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Abstract

Background: This study used next generation sequencing to generate the mitogenomes of four African pangolin
species; Temminck’s ground pangolin (Smutsia temminckii), giant ground pangolin (S. gigantea), white-bellied
pangolin (Phataginus tricuspis) and black-bellied pangolin (P. tetradactyla).

Results: The results indicate that the mitogenomes of the African pangolins are 16,558 bp for S. temminckii, 16,540 bp for
S. gigantea, 16,649 bp for P. tetradactyla and 16,565 bp for P. tricuspis. Phylogenetic comparisons of the African pangolins
indicated two lineages with high posterior probabilities providing evidence to support the classification of two genera;
Smutsia and Phataginus. The total GC content between African pangolins was observed to be similar between species
(36.5% – 37.3%). The most frequent codon was found to be A or C at the 3rd codon position. Significant variations in
GC-content and codon usage were observed for several regions between African and Asian pangolin species which may
be attributed to mutation pressure and/or natural selection. Lastly, a total of two insertions of 80 bp and 28 bp in size
respectively was observed in the control region of the black-bellied pangolin which were absent in the other African
pangolin species.

Conclusions: The current study presents reference mitogenomes of all four African pangolin species and thus expands
on the current set of reference genomes available for six of the eight extant pangolin species globally and represents the
first phylogenetic analysis with six pangolin species using full mitochondrial genomes. Knowledge of full mitochondrial
DNA genomes will assist in providing a better understanding on the evolution of pangolins which will be essential for
conservation genetic studies.
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Background
Worldwide, the eight extant pangolin species are classified
in the order Pholidota which consists of one family,
Manidae (Class: Mammalia). The four African species
includes Temminck’s ground pangolin (Smutsia tem-
minckii), giant ground pangolin (S. gigantea), white-
bellied pangolin (Phataginus tricuspis) and black-bellied

pangolin (P. tetradactyla) [1–3]. The four Asian species
include Philippine pangolin (Manis culionensis), Indian
pangolin (M. crassicaudata), Chinese pangolin (M. penta-
dactyla) and Malayan pangolin (M. javanica). All African
pangolin species are listed as Vulnerable on the Inter-
national Union for Conservation of Nature (IUCN) Red
List of Threatened Species [4–7]. Of the Asian species,
two are listed as Critically Endangered (Chinese and
Malayan pangolin) [8, 9] and two are listed as Endangered
(Philippine and Indian pangolin) [10, 11]. Pangolins face
numerous threats, including habitat destruction [12–14],
electrocution [15–17] as well as poaching and illegal trade
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[18–23]. In 2016, the IUCN voted in support of transferring
all eight pangolin species from Appendix II to Appendix I
at the Convention on International Trade in Endangered
Species of Fauna and Flora (CITES), which was approved at
the 17th Conference of Parties (COP17). The listing has
resulted in worldwide commercial trade in pangolins being
banned as from January 2017 [24, 25]. The taxonomy of
pangolins is still under debate, with disagreement regarding
the number of genera due to lack of molecular phylogenetic
analysis [1, 3, 26–29]. These species have been placed into
six genera by Pocock [26]. Other authors have classified all
eight extant species of pangolins into a single genus; Manis
[3, 29, 30]. Corbet and Hill [31] suggested two genera;
Manis (Asian pangolins) and Phataginus (African pango-
lins) while Koeningswald [32] and Gaudin and Wible [1]
proposed three genera; Manis (Asian pangolins), Phatagi-
nus (African tree pangolins) and Smutsia (African ground
pangolins). Based on osteological characteristics from the
entire skeleton [33], three genera were supported, with the
first two genera (Phataginus and Smutsia) forming a mono-
phyletic African clade in the subfamily Smutsiinae [33].
Lastly, four genera have been proposed by McKenna and
Bell [28] and Kingdon [34] namely Manis, Smutsia,
Phataginus and Uromanis. Several authors follow the single
genus classification [35–38], however an in-depth
taxonomic study of pangolin genera is required in order to
clarify this issue.
Mitochondrial DNA (mtDNA) accounts for 1-2% of

