4 221.560*** 

Mad 

2 1 608.311*** 2 374.349*** 3 321.095*** 4 250.981*** 

3 1 1111.481*** 2 535.218*** 3 353.210*** 4 242.341*** 

Mal 

2 1 340.778*** 2 425.453*** 3 289.690*** 4 213.801*** 

3 1 592.472*** 2 549.492*** 3 321.653*** 4 220.149*** 

Mau 

2 1 444.523*** 2 271.102*** 3 221.156*** 4 229.333*** 

3 1 850.495*** 2 350.546*** 3 242.244*** 4 226.909*** 

Moz 

2 1 223.238*** 2 151.076*** 3 141.742*** 4 148.885*** 

3 1 357.106*** 2 178.072*** 3 150.391*** 4 148.383*** 

Nam 

2 1 559.246*** 2 475.830*** 3 304.879*** 4 221.935*** 

3 1 1042.189*** 2 617.942*** 3 335.802*** 4 221.560*** 

Sey 

2 1 518.111*** 2 1881.823*** 3 511.165*** 4 276.466*** 

3 1 764.911*** 2 2500.096*** 3 622.854*** 4 292.112*** 

SA 

2 1 559.246*** 2 475.830*** 3 304.879*** 4 221.935*** 

3 1 1042.189*** 2 617.942*** 3 335.802*** 4 221.560*** 

Tanz 

2 1 1176.602*** 2 398.221*** 3 283.229*** 4 247.950*** 

3 1 2472.961*** 2 539.039*** 3 307.114*** 4 244.652*** 

Zam 

2 1 254.629*** 2 185.351*** 3 161.765*** 4 169.514*** 

3 1 413.925*** 2 222.674*** 3 174.451*** 4 170.546*** 

Note: m and eps denote the embedding dimension and epsilon respectively. [*], [**], and [***] 
indicate significance at 10%, 5% and 1% levels respectively. 
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3.6 Conclusion 

The chapter reviewed ADF, PP and KPSS as tools for examining stationarity property of time 

series, BDS test, NN test, Keenan and Tsay tests, TAR-LR test and Engle LM test  as non-

linear test tool.  The stylised facts of non-stationarity and non-linearity of exchange rate data 

were examined. The results of these tests showed that SADC exchange rate data are non-

stationary and non-linear.  
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CHAPTER 4 

Similarities in Southern African Development Community (SADC) 
Exchange Rate Markets Structure: Evidence from the Ensemble 

Empirical Mode Decomposition 

 

Chapter Summary 

The need for exchange markets coordination in Africa is rooted in the quest of most economic 

blocs to form a monetary union characterised by a single currency and has therefore attracted 

the attention of researchers.  The intrinsic complexity of the exchange rate market hinders 

researchers from producing consistently reliable results. The empirical mode decomposition 

(EMD) is a data-driven signal analysis method for non-linear and non-stationary data. The 

empirical mode decomposition method can be used to divide non-linear signal sequences into 

a group of well-behaved intrinsic mode functions (IMFs) and a residue, so that we can 

compare the similarities. In this chapter, EMD and ensemble empirical mode decomposition 

(EEMD), a modified version of EMD, are applied to the exchange rate series of the Southern 

African Development Community (SADC). By analysing the intrinsic mode functions (IMFs) of 

the EMD and the EEMD, we find that the EEMD method performs better on the orthogonality 

of IMFs than the EMD.  We propose a new way of analysing short and long-run comovement 

through the analysis of the characteristics of IMFs and residue. The analysis of the IMFs and 

residue obtained from EEMD show that the exchange rate series of the SADC are driven by 

economic fundamentals, and 12 of the 15 countries examined show some level of similarity in 

the long-term trend. Our findings have implications for the direction of future SADC monetary 

union. 

 

4.1  Introduction 

The agenda for economic integration by African countries was enshrined in Article II of the 

disbanded Organization for African Unity Charter and Article 3 of the Africa Union Constitution. 

The ultimate goal was to introduce a common currency by the year 2021.  Integration was 

seen as a development tool, in particular, for harnessing resources and capabilities toward 

industrial policy. To fast track the integration process, a two-way approach was adopted where 

each economic community had been encouraged to form a monetary union with a single 

currency which will eventually be brought together to form an economic union for the entire 

continent (Alagidede, Tweneboah and Adam, 2008). 
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Accordingly, most economic communities in Africa such as the Economic Community of West 

African States (ECOWAS), the Common Market for Eastern and Southern Africa (COMESA), 

the Southern African Development Community (SADC), and the East African Community 

(EAC) have embraced the common currency agenda and vigorously pursuing it (UNECA, 

2011). The potential benefits to member states of such union have been extensively studied 

(Mwenda and Muuka, 2001; Misati, Ighodaro, Were and Omiti, 2015). As postulated by the 

Optimum Currency Area hypothesis by Mundell (1961), McKinnon (1963) and Kenen (1969), 

coordination of policy indicators among member countries is desirable for stable monetary 

union. In this regard, exchange rate markets integration has been studied and cited as a key 

indicator for stable monetary union and therefore accurate analysis of exchange rate markets 

integration in Africa is a necessity (Adam, Agyapong and Gyamfi, 2010; Musila and Al-Zyoud, 

2012; Coulibaly and Gnimassoun, 2013; Zehirun, Breitenbach and Kemegue, 2015; Zehirun, 

Breitenbach and Kemegue, 2016). 

The implications of exchange rate coordination on the possible monetary union in SADC, the 

largest regional economic grouping in Africa, have been studied (Khamfula and Huizinga, 

2004; Agbeyegbe, 2009; Zehirun, Breitenbach and Kemegue, 2015; Zehirun, Breitenbach and 

Kemegue, 2016). The findings and recommendations of these studies have been mixed (see 

Asongu, Nwachukwu and Tchamyou, 2015). From the perspective of the heterogeneous 

market hypothesis (HMH), the exchange rate market is made up of heterogeneous participants 

(speculators, central banks, dealers, individuals, etc.) with different information, objective, 

interest and investment behaviour. Hence, the physical measurement of exchange rate data 

suffers from noise, too short span, non-linearity, non-stationarity, and long memory (Xu et al., 

2016). These characteristics make observed exchange rate data difficult to model, limit its 

usage in research and practice (Muller et al., 1993; Ferreira, Moore and Mukherjee, 2019; 

Owusu Junior, Adam and Tweneboah, 2019).   

The empirical mode decomposition (EMD) proposed by Huang et al. (1998) for analysing 

signals characterised by non-linear and non-stationary behaviour presents itself as an 

improved tool for analysing these types of time series.  The EMD is a multiresolution 

decomposition method that decomposes non-stationary and non-linear signals into basis 

functions, IMFs, that are adapted from the signals themselves (Ayenu-Prah and Attoh-Okine, 

2009). The innovation of EMD is the formation of the concept of intrinsic mode function (IMF) 

as the basis function of EMD (Addison et al., 2009; Macelloni et al., 2011; Yang et al., 2007; 

Wang et al., 2012; Hassan and Haque, 2016).  The EMD uses adaptive basis which is 

extracted from the data itself, no a priori basis functions are defined for decomposition.  The 

EMD overcomes the weakness of the competing model to correctly identify the hidden 
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structures embedded in the data structure. In spite of these strengths, the EMD suffers from 

mode-mixing, a single intrinsic mode function (IMF) is either comprised signals of widely 

disparate scales or a signal of a similar scale residing in different IMF components, making 

physical meaning of individual IMF unclear (Hassan and Subasi, 2017; Hassan and Bhuiyan, 

2016a; 2016b). To solve the problem of mode-mixing, noise-assisted extensions were 

developed. The ensemble empirical mode decomposition (EEMD) proposed by Wu and 

Huang (2009) corrects the issue of mode-mixing. Although EMD and EEMD are seen to 

provide a meaningful and superior understanding of time series, their application in exchange 

rates is minimal and non-existent in SADC exchange rate markets. Identification of the 

underlying characteristics of exchange rate price formation in each SADC country could reveal 

drivers of exchange rate market convergence or otherwise within the region and aid in policies 

toward monetary union. Therefore, to accurately understand SADC exchange rate markets 

fundamental behaviour and similarities, they must be decomposed into meaningful 

components of noise, trend and cycles at different timescale. This approach will improve the 

financial time series integration and comovement over detrend fluctuation analysis (DFA) 

(Stošić, Stošić, Stošić, and Stanley 2015; Ferreira, da Silva and de Santana 2019) and 

flavours of wavelet transform (Owusu Junior, Adam and Tweneboah, 2017; Meng and Huang, 

2019) employed in the literature. Consequently, EMD has been used in time series modelling 

in recent literature (Hassan and Bhuiyan, 2017; Xian, He, Wang and Lai, 2020). 

In this chapter, we propose an innovative way of assessing the similarities in the structure of 

SADC exchange rate data series by studying the underlying characteristics through 

descriptive statistics of the IMFs and residue from the discomposed series. We initially 

compared the performance of EMD and EEMD in obtaining well-behaved IMFs from the 

decomposition of exchange rates series in each of the SADC countries for further analysis.  

The study contributes to the literature by comparing the performance of EMD and EEMD in 

decomposing exchange rate data for the first time and studying the underlying characteristics 

of exchange rates in SADC using the descriptive statistics of the IMFs and residue. This 

improves the analysis compared to traditional methods like cointegration and reveals 

comovement structure at different timescales.  

We observed through analysing the intrinsic mode functions (IMFs) of EMD and EEMD that 

EEMD method performs better on the orthogonality of IMFs than EMD.  The analysis of the 

IMFs and residue obtained from EEMD showed that exchange rate markets in SADC are 

driven by economic fundamentals and 12 out of 15 countries examined showed some level of 

similarity in the long-term trend. Our findings have implications for the direction of future SADC 

monetary union. 

https://scholar.google.com/citations?user=8uNSCrEAAAAJ&hl=en&oi=sra
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The rest of the chapter is structured as follows. Section 2 introduces the methods employed 

in the study and section 3 describes the exchange rate data of SADC used in the study. 

Section 4 presents the analysis and the results, and section 5 provides the conclusions and 

recommendations.  

 

4.2 Empirical mode decomposition methodology 

EMD is a dyadic filter bank in the frequency domain (Flandrin, Rilling and Goucalves, 2004). 

The goal of the empirical mode decomposition is to decompose the original data (non-

stationary and non-linear data) to the IMFs and the residue. The EMD is a fully data-driven 

decomposition method and IMFs are derived directly from the signal itself.  As indicated by 

Huang et al. (1998), an IMF must satisfy two criteria: 

1. The number of extrema and the number of zero crossings must either be equal or differ 

at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

The first condition forces an IMF to be a narrow-band signal with no riding waves. The second 

condition ensures that the instantaneous frequency will not have fluctuations arising from an 

asymmetric waveform (Huang et al.,1998). 

The IMFs are obtained through a process called a sifting process which uses local extrema to 

separate oscillations starting with the highest frequency. Given a time series  𝑥(𝑡), 𝑡 =

1,2,3,… . ,𝑀,  the process decomposes it into a finite number of functions, denoted as 

𝐼𝑀𝐹𝑘(𝑡), 𝑘 = 1, 2, 3, … . . , 𝑛 and a residue 𝑟𝑛(𝑡). The residue is the non-oscillating drift of the 

data. If the decomposed data consist of uniform scales in the frequency space, the EMD acts 

as a dyadic filter and the total number of IMFs is approximately equal to 𝑛 = 𝑙𝑜𝑔2(𝑀) (Flandrin, 

Rilling and Goucalves, 2004). At the end of the decomposition process, the original time series 

can be reconstructed as 

                                      𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑘(𝑡)
𝑛
𝑖=1 + 𝑟𝑛(𝑡).                                                      4.1                         

According to Huang et al. (1998), the EMD comprises the following steps: 

1. Initialise the residue to the original time series 𝑟0(𝑡) = 𝑥(𝑡) and set the IMF index 𝑘 =

1. 

2. To extract the kth IMF: 

(a) initialise ℎ0(𝑡) = 𝑟𝑘−1(𝑡) and the iteration counter 𝑖 = 1; 

(b) find the local maxima and the local minima of ℎ𝑖−1(𝑡);  
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(c) create the upper envelope 𝐸𝑢(𝑡) by interpolating between the local maxima 

(lower envelope 𝐸𝑙(𝑡) by interpolating the local minima, respectively);  

(d) calculate the mean of both envelopes as; 

 𝑚𝑖−1(𝑡) =
𝐸𝑢(𝑡)+𝐸𝑙(𝑡)

2
                                                                         4.2 

(e) subtract the envelope mean from the input time series, obtaining; 

  ℎ𝑖(𝑡) = ℎ𝑖−1(𝑡) − 𝑚𝑖−1(𝑡)                                                              4.3 

(f) verify if ℎ𝑖(𝑡) satisfies the IMFs conditions: 

 

• If ℎ𝑖(𝑡) does not satisfy the 𝐼𝑀𝐹′𝑠 conditions, increase 𝑖 = 𝑖 + 1 and repeat the 

shifting process from step b. 

• If ℎ𝑖(𝑡) satisfies the 𝐼𝑀𝐹′𝑠 conditions, set 𝐼𝑀𝐹𝑘(𝑡) = ℎ𝑖 and define 

             𝑟𝑘(𝑡) = 𝑟𝑘−1(𝑡) − 𝐼𝑀𝐹𝑘(𝑡).                                                   4.5 

3. When the residue 𝑟𝑘(𝑡) is either a constant, a monotonic slope or contains only one 

extremum, stop the process, otherwise continue the decomposition from step 2, setting 

𝑘 = 𝑘 + 1. 

The standard form of EMD has a problem called mode mixing. This is defined as either a 

single IMF consisting of widely disparate scales, or a signal of similar scale captured in 

different IMFs. To overcome mode mixing, two noise assisted methods have emerged as 

improvements of EMD. Ensemble Empirical Mode Decomposition (EEMD) adds a fixed 

percentage of white noise to the signal before decomposing it and thus improves the mode-

mixing problem. For time series, 𝑥(𝑡), the EEMD includes the following steps: 

a. Generate a new signal of 𝑦(𝑡) by superposing to 𝑥(𝑡) a randomly generated white 

noise with an amplitude equal to a certain ratio of the standard deviation of 𝑥(𝑡). 

b. Perform the EMD algorithm on 𝑦(𝑡) to obtain the IMFs. 

c. Repeat steps 1 to 2 for 𝑚 times with different white noise to obtain an ensemble of 

IMFs {𝐼𝑀𝐹𝑘
1(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, {𝐼𝑀𝐹𝑘

2(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, . .., {𝐼𝑀𝐹𝑘
𝑚(𝑡), 𝑘 = 1, 2, . . . , 𝑛}. 

d. Calculate the average of IMFs {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 2, . . . , 𝑛}, where 𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1 𝑚⁄ ∑ 𝐼𝑀𝐹𝑘
𝑖𝑚

𝑖 (𝑡). 

The importance of the process is that the observed data are a combination of true time series 

and noise and that the ensemble means of data with different noises are closer to true time 

series. Therefore, the addition of white noise as an additional step to the EMD steps may help 

to extract the true IMF by offsetting the noise through ensemble averaging (Chen and Pan, 

2016). Though the empirical mode decomposition has been questioned about the exactness 

reconstruction (Hassan and Haque, 2015; Hassan and Subasi, 2017), it has some attractive 

properties which make it preferred in decomposing signals. First, it has the ability to 
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decompose non-stationary and non-linear data into simple independent IMFs, making it 

attractive. Again, since the decomposition is based on the local characteristic time scale of the 

data and only extrema are used in the sifting process, it is local, self-adaptive, concretely 

implicational and highly efficient (Huang et al., 1998; Zhang et al., 2008).  

 

4.3 Data Description 

The data employed for the study is daily real exchange rates from 15 out of 16 member 

countries of the SADC from 3rd January, 1994 to 7th January 2019, obtained from Thomson 

Reuters DataStream. The countries included are Angola, Botswana, Comoros, Democratic 

Republic of Congo, Eswatini (formerly Swaziland), Lesotho, Madagascar, Malawi, Mauritius, 

Mozambique, Namibia, Seychelles, South Africa, Tanzania and Zambia. The choice of the 

study window and countries was based on the availability of adequate, consistent data for 

robust analysis and the period after which South Africa, the largest economy, joined SADC. 

Based on the criteria, Zimbabwe was excluded from the analysis.  The real exchange rate 

used was nominal domestic currency per the US Dollar (USD) multiplied by the domestic 

consumer price index divided by the US consumer price index. The USD is chosen for this 

analysis because of the dominance of USD in international trade by these countries and the 

extent of dollarisation in most SADC countries. Figure 4.1 shows the plot log of daily national 

currency to US dollar from 3rd January, 1994 to 7th January 2019. 
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Figure 4.1: Plot of Log of National Currency to US dollar Exchange Rate of 15 SADC 

Countries 

4.4 Results and Analysis 

 We begin the analysis by first applying the EMD and EEMD methods to the daily real domestic 

currency/USD exchange rate to obtain individual 11 IMFs for each country’s exchange rate for 

both methods.  The corresponding exchange rates obtained through EMD and EEMD look 

similar, but not identical. Figures 4.2 and 4.3 respectively display the IMFs obtained by EMD 

and EEMD for the case of South Africa. The figures show an indication of the difference in the 

behaviour of IMFs concerning EMD and EEMD. We followed Xu et al. (2016) to first assess 

the orthogonality of IMFs from both EMD and EEMD by computing the correlation between 

any two different IMFs and presented, for example, those of Botswana in Figures 4.4 and 4.5 
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respectively. We observed from Figure 4.4 that IMF8-IMF11 from EMD correlation coefficients 

are the largest compared to the rest in the figure. The plots for all other countries are presented 

in Figure 4.6 as supplementary plots for EMD. On the contrary, EEMD obtained correlations 

between any two IMFs which are closer to 0 as shown in Figure 4.5 for Botswana. The same 

was true for all other countries. The plots of all other countries are presented in Figure 4.7 as 

supplementary plots for EEMD. Next, we find the sum of the absolute correlation coefficients 

between any two IMFs from EMD and obtained 4.98 and 4.12 from EEMD for the case of 

South Africa. A similar pattern was observed in other countries. A decomposition with least 

absolute correlation coefficients between any two IMFs is deemed to perform better. We 

conclude on the performance of the EMD and EEMD by examining the equality of the means 

of the average absolute correlation coefficient between any two IMFs using the paired t-test. 

The results showed that there was no significant difference between the values from EMD 

(𝑀𝑒𝑎𝑛⁡(𝑀) = 0.094, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝜎) = 0.00053) and values from EEMD (𝑀 =

0.098, 𝜎 = 0.00024); 𝑡(14) = 0.841, 𝑝 = 0.2072)(see Table 4.1)  Based on the variance, we 

find EEMD to be more suitable for analysing the similarity structure of exchange rate markets 

in SADC because it performs more stably for the 15 exchange rate markets. 

