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ABSTRACT

Lovenula raynerae is the largest known African freshwater copepod. To date, It has only been sampled
from ephemeral frashwater ecosystems. This paper reports the complete mitochondrial genome of L
ravnerae, witich was found to be 14,365 bp long. Base composition of 33.5% base A, 19.3% base G,
34.6% base T, and 12,5% base C was found, with 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. This
paper contrily ites to an improved understanding of phylogenetic relationships in an important crust-

acean grou, ..

Copepods are a diverse group of aquatic crustaceans found
in hoth marine and freshwater environments (Boxshall and

Defaye 2008; Kim et al. 2013; Battuello et al. 2017). Of the 10

copepod orders (Boxshall and Defaye 2008), Calanoida is par-
ticularly important, as it is both species-rich {~2266 species
have been described; Battuello et al. 2017) and very abun-

. ¢ant (they may constitute up to 95% of marine plankton
samples; Mauchline 1998) and thus plays an important role.

in trophic interactions as a link between primary producers
and secondary consumers {Dalu et al, 2016; Battuello et al.
2017; Wasserman et al. 2018), Despite their ecological
importance and  abundance, only - one complete
mitogenome has been publlshed for the order Calanoida
(Kim et al. 2013).

In this study, we describe the second camplete mitochon- -

drial genome of a calanoid copepod; that of Lovenula ray-
nerae (Suarez-Morales ‘et al.” 2015). This recently described
freshwater copepod has so far been found exclusively in
ephemeral ponds in the Eastem Cape of South Africa
{Suarez-Morales et al. 2015), One individual was collected in
an ephemeral pond near Grahamstown, South Africa
(33.250705°S, 26.436940°E), DNA was extracted using the
CTAB method (Doyle and Doyle 1987) and the sample was
then sequenced as follows, The gDNA was sonicated to
~500bp fragment size using the Coveris® Ultrasonicator
(Covaris, Woburn, MA) and processed using the NEBMext
Ultra DNA library prep kit for lllumina (New England Biolabs,
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“ipswich, MA). The library was subsequently denativad and

sequenced a MiSeq desktop sequencer {illumina, Sas: Dieg.,
CA). at Monash University Malaysla. Mitogenome assembly
was performed with MITObim version 1.8 (Hahn et al. 2017
using the 165 rRNA sequence of Mastigaodiaptomus nosus
{Accession Number: EU582541.1) as the Initial bait template.
The mitogenome was manually re-circularized and -ori-
ented to the COI gene prior to submission to MITOS (Bernt
et al. 2013) for annotation.

A soquence with a total length of 14,365bp was genzr-
ated whose base composition was 33.5% base A, 19.3% base
G, 34.6% base T, and 12.5% base C. The sequence contained
13 protein-coding genes, 22 tRNAs and 2 rRNAs.

A phylogenetic tree was reconstructed using all 9 pub-
lished mitogenomes from the subclass Copepoda. Due to
extensive gene reshuffling in this group (Minxiaoc et al. 2011}
the sequences were separated into the protein-coding genes,
which were aligned separately via MAFFT {Katch et al. 2017).
A Bayesian phylogenetic tree was constructed using an RB
substitution model (Bouckaert et al. 2013; Drummond and
Bouckaert 2015) in BEAST v.2.5.0 {Bouckaert et al. 2014) with
a chain length of one billion and a burn-in of 25%. The
resulting tree was visualized In Figtree v.1.43 {Rambaut
2016). The phylogenetic tree {Figure 1) shows that L. raynerae
is monophyletic with Calanus hyperboreus and that these two
calanoid copepods have a sister taxon relationship with
Amphiascoides atopus.
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Figure 1, Bayesian phylogenetic tree of Lovenula raynerae and 9 other species, Numbers above the nodes Indicate posterior probabilities. Accession numbers of a
species are as follows: MH_710604 Lovenula raynerae, NC_019627 Calanus hyperboreus, NC_023783 Amphiascoides atopus, NC_025239 Lerauea cyprinaced,
NC_012455 Paracyclopina nana, NC_028085 Sinergasilus polycolpus, NC_007215 LepeOphtheirus salmonis, NC_024046 Pondarus rhincodonicus, NC_008831 Tigriopus

californicus, NC_003979 Tigriopus japonicus.
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