total DNA content found in mammalian species [39]
and is circular, double-stranded and between 14 and
19 kb in length [40]. The vertebrate mitochondrial
genome generally consists of 37 genes, specifying 13
proteins, two ribosomal RNAs, 22 tRNAs, and a control
region [41]. The control region is non-coding and con-
tains elements that may regulate replication and tran-
scription [42]. Mitochondrial DNA is generally suitable
for evolutionary studies due to its high mutation rate,
well-structured genome with restricted non-coding DNA
sequences and lack of recombination. Several studies
have used portions of the mitochondrial genome includ-
ing the control region (D-loop) [43, 44], cytochrome c
oxidase I (CoxI) [44, 45], cytochrome B (Cob) [44, 46,
47] and 16S ribosomal RNA (16S rRNA) [47] for trace-
ability of confiscated pangolin scales. Whole mitochon-
drial DNA genomes will however be more informative
for phylogenetic analysis [48–53]. To date, full mito-
chondrial genomes of five pangolin species have been
determined including M. pentadactyla, M. javanica, S.
temminckii, P. tetradactyla and P. tricuspis [54–59].
However, two mitogenomes include misidentified
Genbank records incorrectly accessioned as M. penta-
dactyla and P. tetradactyla that were noted in subse-
quent studies [58, 60]. Several techniques have been
reported to generate whole mitochondrial genomes,

however modern techniques such as next generation
sequencing (NGS) using 454, Illumina and Ion Torrent
technology have simplified and made sequencing mito-
genomes from any eukaryotic DNA easier, quicker and
more affordable compared to Sanger-based methods
[61–63]. The vast suite of Bioinformatics software
currently available facilitates the annotation and aids in
analyses of large datasets [64].
In general, a quarter of the reads generated by RNA/

DNA sequence experiments are from mitochondrial ge-
nomes [61, 64–66] which may be attributed to their high
copy numbers as well as their high expression levels.
Due to the AT richness of mtDNA, as well as it being
polyadenylated it can contribute to an increase in poly-A
RNA selection [65]. Assembling mitochondrial genomes
are significantly less complex than their nuclear genome
counterparts as they are smaller in size, and harbour
fewer genes [64]. The mitogenomes of two Asian pango-
lin species (M. pentadactyla and M. javanica) have been
assembled using Illumina HiSeq technology, whereby
the authors extracted mitochondrial sequences from
nuclear data obtained from NGS techniques [57, 59].
Current phylogenetic assessments of pangolins have

been conducted using only two of the four African
pangolin species namely; Temminck’s ground pangolin
and white-bellied pangolin [56, 58]. In addition, the
current genus-level classification of pangolins is still
under debate. Thus, in this study we performed next
generation sequencing for all four African pangolins
using the Illumina HiSeq 2500 in order to reconstruct
complete mitochondrial genomes. Here we present the
first whole mitochondrial DNA genomes of two of the
African pangolin species; the black-bellied pangolin (P.
tetradactyla) and the giant ground pangolin (S. gigan-
tea). In addition, we describe the mitochondrial genome
features in order to understand the evolutionary forces
shaping the mitochondrial genomes of African pango-
lins. Lastly, we conduct a phylogenetic assessment in
order to provide a genus-level classification of African
pangolins.

