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Abstract: We numerically investigate a mixed convection
model for a magnetohydrodynamic (MHD) Jeffery fluid
flowing over an exponentially stretching sheet. The influ-
ence of thermal radiation and chemical reaction is also
considered in this study. The governing non-linear cou-
pled partial differential equations are reduced to a set of
coupled non-linear ordinary differential equations by us-
ing similarity functions. This new set of ordinary differen-
tial equations are solved numerically using the Spectral
Quasi-Linearization Method. A parametric study of phys-
ical parameters involved in this study is carried out and
displayed in tabular and graphical forms. It is observed
that the velocity is enhanced with increasing values of the
Deborah number, buoyancy and thermal radiation param-
eters. Furthermore, the temperature and species concen-
tration are decreasing functions of the Deborah number.
The skin friction coefficient increases with increasing val-
ues of the magnetic parameter and relaxation time. Heat
and mass transfer rates increase with increasing values of
the Deborah number and buoyancy parameters.
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1 Introduction
The numerous technological applications of non-
Newtonian fluids have stimulated research within this
field. Non-Newtonian fluids are technologically applied in
manufacturing of plastic sheets, pharmaceutical, physiol-
ogy, fiber technology, crystal growth, etc. Many models of
non-Newtonian fluids have been proposed since the char-
acteristics of non-Newtonianfluids cannot be describedby
a single constitutive relationship. Forced convection alone
is not enough to dissipate all heat in very high-power out-
put devices. In such cases, mixed convection will often
give desired results. Mixed convection phenomenamainly
occur in industrial and technological applications, such as
cooling of nuclear reactors during emergency shutdowns,
heat exchangers in low velocity environments, solar col-
lectors, and electronic devices cooled by fans.

Srinivasacharya et al. [1] and Ishak et al. [2] stud-
ied mixed convention boundary layers in stagnation point
flow. Ahmad et al. [3] analysed film flow of a micropolar
fluid. Recently, Khan et al. [4] investigated mixed convec-
tion of a Sisko fluid in the presence of convective boundary
conditions.

A Jeffrey fluid is one of the models for non-Newtonian
fluids that describes the influence of the ratio of the relax-
ation to retardation times. Kothandapani and Srinivas [5]
applied themodel for MHD peristaltic flow in an asymmet-
ric channel. Hayat et al. [6] examined thermal radiation
effects on a Jeffrey fluid. Nadeem et al. [7] presented an
analysis of the boundary layer flow of a Jeffrey fluid. Hayat
et al. [8] discussed the three dimensional flow of a Jeffrey
fluid when the thermal conductivity varies with tempera-
ture. Turkyilmazoglu and Pop [9] investigated the flow and
heat transfer of a Jeffrey fluid near the stagnation point on
a stretching/shrinking sheet.

Kavita et al. [10] analytically studied the effect of heat
transfer of an MHD oscillatory flow of Jeffrey fluid. Khan
et al. [11] investigated the problem of MHD boundary layer
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flow. Bilal et al. [12] discussed flow of a Jeffrey nanofluid
over a radially stretching sheet. Abbasi et al. [13] ap-
plied the homotopy analysis method to solve a Jef- frey
nanofluid flow with thermal radiation and double strati-
fication. More recently, Ali et al. [14] analytically and ex-
actly studied an oscillating and incompressible MHD sec-
ondgrade fluid in porous medium. Xiao-Jun et al. [15] pro-
posed a newnumerical approach, embedding the differen-
tial transform and Laplace transform to solve the diffusion
equation frac- tional heat transfer derivative. Xiao-Jun [16]
proposed a new integral transform operator.

Ellahi et al. [17] discussed effects of nanoparticles to
analyze Jeffrey fluid along a catheter. Hamad et al. [18] in-
vestigated the dynamics of a Jeffrey fluid near the stagna-
tion point on a stretching sheet taking into account the
thermal jump condition at the surface.

Recently, Das et al. [19] presented a numerical analysis
of an electrically conducting Jeffrey fluid over a stretching
sheet with partial surface slip.

Heat transfer process with radiation effects is very
significant in electrical power generation, space vehicles,
missiles, nuclear plants, astrophysical flows and many
other applications. Little work has been done on mixed
convection flow of MHD Jeffrey fluid over an exponentially
stretching sheet in the presence of thermal radiation and
chemical reaction. The governing equations of a Jeffrey
fluid will be simplified by using a suitable similarity vari-
able and then solved numerically by the Spectral Quasi-
Linearization method (SQLM). Graphs and tables are pre-
sented to illustrate and discuss important hydrodynamic,
thermal and solutal characteristics of the the flow.

2 Mathematical formulation
We consider a steady two-dimensional incompressible Jef-
frey fluid over an exponentially stretching sheet. Thermal
radiation and a uniform chemical reaction are significant
in this study. The x-coordinate is along the stretching sheet
and the y-coordinate is taken to be perpendicular to the
stretching sheet. The sheet is stretched vertically with ve-
locity uw = u0 exp

(︁ x
L

)︁
, where u0 is a constant and L is

the reference length. We also assume that the sheet has
surface temperature Tw = T∞ + T0 exp

(︁ x
L

)︁
and surface

concentration Cw = C∞ + C0 exp
(︁ x
L

)︁
, where T0 and C0

are constants. T∞ and C∞ are, respectively, the free stream
temperature and concentration. The governing boundary
layer equations for the model under consideration are:

∂u
∂x + ∂v∂y = 0, (1)

u ∂u∂x + v ∂u∂x = ν
1 + λ1

[︂
∂2u
∂y2

]︂
(2)