 

Table4. 1:  Test of Equality of means of Absolute Correlations of EEMD and EMD 

t-Test: Paired Two Sample for Means     

      

  EEMD EMD 

Mean 0.098069494 0.094123111 

Variance 0.000000571 0.000002809 

Observations 15 15 

Pearson Correlation 0.11529037   

Hypothesized Mean Difference 0   

df 14   

t Stat 0.840667525   

P(T<=t) two-tail 0.207279271   

t Critical two-tail 2.144786688   
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Figure 4.2 IMFs of real exchange rate of South Africa obtained by EMD 
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Figure 4.3 IMFs of real exchange rate of South Africa obtained by EEMD 

 

Figure 4.4 The correlation coefficients between any two IMFs of Botswana from EMD 
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Figure 4.5 The correlation coefficients between any two IMFs of Botswana from EEMD. 

 

 

We proceed to analyse the similarities of the exchange rate series of SADC by using statistics 

of the IMFs obtained from EEMD and the structure of the residue. These two measures have 

been used to analyse similarity in structure in previous studies (see Zhang, Lai and Wang, 

2008; Bai, Zhang and Zheng, 2011; Zhang, Zheng, Bai and Liu, 2014). The advantage of this 

approach over the traditional comovement and cointegration approaches lies in its ability to 

efficiently decompose the series so that similarity of the structure at different modes is 

analysed devoid of noise or irregularity in the series.  

The following statistics of IMFs are computed: mean period of each IMF, correlations between 

each IMF and the original data series, variance percentage of each IMF relative to that of the 

original data series, and also to the sum of all IMFs and residue. The mean period is defined 

as the ratio of the total number of points to the number of peaks for each IMF, and the 

correlation is the Pearson product moment correlation coefficient. As noted by Zhang et al. 

(2008), variance percentage of each IMF to the original data series can be used to explain the 

contribution of each IMF relative to the total volatility of the original data. 

Table 4.1 presents the statistics of each IMF from EEMD of 15 countries included in this study. 

The evidence from Table 4.1 indicates that the dominant modes of the observed data are the 

residue in most cases. The Pearson correlation coefficient between the residue and the 

observed data for all the countries ranges between 0.74 and 0.97 except for Angola, which is 
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0.26. The dominant modes of Angola are the IMF6 and IMF7, with each having a correlation 

coefficient of more than 0.5. Again, we observed that the variances of the residue explain a 

greater proportion of the total volatility in the observed data series. As has been documented 

in the empirical mode decomposition literature (Huang et al., 1998; Bai et al., 2011; Xu et al., 

2016) the residue depicts the deterministic long-term behaviour. This implies that exchange 

rate markets in SADC are driven mostly by fundamentals, which, in turn, are most likely rooted 

in macroeconomic economic fundamentals (Redda and Muzindusti, 2017).  The IMFs statistic 

of four countries Eswatini, Lesotho, Namibia and South Africa are the same for the period 

studied (see Table 4.2). This is not surprising as there had been the existence of Common 

Monetary Area (CMA) made up of these four countries, rooted in de facto currency area since 

1975, in which currencies of Eswatini, Lesotho and Namibia are issued at par with South 

African Rand (Jordaan, 2015; Masha, Wang, Shirono and Harris, 2007). 
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Table 4.2 Measures of IMFs and the residue for SADC exchange rate series derived through EEMD 

Country IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9 IMF 10 IMF 11 Residue 

Angola             
𝜇 1.41 2.42 4.41 8.02 14.98 30.84 58.63 143.9 791.5 2374.1 2374.1  
𝜌 0.00 0.14 0.41*** 0.37** 0.17 0.51** 0.56*** 0.25** 0.09 -0.06 -0.05 0.26** 

𝜎1
2 4.99% 14.72% 12.08% 7.96% 25.36% 20.83% 1.64% 1.83% 5.37% 40.25% 13.87% 144.78% 

𝜎2
2 4.99% 14.72% 12.08% 7.96% 25.36% 20.83% 1.64% 1.83% 5.37% 40.25% 13.87% 144.78% 

Botswana             
𝜇 1.41 2.73 5.22 10.08 20.38 42.03 110.44 263.83 949.8 1187.25 4749  
𝜌 0.01 0.02 0.02 0.04 0.04 0.12** 0.14** -0.07 0.57*** 0.80*** 0.47*** 0.94*** 

𝜎1
2 0.03% 0.01% 0.02% 0.03% 0.06% 0.18% 0.61% 3.12% 4.79% 0.20% 0.03% 77.17% 

𝜎2
2 0.03% 0.01% 0.02% 0.03% 0.06% 0.18% 0.61% 3.12% 4.79% 0.20% 0.03% 77.14% 

Comoros             
𝜇 1.39 2.78 5.23 10.01 20.64 45.66 105.53 215.86 431.2 678.42 949.8  
𝜌 0.03 0.03 0.04 0.06 0.06 0.10* 0.23** 0.28** 0.65*** 0.48*** 0.80*** 0.85*** 

𝜎1
2 0.05% 0.03% 0.05% 0.10% 0.29% 0.69% 3.66% 4.09% 5.45% 5.41% 0.16% 48.32% 

𝜎2
2 0.05% 0.03% 0.05% 0.10% 0.29% 0.69% 3.65% 4.09% 5.45% 5.41% 0.16% 48.29% 

DRC             
𝜇 1.39 2.49 4.68 8.91 19.15 42.78 94.98 237.45 593.63 1187.25 2374.5  
𝜌 0.01 0.01 0.01 0.02 0.03 0.03 -0.27* 0.18* 0.28** -0.26** -0.69*** 0.94*** 

𝜎1
2 0.02% 0.01% 0.01% 0.01% 0.03% 0.05% 0.22% 1.01% 2.05% 5.82% 0.99% 133.16% 

𝜎2
2 0.02% 0.01% 0.01% 0.01% 0.03% 0.05% 0.22% 1.00% 2.04% 5.82% 0.99% 133.08% 

Eswatini             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1586 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22** 0.18** 0.07 0.61*** 0.63*** 0.77*** 0.87*** 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 
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Table 4.2 Continued 

Lesotho             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1586 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22** 0.18** 0.07 0.61*** 0.63*** 0.77*** 0.87*** 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Madagascar             
𝜇 1.39 2.62 4.85 10 20.83 47.97 110.44 226.14 678.43 1187.25 4749  
𝜌 0.02 0.02 0.02 0.03 0.06 0.11** 0.08 0.02 0.16 0.46*** 0.42*** 0.94**** 

𝜎1
2 0.04% 0.01% 0.01% 0.02% 0.06% 0.18% 0.58% 1.31% 3.21% 2.87% 0.01% 86.37% 

𝜎2
2 0.04% 0.01% 0.01% 0.02% 0.06% 0.18% 0.58% 1.31% 3.21% 2.87% 0.01% 86.33% 

Malawi             
𝜇 1.39 2.49 4.73 8.59 19 37.99 91.33 197.88 593.63 1583 4749  
𝜌 0.00 0.00 0.01 0.02 0.04 0.02 0.05 -0.09 0.39*** 0.18** 0.58*** 0.97*** 

𝜎1
2 0.01% 0.00% 0.00% 0.00% 0.01% 0.07% 0.19% 0.31% 0.78% 2.69% 0.05% 90.95% 

𝜎2
2 0.01% 0.00% 0.00% 0.00% 0.01% 0.07% 0.19% 0.31% 0.77% 2.69% 0.05% 90.89% 

Mauritius             
𝜇 1.38 2.66 5.09 10.19 20.92 54.58 163.75 365.31 678.4 1583 4749  
𝜌 0.04 0.04 0.04 0.06 0.11** 0.18** 0.32** 0.37*** 0.20** 0.10** 0.10** 0.74*** 

𝜎1
2 0.17% 0.06% 0.04% 0.11% 0.42% 0.84% 5.69% 12.71% 10.89% 1.98% 0.02% 83.27% 

𝜎2
2 0.17% 0.06% 0.04% 0.11% 0.42% 0.84% 5.69% 12.70% 10.88% 1.98% 0.02% 83.22% 

Mozambique             
𝜇 1.36 2.58 4.82 9.52 20.74 40.94 98.94 296.81 678.4 2374.1 2374.1  
𝜌 0.01 0.01 0.01 0.02 0.03 0.00 -0.06 0.14** 0.74*** 0.00 -0.33*** 0.88*** 

𝜎1
2 0.03% 0.01% 0.01% 0.02% 0.05% 0.14% 0.78% 3.33% 7.20% 2.38% 0.33% 83.03% 

𝜎2
2 0.03% 0.01% 0.01% 0.02% 0.05% 0.14% 0.78% 3.33% 7.19% 2.38% 0.33% 82.98% 
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Table 4.2 Continued 

Namibia             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1583 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22** 0.18** 0.07 0.61*** 0.63*** 0.77*** 0.87*** 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Seychelles             
𝜇 1.37 2.57 4.81 9.37 19.07 43.97 98.94 215.86 593.63 1583 2374.5  
𝜌 0.03 0.02 0.03 0.04 0.04 0.05 0.12 0.17 -0.01 0.31*** 0.84*** 0.87*** 

𝜎1
2 0.07% 0.03% 0.04% 0.06% 0.11% 0.26% 2.45% 2.27% 4.92% 5.38% 1.57% 78.57% 

𝜎2
2 0.07% 0.03% 0.04% 0.06% 0.11% 0.26% 2.44% 2.27% 4.92% 5.38% 1.57% 78.51% 

South Africa             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1583 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22*** 0.18** 0.07 0.61*** 0.63*** 0.77*** 0.87*** 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Tanzania             
𝜇 1.4 2.5 4.88 9.52 19.62 39.91 105.53 226.14 593.63 1583 4749  
𝜌 0.01 0.01 0.02 0.03 0.02 0.03 0.00 -0.27** 0.26** -0.11** -0.16** 0.98*** 

𝜎1
2 0.02% 0.01% 0.01% 0.01% 0.02% 0.04% 0.13% 0.68% 1.65% 0.77% 0.04% 104.69% 

𝜎2
2 0.02% 0.01% 0.01% 0.01% 0.02% 0.04% 0.13% 0.68% 1.65% 0.77% 0.04% 104.63% 

Zambia             
𝜇 1.39 2.6 5.12 9.89 21.3 42.4 103.24 226.14 474.9 678.43 949.8  
𝜌 0.02 0.02 0.02 0.03 0.07 0.14** 0.05 -0.35*** 0.55*** 0.13** 0.10** 0.91*** 

𝜎1
2 0.03% 0.02% 0.03% 0.07% 0.17% 0.47% 0.99% 6.67% 4.49% 2.88% 0.12% 103.79% 

𝜎2
2 0.03% 0.02% 0.03% 0.07% 0.17% 0.47% 0.99% 6.67% 4.48% 2.88% 0.12% 103.74% 

𝜇 = mean period (days), 𝜌 = Pearson correlation coefficient, 𝜎1
2 = variance as % of observed, ⁡𝜎2

2 = variance as % of the sum of all 

IMFs and Residue. Note *,**,and *** indicate significance at 10%, 5% and 1% levels.  
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Having observed that the dominant mode in almost all cases is the residue, we follow Bai et 

al. (2011) to compare the residues. The closer the residues are, the more similar the exchange 

rate markets are. The residual graph offers an easy way to judge the similarities of the 

exchange rate market in SADC. Figure 4.6 shows that there is a similarity in the structure of 

12 out of 15 countries included in the study with CMA countries being stronger. The only 

exceptions are Angola, Comoros and Seychelles and the obvious outliers are Angola and 

Comoros. Comoros recently joined SADC and that could explain its deviation from most of the 

SADC countries. The case of Angola could be originated from Angola’s nonparticipating in the 

SADC free trade area until August 2019 and Common Market for Eastern and Southern Africa 

(COMESA) which could result in the economic integration of member countries and price 

convergence, thereby increasing comovement of the exchange rate (Alagidede et al., 2008). 

The similarity in structure of exchange rate markets of at least 12 countries in SADC presents 

some hope for the possible monetary union by expanding the existing CMA to accommodate 

those new countries orientating toward CMA countries. The monetary policy response to 

prices have always been to core prices (Eckstein,1981; Wang et al., 2019) and therefore 

findings that there are similarities in the core exchange rate gives policymakers comfort as far 

as the exchange rate is concerned.  
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Figure 4.4 The residue comparison plots 
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4.5 Conclusion   

The purpose of the study was to investigate the similarities in exchange rate markets in SADC 

using EMD and EEMD. The real exchange rate data of 15 SADC countries were decomposed 

into several independent intrinsic modes and residue using EMD and EEMD. We compared 

the performance of the two through comparison of the Pearson correlation coefficient of the 

IMFs from both methods. The EEMD performed better on the orthogonality of IMFs than EMD 

and proved to be more stable for the 15 countries. The IMFs and residue obtained from the 

EEMD method for the 15 countries were analysed for similarity in structure using the IMFs 

statistics and graph of the residue. We observed from the IMF statistics that the residue is the 

dominant mode in almost all cases; the Pearson correlation coefficient between the residue 

and the observed series were very strong and variances of the residues explain a greater 

proportion of the total volatility in the observed data series, except for Angola. This implies that 

SADC shares common economic ties which can facilitate common monetary policy in a 

currency union. This indicates that exchange markets in SADC are driven mostly by 

fundamentals, but not exchange rate markets’ short-term fluctuations. The plots of the 

residues showed similarity in at least 12 countries excluding Angola, Comoros and Seychelles, 

again with Angola and Comoros being obvious outliers, but showing some form of orientation 

toward the SADC market structure.    

By these findings, we see some hope that SADC can form a monetary union and recommend 

gradual formation by expanding the existing CMA. This would accommodate those new 

countries orientating toward CMA countries taking into consideration other economics agents 

necessary for optimum currency area such as business cycle synchronisation and 

macroeconomic convergence. 
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Figure 4.5 Supplementary Plots of IMFs from EMD of Other countries 
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Figure 4.6  Supplementary Plots of IMFS from EEMD of Other Countries 
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CHAPTER 5 

Multifrequency Network for SADC Exchange Rate Markets using 
EEMD-based DCCA 

 

Chapter Summary 

We used the detrended cross-correlation analysis (DCCA) method based on ensemble 

empirical mode decomposition (EEMD) to study the dynamic interdependence structure of 

daily domestic currency to US dollar exchange rates of 15 Southern African Development 

Community (SADC) exchange rate markets. We first decomposed all series into intrinsic mode 

functions using EEMD and reconstructed the series into three frequency modes: high-, 

medium- and low frequency, and residue. The DCCA method was used to analyse the cross-

correlation between the various frequencies, residues and original series. These were meant 

to address the non-linearity and non-stationarity in observed exchange rate data. Finally, we 

formed a correlation network from the cross-correlation coefficients in all cases which revealed 

rich information that would not have been obtained from the original series. We observed that 

similarities between the nature of cross-correlation between high-frequency series mimic the 

original series and the significant cross-correlation among the long-term trend of most SADC 

countries exchange rate markets. The innovation of this chapter is to combine EEMD with 

DCCA to study the multifrequency cross-correlations of exchange rate markets, which can 

provide policymakers a deeper understanding of the dynamics of exchange rate markets 

toward the formation of currency unions. 

 

5.1 Introduction 

The Article 3 of the Africa Union Constitution adapted from the Article II of the disbanded 

Organisation for African Unity Charter has a bigger agenda for economic and financial 

integration with the goal of introducing a common currency for Africa by the year 2021.  To 

developing regions, economic and financial integration are seen as a panacea to harnessing 

resources and capabilities of individual countries toward economic development (Kreinin and 

Plummer, 2002). This is corroborated by Jefferis (2007) who classified benefits of economic 

and financial integration into four main areas. Firstly, it provides an “agency of restraint” that 

will reduce the ability of governments to pursue irresponsible and destabilising 

macroeconomic policies. Secondly, economic integration acts as a bulwark against currency 

speculation and contagion effects that could add to exchange rate volatility. Thirdly, it supports 
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the exploitation of economies of scale in the financial sector, with accompanying efficiency 

benefits. Lastly, it exploits the traditional optimum currency area (OCA) benefits, i.e., the 

potential gains to trade from reduced transaction costs and exchange rate uncertainty, a net 

of potential losses resulting from reduced national policy autonomy and constrained ability to 

react and adjust to economic shocks. 

The economic and financial integration process in Africa was envisioned to follow a two-way 

approach in which each economic community has been encouraged to form a monetary union 

with the intention to form Africa-wide financial integration with single currency (Alagidede, 

Tweneboah and Adam, 2008). This has caused several economic blocs vigorously pursuing 

currency union of which the Southern African Development Community (SADC) is no 

exception (Adam et al., 2021). 

Southern African Development Community (SADC), the largest regional economic grouping 

in Africa, has vigorously pursued an integration agenda with the aim of becoming a monetary 

union with a common currency. The formation of SADC was aimed at promoting regional 

cooperation and integration, economic growth, socio-economic development, and durable peace 

and security among its member states. The SADC has over the years been successful in 

promoting regional peace and security and economic development for the betterment of the SADC 

region’s most important resources — its people. These include the negotiation of vital government 

reforms and peaceful transition of political power in Lesotho; resolution of the border dispute 

between Zambia and the Democratic Republic of Congo; mobilisation of resources to address 

energy shortages that threaten regional development and economic integration; and many 

others.  

Exchange rate market integration is a particular aspect of the broader issue of financial 

integration needed for coordination of policy indicators among member countries of a 

monetary union to achieve a stable monetary union as postulated by the Optimum Currency 

Area (OCA) hypothesis (Mundell, 1961; McKinnon, 1963; Kenen, 1969). Accordingly, 

exchange rate markets integration in various economic communities have been studied and 

cited as a key indicator for stable monetary union (Adam, Agyapong and Gyamfi, 2010; 

Coulibaly and Gnimassoun, 2013; Zehirun, Breitenbach and Kemegue, 2015; Zehirun, 

Breitenbach and Kemegue, 2016). 

The readiness of SADC to form a monetary union has been studied within the OCA hypothesis 

and conclusions from these studies suggest that SADC as a whole is not ready yet (Tipoy, 

2015; Kumo, 2011; Zerihun, Breitenbach and Kemegue, 2014). Rose (2008) posits that OCA 

convergence can be achieved ex-post than ex-ante, however, macro-economic coordination 
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is required. Fritz and Mühlich (2010) corroborated this view and assert that uncoordinated 

macroeconomic policies in south-south economic integration have been a root cause of 

unsuccessful attempts towards monetary integration. The exchange rate has been cited as 

central to economic activity, as it affects and is being affected by all other policies, making 

policy coordination and harmonisation essential for the success of a common currency 

(Zehirun, Breitenbach and Kemegue, 2015). 

 

In this regard, several studies have delved into the implications of exchange rate coordination 

on the possible monetary union in SADC area (Khamfula and Huizinga, 2004; Agbeyegbe, 

2009; Zehirun, Breitenbach and Kemegue, 2015; Asongu, Nwachukwu and Tchamyou, 2015; 

Zehirun, Breitenbach, and Kemegue, 2016). Putting Rational Expectation Theory (RET) and 

the Efficient Market Hypothesis (EMH) under one umbrella and based on the assumptions of 

the EMH and RET, participants in the exchange rate market act rationally and homogeneously. 