Methods
Sample collection and DNA isolation
This study used six deceased individuals, sampled by the
African Pangolin Working Group (APWG) and represent-
ing the four African pangolin species. Tissue samples were
placed in absolute ethanol and were stored at the National
Biobank, National Zoological Gardens of South Africa
(NZG), at −80 °C until analysis. The samples were from
one black-bellied pangolin (P. tetradactyla; MF509825),
one white-bellied pangolin (P. tricuspis; MF536683), both
from Ghana [67]; and three Temminck’s ground pangolins
(S. temminckii; MF536685–MF536687) from South Africa.
In addition, a giant ground pangolin (S. gigantea;
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MF536684) scale sample was included from an illegal
seizure. The species identity of samples used in this study
was confirmed with Sanger sequencing of the CoxI and
Cob loci which were compared to chain-of-custody
voucher specimens available from the NZG species refer-
ence database [68] (see http://www.barcodeofwildlife.org).
All voucher specimens were verified and identified by an
acknowledged authority (Raymond Jansen; African Pango-
lin Working Group). DNA was isolated using the QIAamp
Micro Kit (QIAGEN, Novato, CA, USA) and the respect-
ive manufacturers’ protocol for tissue was followed. DNA
was quantified on the Qubit 3.0 Fluorometer (Thermo
Scientific, Massachusetts, USA). Polymerase Chain Reac-
tion (PCR) amplification and sequencing, to verify species
identity, were performed as outlined in Mwale [44].

Next-generation sequencing and assembly
The products were run on an Illumina HiSeq 2500 (Illu-
mina Incorporated, San Diego, CA, USA) using a rapid
run and the TruSeq DNA LT Sample Prep Kit (Illumina
Incorporated, San Diego, CA, USA). Data quality was
evaluated using FastQC v0.11.2 [69] software, and
trimmed and edited through Trimmomatic v0.36 [70] to
remove the adapters and poor quality sections. Mitogen-
omes were assembled in CLC Genomics Workbench v6
(https://www.qiagenbioinformatics.com; CLC Bio, Aar-
hus, Denmark) using De Novo alignment, with paired
reads. Sequence identity of contigs was validated by

performing a BLAST search on the National Centre for
Biotechnology Information (NCBI) website (http://blas-
t.ncbi.nlm.nih.gov/Blast.cgi).

Mitogenome annotation and phylogenetic analysis
The mitogenomes were annotated with MITOS v806
[71] and a circular alignment between the six available
pangolin species were drawn in Circos v0.69 [72]. The
GC content of the four African pangolin mitogenomes
were calculated using GPMiner [73] with a sliding
window of 300 bp. Arlequin v3.5.1 [74] was used to val-
idate the GC scores obtained for the four mitogenomes
using ANOVA analysis and the diagrams were plotted in
R v3.3.1 [75].
The mitogenomes generated in this study comprised

six animals from four African pangolin species and were
combined and aligned with 11 other genomes using
MAFFT v7 [76] (Table 1). The mitogenomes of Acinonyx
jubatus [77], Crocuta crocuta [78], Canis lupus [79] and
Arctocephalus pusillus [80] were used as out-groups, as
the order Pholidota (pangolins) is reported to be evolu-
tionary closer to carnivorans [56]. The phylogenetic pro-
gram jModeltest v2.1.7 [81] was used to determine the
best fit model of sequence evolution, under the Akaike
Information Criterion (AIC) [82], Bayesian Information
Criterion (BIC) [83] and Decision Theory Performance-
Based Selection (DT) [84]. Partition analysis was also
implemented using the program PartitionFinder v2 [85]

Table 1 List of 17 mitogenomes used in the study presented here

Common Name Scientific Name Genbank Accession Number Reference

Cheetah Acinonyx jubatus AY463959.1 [77]

Spotted Hyena Crocuta crocuta JF894378.1 [78]

Grey Wolf Canis lupus KU696410.1 [79]

Brown Fur Seal Arctocephalus pusillus NC_008417.1 [80]

Chinese Pangolina Manis pentadactyla JN411577.1 [55]

Chinese Pangolin Manis pentadactyla KT445978.1 [59]

Malayan Pangolin Manis javanica KP306515.1 [58]

Malayan Pangolin Manis javanica KT445979.1 [57]

Black-Bellied Pangolinb Phataginus tetradactyla AJ421454.1 [54]