This is because EMH suggests that market prices reflect all available information, news and 

events that come to the market are normally distributed leading to a lack of asymmetry of 

information (Fama, 1970). However, Shiller (2000) argues that most market participants are 

not smart, but rather follow ‘trends and fashion’ in their decision making.  Therefore, the 

participants of the exchange rate market (speculators, central banks, dealers, individuals, etc.) 

are heterogeneous with different information, objective interest and investment behaviour as 

explained by the Heterogeneous Market Hypothesis (HMH) (Müller et al., 1993). Thus, the 

price and data generation of the exchange rate are mixed and noisy. In addition, the physical 

measurements of exchange rate data have been found to suffer from one or more of the 

following problems: short data span, non-stationarity, non-linearity, and long memory (Xu et 

al., 2016; Ferreira, Moore and Mukherjee, 2019), limiting its usage in research and practice. 

This implies that the use of symmetric models in analysing exchange rate data could lead to 

spurious results and conclusion.   

The introduction of empirical mode decomposition (EMD) by Huang et al. (1998) presents a 

new way of analysing non-linear and non-stationary data.  EMD method is intuitive, direct, 

posteriori and adaptive. EMD performs a time-adaptive decomposition of a complex signal into 

elementary, almost orthogonal components that do not overlap in frequency. By decomposing 

a time series into a small number of independent and concretely implicational intrinsic modes 

based on scale separation, EMD explains the generation of time-series data from an 

alternative perspective. This would be an improvement in the analysis of exchange rate market 

data over detrended fluctuation analysis (DFA) (Stošić, Stošić, Stošić, and Stanley, 2015; 

Ferreira, da Silva and de Santana, 2019) and wavelet transform (Owusu Junior, Adam and 

Tweneboah, 2017; Meng and Huang, 2019) employed in recent literature.  As useful as EMD 
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is, it suffers from the problem of mode-mixing. The ensemble empirical mode decomposition 

(EEMD) proposed by Wu and Huang (2009) corrects the issue of mode-mixing.  

Exchange rate markets integration has been studied using several approaches, with the use 

of correlations and cointegration tests probably being the most common. As noted by Pereira 

et al. (2019), the evolution of methodology and data availability has led to multiple types of 

studies, with linear and non-linear methodologies, but also in different countries and regions. 

The commonest among these methods are the corelation based approaches such as dynamic 

correlation analysis (Engle, 2002), asymmetric dynamic correlation (Toyoshima, Tamakoshi, 

and Hamori, 2012; Tamakoshi and Hamori, 2013), cross-correlation function (Cheung and Ng, 

1996; Nakajima and Hamori, 2012) and detrended cross-correlation analysis (DCCA) 

(Podobnik and Stanley, 2008). The DCCA has become the most extensively adopted methods 

to measure cross-correlation among non-stationary financial time series.  

In this chapter, we propose an EEMD-based DCCA model to build a multifrequency network 

of exchange rate markets in SADC at different frequency scales. The DCCA is based on 

Zebende (2011) method to investigate the cross-correlation power laws between two 

simultaneous time series, called Detrended Cross-Correlation Analysis (DCCA).  The EEMD-

based DCCA model provides two innovations in examining exchange coordination over the 

existing studies. Firstly, it offers the opportunity to understand the extent of cross-correlation 

at different frequency scales. Secondly, the cross-correlation of the exchange rate series 

provide information on fundamental independence. The study contributes to the literature on 

exchange rate dependencies by introducing a new approach to the analysis of multifrequency 

interdependence. The findings allow us to gain new insight into the cross-correlations of 

exchange rate series. 

 

The analysis of the high-, medium- and low frequencies together with the residue and the 

original series show that the observed series mimic the behaviour of the high frequency.  The 

results from the residue, representing the deterministic trend, showed that SADC countries’ 

long-run economic fundamentals are linked. These findings suggest the possibility of currency 

union formation in SADC, albeit policy direction, to address the difference in business cycle 

synchronisation. The innovation of this chapter is to combine EEMD with DCCA to study the 

multifrequency cross-correlations of exchange rate markets, which can provide policymakers 

a deeper understanding of the dynamics of exchange rate markets toward the formation of 

currency unions. 
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The rest of the chapter is structured as follows. Section 5.2 presents the literature review; 

Section 5.3 introduces the methods employed in the study and Section 5.4 describes the 

exchange rate data of SADC used in the study. Section 5.5 presents the results and analyses. 

Section 5.6 highlights the policy implications and concludes in Section 5.7. 

 

5.2 Literature Review 

Following the Rose (2008) proposition that a group of countries proposing to form a currency 

union need not meet the OCA convergence criteria ex-ante, but can be achieved ex-post with 

considerable macro-economic coordination, several studies have emerged to assess the 

readiness of various economic groupings from this perspective. According to Zehirun, 

Breitenbach and Kemegue (2015), exchange rate is key and linked to all economic activities, 

making its policy coordination and harmonisation essential for the success of a common 

currency. This corroborates the assertion of Inci and Lu (2004) that the exchange rate is 

sensitive to many economic factors such as money supply, inflation rates, economic growth 

rates, and trade variables in domestic and foreign economies. 

 

Owing to this, a number of studies seeking to assess the readiness of the regional bloc 

have focused on the coordination of exchange rates across different blocs (see, Mai, Chen, 

Zou and Li 2018; Owusu Junior, Adam and Tweneboah, 2017; Abdalla, 2012; Baig, 2001; 

Baxter and Stockman, 1989; Ghosh, Gulde-Wolf and Wolf, 2002; Hsing, 2007; Lin, 2012; 

Orlov, 2009; Reboredo and Rivera-Castro, 2013). Mai, Chen, Zou and Li (2018), for example, 

employed a correlation network to analyse the exchange rate among Asian currencies.  

Owusu Junior, Adam and Tweneboah (2017), on the other hand, employed wavelet analysis 

to examine exchange rate coordination in the West African Monetary Zone. Within the SADC 

region, Khamfula and Huizinga (2004), Agbeyegbe (2009), Asongu, Nwachukwu and 

Tchamyou (2015), and Zehirun, Breitenbach and Kemegue (2014, 2015, 2016) have 

examined the extent of exchange coordination and implication for monetary union.  Zehirun, 

Breitenbach and Kemegue (2014, 2015, 2016) employed panel cointegration, unit root and 

pool mean group to examine the coordination of exchange rates in SADC and made 

interesting conclusions about the readiness of SADC for the single currency. Similarly, the 

GARCH framework and other frequency invariant methods have been utilized to understand 

the extent of exchange rate independence in the SADC area (see, Khamfula and Huizinga, 

2004; Asongu, Nwachukwu and Tchamyou, 2015). Unfortunately, these techniques are 

unable to reveal the dynamic structure of the data and cover the frequency domain of 

comovements associated with exchange rate markets. The nature of exchange rate data is 
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such that using earlier methodologies is insufficient for a detailed understanding. We need to 

decompose the exchange-rate data into various frequencies to fully appreciate the dynamic 

interdependence of the data. Bailliu and King (2005) emphasised the need to use a model that 

can help economists to extract better high-frequency signals about the economy from 

apparently noisy exchange rate movements to provide a well-specified model of exchange 

rate movements over all time horizons. 

5.3 Methodology 

The methodology employed is such that the EEMD is combined with DCCA to produce cross-

correlation coefficients at different frequencies and presented in a network form. The next 

subsections outline the EEMD and DCCA algorithms.  

5.3.1 Ensemble empirical mode decomposition 

The EEMD is an improvement of the EMD-based signal processing method to solve the easy 

mode mixing effect of EMD. The EMD is a dyadic filter bank in the frequency domain (Flandrin, 

Rilling and Goucalves, 2004). The goal of the empirical mode decomposition is to decompose 

the original data (non-stationary and non-linear data) into intrinsic mode functions (IMFs) and 

a residue. The EMD is a fully data-driven decomposition method and IMFs are derived directly 

from the signal itself.  As indicated by Huang et al. (1998), an IMF must satisfy two criteria: 

1. The number of extrema and the number of zero crossings must either be equal or differ 

at most by one. 

2. At any point, the mean value of the envelope defined by the local maxima and the 

envelope defined by the local minima is zero. 

The first condition forces an IMF to be a narrow-band signal with no riding waves. The second 

condition ensures that the instantaneous frequency will not have fluctuations arising from an 

asymmetric waveform (Huang et al.,1998). 

The IMFs are obtained through a process called the sifting process which uses local extrema 

to separate oscillations starting with the highest frequency. Given a time series 𝑥(𝑡), 𝑡 =

1,2,3,… . ,𝑀,  the process decomposes it into a finite number of functions, denoted as 

𝐼𝑀𝐹𝑘(𝑡), 𝑘 = 1, 2, 3, … . . , 𝑛 and a residue 𝑟𝑛(𝑡). The residue is the non-oscillating drift of the 

data. If the decomposed data consist of uniform scales in the frequency space, the EMD acts 

as a dyadic filter and the total number of IMFs is approximately equal to 𝑛 = 𝑙𝑜𝑔2(𝑀) (Flandrin, 

Rilling and Goucalves, 2004). At the end of the decomposition process, the original time series 

can be reconstructed as: 

                                      𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑘(𝑡)
𝑛
𝑖=1 + 𝑟𝑛(𝑡).                                                         5.1                                         

The EEMD makes the signal be continuous at different scales by the uniform distribution 

feature of the Gaussian white noise frequency. The noises are offset by multiple averaging 
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processing to inhibit and even eliminate noise influence (Kim et al., 2014; Li et al., 2019). For 

a time series 𝑥(𝑡), the EEMD includes the following steps: 

a. Generate a new signal of 𝑦(𝑡) by superposing to 𝑥(𝑡) a randomly generated white 

noise with an amplitude equal to a certain ratio of the standard deviation of 𝑥(𝑡). 

b. Perform the EMD algorithm on 𝑦(𝑡) to obtain the IMFs. 

c. Repeat steps 1 to 2 𝑚 times with different white noise to obtain an ensemble of IMFs 

{𝐼𝑀𝐹𝑘
1(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, {𝐼𝑀𝐹𝑘

2(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, . .., {𝐼𝑀𝐹𝑘
𝑚(𝑡), 𝑘 = 1, 2, . . . , 𝑛}.                                                                                                                  

                                                                                                                             5.2 

d. Calculate the average of IMFs {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 2, . . . , 𝑛}, where  {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1 𝑚⁄ ∑ 𝐼𝑀𝐹𝑘
𝑖𝑚

𝑖 (𝑡)}.                                                                                                5.3 

The import of the process is that the observed data are a combination of true time series and 

noise and that the ensemble means of data with different noises are closer to the true time 

series. Therefore, the addition of white noise as an additional step to the steps in the EMD 

process may help to extract the true IMF by offsetting the noise through ensemble averaging 

(Chen and Pan, 2016).  

 

5.3.2 Detrended Cross-Correlation Analysis (DCCA) 

Podobnik and Stanley (2008) proposed the detrended cross-correlation analysis (DCCA) as a 

method for finding long-range cross-correlation properties in the non-stationary time series. 

The DCCA can analyse the noise effect by removing various types of trend in various box 

sizes compared to Pearson correlation, cross-correlation function, and dynamic correlation 

analysis (Piao and Fu, 2016; Horvatia et al., 2011; Shin et al., 2020).  

Consider two time series {𝑥𝑖} and {𝑦𝑖} with  𝑖 = 1, 2, … ,𝑁 equidistant observations. The first 

step is to accumulate the two variables {𝑥𝑖} and {𝑦𝑖}, where 

 𝑋𝑘 = ∑ 𝑥𝑖
𝑘
𝑖 ,    𝑌𝑘 = ∑ 𝑦𝑖

𝑘
𝑖             (𝑘 = 1, 2, . . . , 𝑁).                                                                5.4 

Next, the whole sample is divided into N-n overlapping boxes of equal length n observations. 

For each box, a local trend (𝑥̅𝑘 ⁡𝑎𝑛𝑑⁡𝑦̅𝑘 ⁡) is determined, using ordinary least squares. 

Subtracting “local trends” 𝑋̅𝑘,𝑖 from the accumulated data 𝑋𝑘 and averaging the sum of squares 

obtains the local fluctuation 𝑓𝐷𝐹𝐴
2 (𝑛, 𝑖) of the 𝑖 − 𝑡ℎ box with box-length 𝑛 + 1, where 

𝑓𝐷𝐹𝐴
2 (𝑛, 𝑖) =

1

𝑛−1
∑ (𝑋𝑘 − 𝑋̅𝑘,𝑖)

2𝑖+𝑛−1
𝑘=𝑖 .                                                                                    5.5 

To obtain the cross fluctuation of the two time series, we can calculate 𝑓𝐷𝐶𝐶𝐴
2 (𝑛, 𝑖)  by replacing 

the square of 𝑋𝑘 with the mutual product of  𝑋𝑘  and  𝑌𝑘 where 

𝑓𝐷𝐶𝐶𝐴
2 (𝑛, 𝑖) =

1

𝑛−1
∑ (𝑋𝑘 − 𝑋̅𝑘,𝑖)(𝑌𝑘 − 𝑌̅𝑘,𝑖)
𝑖+𝑛−1
𝑘=𝑖 .                                                                     5.6 

Averaging all local fluctuations for 𝑁 − 𝑛  overlapping boxes, the fluctuations 𝐹𝐷𝐹𝐴
2 (𝑛) and 

𝐹𝐷𝐶𝐶𝐴
2 (𝑛) are induced as in Equations 5.7 and 5.8, respectively. 
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𝐹𝐷𝐹𝐴
2 (𝑛) =

1

𝑁−𝑛+1
∑ 𝑓𝐷𝐹𝐴

2 (𝑛, 𝑖)𝑁−𝑛+1
𝑘=𝑖                                                                                   5.7 

 

𝐹𝐷𝐶𝐶𝐴
2 (𝑛) =

1

𝑛−1
∑ 𝑓𝐷𝐶𝐶𝐴

2 (𝑛, 𝑖)𝑁−𝑛+1
𝑘=𝑖 .                                                                                   5.8 

 

The process is repeated for various n length boxes, allowing identification of the relationship 

between the DCCA fluctuation and 𝑛. The long-range cross-correlation 𝐹𝐷𝐶𝐶𝐴(𝑛) is given by 

the power law: 𝐹𝐷𝐶𝐶𝐴(𝑛)~𝑛
𝜆 with the 𝜆 parameter as the parameter of interest which quantifies 

the long-range power-law cross-correlations. 

The DCCA method measures the covariation between series, but as indicated by Pereira et 

al. (2019), we use the correlation coefficient created by Zebende (2011) to better understand 

the degree of the relationship. The Zebende (2011) correlation coefficient is calculated as 

 𝜌𝐷𝐶𝐶𝐴 =
𝐹𝐷𝐶𝐶𝐴
2

𝐹𝐷𝐹𝐴{𝑥𝑖}
𝐹𝐷𝐹𝐴⁡{𝑦𝑖}

.                                                                                                 5.9 

where 𝐹𝐷𝐹𝐴{𝑥𝑖} and 𝐹𝐷𝐹𝐴⁡{𝑦𝑖} are the 𝐷𝐹𝐴 curves for time series variables 𝑥𝑖 and 𝑦𝑖. 

The correlation coefficient ranges −1 ≤ 𝜌𝐷𝐶𝐶𝐴 ≤ 1;  𝜌𝐷𝐶𝐶𝐴 = 0 indicates no cross-

correlation, 𝜌𝐷𝐶𝐶𝐴 = 1 means perfect cross-correlation, and 𝜌𝐷𝐶𝐶𝐴 = −1 means complete 

anti-cross-correlation. 

 

5.4 Data Description 

The data employed for the study is daily real exchange rates of 15 out of 16 member countries 

of the SADC from 3rd January, 1994 to 7th January 2019, obtained from Thomson Reuters 

DataStream. Daily local currency per USD for Angola, Comoros, Botswana, Democratic 

Republic of Congo, Eswatini (formerly Swaziland), Lesotho, Madagascar, Malawi, Mauritius, 

Mozambique, Namibia, Seychelles, South Africa, Tanzania and Zambia were used. The 

choice of the study window and countries was informed by data availability and the period 

South Africa Joined SADC. Based on these inclusion criteria, Zimbabwe was excluded from 

the analysis. The real exchange rate used was nominal domestic currency per US.dollar 

(USD) multiplied by the domestic consumer price index divided by the US consumer price 

index. The choice of USD for this analysis is justified by the dominance of USD in international 

trade by these countries and the extent of dollarisation of most SADC countries. In spite of 

recent de-dollarisation in Angola, Mozambique and Zambia, the dollar remains dominant in 

international trade globally including SADC and provides a means of standardising units of 

pair of currencies (Corrales et al., 2016).  The results was implement with R packages libeemd 

(Luukko et al., 2016) for EEMD and DCCA (Prass and Pumi, 2021). Figure 5.1 shows a 
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graphical representation of the logarithm of exchange rates of SADC countries except for 

Zimbabwe. All exchange rates in the region trended upward except Angola. Angola has had 

periods of pegging the Angola Kwanza to the US dollar. The upward trend of all other countries 

shows that SADC exchange rates have over the period study depreciated against the US 

dollar. Generally, SADC countries are overvalued and as expected the equilibrium established 

overtime and therefore the upward trend is not surprising. Again, the trend movements are 

partially explained by the ‘peso problem’ proposition, which refers to biased expectations of 

the future exchange rates in small samples when there is uncertainty about when a future 

policy change will be implemented (Zhou, 2002). 
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Figure 5.1 Log of the daily real exchange rate series of 15 countries of SADC 

 

 

5.5 Results and Analysis 

We began our analysis by decomposing the daily real domestic currency/USD exchange rate 

to obtain individual 11 IMFs for each country’s exchange rate and trend using EEMD. Figure 
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5.2 shows the trends of the IMFs and the residue obtained by EEMD for the case of Tanzania1. 

All IMFs extracted satisfied the necessary and sufficient conditions to be IMF as contained in 

Huang et al. (1998). The residue is the non-oscillating drift of the data, which is not affected 

by short-to-medium-term fluctuations, but by the structural changes in the data generation 

process. It, thus, represents the long-term trend of the data and for this study long trend 

behaviour of the exchange rate dictated by fundamentals of the economies. 
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Figure 5.2: IMF of real exchange rate series of Tanzania obtained by EEMD 

 

 

We proceed to analyse the characteristics of the IMFs obtained by decomposing the series 

with EEMD through their statistics.  Table 5.1 presents the mean period of each IMF measured 

as the ratio of the total number of points to the number of peaks, Pearson product moment 

 
1 The IMFs of the remaining countries are available upon request to save space. In all, they look 

similar. 
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correlation between each IMF and the original data series, the variance percentage of each 

IMF to the original data series and to the sum of all IMFs and residue. The variance percentage 

of each IMF to the original data series explains the contribution of each IMF to the total volatility 

of the original data (Zhang et al., 2008). These characteristics provide detailed information 

about the exchange rate behaviours of the countries studied. 

 

 



67 

 

Table 5.1:  Measures of IMFs and residues for SADC exchange rate markets derived through EEMD 

Country IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9 IMF 10 IMF 11 Residue 

Angola             
𝜇 1.41 2.42 4.41 8.02 14.98 30.84 58.63 143.9 791.5 2374.1 2374.1  
𝜌 0.00 0.14 0.41 0.37 0.17 0.51 0.56 0.25 0.09 -0.06 -0.05 0.26 

𝜎1
2 4.99% 14.72% 12.08% 7.96% 25.36% 20.83% 1.64% 1.83% 5.37% 40.25% 13.87% 144.78% 

𝜎2
2 4.99% 14.72% 12.08% 7.96% 25.36% 20.83% 1.64% 1.83% 5.37% 40.25% 13.87% 144.78% 

Botswana             
𝜇 1.41 2.73 5.22 10.08 20.38 42.03 110.44 263.83 949.8 1187.25 4749  
𝜌 0.01 0.02 0.02 0.04 0.04 0.12 0.14 -0.07 0.57 0.80 0.47 0.94 

𝜎1
2 0.03% 0.01% 0.02% 0.03% 0.06% 0.18% 0.61% 3.12% 4.79% 0.20% 0.03% 77.17% 

𝜎2
2 0.03% 0.01% 0.02% 0.03% 0.06% 0.18% 0.61% 3.12% 4.79% 0.20% 0.03% 77.14% 

Comoros             
𝜇 1.39 2.78 5.23 10.01 20.64 45.66 105.53 215.86 431.2 678.42 949.8  
𝜌 0.03 0.03 0.04 0.06 0.06 0.10 0.23 0.28 0.65 0.48 0.80 0.85 

𝜎1
2 0.05% 0.03% 0.05% 0.10% 0.29% 0.69% 3.66% 4.09% 5.45% 5.41% 0.16% 48.32% 

𝜎2
2 0.05% 0.03% 0.05% 0.10% 0.29% 0.69% 3.65% 4.09% 5.45% 5.41% 0.16% 48.29% 

DRC             
𝜇 1.39 2.49 4.68 8.91 19.15 42.78 94.98 237.45 593.63 1187.25 2374.5  
𝜌 0.01 0.01 0.01 0.02 0.03 0.03 -0.27 0.18 0.28 -0.26 -0.69 0.94 

𝜎1
2 0.02% 0.01% 0.01% 0.01% 0.03% 0.05% 0.22% 1.01% 2.05% 5.82% 0.99% 133.16% 

𝜎2
2 0.02% 0.01% 0.01% 0.01% 0.03% 0.05% 0.22% 1.00% 2.04% 5.82% 0.99% 133.08% 

Eswatini             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1586 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22 0.18 0.07 0.61 0.63 0.77 0.87 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Lesotho             
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𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1586 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22 0.18 0.07 0.61 0.63 0.77 0.87 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Madagascar             
𝜇 1.39 2.62 4.85 10 20.83 47.97 110.44 226.14 678.43 1187.25 4749  
𝜌 0.02 0.02 0.02 0.03 0.06 0.11 0.08 0.02 0.16 0.46 0.42 0.94 

𝜎1
2 0.04% 0.01% 0.01% 0.02% 0.06% 0.18% 0.58% 1.31% 3.21% 2.87% 0.01% 86.37% 

𝜎2
2 0.04% 0.01% 0.01% 0.02% 0.06% 0.18% 0.58% 1.31% 3.21% 2.87% 0.01% 86.33% 

Malawi             
𝜇 1.39 2.49 4.73 8.59 19 37.99 91.33 197.88 593.63 1583 4749  
𝜌 0.00 0.00 0.01 0.02 0.04 0.02 0.05 -0.09 0.39 0.18 0.58 0.97 

𝜎1
2 0.01% 0.00% 0.00% 0.00% 0.01% 0.07% 0.19% 0.31% 0.78% 2.69% 0.05% 90.95% 

𝜎2
2 0.01% 0.00% 0.00% 0.00% 0.01% 0.07% 0.19% 0.31% 0.77% 2.69% 0.05% 90.89% 

Mauritius             
𝜇 1.38 2.66 5.09 10.19 20.92 54.58 163.75 365.31 678.4 1583 4749  
𝜌 0.04 0.04 0.04 0.06 0.11 0.18 0.32 0.37 0.20 0.10 0.10 0.74 

𝜎1
2 0.17% 0.06% 0.04% 0.11% 0.42% 0.84% 5.69% 12.71% 10.89% 1.98% 0.02% 83.27% 

𝜎2
2 0.17% 0.06% 0.04% 0.11% 0.42% 0.84% 5.69% 12.70% 10.88% 1.98% 0.02% 83.22% 

Mozambique             
𝜇 1.36 2.58 4.82 9.52 20.74 40.94 98.94 296.81 678.4 2374.1 2374.1  
𝜌 0.01 0.01 0.01 0.02 0.03 0.00 -0.06 0.14 0.74 0.00 -0.33 0.88 

𝜎1
2 0.03% 0.01% 0.01% 0.02% 0.05% 0.14% 0.78% 3.33% 7.20% 2.38% 0.33% 83.03% 

𝜎2
2 0.03% 0.01% 0.01% 0.02% 0.05% 0.14% 0.78% 3.33% 7.19% 2.38% 0.33% 82.98% 

Namibia             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1583 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22 0.18 0.07 0.61 0.63 0.77 0.87 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 



69 

 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Seychelles             
𝜇 1.37 2.57 4.81 9.37 19.07 43.97 98.94 215.86 593.63 1583 2374.5  
𝜌 0.03 0.02 0.03 0.04 0.04 0.05 0.12 0.17 -0.01 0.31 0.84 0.87 

𝜎1
2 0.07% 0.03% 0.04% 0.06% 0.11% 0.26% 2.45% 2.27% 4.92% 5.38% 1.57% 78.57% 

𝜎2
2 0.07% 0.03% 0.04% 0.06% 0.11% 0.26% 2.44% 2.27% 4.92% 5.38% 1.57% 78.51% 

South Africa             
𝜇 1.41 2.79 5.12 10.41 20.04 42.4 105.53 249.95 949.8 1583 4749  
𝜌 0.02 0.03 0.04 0.06 0.06 0.22 0.18 0.07 0.61 0.63 0.77 0.87 

𝜎1
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.39% 11.11% 0.88% 0.07% 57.99% 

𝜎2
2 0.04% 0.03% 0.04% 0.08% 0.14% 0.66% 1.26% 5.38% 11.10% 0.88% 0.07% 57.96% 

Tanzania             
𝜇 1.4 2.5 4.88 9.52 19.62 39.91 105.53 226.14 593.63 1583 4749  
𝜌 0.01 0.01 0.02 0.03 0.02 0.03 0.00 -0.27 0.26 -0.11 -0.16 0.98 

𝜎1
2 0.02% 0.01% 0.01% 0.01% 0.02% 0.04% 0.13% 0.68% 1.65% 0.77% 0.04% 104.69% 

𝜎2
2 0.02% 0.01% 0.01% 0.01% 0.02% 0.04% 0.13% 0.68% 1.65% 0.77% 0.04% 104.63% 

Zambia             
𝜇 1.39 2.6 5.12 9.89 21.3 42.4 103.24 226.14 474.9 678.43 949.8  
𝜌 0.02 0.02 0.02 0.03 0.07 0.14 0.05 -0.35 0.55 0.13 0.10 0.91 

𝜎1
2 0.03% 0.02% 0.03% 0.07% 0.17% 0.47% 0.99% 6.67% 4.49% 2.88% 0.12% 103.79% 

𝜎2
2 0.03% 0.02% 0.03% 0.07% 0.17% 0.47% 0.99% 6.67% 4.48% 2.88% 0.12% 103.74% 

𝜇 = mean period (days), 𝜌 = Pearson correlation coefficient, 𝜎1
2 = variance as % of observed, ⁡𝜎2

2 = variance as % of the sum of 

all IMFs and Residue 
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The correlation coefficients and variances of the IMFs and residue, show that the residue 

which measures deterministic long-term behaviour is the dominant mode in all cases, except 

for Angola. The means show the average frequency of each IMF. The mean and amplitude of 

the IMFs were categorized into various frequencies; high frequency (sum of IMFs 1-5), 

medium frequency (sum of IMFs 6-8) and long frequency (sum of IMFs 9-11) using cluster 

analysis.  The high, medium and long frequencies have mean time-frequency of less than 30 

days, between a month and 12 months, and more than 12 months, respectively. Table 5.2 

presents the cluster of IMFs with high (period of 1-15 days), medium (up to 144 days), and 

low frequencies (up to 2374 days). The descriptive statistics of the low, medium, high 

frequencies and the residue presented in Table 5.2 corroborate with the descriptive statistics 

of the individual IMFs. The Pearson product moment and Kendall tau-b correlations between 

each frequency and the original data series, the variance percentage of each frequency in the 

original data series and the sum of all frequencies and residues indicate that residue is the 

dominant mode in all cases. 

To understand the dynamic relationship at various frequencies for all countries related to the 

observed exchange rates, we calculate cross-correlation coefficients of daily real exchange 

rate series, high-, medium-, and low-frequency components of 15 exchange rate market in 

SADC at 5 different time scale of  𝑛 = 10, 𝑛 = 20, 𝑛 = 40, 𝑛 = 80, 𝑛 = 160⁡and 𝑛 = 240. The 

average cross-correlation coefficient,⁡𝜌𝐷𝐶𝐶𝐴𝑖𝑗, between country ⁡𝑖⁡and ⁡𝑗 is given as 

 𝜌𝐷𝐶𝐶𝐴𝑖𝑗 =
1

5
∑ 𝜌51 𝐷𝐶𝐶𝐴𝑖𝑗,𝑛,                                                                                 (5.10) 

where 𝜌𝐷𝐶𝐶𝐴𝑖𝑗,𝑛 is the cross-correlation coefficient between countries ⁡𝑖⁡ and ⁡𝑗 at time scale 

of 𝑛.  

For brevity, the cross-correlation coefficients between the respective original data, low, 

medium, high frequencies, and the residue are presented in correlation network form. The 

correlation network formed based on  𝜌𝐷𝐶𝐶𝐴  at the various frequencies and the original are 

presented in Figures 5.3 (a-f). In Figures 5.3(a) and (d), only Eswatini, Lesotho, Namibia and 

South Africa were found to be linked indicated by the size of the edge of the network. The 

similarity and resemblance of the correlation network are surprising as the Pearson correlation 

showed a weak relationship. However, Pearson correlation is deficient in analysing series with 

noise compared to the DCCA (Piao and Fu, 2016; Horvatia et al., 2011; Shin et al., 2020).  

 



71 

 

 

Table 5.2: Descriptive statistics of the reconstructed series and the residue for SADC exchange rate markets derived through EEMD 

 

HFRQ=High Frequency series, MFRQ=Medium Frequency series, LFRQ=Low Frequency series 

 Pearson correlation coefficient Kendall tau-b Variance as % of observed 

variance as % of the sum of all 

IMFs and Residue 

Country HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID 

Angola  0.49 0.56 -0.04 0.26 0.00 -0.14 0.15 -0.11 62.87 35.96 104.92 144.79 62.87 35.95 104.91 144.78 

Botswana  0.06 0.02 0.63 0.94 0.04 0.08 0.46 0.74 0.22 4.53 7.14 77.17 0.22 4.53 7.14 77.14 

Comoros  0.09 0.32 0.72 0.85 0.06 0.22 0.46 0.60 0.75 11.13 16.82 48.32 0.75 11.13 16.81 48.29 

Dr Congo  0.03 0.05 -0.23 0.94 0.03 0.02 -0.26 0.88 0.10 1.74 15.47 133.16 0.10 1.74 15.46 133.08 

Eswatini  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Les Otho 0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Madagascar  0.06 0.08 0.41 0.94 0.08 0.10 0.18 0.74 0.20 2.51 7.47 86.37 0.20 2.51 7.46 86.33 

Malawi  0.03 -0.02 0.35 0.97 0.02 -0.04 0.01 0.86 0.04 0.80 4.67 90.95 0.04 0.80 4.66 90.89 

Mauritius 0.12 0.45 0.19 0.74 0.08 0.36 0.13 0.49 1.10 24.87 18.00 83.27 1.10 24.86 17.99 83.22 

Mozambique 0.03 0.09 0.45 0.88 0.02 -0.04 0.01 0.79 0.15 5.40 16.04 83.03 0.15 5.39 16.03 82.98 

Namibia  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

S. Africa  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Seychelles  0.06 0.20 0.40 0.87 0.07 0.16 0.23 0.60 0.41 5.78 19.09 78.57 0.41 5.78 19.08 78.51 

Tanzania 0.04 -0.21 0.11 0.98 0.03 -0.14 -0.02 0.92 0.10 1.05 3.57 104.69 0.10 1.05 3.57 104.63 

Zambia 0.07 -0.24 0.40 0.91 0.05 -0.06 0.09 0.57 0.43 9.61 12.44 103.79 0.43 9.61 12.43 103.74 
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b 

 

c 

 

d 

 

e 

 

f 

 

Figure 5.3:  Network Plots of Various Frequencies:  (a) The DCCA cross-correlation of high-

frequency series. (b) The DCCA cross-correlation of medium frequency series.  (c) The DCCA cross-
correlation of low-frequency series. (d) The DCCA cross-correlation of the original series. (e)  The 
DCCA cross-correlation of  residue series  (f)  The  significant DCCA cross-correlation of residue 
series based on Podobnik and Stanley(2008) 
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Again, the four countries have been members of the Common Monetary Area (CMA) since 

1975, in which currencies of Eswatini, Lesotho and Namibia are issued at par with South 

African Rand (Masha, Wang, Shirono and Harris, 2007, Adam et al., 2021). 

In Figures 5.3 (b) and (c), new countries such as Botswana and Mauritius emerged as having 

a strong correlation with Eswatini, Lesotho, Namibia and South Africa in the medium 

frequency, an indication of business cycle synchronisation. The emergence of Botswana and 

Mauritius could also be explained by their economic performance which satisfies the criteria 

for monetary union (Jefferis, 2007). Botswana, in particular, has had historic ties with South 

Africa as its currency once pegged to the South African Rand. This finding partially contradicts 

Nzimande and Ngalawa (2016) that only CMA countries are candidates for currency union 

within SADC. 

The extent of correlation became clearer where all the noises were removed, the correlation 

network formed from the DCCA cross-correlation presented in Figure 5.3 (e) showed stronger 

linkage among most of the countries. We also observed Angola showing anticorrelation 

between most of the SADC countries.   

To better understand the dynamics of linkages of the deterministic trend, we formed a network 

by the values of the significance of Podobnik and Stanley (2008), linking the edges of 

𝜌𝐷𝐶𝐶𝐴≥0.66 for the residue as indicated in Figure 5.3(f). We observed a very strong cross-

correlation among most SADC countries except Angola and Comoros. The findings show that 

there is a high cross-correlation between the long-term economic fundamentals of the included 

countries. This finding is consistent with Redda and Muzindusti (2017) that the exchange rate 

markets in SADC are driven mostly by long-term fundamentals, which, in turn, are most likely 

rooted in macroeconomic economic fundamentals. Similarly, Mpofu (2016) observed that 

money supply, foreign reserve, and output systematically affect exchange rate movement in 

South Africa.  It is also consistent with the findings of some other developing economies, that 

government consumption and investment significantly drive the exchange movement in Sub-

Saharan Africa (Ibhagui, 2017).  The observed exchange rate differences in SADC, which are 

caused by short-term dynamics, are driven by noise from such activities as speculation, short-

term policies, and timing of the response to external shocks. This finding contravenes Jefferis 

(2007) and Hanohan and Lane (2000) who argued that speculative activities are unlikely 

because SADC currencies are ‘below the radar screen’ of international speculators, reducing 

exposure to contagion problems. This departure may be as result of the robustness of this 

study as against prior studies. Significantly, separation of the exchange rate series into short-

, medium-, and long-terms delineate the influence of noise.  Toward a currency union, the 

economies require to be harmonised as stipulated in the expanded optimum currency 
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decalogue to minimise short-term deviations. (Edwards, 2006; Bayoumi and Eichengreen, 

1997; De Grauwe, 2001; Tavlas, 1993). 

 

5.6 Policy Implications of findings 

Through our empirical analysis, we have highlighted the dynamic interdependence of 

exchange rate markets in the SADC region.  We also examined the important fundamental 

behaviours of the currencies of the bloc. Based on the objective of this chapter, we then 

examine the implications of our findings on policy formulation in the region.  

The search for the extent of exchange rate market coordination among SADC countries is still 

ongoing with mixed results. The intrinsic components have been generally taken for granted 

in the analysis of exchange rate markets. However, the exchange rate has been found to be 

chaotic and noisy, thereby influencing its modelling (Bildirici and Sonüstün, 2019). The cross-

correlation of the high-frequency component of the exchange rate markets mimics that of the 

original network. This is a manifestation that the speculative activity across the region is 

symmetrical and indicates the behaviour of the actual exchange rate. The cross-correlation 

network of medium-and low-frequencies shows that Botswana and Mauritius can easily join 

the CMA of Eswatini, Lesotho, Namibia and South Africa as there is some level of business 

synchronisation among these countries.  

The significant cross-correlation of long-term trend proxy by the residue gives a wider 

understanding of the possibility of forming a currency union in SADC excluding Angola, 

Comoros and Zimbabwe. This can be done by expanding the CMA to include the remaining 

countries.  In simple terms, our findings suggest that there is an emerging possibility of SADC 

as a whole to become a currency area, since CMA countries, Botswana and Mauritius appear 

to exhibit synchronisation of business cycles, thus their symmetric shocks could be addressed 

by a single monetary policy (Hitaj, Shapiro, Kolerus and Zdzienicka, 2013, Nzimande and 

Ngalawa, 2016). This could be piecewise extended to include all SADC countries, except 

Angola, Zimbabwe and Comoros because of evidence of coordination of their long-term 

fundamentals with policy direction to synchronize business cycles post ante.  Figure 5.4 shows 

similarity in the structure of about 12 out of 15 countries included in the study with CMA 

countries being stronger. 
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5.7 Conclusion  

The difference in the behaviour of exchange rate participants makes the exchange rate 

modelling difficult because of the potential to be chaotic and non-stationary. This chapter used 

the EEMD-based DCCA method to study the multifrequency cross-correlation of daily 

exchange rate markets of 15 countries. We first used the EEMD method to decompose the 

exchange rate series into IMFs and then clustered them into a high-, medium- and low 

frequency and residue series. The DCCA cross-correlation coefficients of the reconstructed 

series were used to form a correlation network.  The correlation network of the high frequency 

and the original showed the resemblance of their linkages. In both cases, Eswatini, Lesotho, 

Namibia and South Africa were found to be cross-correlated.  The correlation network of 

medium-, and high-frequencies and residue showed an increased correlation with increasing 

frequency of the series and the long-term trend of exchange rates of SADC countries are 

stronger.   Comparing the original series with the levels of decomposed series, the sources of 

deviation of the exchange rate markets have been identified as the high-frequency component 

which is linked to speculation activities, short-term policies, and timing of the response to 

external shocks. Therefore, the EEMD-based DCCA method can help obtain more internal 

characteristics and detailed information on exchange rate cross-correlation, which will help 

policymakers make a more accurate analysis of exchange rate dynamics. The innovation of 

this chapter is to combine EEMD with DCCA to study the multifrequency cross-correlations of 

exchange rate markets, which can provide policymakers with a new methodology for 

understanding of the essential characteristics and internal structures of exchange rate markets 

of SADC. 
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Figure 5.4:  Supplementary Plot of IMFs from EEMD 
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CHAPTER 6 

A New EEMD-Effective Transfer Entropy-based Methodology for 
Exchange Rate Market Information Transmission in SADC 

 

Chapter Summary  

The desire to form monetary unions among regional blocs in Africa has necessitated the need 

to assess the degree of financial systems’ interdependencies in Africa economic blocs for their 

suitability to have a harmonised economic policy and eventual monetary unions.  In this 

regard, SADC has pursued policies to harmonise and integrate its financial system as a 

precursor to its intended monetary union. However, the ensuing risk among exchange rates 

of economies in SADC is presumed to rise during severe uncertainties. This study examines 

the degree of asymmetry and non-linear directional causality between exchange rates in 

SADC in the frequency-domain. We employ both the Ensemble Empirical Mode 

Decomposition (EEMD) and the Rényi effective transfer entropy techniques to investigate the 

multi-scale information that might be disregarded, and further quantify the directional flow of 

information. Analysis of the study is presented for high-, medium-, and low-frequencies, 

representing short-, medium-, and long-terms respectively, in addition to the residue 

(fundamental feature), achieving four frequency-domains. We find a mixture of asymmetric 

and non-linear bi-directional and unidirectional causality between exchange rates in SADC for 

the sampled period. The study reveals a significant positive information flow in the high 

frequency, but negative flow in the medium and low frequencies. In addition, we gauge a bi-

directional significant negative information flow within all the 15 economies for the residue. 