White-Bellied Pangolin Phataginus tricuspis KP306514.1 [58]

Temminck’s Ground Pangolin Smutsia temminckii KP125951.1 [56]

Temminck’s Ground Pangolin Smutsia temminckii KP306516.1 [58]

Black-Bellied Pangolin Phataginus tetradactyla MF509825 Current Study

White-Bellied Pangolin Phataginus tricuspis MF536683 Current Study

Giant Ground Pangolin Smutsia gigantea MF536684 Current Study

Temminck’s Ground Pangolin Smutsia temminckii MF536685 Current Study

Temminck’s Ground Pangolin Smutsia temminckii MF536686 Current Study

Temminck’s Ground Pangolin Smutsia temminckii MF536687 Current Study

The common name, scientific name, Genbank accession number and reference were noted for each individual. a= Misidentified Chinese pangolin genome;
b= Misidentified Black-bellied pangolin genome
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to determine the best fit models of evolution for the dif-
ferent loci in the dataset. The partition was run using
linked branch lengths and a greedy search for the
models under the AIC. Phylogenetic analysis was con-
ducted using MrBayes v3.2.6 [86] to infer relationships
between the different species using Bayesian Inference
(BI). The parameters used for MrBayes were two million
generations after which 25% of the trees were discarded
as burn-in. A Maximum Likelihood (ML) tree was con-
structed utilizing PhyML v3 [87] with the same models
used for the Bayesian analysis and was run with 10,000
Bootstrap replications. Individual phylogenetic trees, for
each loci, were also created with MrBayes v3.2.6 [86]
and PhyML v3 [87].

Codon usage analysis for African and Asian species
The Relative Synonymous Codon Usage (RSCU) values
for mitochondrial genes were established using the Mega
v7 [88] software. This was performed on the four African
pangolin species evaluated in this study as well as for the
previously published M. pentadactyla (KT445978.1) and
M. javanica (KT445979.1). The Principle Component
Analysis (PCAs) generated from this data was performed
using the FactoMineR package in R [89]. Codon usage bias
(AT3 and GC3 content) was calculated using Mega v7, for
each of the protein coding genes, where the A and T
values at the third base were summed for the AT3 value.
The same was performed with G and C for the GC3 con-
tent. The ratios were reported as percentages.

Confirmation of insertions observed in the control region
of the pangolin mitogenome
Sanger sequencing of the control region of the mitochon-
drial genome was performed using five additional samples
from each of the African pangolin species. The white-
bellied and black-bellied pangolin samples were from
Ghana and the Temminck’s ground pangolin samples
from South Africa and Tanzania [58]. The giant ground
pangolin samples were obtained from the collection of the
Zoological Museum, University of Copenhagen. The
protocol and cycle conditions outlined in Du Toit [56]
were used for all the samples. Sequencing was conducted
in order to verify the presence of insertions in the D-loop
observed in the mitogenomes obtained from next-
generation sequencing during this study. A sequence
fragment of around 500 bp was targeted using the primer
pair: PNG_Dloop forward 5′-CGTTCCTCTTAAATAAG
ACATCTCG-3′ and reverse 5′-TCTTGCTTTTGGGGT
TTGAC-3′ for verification.

Results and discussion
Next-generation sequencing
The HiSeq rapid run resulted in approximately 22 million
reads per sample, with an average read length of 250