This suggests a higher risk of uncertainties in exchange rates of SADC. Our findings for low 

probability events at multi-scales have implications for the direction of the future of the SADC 

monetary union. This calls for further sustained policy harmonisation in the region. 

6.1 Introduction 

The desire to integrate economies of Africa regional blocs as enshrined in Article 3 of the 

Africa Union Constitution has necessitated the need to ensure coordination of macroeconomic 

factors. The anticipated benefits of such economic integration are well-research and 

documented (Adam et al., 2021a).  

The exchange rate market integration has been cited as a key indicator for stable economic 

integration because of its pass-through effect on other financial markets (Adam et al., 2021b). 
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The rising uncertainty in the global economic development makes the comovement of 

exchange rates important for the formation of monetary unions. The SADC formed in 1999 for 

decades has pursued policies to harmonise and integrate the financial system with the 

intention to form a monetary union. This hinges on the perceived benefits of membership in a 

monetary union. Thus, stronger exchange rate, low exchange risk and price stability. 

Several studies have attempted to depict and determine precisely the linear and non-linear 

linkages between exchange rate markets aiming to form a monetary union as the 

understanding of the interconnectivity are important for the conduct of monetary policy and 

how to deal with activities of market participants. Among related studies, the linkage of the 

exchange rate in West Africa Monetary Zones (Alagidede, Tweneboah and Adam, 2008; Adu, 

Litsios and Baimbridge, 2019; Owusu Junior, Adam and Tweneboah, 2017) has been 

severally investigated. Within the SADC bloc, several studies have attempted to model the 

interaction of exchange rate markets (Adam et al., 2021a; 2021b; Agbeyegbe, 2008; Khamfula 

and Huizinga, 2004; Zehirun, Breitenbach and Kemegue, 2015; Zehirun, Breitenbach and 

Kemegue, 2016). Except for Adam et al. (2021a; 2021b), the identified studies seldom studied 

the comovement of the exchange rate from a multi-scale perspective. The exchange rate 

market is a complex system with varying participants, varying objectives, investment 

preferences and motives as depicted by the Heterogeneous Market Hypothesis (Adam et al., 

2021a; 2021b; Zehirun, Breitenbach and Kemegue, 2016; Muller et al, 1993; Dacorogna et 

al., 1998). Thus, exchange rate data could be noisy, non-stationary, non-linear and mixed (Xu, 

Shang and Lin, 2016; Ferreira, Moore and Mukherjee, 2019). These intrinsic complexities of 

exchange rate data question the appropriateness of the use of static models in exchange rate 

studies. 

Accordingly, recent studies on coordination of exchange rate markets have relied on models 

that can extract better high-frequency signals about the exchange rate to deal with its apparent 

noisy behaviour to provide better understanding (Adam et al., 2021a; 2021b; Owusu Junior, 

Adam and Tweneboah, 2017; Khuntia and Pattanayak, 2020; Meng and Huang, 2019; 

Qureshi and Aftab, 2020). This is aimed at analysing exchange rate markets from the time-

frequency domain perspective instead of the traditional time-domain viewpoint. The Fourier 

and wavelet transform approaches of studying the time-frequency domain has been widely 

used in this regard (Asafo-Adjei et al., 2020; Mariani et al., 2020; Owusu Junior, Tweneboah 

and Adam, 2019). Huang et al.  (1998) noted that Fourier-based approaches are not data-

adaptive, unable to capture the time-varying characteristics of the neural signal and only 

designed for the frequency analysis of stationary time series.  The Wavelet transform is 

however counterintuitive in its interpretation and nonadaptive. 
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The empirical mode decomposition (EMD) by Huang et al. (1998) provides a new perspective 

of analysing non-linear and non-stationary data in the time-frequency domain based on the 

direct extraction of signal energy associated with various intrinsic time scales.  The EMD is 

adaptive, fully posterior, and physically meaningful which makes it superior to its alternatives 

(Huang et al., 1998; Liu et al., 2021). In addition, because the EMD process is completely 

based on the local time scales of time series, with no prior basis, the extracted oscillations 

reflect the time series accurately. However, the conventional EMD suffers from the problem of 

mode-mixing which is corrected by the ensemble empirical mode decomposition (EEMD) 

proposed by Wu and Huang (2009). 

The extant literature on exchange rate markets comovements has relied on spillover index, 

cross-correlation, the Granger causality test, the vector autoregressive model, and the 

generalised autoregressive conditional heteroskedasticity model. The many limitations 

associated with the applications of these econometric models emanating from the need to 

satisfy stationarity and distributional properties hampers their applications. The transfer 

entropy proposed by Schreiber (2000) come in handy to quantify information transfer or 

information flow between variables in a system with no assumptions about the distribution or 

intercorrelation of the original variables.  The transfer entropy is effective in identifying linear 

and non-linear relationships between variables; asymmetric and built upon transition 

probability; practical in all systems and does not require prior specification model (Montalto, 

Faes and Marinazzo, 2014; Mao and Shang, 2017). 

In this chapter, we propose EEMD-Effective Transfer Entropy (EEMD-ETE)-based 

methodology to analyse exchange rate markets information transmission. The effective 

transfer entropy is based on Renyi Transfer Entropy (Renyi, 1970). The EEMD-ETE 

methodology provides two novelties in studying exchange rates comovement compared to 

previous studies. Firstly, it examines exchange rate series from the perspective of information 

transmission and quantification to capture information spillover and interactions among 

different markets, which provides useful information on the spillover direction between 

variables (Ji et al., 2019). Secondly, financial time series often exhibit different characteristics 

at different time frequencies, and the relations between different variables vary widely across 

time scales (Geng, Ji and Fan, 2017; Sun et al., 2020). The utilization of EEMD-ETE, 

therefore, offers the opportunity to understand the extent of information transmission at 

different frequency scales. Lastly, it delineates the influence of noise from the quantification of 

information flow across the exchange rate markets.  

We find a mixture of asymmetric and non-linear bi-directional and unidirectional causality 

between exchange rates in SADC for the sampled period. The study reveals a significant 

negative information flow in the medium (medium-term) and low frequencies (long-term), but 
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a more positive flow in the high frequency (short-term). However, from the fundamental feature 

represented by the residue, we gauge a bi-directional significant negative information flow 

within all the 15 economies. This suggests a higher risk of uncertainties in exchange rates of 

SADC.  

The rest of the chapter is structured as follows. Section 6.2 introduces the methods employed 

in the study, Section 6.3 describes the exchange rate data of SADC used in the study and 

Section 6.4 presents the results and analysis. Section 6.5 highlights the policy implications 

and conclusion. 

 

6.2 Methodology 

We initially present the EEMD technique, followed by the transfer entropy. Thus, the outcome 

generated from the EEMD is used as input data for the effective transfer entropy estimations.  

 

6.2.1 Ensemble empirical mode decomposition 

 

The EEMD is an improvement of the EMD-based signal processing method to solve the easy 

mode mixing effect of EMD. The EMD is a dyadic filter bank in the frequency domain (Flandrin, 

Rilling and Goucalves, 2004). The goal of the empirical mode decomposition is to decompose 

the original data (non-stationary and non-linear data) into IMFs and a residue. The EMD is a 

fully data-driven decomposition method and IMFs are derived directly from the signal itself.  

As indicated by Huang et al. (1998). An IMF must satisfy two criteria: 

1. The number of extrema and the number of zero crossings must either be equal or differ 

at most by one. 

2. At any point, the mean value of the envelope is defined by the local maxima and the 

envelope defined by the local minima is zero. 

The first condition in criterion 1 forces an IMF to be a narrow-band signal with no riding waves. 

The second condition in criterion 2 ensures that the instantaneous frequency will not have 

fluctuations arising from an asymmetric waveform (Huang et al.,1998). 

The IMFs are obtained through a process called the sifting process which uses local extrema 

to separate oscillations starting with the highest frequency. Given a time series  𝑥(𝑡), 𝑡 =

1,2,3,… . ,𝑀,  the process decomposes it into a finite number of functions, denoted as 

𝐼𝑀𝐹𝑘(𝑡), 𝑘 = 1, 2, 3, … . . , 𝑛 and a residue 𝑟𝑛(𝑡). The residue is the non-oscillating drift of the 

data. If the decomposed data consist of uniform scales in the frequency space, the EMD acts 

as a dyadic filter and the total number of IMFs is approximately equal to 𝑛 = 𝑙𝑜𝑔2(𝑁) (Flandrin, 
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Rilling and Goncalves, 2004). At the end of the decomposition process, the original time series 

can be reconstructed as: 

                                      𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑘(𝑡)
𝑚
𝑖=1 + 𝑟𝑚(𝑡).                                        (6.1)                                          

The EEMD makes the signal be of continuity at different scales by the uniform distribution 

feature of the Gaussian white noise frequency. The noises are offset by multiple averaging 

processing to inhibit and even eliminate noise influence (Kim et al., 2014; Li et al., 2019). For 

a time series 𝑥(𝑡), the EEMD includes the following steps: 

a. Generate a new signal of 𝑦(𝑡) by superposing to 𝑥(𝑡) a randomly generated white 

noise with an amplitude equal to a certain ratio of the standard deviation of 𝑥(𝑡). 

b. Perform the EMD algorithm on 𝑦(𝑡) to obtain the IMFs. 

c. Repeat steps 1 to 2 for 𝑚 times with different white noise to obtain an ensemble of 

IMFs {𝐼𝑀𝐹𝑘
1(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, {𝐼𝑀𝐹𝑘

2(𝑡), 𝑘 = 1, 2, . . . , 𝑛}, . .., {𝐼𝑀𝐹𝑘
𝑚(𝑡), 𝑘 = 1, 2, . . . , 𝑛}.                                                                                                            

(6.2) 

d. Calculate the average of IMFs {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑘 = 1, 2, . . . , 𝑛}, where  {𝐼𝑀𝐹𝑘(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1 𝑚⁄ ∑ 𝐼𝑀𝐹𝑘
𝑖𝑚

𝑖 (𝑡)}.                                                                                             (6.3) 

The import of the process is that the observed data are a combination of true time series and 

noise and that the ensemble means of data with different noises are closer to the true time 

series. Therefore, the addition of white noise as an additional step to the steps in the EMD 

process may help to extract the true IMF by offsetting the noise through ensemble averaging 

(Chen and Pan, 2016).  

6.2.2 Measuring information flows using Rényi transfer entropy 

Before we discuss the Rényi transfer entropy, we present the concept of Shannon entropy as 

a measure of uncertainty upon which transfer entropy is embedded in information theory 

(Behredt et al., 2019; Adam, 2020). We consider a probability distribution of diverse results of 

a given experiment 𝑝𝑗. Following Hartley (1928), each symbol’s average information is 

specified as: 

 
𝐻 =⁡∑ 𝑃𝑗𝑙𝑜𝑔2 (

1

𝑃𝑗
)𝑛

𝑗=1  bits  (6.4) 

where 𝑛 is number of distinct symbols concerning the probabilities 𝑃𝑗.  

The concept of entropy, later referred to as Shannon entropy, was introduced in 1948 by 

Shannon (1948). It proffers that, for a discrete random variable (𝐽) with probability distribution 

(𝑃(𝑗)), the average number of bits needed to optimally encode independent draws (Behredt 

et al., 2019) can be presented as 
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𝐻𝐽 =⁡−∑ 𝑃(𝑗)𝑙𝑜𝑔2𝑃(𝑗)

𝑛
𝑗=1 .  (6.5) 

Shannon entropy is connected with the concept of Kullback-Leibler distance (Kullback and 

Leibler, 1951) to assess the information flow between two-time series with the concept of 

Markov processes. We present 𝐼 and 𝐽 as two discrete random variables with corresponding 

marginal probabilities of 𝑃(𝑖) and 𝑃(𝑗), joint probability 𝑃(𝑖, 𝑗), with dynamic structures in line 

with a stationary Markov process of order 𝑘 (Process⁡𝐼) and 𝐼 (process⁡𝐽). The Markov property 

implies that the probability to observe 𝐼 at time 𝑡 + 1 in state 𝑖 conditional on the 𝑘 prior 

observations is 𝑝(𝑖𝑡+1|𝑖𝑡, … , 𝑖𝑡−𝑘+1) = ⁡𝑝(𝑖𝑡+1|𝑖𝑡, … , 𝑖𝑡−𝑘). To encode the observation in 𝑡 + 1, 

the average bits number required once the ex-ante k values are known can be written as 

 

ℎ𝑗(𝑘) = −∑ 𝑃(𝑖𝑡+1, 𝑖𝑡
(𝑘)
)𝑙𝑜𝑔𝑃 (𝑖𝑡+1|𝑖𝑡

(𝑘)
)𝑖 .  (6.6) 

where 𝑖𝑡
(𝑘)

= (𝑖𝑡 , … , 𝑖𝑡−𝑘+1) (correspondingly for process J). In a bivariate perspective as well 

as relying on the Kullback-Leibler distance (Kullback and Leibler, 1951), information 

transmission from process J to process I is measured by quantifying the deviation from the 

generalised Markov property 𝑃 (𝑖𝑡+1|𝑖𝑡
(𝑘)) = ⁡𝑃 (𝑖𝑡+1|𝑖𝑡

(𝑘), 𝑗𝑡
(𝐼)⁡). The Shannon transfer entropy 

can thus be presented as: 

 

𝑇𝐽⟶𝐼(𝑘, 𝑙) = ∑𝑃(𝑖𝑡+1, 𝑖𝑡
(𝑘)
, 𝑗𝑡
(𝐼)
)𝑙𝑜𝑔

𝑃(𝑖𝑡+1|𝑖𝑡
(𝑘), 𝑗𝑡

(𝐼)
)

𝑃(𝑖𝑡+1|𝑖𝑡
(𝑘)

)
.  (6.7) 

where 𝑇𝐽⟶𝐼 is the measure of the information flow from 𝐽 to 𝐼. Analogously, 𝑇𝐼⟶𝐽, as a measure 

for the information flow from 𝐼 to 𝐽, can be derived. Calculating the differential between the two 

can reveal the prevalent direction of information flow between 𝑇𝐽⟶𝐼 and 𝑇𝐼⟶𝐽.  

Based on the Shannon entropy so far discussed, we present the Rényi Transfer Entropy 

(Rényi, 1970) which is contingent on a weighting factor 𝑞 and can be calculated as 

 
𝐻𝐽
𝑞
=

1

1−𝑞
𝑙𝑜𝑔∑ 𝑃𝑞(𝑗)𝑗    (6.8) 

with 𝑞 > 0. For 𝑞⁡ → 1, Rényi entropy converges to Shannon entropy. For 0 < 𝑞 < 1, thus, low 

probability events receive more weight, while for 𝑞 > 1 the weights benefit outcomes 𝑗 with a 

higher original probability. As a result, Rényi entropy permits to accentuate diverse distribution 

areas, depending on factor 𝑞 (Behredt et al., 2019; Adam, 2020). 

Applying the escort distribution (Beck and Schögl, 1995) ∅𝑞(𝑗) =
𝑝𝑞(𝑗)

∑ 𝑝𝑞(𝑗)𝑗
 with 𝑞 > 0 to 

normalize the weighted distributions, Rényi transfer entropy (Rényi, 1970) was derived as: 
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𝑅𝑇𝐽⟶𝐼(𝑘, 𝑙) =
1

1−𝑞
𝑃(𝑖𝑡+1, 𝑖𝑡

(𝑘)
, 𝑗𝑡
(𝐼)
)𝑙𝑜𝑔

∑ ∅𝑞(𝑖𝑡
(𝑘)

)𝑃𝑞(𝑖𝑡+1|𝑖𝑡
(𝑘)

)𝑖

∑ ∅𝑞(𝑖𝑡
(𝑘)

,𝑗𝑡
(𝐼)
)𝑃𝑞(𝑖𝑡+1|𝑖𝑡

(𝑘), 𝑗𝑡
(𝐼)

)𝑖,𝑗

,  (6.9) 

It is worth noting that the Rényi transfer entropy calculation can have negative results. 

Knowing the history of 𝐽, in this case, indicates considerably more uncertainty than knowing 

the history of 𝐼 alone would indicate.   

The transfer entropy estimates are biased in small samples (Marschinski and Kantz, 2002). 

The correction of the bias is possible and can be used to calculate the effective transfer 

entropy as: 

 
𝐸𝑇𝐸𝐽⟶𝐼(𝑘, 𝑙) = 𝑇𝐽⟶𝐼(𝑘, 𝑙) − 𝑇𝐽𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑⟶𝐼(𝑘, 𝑙),   (6.10) 

where 𝑇𝐽𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑⟶𝐼(𝑘, 𝑙) depicts the transfer entropy using a shuffled version of the time series 

𝐽; that is, randomly drawing values from the observed time series 𝐽 and realigning them to 

generate a new time series, which destroys the time series dependencies of 𝐽, not forgetting 

the statistical dependencies between 𝐽 and 𝐼. This enjoins 𝑇𝐽𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑⟶𝐼(𝑘, 𝑙) to come together 

to zero with increasing sample size, and any nonzero value of 𝑇𝐽𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑⟶𝐼(𝑘, 𝑙) is due to small 

sample effects. To produce a bias-corrected effective transfer entropy estimate, repeated 

shuffling and the average of the shuffled transfer entropy estimates overall replications serve 

as an estimator for the small sample bias, which is removed from the Shannon or Rényi 

transfer entropy estimate. 

Relying on a Markov block bootstrap, the statistical significance of the transfer entropy 

estimates, as given by Eq. 6.10, can be assessed (Dimpfl and Peter, 2014). This preserves 

the dependencies within the variables J and I, but eliminates the statistical dependencies 

between them contrary to shuffling. Repeated estimation of transfer entropy then provides the 

distribution of the estimates under the null hypothesis of no information flow. The associated 

p-value is given by 1 − 𝑞̂𝑇, where 𝑞̂𝑇 denotes the quantile of the simulated distribution that is 

determined by the respective transfer entropy estimate (Adam, 2020). 