nucleotides. These reads were used for a De Novo assem-
bly of each sample (CLC Bio version 6.0). This resulted in
10,207 contigs for P. tricuspis with the largest contig being
16,565 nucleotides, consisting of 78,099 reads at an
average coverage of 986×. For P. tetradactyla, there were
2801 contigs with the largest contig, 16,649 nucleotides
consisting of 47,686 reads at an average coverage of 369×.
For S. gigantea, there were 11,346 contigs with the largest
contig, 16,540 nucleotides consisting of 13,076 reads and
an average coverage of 98×. For the three S. temminckii
samples (MF536685–MF536687), contigs ranged from
2742 to 5560. The largest contig in all three samples was
16,558 nucleotides consisting of 63,759; 29,702 and 6820
reads and an average coverage of 494×; 248× and 53× re-
spectively. The contigs were identified as the mitogen-
omes of the pangolin species based on the (i) estimated
length (≈16.5 kb); (ii) the occurrence of the proteins CoxI,
Cob, NADH dehydrogenase V (NadV) and NADH
dehydrogenase VI (NadVI) (Table 2) and (iii) correspond-
ence with mitochondrial sequences from other Pholidota
based on NCBI BLAST searches.

Genomic organisation
The mitogenome of the S. temminckii samples con-
sisted of 16,558 bp while S. gigantea was 16,540 bp;
P. tetradactyla was 16,649 bp and P. tricuspis was
16,565 bp in length (Table 2, Fig. 1). The light and
heavy strands each contain their own arrangement of
genes, proteins or loci respectfully located on each
strand (Fig. 1). The heavy strand, or plus strand, com-
prises of the following loci: two Ribosomal RNAs
(12S rRNA, 16S rRNA); 12 Protein-coding genes
(NadI, NadII, CoxI, CoxII, AtpVIII, AtpVI, CoxIII,
NdIII, NadIV-L, NadIV, NadV, Cob) and 14 Transfer
RNAs (trnF, trnV, trnL2, trnI, trnM, trnW, trnD,
trnK, trnG, trnR, trnH, trnS1; trnL1, trnT). The light
or minus strand comprises one Protein-coding gene
(NadVI) and eight Transfer RNAs (trnQ, trnA, trnN,
trnC, trnY, trnS2, trnE, trnP). As indicated in Table 2,
the mitogenome of the four African pangolins varied
in terms of gene region size at several loci. Six re-
gions [cytochrome oxidase II (CoxII), ATP synthase
VI (AtpVI), cytochrome oxidase III (CoxIII), NADH
dehydrogenase III (NadIII), NADH dehydrogenase IV-
L (NadIV-L), cytochrome b (COB)] were found to be
the same length in all four species and three loci
[16S Ribosomal RNA, NADH dehydrogenase V
(NadV), D-loop] each have different lengths in each
of the four species. The remaining loci [12S Riboso-
mal RNA, NADH dehydrogenase I (NadI), NADH
dehydrogenase II (NadII), cytochrome oxidase I (CoxI),
ATP synthase VIII (AtpVIII), NADH dehydrogenase IV
(NadIV), NADH dehydrogenase VI (NadVI)] had lengths
that were generally consistent, with some pangolin species
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Fig. 1 Circular diagram of six pangolin mitogenomes. The six coloured circles represent the six different pangolin species (four African and two
Asian) aligned to each other to indicate the differences between individuals with the reference genome represented by P. tetradactyla. The outer
ring represents the annotated loci located on the plus/heavy strand. The second ring represents the loci located on the minus/light strand of the
mitogenome. Arrows are representative of the direction of the light and heavy strands; the heavy strand is located clockwise and the light
strand anti-clockwise

Table 2 List of mitochondrial genes and loci, indicating size in base pairs from four African pangolin species, Smutsia gigantea, S.
temminckii, Phataginus tricuspis and P. tetradactyla

Gene Regions S. gigantea
(Giant ground pangolin)

S. temminckii
(Temminck’s ground pangolin)

P. tricuspis
(White-bellied pangolin)

P. tetradactyla
(Black-bellied pangolin)

Mitogenome (bp) 16,540 16,558 16,565 16,649

12S Ribosomal RNA (rRNA) 960 959 958 958

16S Ribosomal RNA (rRNA) 1560 1556 1555 1561

NADH dehydrogenase I (NadI) 951 945 945 945

NADH dehydrogenase II (NadII) 1038 1038 1038 1038

Cytochrome c oxidase I (CoxI) 1536 1533 1536 1515

Cytochrome c oxidase II (CoxII) 681 681 681 681

ATP synthase VIII (AtpVIII) 195 195 198 192

ATP synthase VI (AtpVI) 675 675 675 675

Cytochrome c oxidase III (CoxIII) 783 783 783 783

NADH dehydrogenase III (NadIII) 345 345 345 345

NADH dehydrogenase IV-L (NadIV-L) 294 294 294 294

NADH dehydrogenase IV (NadIV) 1371 1368 1371 1368

NADH dehydrogenase V (NadV) 1791 1788 1794 1803

NADH dehydrogenase VI (NadVI) 519 516 519 519

Cytochrome b (Cob) 1134 1134 1134 1134

Control region (D-loop) 1135 1155 1167 1265
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showing variation in length in comparison to the other
species (Table 2).

Phylogenetic analysis of African pangolins
The best fit model of sequence evolution for the dataset
under the AIC was the General Time Reversal model
(GTR + I + G) with invariable site and gamma distribu-
tion of 0.822 [90, 91]. The best fit model under the BIC
and DT was the Transition model two (TIM2 + I + G)
with invariable site and gamma distribution values of
0.998 and 0.990 respectively [92]. From these two
models three Bayesian phylogenetic trees along with
three maximum likelihood trees were generated for the
datasets. The different trees all showed consistent
branching patterns, posterior probability values for the
BI trees and bootstrap values for the ML trees. The trees
were subsequently concatenated into a single consensus
tree with the different support values indicated on the
respective branches (Fig. 2). Partition analysis indicated
a variety of models for the individual loci and was
subjected to individual BI and ML analysis to confirm
the results of the whole mitochondrial data. In the
phylogenetic tree, using all available pangolin mitogen-
omes, it is evident that all the African pangolins group
according to species, with the exception of the black-
bellied pangolin genome (AJ421454.1) [54]. The latter
mitogenome has previously been reported to be misclas-
sified based on partial Cob analysis (Additional file 1:
Figure S1) [58, 60] and was confirmed in this analysis as

a white-bellied pangolin genome. In addition, the mis-
classified M. pentadactyla (JN411577.1) [55] grouped
with M. javanica [58, 59], confirming an error also re-
ported in previous studies. The phylogenetic tree (Fig. 2)
which excluded the misclassified samples provided
support for the Asian and African pangolin species
separation into two distinct monophyletic clades with
the latter consisting of all African pangolins species, P.
tricuspis, P. tetradactyla, S. temminckii and S. gigantea.
Within the African clade the giant and Temminck’s pan-
golin clustered separately from the white-bellied and
black-bellied pangolins with significant Bayesian and ML
support (Posterior Probabilities of 1). For the African
pangolin species, the observed branching pattern thus
provides support for the classification of the ground-
dwelling and arboreal species into two separate genera;
Phataginus and Smutsia. In addition, results from this
analysis suggests the overall classification of pangolin
into three genera; Manis (Asian pangolins), Phataginus
(African tree pangolins) and Smutsia (African ground
pangolins). However, further analysis should be under-
taken for Asian pangolins to include the full mitochon-
drial genomes of the Philippine (M. culionensis) and
Indian pangolin (M. crassicaudata). The above branch-
ing patterns were also confirmed using individual loci.
The control region, rRNAs, light strand proteins, light
strand tRNAs and heavy strand proteins (exclusive of
COX2) BI and ML results were all concurrent with the
whole mtDNA tree with high support. The heavy strand

Fig. 2 Combined Bayesian Inference (BI) and Maximum Likelihood (ML) tree of pangolin species. Bayesian Posterior Probabilities are indicated on
the bottom of each node whereas the Maximum Likelihood Bootstrap values are indicated on top of the node. Only Bootstrap values equal or
greater than 70% (≥70%) were noted on the tree. The mitogenome of Acinonyx. jubatus, Crocuta crocuta, Canis lupus and Arctocephalus pusillus
was selected as outgroups. * indicates the six mitogenomes sequenced during this study
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Fig. 3 (See legend on next page.)