 

6.3 Data description 

We utilized daily real exchange rates of 15 out of 16 member countries of the SADC from 3rd 

January, 1994 to 7th January 2019, obtained from Thomson Reuters DataStream in this study. 

Specifically, daily data for local currency per USD for Angola, Botswana, Comoros, Democratic 

Republic of Congo, Eswatini (formerly Swaziland), Lesotho, Madagascar, Malawi, Mauritius, 

Mozambique, Namibia, Seychelles, South Africa, Tanzania and Zambia were employed. The 
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study period and countries were informed by data availability and the period South Africa 

formed part of SADC. As a result of this criteria, Zimbabwe was expunged from the analysis.  

The real exchange rate was measured based on nominal domestic currency per US.dollar 

(USD) multiplied by the domestic consumer price index divided by the US consumer price 

index. The justification for using USD as a proxy currency is due to the dominance of the USD 

in international trade by these countries and the extent of dollarisation of most SADC 

economies. In spite of recent de-dollarisation in Angola, Mozambique and Zambia, the dollar 

remains dominant in international trade globally including SADC and provides a means of 

standardising units of pair of currencies (Corrales et al., 2016). The study was executed with 

R packages libeemd (Luukko, Helske and Räsänen, 2016) for EEMD and RTransferEntropy 

for ETE (Adam, 2020).  

From Figure 6.1, the graphical presentation of the logarithm of exchange rates of SADC 

economies is shown, apart from Zimbabwe. Almost all the exchange rates trend upwards 

except Angola. The trajectory behaviour is explained by periods of pegging of the Angola 

Kwanza to the US dollar. The upward trend of remaining other countries shows that SADC 

exchange rates have over the period depreciated against the US dollar. It is not quite 

surprising to experience this upward trend because, generally, SADC countries are 

overvalued, and as expected, equilibrium is established overtime. Again, there is a biased 

expectation of the future exchange rates in small samples in times of uncertainty about when 

a future policy change will be implemented (Zhou, 2002). This partially explains the ‘peso 

problem’ proposition for the trend movements.  
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Figure 6.1: Log of the daily real exchange rate of 15 countries of SADC 

 

6.4 Results and Analysis 

The analysis of this study was structured to follow three processes.  First, we decomposed 

the daily real domestic currency/USD exchange rate to obtain individual 11 IMFs for each 

country’s exchange rate and trend using EEMD. We examined the properties of all IMFs 

extracted and were found to satisfy the necessary and sufficient conditions to be IMFs as 

prescribed by Huang et al. (1998). The residue is the non-oscillating drift of the data, which is 

not affected by short-to- medium-terms fluctuations, but by the structural changes in the data 

generation process. It, thus, represents the long-term trend of the data and for this study long 

trend behaviour of the exchange rate dictated by fundamentals of the economies. Second, the 

mean and amplitude of the IMFs of each country were classified into various frequencies; high 

frequency (sum of IMFs 1-5), medium frequency (sum of IMFs 6-8) and low frequency (sum 

of IMFs 9-11) using cluster analysis.  The high-, medium-, and low-frequencies have mean 

time-frequency of less than 30, between a month and 12 months and more than 12 months, 

respectively.  

Table 6.1 presents the clusters of IMFs into high frequency (period of 1-15 days), medium 

frequency (up to 144 days), low frequency (up to 2374 days) in addition to the residue. The 
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Pearson product-moment and Kendall tau-b correlations between each frequency and the 

original data series, the variance percentage of each frequency in the original data series and 

the sum of all frequencies and residue indicate that the residue is the dominant mode in all 

cases. 

Last, to understand the flow of information at various frequencies for all countries related to 

the observed exchange rates, we further examine the Rényi effective transfer entropy of the 

logarithm of daily real exchange rate series, high-, medium-, low-frequencies, and residue 

components of 15 exchange rate market in SADC at q = 0.3 to account for low probability 

events. 

We present the bi-directional EEMD-ETE estimates in addition to the 95% confidence bounds 

between exchange rates in SADC at various frequencies. The frequencies indicate the 

importance of multi-scales in financial time series. Thus, the dynamics of exchange rates do 

not occur immediately, but at several investment horizons as provided by the heterogeneous 

market hypothesis (Adam et al., 2021b; Muller et al., 1993).  

The presence of a negative ETE implies that awareness of the exchange rate from a particular 

country suggests a higher risk coverage for the exchange rate in another country. A positive 

ETE indicates that the knowledge of the exchange rates reduces the risk of the exchange rate 

of a specific country. The knowledge in the tails is assigned a high weight for low values of 𝑞, 

resulting in a significant effective transfer entropy result in the current situation. For this 

reason, we set q from the Rényi effective transfer entropy to 0.3 to offer more weights to the 

tail events, which bears direct implications. The ETE decreases and even becomes negative 

as the weight is reduced. 
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Table 6.1: Descriptive statistics of the reconstructed series and the residue for SADC exchange rate markets derived through EEMD 

 

HFRQ=High Frequency series, MFRQ=Medium Frequency series, LFRQ=Low Frequency series, and RESID=Residue

 Pearson correlation coefficient Kendall tau-b Variance as % of observed 

variance as % of the sum of all 

IMFs and Residue 

Country HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID HFRQ  MFRQ  LFRQ  RESID 

Angola  0.49 0.56 -0.04 0.26 0.00 -0.14 0.15 -0.11 62.87 35.96 104.92 144.79 62.87 35.95 104.91 144.78 

Botswana  0.06 0.02 0.63 0.94 0.04 0.08 0.46 0.74 0.22 4.53 7.14 77.17 0.22 4.53 7.14 77.14 

Comoros  0.09 0.32 0.72 0.85 0.06 0.22 0.46 0.60 0.75 11.13 16.82 48.32 0.75 11.13 16.81 48.29 

Dr Congo  0.03 0.05 -0.23 0.94 0.03 0.02 -0.26 0.88 0.10 1.74 15.47 133.16 0.10 1.74 15.46 133.08 

Eswatini  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Les Otho 0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Madagascar  0.06 0.08 0.41 0.94 0.08 0.10 0.18 0.74 0.20 2.51 7.47 86.37 0.20 2.51 7.46 86.33 

Malawi  0.03 -0.02 0.35 0.97 0.02 -0.04 0.01 0.86 0.04 0.80 4.67 90.95 0.04 0.80 4.66 90.89 

Mauritius 0.12 0.45 0.19 0.74 0.08 0.36 0.13 0.49 1.10 24.87 18.00 83.27 1.10 24.86 17.99 83.22 

Mozambique 0.03 0.09 0.45 0.88 0.02 -0.04 0.01 0.79 0.15 5.40 16.04 83.03 0.15 5.39 16.03 82.98 

Namibia  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

S. Africa  0.08 0.18 0.69 0.87 0.04 0.09 0.53 0.65 0.50 8.74 16.49 57.99 0.50 8.73 16.48 57.96 

Seychelles  0.06 0.20 0.40 0.87 0.07 0.16 0.23 0.60 0.41 5.78 19.09 78.57 0.41 5.78 19.08 78.51 

Tanzania 0.04 -0.21 0.11 0.98 0.03 -0.14 -0.02 0.92 0.10 1.05 3.57 104.69 0.10 1.05 3.57 104.63 

Zambia 0.07 -0.24 0.40 0.91 0.05 -0.06 0.09 0.57 0.43 9.61 12.44 103.79 0.43 9.61 12.43 103.74 
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The Rényi effective transfer entropy emphasises various sections of the involved probability 

density functions in a non-linear way. The Rényian transfer entropy is specifically used in this 

study to account for tail events associated with the dynamics of exchange rates movements 

within SADC. Since transfer entropy is a nonparametric estimate and has a higher likelihood 

of determining statistical interdependence between time series, we present the discussion 

between exchange rates of SADC following the concept of interdependencies. Doyle (1997) 

postulated that when there is interdependence, it results in increased economic relations 

among countries which promotes the forming of unions. Furthermore, Polachek (1980) argues 

that countries gain from interdependence, for example, the diverse advantages obtained from 

trading with other nations which most governments try to sustain. This may not be far from 

SADC which has pursued policies to harmonise and integrate the financial system with the 

intention to form monetary union. The purpose of the analysis is to ascertain whether SADC 

could form a reliable monetary union with stronger exchange rate, low exchange rate risk, and 

ensure price stability. 

Analyses of the study are presented for fifteen SADC economies concerning exchange rate 

which is important for trade and investments. The decomposed returns series are presented 

for the high-, medium and low-frequencies, representing short-, medium-, and long-terms 

respectively. In addition, we present the residue which denotes the non-oscillating drift of the 

data, which is not affected by short-to- medium term fluctuations but by the structural changes 

in the data generation process. It, therefore, represents the trend behaviour of the exchange 

rate dictated by fundamentals of the economies. The final outputs are tail dependent and 

reveal the directional flow of information between exchange rates other than the ones shown 

by other statistical techniques which assume linearity and stationarity. Consequently, 

Mokoena, Gupta, and Van Eyden (2009) make it clear that SADC economies’ exchange rates 

exhibit non-linear relationships when purchasing power parity was assessed.  

 

6.4.1 Exchange rates Information Transfer at High Frequency 

Figure 6.2 shows the information flow between exchange rates of SADC for high frequencies 

representing short-term horizon. It can be inferred that significant information flows between 

exchange rates within SADC are either positive or negative. However, there are more positive 

flows as compared to negative flows in the high frequency. Thus, the knowledge of the 

exchange rates from countries reduces the risk of the exchange rate of a specific country in 

the short-term. This is also true for information flow from a specific country’s exchange rate to 

the remaining SADC exchange rates. These observations imply that quantification of 

information flow between exchange rates in SADC depicts less uncertainties in the short-term. 
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In other words, the knowledge of the history of one country’s exchange rate illustrates 

considerably less uncertainty than knowing the history of only the remaining exchange rate(s).  

Specifically, we find a bi-causality positive significant information flow with countries such as 

Angola, Botswana, Comoros, Democratic Republic of Congo, Madagascar, Malawi and 

Mauritius. This suggests that trade and investment within Angola, Botswana, Comoros, 

Democratic Republic of Congo, Madagascar, Malawi and Mauritius with the remaining SADC 

economies would reduce exchange rate risk. Consequently, the presence of these economies 

in SADC with the quest of forming a reliable monetary union for stronger exchange rate, low 

exchange rate risk, and ensure price stability can suffice in the short-term. In this regard, 

economies of like nature may form a reliable monetary union with less shocks from a specific 

country’s exchange rate. The findings for the short-term perspective corroborate the outcome 

of Zehirun, Breitenbach and Kemegue (2015) who found a weak positive comovement in 

exchange rates in SADC when Johansen's multivariate co-integration technique was 

employed.  
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Figure 6.2 Information flow of high-frequency exchange rate series among SADC countries
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6.4.2 Exchange rates Information Transfer at Medium Frequency 

Figure 6.3 shows the information flow between exchange rates at SADC for medium 

frequencies representing a medium-term horizon. Overall, there is a more negative significant 

flow of information in the medium-term. Thus, the knowledge of the exchange rates from 

countries increases the risk of the exchange rate of a specific country. This is also true for 

information flow from a specific country’s exchange rate to the remaining SADC exchange 

rates. These observations imply that quantification of information flow between exchange 

rates in SADC indicates more uncertainties in the medium-term. In other words, the knowledge 

of the history of one country’s exchange rate illustrates considerably more uncertainty than 

knowing the history of only the remaining exchange rate(s) as compared to the high-frequency 

estimates.  

Specifically, negative significant information flow from the exchange rates of Botswana, 

Eswatini, Namibia, South Africa, Democratic Republic of Congo and Lesotho to Angola. The 

reverse is true, except for information flow from Angola to the Democratic Republic of Congo. 

That is, there is bi-directional causality between exchange rates of Botswana, Eswatini, 

Namibia, South Africa, Lesotho and Angola. Also, significant negative information flow from 

Lesotho, Eswatini, Namibia, South Africa, Zambia, Seychelles, Angola and Mauritius to 

Botswana, with the reverse indicating a similar outcome which exhibits bi-directional causality. 

This suggests that trade and investment within Lesotho, Eswatini, Namibia, South Africa, 

Zambia, Seychelles, Angola and Mauritius by Botswana would pose a higher risk for the 

exchange rate of Botswana, and vice-versa. Relatively, trade and investment by Angola 

indicate less negative information flow from other countries as compared to Botswana. 

Furthermore, trade and investment to and from Zambia within SADC exhibit a higher degree 

of uncertainty with countries such as Botswana, Lesotho, South Africa, Eswatini and the 

Democratic Republic of Congo. The outcome for trade and investment to and from SA with 

countries such as Lesotho, Namibia, Eswatini and Botswana is no exception. The exchange 

rate negative information flow from South Africa to other SADC economies concurs with the 

findings of Qabhobho, Wait and Le Roux (2020) when GARCH models were considered to 

assess exchange rate volatilities.  Accordingly, the presence of these economies in SADC 

with the quest of forming a reliable monetary union may not auger well for stronger exchange 

rates, low exchange rate risk, and ensure price stability in the medium-term. In this regard, 

knowing the history of one country’s exchange rate demonstrates considerably more 

uncertainty than knowing the history of only the remaining economies’ exchange rates, 

especially with the bi-directional significant negative causality case.  

On the other hand, countries with insignificant unidirectional or preferably, bi-directional 

insignificant or positive significant information flows may experience stronger exchange rate, 
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low exchange rate risk, and may result in price stability. For instance, the exchange rate 

dynamics of Tanzania depicts less risk of information sharing with the remaining SADC 

members in this study. In this regard, economies of like nature may form a reliable monetary 

union with fewer shocks from a specific country's exchange rate in the medium-term.  
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Figure 6.3 Information Flow between exchange rates at medium frequency series 
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6.4.3 Exchange rates Information Transfer at Low Frequency 

Figure 6.4 shows the information flow between exchange rates at SADC for low frequencies 

representing a long-term horizon. Throughout the low frequency, there are potentials for 

negative flows than positive flows between the exchange rates in SADC. Thus, the knowledge 

of the exchange rates from countries increases the risk of the exchange rate of a specific 

country. This is also true for information flow from a specific country’s exchange rate to the 

remaining SADC exchange rates. These observations imply that quantification of information 

flow between exchange rates in SADC depicts more uncertainty.  

Specifically, negative significant information flow from the exchange rates of Democratic 

Republic of Congo to Angola; Eswatini to Botswana; South Africa, Lesotho, Namibia and 

Mauritius to Eswatini; Namibia, Eswatini, South Africa and Mauritius to Lesotho; Angola to 

Mozambique; South Africa, Eswatini, Lesotho and Mauritius to Namibia; Lesotho, Namibia, 

Eswatini and Mauritius to South Africa; Malawi and Tanzania to Seychelles; and South Africa, 

Lesotho, Eswatini, Malawi, Comoros and Botswana to Zambia. We found a bi-directional 

causality with the exchange rates of South Africa, Lesotho, Namibia, Mauritius and Eswatini. 

These economies exhibit negative significant information flow in exchange rates with respect 

to their possible combinations. Consequently, the inclusion of these economies as part of 

SADC with the quest of forming a reliable monetary union may not auger well for stronger 

exchange rate, low exchange rate risk, and ensure price stability. The negative bi-directional 

causality further signifies that the knowledge of the exchange rates among these countries 

increases the risk of the exchange rates within these regions. Thus, at low probability events, 

adverse fluctuations in exchange rates of SADC occur relative to favourable outcomes.  

Accordingly, countries with a mixture of insignificant unidirectional/bi-directional flow or 

preferably, bi-directional positive information flow may experience stronger exchange rate, low 

exchange rate risk, which may result in price stability. For instance, the exchange rates of 

Madagascar, Tanzania and Malawi, to mention but a few, depict less uncertainties of 

information sharing. The outcome for Madagascar, Tanzania and Malawi supports the 

assertion made by Anoruo and Ahmad (2013) of monetary convergence in SADC. In this 

regard, economies of like nature may form a reliable monetary union with less shocks from a 

specific country’s exchange rate.  
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Figure 6.4 Information Flow between exchange rates at low-frequency series  
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6.4.4 Exchange rates Information Transfer between the Residues  

Figure 6.5 shows the information flow between exchange rates at SADC for the residue 

representing the long-term trend or fundamental feature. It can be observed from the plots that 

the residue contains the most negative significant information flow between exchange rates 

relative to the remaining frequencies. Thus, the knowledge of the exchange rates from 

countries increases the risk of the exchange rate of a specific country. This is also true for 

information flow from a specific country’s exchange rate to the remaining SADC exchange 

rates. These observations imply that information flow between exchange rates in SADC 

indicates more uncertainties. Thus, the knowledge of the history of one country’s exchange 

rate illustrates considerably more uncertainty than knowing the history of only the remaining 

exchange rate(s) as compared to the high-, medium-, and low-frequencies estimates. This 

assertion confirms the suggestion of Duma (2001) that SADC does not form an optimum 

currency union. The study of Redda and Muzindusti (2017) advocated that bilateral real 

exchange rates in the SADC region share a common stochastic trend in the long-run, without 

considering the directional flow of information at multi-scales between the economies. Thus, 

similarities in stochastic trends are not enough to prove empirically, the conditions for optimum 

currency area. Notwithstanding, the study of Adam et al. (2021a; 2021b) found similarities in 

exchange rates of SADC at diverse frequencies via the EEMD approach. Building upon these 

similarities, our approach (EEMD-ETE) reveals a significant negative information flow between 

the exchange rates of SADC for most scales.  

A glance from the plots depicts that almost all the 15 SADC economies demonstrate negative 

information flow between exchange rates. During this period, trade and investments between 

union members may escalate exchange rate risk, weaken exchange rates and lead to price 

instability. In this regard, knowing the history of one country’s exchange rate demonstrates 

considerably more uncertainty than knowing the history of only the remaining economies’ 

exchange rates, especially, from the bi-directional negative information flow. The significant 

negative bi-directional causality between exchange rates in SADC supports the findings of 

Zehirun, Breitenbach and Kemegue (2015) in the long-run.  
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Figure 6.5 Information Flow between exchange rates at the residue 
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6.5 Conclusion 

The EEMD-ETE was utilised in this study to quantify the direction and strength of information 

transfer between exchange rates at the frequency-domain. In this regard, we investigated the 

multi-scale information that might be disregarded. Owing to the non-linearity of most financial 

time series, we adopt a log-likelihood ratio transfer entropy which quantifies information from a 

probability density function. We set q from the Rényi transfer entropy to 0.3 to account for extreme 

events specifically, low probability events. This indicates that it is tail events rather than 

observations in the centre that become imperative to be studied when information flow is 

employed.  

Analysis of the study was presented for four frequency-domains, these are; high, medium, and 

low frequencies, in addition to the trend. We find a mixture of asymmetric and non-linear bi-

directional and unidirectional causality between exchange rates in SADC for the sampled period. 

The study reveals a significant negative information flow in the medium and long-terms, but a 

more positive flow in the short-term (high frequency). However, at the residue (fundamental 

feature), we gauge a bi-directional significant negative information flow within all the 15 

economies. This suggests a higher risk of uncertainties in exchange rates of SADC.  