du Toit et al. BMC Genomics  (2017) 18:746 Page 7 of 13



tRNAs showed differentiation in the tree pangolins and
again in the ground pangolins of Africa for both BI and
ML trees. Although the internal grouping differs, they
still conform to the same three genera identified in the
trees above namely Smutsia, Phataginus and Manis. The
ML analysis for the heavy strand protein COX2 was in
accordance with the results above. However, the BI
analysis indicated that the black-bellied pangolin
(MF509825) branched separately from the African
pangolins, but still formed a monophyletic group with
the African pangolin species adjacent to the Asian
pangolins. Overall, the majority of the individual loci
subject to different evolutionary rates and models
along with a variety of phylogenetic analysis con-
curred with the results obtained from the whole
mtDNA data.

Analysis of GC content and codon usage
Total GC content of the African pangolin species was
observed to be similar between species (P. tetradac-
tyla = 36.5%, S. gigantea = 36.9%, S. temminckii = 37.3%
and P. tricuspis = 36.7%). These results confirm an AT-
bias that has been reported in several other mammal
species [93]. Analysis of codon usage and pattern of
mitochondrial genes; AtpVI, AtpVIII, Cob, CoxI, CoxII,
NadI, NadII, NadIII, NadIV, NadIV-L, NadV and NadVI
provided evidence of bias in terms of the use of codons
with A and C occurring most frequently at the third
codon (Additional file 1: Table S1). Variation in base
compositions within and among species has been sug-
gested to occur as a result of two evolutionary processes

namely biases in the process of mutation and/or natural
selection [94]. Selective nucleotide compositional biases
have been reported in chiropteran mitochondrial ge-
nomes [95]. Uddin and Chakraborty [96] similarly ob-
served A or C as the most frequent codon at the 3rd
position in a study of mitochondrial AtpVI in a variety
of mammalian species. The authors attributed this bias
to mutational pressure that can influence codon usage
bias in mitochondria.

GC content and codon usage variation between pangolin
species
The percentage of GC content and codon frequencies
calculated for five regions (3100–3700 bp, 4500–
4900 bp, 7500–7900 bp, 9700–9900 bp and 15,000–
16,000 bp) of the mitogenome was significantly different
between the four African pangolin species based on
ANOVA analysis (Fig. 3a -e). The respective genes that
correspond to these regions include NadI, NadII, CoxII,
NadIII and Cob. Analysis of codon usage of three mito-
chondrial genes; CoxI, NadI and NadIII reveals a clear
distinction between the African and Asian pangolins, as
well as within the African clade (Additional file 1: Figure
S2 a-c). The PCA plots for these three genes therefore
identified a connection between codon usage and
phylogeny and provide further support for the phylogen-
etic analysis based on the whole mitochondrial genome.
The PCA plots of the remaining protein coding genes
(AtpVIII, NadIV and NadVI), whilst not achieving the
same resolution within the African clade, show a clear
separation of the Asian and African pangolins

(See figure on previous page.)
Fig. 3 Representation of regions which display significant differences in terms of GC content among African pangolin species (a-e). Image (a)
showing increased GC content (~3100–3700 bp) in S. temminckii; (b) showing an increased GC content (~4500–4900 bp) in M. tricuspis; (c)
showing a decreased GC content (~7500–7900 bp) in M. tetradactyla; (d) showing an increased GC content (~9700–9900 bp) in M. tetradactyla
and S. temminckii; (e) showing an increased GC content (~15,000–16,000 bp) in M. tetradactyla

Fig. 4 Clustering of pangolin species according to the variation of codon usage and phylogeny. The dendrogram was inferred by hierarchical
clustering with the AT3 frequency metric for each species. The value of the AT3 is indicated as a percentage
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(Additional file 1: Figure S2 d-f ). Combined codon usage
patterns of mitochondrial genes (AtpVI, AtpVIII, Cob,
CoxI, CoxII, NadI, NadII, NadIII, NadIV, NadIV-L,
NadV and NadVI) were plotted in order to perform a
hierarchical clustering of each species to investigate the
role of codon bias in the evolution of African pangolins.
The resulting dendrogram is presented in Fig. 4. African
pangolin species varied in the percentage of codon bias
with Asian pangolins displaying a lower degree of AT3
bias. Variations in GC content and codon frequencies
between pangolin species may indicate that two selective
forces; mutational pressure and/or natural selection may
play important roles in the molecular evolution of
pangolins with different evolutionary forces acting to
shape the mitochondrial genomes of the African and
Asian pangolin species.

Mitogenome comparison between Smutsia and
Phataginus
Two insertions (80 bp and 28 bp in length) in the D-
loop region of the black-bellied pangolin were observed
(Fig. 5) which was absent in the other African pangolin
species. This insertion was validated with Sanger se-
quencing that included additional African pangolin
species. When compared to the Asian pangolin species
the first insertion was slightly shorter in length (62 bp).
Length variation in the D-loop has been reported in

various species including bats [97], rodents [98] and
primates [99]. In addition, substantial nucleotide se-
quence differences within and between species have
been identified in the D-loop [100, 101]. Lastly, hetero-
plasmy where individuals had more than one mtDNA
form due to variation in numbers of tandem repeats in
D-loop has been reported in shad [102], sturgeon [103],
whiptail lizards [104] and rabbits [105]. Length variation
has been proposed to occur via four different mecha-
nisms including illegitimate elongation [103], intra- and
intermolecular recombination [106], transposition [106]
and slipped miss pairing [107]. The identification of the
two insertions in the D-loop region may indicate that
this region is under selection in black-bellied pangolins,
which may demonstrate drift following the initial
mutation event. However, further analysis among closely
related species should be conducted in order to deter-
mine how selection impacts on the length and sequence
variation within this region.

Conclusions
In conclusion, our research study presents the mitogen-
omes for the four African pangolin species. These in-
clude two new reference genomes for the black-bellied
pangolin and the giant ground pangolin. This study also
presents the first phylogenetic assessment of six of the
eight extant pangolin species using whole mitochondrial

Fig. 5 Alignment of a region of D-loop in six pangolin species. The insertion sequence for P. tetradactyla is indicated in a dashed box. The first
insertion is 80 bp and the second 28 bp in length
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DNA genomes. The African and Asian pangolin species
are shown to separate into two distinct monophyletic
clades. Within the African pangolins it was further dem-
onstrated that there is support for classification of the
species into separate genera, representing the arboreal
(P. tricuspis, P. tetradactyla) and ground-dwelling (S.
temminckii and S. gigantea). The availability of these ref-
erence mitogenomes will, furthermore, contribute to a
better understanding of the evolutionary processes of
pangolin species globally, which in turn can contribute
to essential conservation genetic studies.

Additional files

Additional file 1: Figure S1. Bayesian mitogenome phylogenetic tree of
all available pangolin mitogenomes. Posterior probabilities are indicated on
the respective branches. A. jubatus was selected as an outgroup as pangolins are
more closely related to the order Carnivora. Asterisks indicate the misidentified
mitogenomes. Figure S2. Principal Component Analysis (PCA) of Relative
Synonymous Codon Usage values (RSCU) for six pangolin species. Three
distinct genera is present (Manis, Phataginus and Smutsia) in the (a) CoxII; (b)
NadI, (c) NadIII genes. The two sub-families (Smutsiinae and Maninae) are
distinguished in the (d) AtpVIII; (e) NadIV; (f) NadVI genes. Table S1. List of
nucleotide percentages and its 3rd codon position percentage (%) (PDF 426 kb)
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