Our findings for low property events at multi-scales have policy implications for the direction of 

the future of SADC monetary union. This would require tough decisions concerning monetary and 

exchange rate policies. It is not surprising to see the adverse information flow between exchange 

rates in SADC since most SADC economies have floating exchange rates and an independent 

monetary policy. To have a sound system of monetary union, a period of exchange rate 

convergence would be essential, with all potential SADC members pursuing an agreed exchange 

rate policy. This would gradually minimise the adverse exchange rate fluctuations between these 

economies in SADC over a given time.   
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Figure 6.6 Plots of IMFs from EEMD Group into Various Frequencies 



    

117 

 

CHAPTER 7 

General Conclusions, Contributions, Recommendations, Limitations And Further 

Research 

 

7.1 General Conclusion 

Following the successful implementation of European Monetary Union, the desire for economic 

and monetary integration of economic blocs in Africa has heightened. The success of any 

economic and monetary union hinges on coordination of fundamental monetary and economic 

variables. Therefore, any bloc that seeks to form economic and monetary integration ought to 

assess the extent of coordination of fundamental economic and monetary variables. Of these, 

the exchange rate market integration has been cited as a key indicator for stable economic 

integration because of its pass-through effect on other financial markets. The rising uncertainty 

in the global economic development makes the comovement of exchange rates important for the 

formation of monetary unions. Accordingly, exchange rate markets integration in various 

economic communities have been studied and cited as a key indicator for stable monetary union. 

The evidence from Rational Expectation Theory (RET) and the Efficient Market Hypothesis (EMH) 

shows that participants (speculators, central banks, dealers, individuals, etc.) in the exchange 

rate market are rational and homogeneous with different information, objective interest and 

investment behaviour as explained by the Heterogeneous Market Hypothesis (HMH). This makes 

the price and data generation of the exchange rate mixed and noisy. In addition, it suffers from 

one or more of the following problems: short data span, non-stationarity, non-linearity, and long 

memory limiting its usage in research and practice.  The decision to form a monetary union is a 

critical one which should emanate from correct modelling. However, the intrinsic characteristics 

of exchange rate data hinder the use of symmetric models in analysing exchange rate data and 

could lead to spurious results and conclusion.  In response to these, this thesis proposes novel 

methods based on Huang transforms, specifically empirical mode decompositions (EMDs), to 

analyse the similarities, interdependencies and information transfer using exchange rate markets 

data from SADC sub-region. The EMD decomposes a time series into a small number of 

independent and concretely implicational intrinsic modes based on scale separation and explains 

the generation of time-series data from an alternative perspective method. EMD is intuitive, direct, 

posteriori and adaptive. EMD performs a time-adaptive decomposition of a complex signal into 

elementary, almost orthogonal components that do not overlap in frequency. It thus, improves in 

the analysis of time series data over detrended fluctuation analysis (DFA) and wavelet transform. 

In the ensuing paragraphs, a chapter-by-chapter conclusions of the thesis are presented. 
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In chapter one, a general introduction of the study which set the tone of the thesis is discussed, 

background of the study, rationale, problem statement, research objectives, scope and the 

expected contributions of the study to literature were presented.  

In the second chapter, we reviewed empirical mode decompositions and its competing models 

such as Fourier transform and variations of wavelet transforms. It was observed that Huang 

transform outperforms Fourier and Wavelet transforms because of its adaptiveness, ability to 

handle non-linear data, localisation of frequency and being empirical. Therefore, using Hilbert-

Huang transform as a transformation technique in financial time series will improve the accuracy 

of the results and implied policy. 

In chapter three, we reviewed and examined the stylised facts of non-stationarity and non-linearity 

of exchange rate data.  The three approaches reviewed and used to test non-stationary were 

ADF, PP and KPSS. The results from these tests showed that SADC exchange rate data are 

non-stationary. The review and results from BDS test, NN test, Keenan and Tsay tests, TAR-LR 

test and Engle LM test  also  showed that SADC exchange rate data are non-linear. Thus, 

exchange rate markets in SADC are non-stationary and non-linear which requires models that 

delineate the influence of noise and able to deal with non-stationarity. 

In the fourth chapter, we proposed a new way of analysing short and long-run comovement 

through the analysis of the characteristics of IMFs and residue. First, we compared the 

performance of EMD and EEMD to decompose SADC exchange rate markets and found EEMD 

to be superior. We then examined the component of the decomposed series to determine the 

important component that explains/defines the exchange rate trajectory in SADC. The residue of 

all the market explained over 80% of the variation of the original series, except for Angola. The 

analysis of the IMFs and residue obtained from EEMD showed that exchange rate markets in 

SADC are driven by economic fundamentals and 12 out of 15 countries examined showed some 

level of similarity in the long-term trend.  

In chapter five, we proposed multifrequency network based EEMD-DCCA to study the dynamic 

interdependence structure of exchange rate markets in SADC. This was done by first 

decomposing all series into intrinsic mode functions using EEMD and reconstructing the series 

into three frequency modes: high, medium, and low frequencies, and residue. The DCCA method 

was used to analyse the cross-correlation between the various frequencies, residues and original 

series. These were meant to address the non-linearity and non-stationarity in observed exchange 

rate data. A correlation network was formed from the cross-correlation coefficients in all cases 

which revealed richer information than would have been obtained from the original series. We 

found that similarities between the nature of cross-correlation in the high-frequency series mimic 
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the original series and the significant cross-correlation among the long-term trend of most SADC 

countries exchange rate markets.  

In the sixth chapter, EEMD-Effective transfer entropy-based model was developed to study 

exchange rate market information transmission in SADC. To examine the degree of asymmetry 

and non-linear directional causality between exchange rates in SADC in the frequency-domain, 

we employed both the Ensemble Empirical Mode Decomposition (EEMD) and the Rényi effective 

transfer entropy techniques to investigate the multi-scale information that might be disregarded, 

and further quantify the directional flow of information. Analysis of the study was presented for 

four frequency-domains: high, medium, and low frequencies, representing short-, medium-, and 

long-terms respectively, in addition to the residue (fundamental feature). The study reveals a 

significant positive information flow in the high frequency, but negative flow in the medium and 

low frequencies.  

 

7.2 Main Contributions of the Study 

 The main contributions of this thesis are summarised as follows: 

1. The study contributes to the literature by revealing the performance of EMD in comparison 

with EEMD in decomposing exchange rate data for the first time and studying the 

underlying characteristics of exchange rates in SADC using the descriptive statistics of 

the IMFs and residue. The use of the descriptive statistics of IMFs to understand 

fundamental characteristics of financial time series is novel and provides useful 

importation of the data generation process as in HMH. 

2. The proposal to use the residue from the decomposition to analyse similarity of financial 

time series structure is novel. This is an improvement in the long-run analysis in time 

series compared to traditional cointegration methods as it reveals comovement structure 

at different timescales.  This proposed method could be used in analysing similarities in 

structure of various financial markets.  

3. The EEMD-based DCCA model developed offers the opportunity to understand the extent 

of cross-correlation at different frequency scales. The use of this proposed approach to 

analyse independency of variables provides rich information for policy implementation and 

recommendation.  

4. For the cross-correlation of financial time series to provide information on fundamental 

independence, the proposed analytical framework contributes to the literature on the 
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analysis of dependencies by introducing a new approach to the analysis of multifrequency 

interdependence. This allows policymakers to gain new insight into the cross-correlations. 

5. The EEMD-ETE methodology developed provides perspective of information 

transmission and quantification to capture information spillover and interactions among 

different markets, which provides useful information on the spillover direction between 

variables. This novel method in financial markets microstructure literature. 

6.  Financial time series often exhibit different characteristics at different time frequencies, 

and the relations between different variables vary widely across time scales. The 

utilization of EEMD-ETE offers the opportunity to understand the extent of information 

transmission at different frequency scales. Thus, delineates the influence of noise from 

the quantification of information flow across the exchange rate markets. 

7. From the financial markets’ perspective, this thesis for the first time provides literature on 

the extent of similarity, independence and information transfer between financial markets 

in SADC. In terms of similarities, at least 12 countries were similar in structure excluding 

Angola, Comoros and Seychelles with again Angola and Comoros being obvious outliers 

but showing some form of orientation toward the SADC market structure. The 

interdependence analysis showed an increased correlation with increasing frequency of 

the series and the long-term trend of exchange rates of SADC countries are stronger.   

Comparing the original series with the levels of decomposed series, the sources of 

deviation of the exchange rate markets have been identified as the high-frequency 

component which is linked to speculation activities, short-term policies, and timing of the 

response to external shocks. The information transfer analysis detected a mixture of 

asymmetric and non-linear bi-directional and unidirectional causality between exchange 

rates in SADC for the sampled period. It also reveals a significant negative information 

flow in the medium and long-terms, but a more positive flow in the short-term (high 

frequency). However, at the residue (fundamental feature), a bi-directional significant 

negative information flow within all the 15 economies were detected. These findings has 

serious implication for policy toward monetary integration in the region. 

 

7.3 Recommendations 

The Huang transform approach methodology, specifically EEMD based, proposed for the 

analysis of similarities, independence and information transfer  method can help obtain more 

internal characteristics and detailed information on financial data generations process, intrinsic 

characteristics, driving components, cross-correlation and information transfer at various 
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timescales which will help policymakers make a more accurate analysis of exchange rate 

dynamics, especially for non-linear and non-stationary data. It is therefore recommended that 

EEMD based method is more effective than EMD and should be used in the analysis of financial 

time series that are susceptible to non-linearity and non-stationary to elicit the time-frequency 

information. 

The adherence to similarity in long-term fundamentals of 12 countries of SADC give some hope 

that SADC can form a monetary union. Hence, it is recommended that there should be gradual 

formation by expanding the existing CMA to accommodate those new countries orientating 

toward CMA countries taking into consideration other economics agents necessary for optimum 

currency area such as business cycle synchronisation and macroeconomic convergence. The 

revelation that the high-frequency component serve as sources of deviation of the exchange rate 

markets in SADC requires that attention of policymaker be drawn towards activities of speculator, 

short-term policies, and timing of the response to external shocks. 

The findings for low property events at multi-scales have policy implications for the direction of 

the future of SADC monetary union. This would require tough decisions concerning monetary and 

exchange rate policies. To have a sound system of monetary union, a period of exchange rate 

convergence would be essential, with all potential SADC members pursuing an agreed exchange 

rate policy. This would gradually minimise the adverse exchange rate fluctuations between these 

economies in SADC over a given time.   

 

7.4 Limitations of the Study 

 

The class of Empirical Mode Decomposition (EEMD), though it corrects the issue of mode-mixing, 

introduces the problem of exact reconstruction of signals. The ability of the added noise to affect 

the extrema of the original signal is paramount so that the intermittency of the components will 

be removed or decreased as much as possible. However, it has been observed that in the 

predefined constant amplitude value, the extrema are being affected (and therefore decreasing 

the existing mode mixing) by a random noise, which might not effectively change some extrema. 

This weakness of EEMD could affect the accuracy of the decomposition and ought to have 

compared to all variant of EMD class of decompositions. However, Wei et al. (2013) observed 

through empirical analysis that performance in reconstructing frequencies do not follow the 

extension sequence and therefore performance of these classes depends on the behaviour of 

the financial time series. The most profound weakness of empirical mode decomposition is the 

lack of theoretical foundation. Notwithstanding, the results obtained through combination of 

battery of methods showed some congruence which reinforced the robustness of the proposed 

methods. In terms of applied analysis of information transfer, the timing and speed of the 
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information transfer is necessary for monetary policy decision. This is however not employed in 

the analysis. 

 

7.5 Suggestion for Future Research 

Further research could extend the proposed framework by considering an approach to extend 

variant of EMD with intension to compare the performance of the variant in decomposing financial 

time series. The emergence of improved decomposition methods such as synchrosqueezing 

transforms, Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

(I-CEEMDAN), among others to address the limitation of the usual empirical decomposition 

requires that future works explore the use of these approaches. The lack of theoretical foundation 

for EMD cannot remain forever. Future research may embark on the theoretical underpinnings to 

broaden the literature and application of EMD. 

The timing and speed of transfer of information across financial market has serious implications 

for the conduct of monetary policy. Future studies should extend this study to examine the speed 

of information transfer from across financial markets.    
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Appendix 

R-Codes for Data Validation 

 

tt2<-seq(0,237,by=0.05) 
noise.amp <- 6.4e-07 
trials <- 1000 
library(hht) 
ceemd.result <- CEEMD(Zam, tt2, noise.amp, trials) 
PlotIMFs(ceemd.result) 
ceemd.result=Sig2IMF(Zam, tt2) 
ceemd.result 
PlotIMFs(ceemd.result) 
write.table(ceemd.result,file="ceemdtry.csv") 
names(xt) 
library(EMD) 
library(hht) 
library(Rlibeemd) 
plot(Ang) 
eemd.results<- eemd(Zam, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Zam, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdZam3.csv") 
names(xt) 
setwd("C:/Users/ano77/Desktop/project1/lsadc") 
#EEMD 
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Angola<- eemd(Ang, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Ang, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdAng21.csv") 
plot(Angola[,7:12]) 
Botswana<- eemd(Bot, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Bot, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdBot.csv") 
plot(Botswana) 
 
Comoros<- eemd(Com, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Com, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdCom1.csv") 
plot(Comoros) 
 
DRCongo<- eemd(DRC, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(DRC, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdDRC.csv") 
plot(DRCongo) 
 
Eswatini<- eemd(Esw, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Esw, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdEsw.csv") 
plot(Eswatini) 
Lesotho<- eemd(Les, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Les, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdLes.csv") 
plot(Lesotho) 
 
Madagascar<- eemd(Mad, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Mad, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdMad.csv") 
plot(Madagascar) 
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Malawi<- eemd(Mal, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Mal, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdMal.csv") 
plot(Malawi) 
 
Mauritius<- eemd(Mau, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Mau, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdMau.csv") 
plot(Mauritius) 
 
Mozambique<- eemd(Moz, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Moz, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdMoz.csv") 
plot(Mozambique) 
 
Namibia<- eemd(Nam, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Nam, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdNam.csv") 
plot(Namibia) 
 
Seychelles<- eemd(Sey, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Sey, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdSey.csv") 
plot(Seychelles) 
 
SouthAfrica<- eemd(SA, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(SA, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdSA.csv") 
plot(SouthAfrica[,7:12]) 
 
Tanzania<- eemd(Tanz, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Tanz, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdTanz.csv") 
plot(Tanzania) 
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Zambia<- eemd(Zam, num_imfs = 10, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L) 
write.table(eemd(Zam, num_imfs = 0, ensemble_size = 250L, 
noise_strength = 0.2,S_number = 4L, num_siftings = 50L, rng_seed = 0L, 
threads = 0L),file="eemdZam.csv") 
plot(Zambia) 
 
 
install.packages("xts") 
install.packages("tidyverse") 
library(tidyverse) 
library(xts) 
 
library(scales) 
autoplot(tss[,1:11]) +  
  scale_y_continuous(breaks = 0.02^(0:ceiling(log10(max(tss)))), labels = 
comma) 
 
tss <- as.xts(eemd.results) 
autoplot(tss) 
pt<-read.table("SADC3.txt",header=TRUE) 
head(pt); tail(pt) 
dim(pt) 
pp <- pt[,2:16] 
names(pp) 
date <- pt$date  
date 
 
md <- read.table("eemdZam2.txt", header=T) 
dim(md);  
head(md); names(md) 
mm <- md[1:12] 
 
## Decompose with EMD 
c <- emd(Zam, num_imfs = 10, num_siftings = 10) 
Angola<- emd(Ang, num_imfs = 10, num_siftings = 10) 
write.table(emd(Ang, num_imfs = 0,num_siftings = 10),file="emdAng.csv") 
plot(Angola) 
Botswana<- emd(Bot, num_imfs = 10, num_siftings = 10) 
write.table(eemd(Bot, num_imfs = 0, num_siftings = 10),file="emdBot.csv") 
plot(Botswana) 
 
Comoros<- emd(Com, num_imfs = 10, num_siftings = 10) 
write.table(emd(Com, num_imfs = 0, num_siftings = 
10),file="emdCOM.csv") 
plot(Comoros) 
 
DRCongo<- emd(DRC, num_imfs = 10, num_siftings = 10) 
write.table(emd(DRC, num_imfs = 0, num_siftings = 
10),file="emdDRC.csv") 
plot(DRCongo) 
 
Eswatini<- emd(Esw, num_imfs = 10, num_siftings = 10) 
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write.table(emd(Esw, num_imfs = 0, num_siftings = 
10),file="emdEsw.csv") 
plot(Eswatini) 
Lesotho<- emd(Les, num_imfs = 10, num_siftings = 10) 
write.table(emd(Les, num_imfs = 0, num_siftings = 10),file="emdLes.csv") 
plot(Lesotho) 
 
Madagascar<- emd(Mad, num_imfs = 10, num_siftings = 10) 
write.table(emd(Mad, num_imfs = 0, num_siftings = 
10),file="emdMad.csv") 
plot(Madagascar) 
 
Malawi<- emd(Mal, num_imfs = 10, num_siftings = 10) 
write.table(emd(Mal, num_imfs = 0, num_siftings = 10),file="emdMal.csv") 
plot(Malawi) 
 
Mauritius<- emd(Mau, num_imfs = 10, num_siftings = 10) 
write.table(emd(Mau, num_imfs = 0, num_siftings = 
10),file="emdMau.csv") 
plot(Mauritius) 
 
Mozambique<- emd(Moz, num_imfs = 10, num_siftings = 10) 
write.table(emd(Moz, num_imfs = 0, num_siftings = 
10),file="emdMoz.csv") 
plot(Mozambique) 
 
Namibia<- emd(Nam, num_imfs = 10, num_siftings = 10) 
write.table(emd(Nam, num_imfs = 0, num_siftings = 
10),file="emdNam.csv") 
plot(Namibia) 
 
Seychelles<- emd(Sey, num_imfs = 0,  num_siftings = 10) 
write.table(emd(Sey, num_imfs = 0, num_siftings = 10),file="emdSey.csv") 
plot(Seychelles[,7:12]) 
 
SouthAfrica<- emd(SA, num_imfs = 0, num_siftings = 10) 
write.table(emd(SA, num_imfs = 0, num_siftings = 10),file="emdSA.csv") 
plot(SouthAfrica[,1:7])+ plot(SouthAfrica[,7:12]) 
 
Tanzania<- emd(Tanz, num_imfs = 10, num_siftings = 10) 
write.table(emd(Tanz, num_imfs = 0, num_siftings = 
10),file="emdTanz.csv") 
plot(Tanzania) 
 
Zambia<- emd(Zam, num_imfs = 10, num_siftings = 10) 
write.table(emd(Zam, num_imfs = 0, num_siftings = 
10),file="emdZam.csv") 
plot(Zambia) 
 
 
 
EXTREME 
###########################################################
### 
kk1<-read.csv("eemdAng.csv",header=TRUE) 
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kk2<-read.csv("emdSA.csv",header=TRUE) 
attach(kk2) 
names(kk2) 
library(EMD) 
b<-extrema(kk2[,11]) 
b 
length(kk2[,3])/11 
 
 
kk3<-read.csv("emdAng.csv",header=TRUE) 
attach(kk3) 
names(kk3) 
kk4<-read.csv("eemdbot.csv",header=TRUE) 
attach(kk4) 
names(kk4) 
length(minima) 
a<-length(kk4[,4]) 
a 
b<-extrema(kk4[,4]) 
b 
a/b 
a*b 
var(kk1[,2]) 
var(kk2[,14])/var(kk2[,2]) 
 
 
p<-kk2[,3]+kk2[,14] 
var(p)/var(kk2[,2]) 
 
library(Hmisc) 
 
cor.test(kk2[,13], kk2[,2], method = "pearson", alternative = "greater") 
cor.test(kk2[,13], kk2[,2], method = "kendall", alternative = "greater") 
cor.test(xt, kk1[,1], method = "spearman", alternative = "greater") 
cor.test(kk2[,13], kk1[,3]) 
install.packages("devtools") 
install.packages("pvclust") 
library(pvclust) 
fit <- pvclust(kk1[,3:13], method.hclust="ward",method.dist="euclidean") 
fit 
plot(fit) # dendogram with p values 
box() 
# add rectangles around groups highly supported by the data 
pvrect(fit, alpha=.95) 
CEEMD(Ang, tt, noise.amp, trials, verbose = TRUE,  spectral.method = 
"arctan", diff.lag = 1, tol = 5, max.sift = 10, stop.rule = "type5", boundary = 
"wave", sm = "none", smlevels = c(1), spar = NULL, max.imf = 1000, 
interm = NULL,  noise.type = "gaussian", noise.array = NULL) 
ceemd.result <- CEEMD(Zam, tt, noise.amp, trials) 
# PlotIMFs(ceemd.result, imf.list = 1:6, time.span = c(5, 10)) 
CEEMD(sig, tt, noise.amp, trials, verbose = TRUE,spectral.method = 
"arctan", diff.lag = 1, tol = 5, max.sift = 200,stop.rule = "type5", boundary = 
"wave", sm = "none",smlevels = c(1), spar = NULL, max.imf = 1000, interm 
= NULL,noise.type = "gaussian", noise.array = NULL) 
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P <- CEEMD(Ang, tt, noise.amp, trials, verbose = TRUE, spectral.method 
= "arctan", diff.lag = 1, tol = 5, max.sift = 200, stop.rule = "type5", boundary 
= "wave", sm = "none", smlevels = c(1), spar = NULL, max.imf = 1000, 
interm = NULL, noise.type = "gaussian", noise.array = NULL) 
 
PLOTING CORRELATION MATRIX 
###########################################################
### 
library(devtools) 
Compute a correlation matrix 
data(kk2) 
corr <- round(cor(kk2[,2:5]), 1) 
head(corr[, 2:13]) 
install.packages("ggcorrplot") 
library(ggcorrplot) 
# method = "square" (default) 
library 
ggcorrplot(corr) 
   
 
PLOTING CORRELATION MATRIX 
###########################################################
### 
kk5<-read.csv("resadc.csv",header=TRUE) 
attach(kk5) 
names(kk5) 
install.packages("corrplot") 
library(corrplot) 
M<-round(cor(kk5[,2:16]), 1) 
corrplot(M, method = "color") 

 

 

 

 

 
###########################################################
#### 
Entropy Estimation 
###########################################################
######### 
install.packages("RTransferEntropy") 
install.packages("xts") 
library(parallel) 
library(RTransferEntropy) 
 
setwd("C:/Users/ano77/Desktop/project1") 
xt<-read.csv("paper2.csv",header=TRUE) 
attach(xt) 
names(xt) 
Z<-returns(ESWT) 
x=ESWLF 
y=NAMLF 
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transfer_entropy(x, y,  
                 lx = 1, ly = 1, q = 0.3,  
                 entropy = c('Shannon', 'Renyi'), shuffles = 100,  
                 type = c('quantiles', 'bins', 'limits'), 
                 quantiles = c(5, 95), bins = NULL, limits = NULL, 
                 nboot = 300, burn = 50, quiet = FALSE, seed = NULL) 
###########################################################
################## 
#PLOT 
###########################################################
################ 
df<-read.csv("df.csv",header=TRUE) 
 
ggplot(df, aes(x = ticker, y = ete)) +  
  facet_wrap(~dir) + 
  geom_hline(yintercept = 0, color = "gray") + 
  theme(axis.text.x = element_text(angle = 90)) + 
  labs(x = NULL, y = "Renyi Effective Transfer Entropy") + 
  geom_errorbar(aes(ymin = ete - qnorm(0.95) * se,   
                    ymax = ete + qnorm(0.95) * se),   
                width = 0.25, col = "blue") + 
  geom_point() 
###########################################################
################ 
# Load required packages 
library(RTransferEntropy) 
library(xts) 
library(zoo) 
library(forecast) 
library(e1071) 
library(psych) 
library(rgl) 
library(ggplot2) 
library(scatterplot3d) 
library(hrbrthemes) 
library(dplyr) 
library(fBasics) 
library(tseries) 
library(quantmod) 
library(FinTS) 
library(nloptr) 
library(fUnitRoots) 
library(QRM) 
library(data.table) 
library(parallel) 
cl <-makeCluster(8) 
 
# Importing data for effective transfer entropy calculation 
paper3a<- read.csv("paper3mal.csv",header=T) 
attach(paper3a) 
names(paper3a) 
 
# Estimating effective transfer entropy 
x=ret 
y=MALT 
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res <- lapply(split(paper3a,paper3a$ticker),function(d) {    
te <- transfer_entropy(d$ret, d$MALT,  
                lx = 1, ly = 1, q = 0.3,  
                 entropy = "Renyi", shuffles = 10,  
                 type = c('quantiles', 'bins', 'limits'), 
                 quantiles = c(5, 95), bins = NULL, limits = NULL, 
                 nboot = 30, burn = 50, quiet = FALSE, seed = NULL) 
data.table(ticker = d$ticker[1],dir = c("X->Y", "Y->X"), 
coef(te)[1:2, 2:3])  
}) 
df <- rbindlist(res)  
  
write.csv(df, file = "HMPMAL.csv") 
# order the ticker by the ete of X->Y  
df[,ticker := factor(ticker, 
levels = unique(df$ticker)[order(df[dir == "X->Y"]$ete)])]  
  
# rename the variable (xy/yx)  
df[, dir := factor(dir, levels = c("X->Y", "Y->X"),                     
 labels = c("Flow of information to MAL","Flow of information from MAL"))]  
 
# Charting the effective transfer entropy between the market and the 
stocks 
ggplot(df, aes(x = ticker, y = ete)) +     
facet_wrap(~dir) +    
geom_hline(yintercept = 0, color = "gray") +    
theme(axis.text.x = element_text(angle = 90)) +    
labs(x = NULL, y = "Effective Transfer Entropy") +    
geom_errorbar(aes(ymin = ete - qnorm(0.95) * se,                        
ymax = ete + qnorm(0.95) * se),                    
width = 0.25, col = "blue") +    
geom_point()  
ggsave("MAL.png",width=5,height=5) 
 
 
 
stopCluster(cl) 
 
############################ 
 
write.csv(df, file = "HMDATA1.csv") 
 
################################# 
 
# uploading data for heat maps 
dat<-read.csv("HMPTO.csv",header=T) 
 
# Drawing heat maps of effective transfer entropy among the stocks 
ggplot(dat,aes(x=dat$variable,y=dat$ticker)) +  
geom_tile(aes(fill = dat$ete),colour = "grey", na.rm = TRUE) +    
scale_fill_gradient2(high="blue", 
midpoint=0,space="Lab",na.value="grey70",guide="colourbar",aesthetics=
"fill")+      
guides(fill=guide_legend(title="ETE")) +    
theme_bw() + theme_minimal() +     
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labs(title = "Information flow from Country  X to Country Y",x = "Country 
X", y = "Country  Y") +    
theme(axis.text.x = element_text(angle = 90))+ 
theme(panel.grid.major = element_blank(), panel.grid.minor = 
element_blank()) 
ggsave("HMPTO.png",width=5,height=5) 
 
###########################################################
################ 
rm(list=ls()) 
setwd("C:/Users/ano77/Desktop/project1") 
paper3<- read.csv("paper3a3.csv",header=T) 
attach(paper3) 
names(paper3) 
library(dplyr) 
ANGT <- tibble(x = c("ANG"), y = ANGT) 
ANGT %>% slice(rep(1:n(), each = 1)) 
 
write.csv(ANGT, file = "Trend.csv", row.names = FALSE) 
 
BOTT <- tibble(x = c("BOT"), y = BOTT) 
BOTT %>% slice(rep(1:n(), each = 1)) 
 
COMT <- tibble(x = c("COM"), y = COMT) 
COMT %>% slice(rep(1:n(), each = 1)) 
 
DRCT <- tibble(x = c("DRC"), y = DRCT) 
DRCT %>% slice(rep(1:n(), each = 1)) 
 
ESWT <- tibble(x = c("ESW"), y = ESWT) 
ESWT %>% slice(rep(1:n(), each = 1)) 
 
LEST <- tibble(x = c("LES"), y = LEST) 
LEST %>% slice(rep(1:n(), each = 1)) 
 
MADT <- tibble(x = c("MAD"), y = MADT) 
MADT %>% slice(rep(1:n(), each = 1)) 
 
MALT <- tibble(x = c("MAL"), y = MALT) 
MALT %>% slice(rep(1:n(), each = 1)) 
 
MAUT <- tibble(x = c("MAU"), y = MAUT) 
MAUT %>% slice(rep(1:n(), each = 1)) 
 
MOZT <- tibble(x = c("MOZ"), y = MOZT) 
MOZT %>% slice(rep(1:n(), each = 1)) 
 
NAMT <- tibble(x = c("NAM"), y = NAMT) 
NAMT %>% slice(rep(1:n(), each = 1)) 
 
 
SEYT <- tibble(x = c("SEY"), y = SEYT) 
SEYT %>% slice(rep(1:n(), each = 1)) 
 
SAT <- tibble(x = c("SA"), y = SAT) 
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SAT %>% slice(rep(1:n(), each = 1)) 
 
TANZT <- tibble(x = c("TANZ"), y = TANZT) 
TANZT %>% slice(rep(1:n(), each = 1)) 
 
ZAMT <- tibble(x = c("ZAM"), y = ZAMT) 
ZAMT %>% slice(rep(1:n(), each = 1)) 
 
 
 
 
 
 
##append subsequent estimates ##recall to change month name every 
time 
write.table(BOTT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(COMT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(DRCT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ESWT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(LEST, "Trend.csv", append = TRUE,col.names = FALSE, quote 
= FALSE, sep = ',') 
 
write.table(MADT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MALT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MAUT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MOZT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(NAMT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SEYT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SAT, "Trend.csv", append = TRUE,col.names = FALSE, quote 
= FALSE, sep = ',') 
 
write.table(TANZT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
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write.table(ZAMT, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
#######################HF##################################
######### 
rm(list=ls()) 
setwd("C:/Users/ano77/Desktop/project1") 
paper3<- read.csv("paper3a3.csv",header=T) 
attach(paper3) 
names(paper3) 
library(dplyr) 
 
ANGHF <- tibble(x = c("ANG"), y = ANGHF) 
ANGHF %>% slice(rep(1:n(), each = 1)) 
 
write.csv(ANGHF, file = "Trend.csv", row.names = FALSE) 
 
BOTHF <- tibble(x = c("BOT"), y = BOTHF) 
BOTHF %>% slice(rep(1:n(), each = 1)) 
 
COMHF <- tibble(x = c("COM"), y = COMHF) 
COMHF %>% slice(rep(1:n(), each = 1)) 
 
DRCHF <- tibble(x = c("DRC"), y = DRCHF) 
DRCHF %>% slice(rep(1:n(), each = 1)) 
 
ESWHF <- tibble(x = c("ESW"), y = ESWHF) 
ESWHF %>% slice(rep(1:n(), each = 1)) 
 
LESHF <- tibble(x = c("LES"), y = LESHF) 
LESHF %>% slice(rep(1:n(), each = 1)) 
 
MADHF <- tibble(x = c("MAD"), y = MADHF) 
MADHF %>% slice(rep(1:n(), each = 1)) 
 
MALHF <- tibble(x = c("MAL"), y = MALHF) 
MALHF %>% slice(rep(1:n(), each = 1)) 
 
MAUHF <- tibble(x = c("MAU"), y = MAUHF) 
MAUHF %>% slice(rep(1:n(), each = 1)) 
 
MOZHF <- tibble(x = c("MOZ"), y = MOZHF) 
MOZHF %>% slice(rep(1:n(), each = 1)) 
 
NAMHF <- tibble(x = c("NAM"), y = NAMHF) 
NAMHF %>% slice(rep(1:n(), each = 1)) 
 
 
SEYHF <- tibble(x = c("SEY"), y = SEYHF) 
SEYHF %>% slice(rep(1:n(), each = 1)) 
 
SAHF <- tibble(x = c("SA"), y = SAHF) 
SAHF %>% slice(rep(1:n(), each = 1)) 
 
TANZHF <- tibble(x = c("TANZ"), y = TANZHF) 
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TANZHF %>% slice(rep(1:n(), each = 1)) 
 
ZAMHF <- tibble(x = c("ZAM"), y = ZAMHF) 
ZAMHF %>% slice(rep(1:n(), each = 1)) 
 
 
 
 
 
 
##append subsequenHF estimates ##recall to change month name every 
time 
write.table(BOTHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(COMHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(DRCHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ESWHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(LESHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MADHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MALHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MAUHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MOZHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(NAMHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SEYHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SAHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(TANZHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ZAMHF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
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##########################LF###############################
### 
rm(list=ls()) 
setwd("C:/Users/ano77/Desktop/project1") 
paper3<- read.csv("paper3a3.csv",header=T) 
attach(paper3) 
names(paper3) 
library(dplyr) 
 
ANGLF <- tibble(x = c("ANG"), y = ANGLF) 
ANGLF %>% slice(rep(1:n(), each = 1)) 
 
write.csv(ANGLF, file = "Trend.csv", row.names = FALSE) 
 
BOTLF <- tibble(x = c("BOT"), y = BOTLF) 
BOTLF %>% slice(rep(1:n(), each = 1)) 
 
COMLF <- tibble(x = c("COM"), y = COMLF) 
COMLF %>% slice(rep(1:n(), each = 1)) 
 
DRCLF <- tibble(x = c("DRC"), y = DRCLF) 
DRCLF %>% slice(rep(1:n(), each = 1)) 
 
ESWLF <- tibble(x = c("ESW"), y = ESWLF) 
ESWLF %>% slice(rep(1:n(), each = 1)) 
 
LESLF <- tibble(x = c("LES"), y = LESLF) 
LESLF %>% slice(rep(1:n(), each = 1)) 
 
MADLF <- tibble(x = c("MAD"), y = MADLF) 
MADLF %>% slice(rep(1:n(), each = 1)) 
 
MALLF <- tibble(x = c("MAL"), y = MALLF) 
MALLF %>% slice(rep(1:n(), each = 1)) 
 
MAULF <- tibble(x = c("MAU"), y = MAULF) 
MAULF %>% slice(rep(1:n(), each = 1)) 
 
MOZLF <- tibble(x = c("MOZ"), y = MOZLF) 
MOZLF %>% slice(rep(1:n(), each = 1)) 
 
NAMLF <- tibble(x = c("NAM"), y = NAMLF) 
NAMLF %>% slice(rep(1:n(), each = 1)) 
 
 
SEYLF <- tibble(x = c("SEY"), y = SEYLF) 
SEYLF %>% slice(rep(1:n(), each = 1)) 
 
SALF <- tibble(x = c("SA"), y = SALF) 
SALF %>% slice(rep(1:n(), each = 1)) 
 
TANZLF <- tibble(x = c("TANZ"), y = TANZLF) 
TANZLF %>% slice(rep(1:n(), each = 1)) 
 
ZAMLF <- tibble(x = c("ZAM"), y = ZAMLF) 
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ZAMLF %>% slice(rep(1:n(), each = 1)) 
 
 
 
 
 
 
##append subsequenLF estimates ##recall to change month name every 
time 
write.table(BOTLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(COMLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(DRCLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ESWLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(LESLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MADLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MALLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MAULF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MOZLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(NAMLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SEYLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SALF, "Trend.csv", append = TRUE,col.names = FALSE, quote 
= FALSE, sep = ',') 
 
write.table(TANZLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ZAMLF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
 
########################MF################################
############## 
rm(list=ls()) 
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setwd("C:/Users/ano77/Desktop/project1") 
paper3<- read.csv("paper3a3.csv",header=T) 
attach(paper3) 
names(paper3) 
library(dplyr) 
 
ANGMF <- tibble(x = c("ANG"), y = ANGMF) 
ANGMF %>% slice(rep(1:n(), each = 1)) 
 
write.csv(ANGMF, file = "Trend.csv", row.names = FALSE) 
 
BOTMF <- tibble(x = c("BOT"), y = BOTMF) 
BOTMF %>% slice(rep(1:n(), each = 1)) 
 
COMMF <- tibble(x = c("COM"), y = COMMF) 
COMMF %>% slice(rep(1:n(), each = 1)) 
 
DRCMF <- tibble(x = c("DRC"), y = DRCMF) 
DRCMF %>% slice(rep(1:n(), each = 1)) 
 
ESWMF <- tibble(x = c("ESW"), y = ESWMF) 
ESWMF %>% slice(rep(1:n(), each = 1)) 
 
LESMF <- tibble(x = c("LES"), y = LESMF) 
LESMF %>% slice(rep(1:n(), each = 1)) 
 
MADMF <- tibble(x = c("MAD"), y = MADMF) 
MADMF %>% slice(rep(1:n(), each = 1)) 
 
MALMF <- tibble(x = c("MAL"), y = MALMF) 
MALMF %>% slice(rep(1:n(), each = 1)) 
 
MAUMF <- tibble(x = c("MAU"), y = MAUMF) 
MAUMF %>% slice(rep(1:n(), each = 1)) 
 
MOZMF <- tibble(x = c("MOZ"), y = MOZMF) 
MOZMF %>% slice(rep(1:n(), each = 1)) 
 
NAMMF <- tibble(x = c("NAM"), y = NAMMF) 
NAMMF %>% slice(rep(1:n(), each = 1)) 
 
 
SEYMF <- tibble(x = c("SEY"), y = SEYMF) 
SEYMF %>% slice(rep(1:n(), each = 1)) 
 
SAMF <- tibble(x = c("SA"), y = SAMF) 
SAMF %>% slice(rep(1:n(), each = 1)) 
 
TANZMF <- tibble(x = c("TANZ"), y = TANZMF) 
TANZMF %>% slice(rep(1:n(), each = 1)) 
 
ZAMMF <- tibble(x = c("ZAM"), y = ZAMMF) 
ZAMMF %>% slice(rep(1:n(), each = 1)) 
 



    

149 

 

##append subsequenMF estimates ##recall to change month name every 
time 
write.table(BOTMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(COMMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(DRCMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ESWMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(LESMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MADMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MALMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MAUMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(MOZMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(NAMMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SEYMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(SAMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(TANZMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
write.table(ZAMMF, "Trend.csv", append = TRUE,col.names = FALSE, 
quote = FALSE, sep = ',') 
 
 
 
 

 