+ gβT(T − T∞) + gβc(C − C∞) −
δB2u
ρ

+ νλ2
1 + λ1

(︂
u ∂3u
∂x∂y2 + ∂u∂y

∂2u
∂x∂y −

∂u
∂x

∂2u
∂y2 + ν ∂

3u
∂y3

)︂
,

u ∂T∂x + v ∂T∂y = α ∂
2T
∂y2 −

∂qr
∂y , (3)

u ∂C∂x + v ∂C∂y = D ∂
2C
∂y2 − kr(C − C∞), (4)

where u and v are the velocity components in the x and y
directions, respectively. λ1 is the ratio of relaxation time to
retardation time, λ2 is the retardation time, T is fluid tem-
perature, C is fluid concentration, D is mass diffusivity, kr
is the chemical reaction rate constant, ν is kinematic vis-
cosity, qr is the radiative heat flux, ρ is fluid density. Also,
g, βT , βc, α are gravitational acceleration, thermal expan-
sion coefficient, solutal expansion coefficient, and ther-
mal diffusivity, respectively. B is the magnetic field which
is assumed to be B = B0 exp(

x
L ) where, B0 is a constant

magnetic field.
The corresponding boundary conditions for the flow

model are:

u = uw(x), v = 0, T = Tw(x), C = Cw(x), (5)
at y = 0,

u → 0, ∂u
∂y → 0, T → T∞, C → C∞, (6)

asquady →∞.

2.1 Similarity transformations

The stream function ψ is introduced such that, u = ∂ψ
∂y ,

ν = −∂ψ∂x , and we define the non-dimensional variables

u = u0 exp
(︁ x
L

)︁
f ′(η), (7)

v = −
√︂
u0ν
2L exp

(︁ x
2L

)︁ [︀
f (η) + ηf ′(η)

]︀
,

θ(η) = T − T∞
Tw − T∞

,

ϕ(η) = C − C∞
Cw − C∞

, η = y
√︂

u0
2νL exp

(︁ x
2L

)︁
.

Upon substituting the similarity variables into Equa-
tions (2) - (4), we obtain:

f ′′′ + β
(︂
� ′′ + 3

2(f
′′)2 − 1

2�
(iv)

)︂
(8)
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+ (1 + λ1)[� ′′ − 2(f ′)2]
+ (1 + λ1)[2λ3θ + 2λ4ϕ −M2f ′] = 0,

(︂
4 + 3R
6PrR

)︂
θ′′ + 1

2 fθ
′ − f ′θ = 0, (9)

1
2Sc ϕ

′′ + 1
2 fϕ

′ − f ′ϕ − 𝛾ϕ = 0. (10)

The corresponding boundary conditions are

f (0) = 0, f ′(0) = 1, θ(0) = 1, ϕ(0) = 1, (11)

f ′(∞) → 0, f ′′(∞) → 0, θ(∞) → 0, ϕ(∞) → 0.
(12)

Here, prime denotes differentiation with respect to η,
β = u0λ2/L exp(x/L) is the Deborah number, λ3 =
gβT exp(−2x/L)νL(Tw − T∞) is the thermal buoyancy pa-
rameter, λ4 = gβT exp(−2x/L)νL(Cw − C∞) is the solu-
tal buoyancy parameter, M2 = σB20u0/ρ exp(2x/L), R =
4σ*T3∞/kk* is the thermal radiation parameter, Pr = ν/α is
the Prandtl number, Sc = ν/D is the Schmidt number, and
𝛾 = kr exp(−x/L) is the chemical reaction parameter.

3 Methods of solution

3.1 An overview of the Spectral
Quasi-Linearization Method (SQLM)

We illustrate the main idea of SQLM using a single n-th or-
der nonlinear differential equation

F(u, u′, u′′, . . . , u(n)) = G(x), (13)

where a ≤ x ≤ b and ′,′′ , . . . ,(n) denote differentiationwith
respect to x one time, two times, . . . , n times. SQLM com-
prises two basic steps where Quasi-linearization precedes
Chebyshev differentiation.

3.1.1 Quasi-linearization

Let u, ur and v denote (u, u′, u′′, . . . , u(n)),
(ur , u′r , u′′r , . . . , u(n)r ) and (v, v′, v′′, . . . , v(n)) respectively,
where r = 0, 1, 2, . . . . Taylor series expansion of (13) about
v gives

u ·∇F(v) = v ·∇F(v) − F(v) + G(x), (14)

upon neglecting higher order terms and re-arranging.
Writing (14) in more details gives

Fu(n) (v)u
(n) + · · · + Fu′ (v)u′ + Fu(v)u (15)

= v ·∇F(v) − F(v) + G(x),

which is an n-th order differential equation in u provided v
is known.We replace v and uwith ur and ur+1 respectively
we get

cr,n(x)
dnur+1
dxn + · · · + c1,n(x)

dur+1
dx (16)

+ c0,n(x)ur+1 = Rr(x)

where cr,p = ∂F
u(p) (ur) for each p = 1, 2, . . . , n and

Rr(x) = cr,n(x)
dnur+1
dxn + · · · + c1,n(x)

dur+1
dx (17)

+ c0,n(x)ur+1 − F(ur) + G(x).

Hencequasi-linearization replaces thenon-linear differen-
tial equation (13) with its linear counterpart (16).

3.1.2 Chebyshev differentiation

Before we apply Chebyshev differentiation on (16), we do
the following:

1. If the physical domain is infinite or semi-infinite, we
truncate it to a finite one [a, b] but such that |b−a| is
large enough for the boundary conditions at the end
points to still apply.

2. Use the change of variable x(ξ ) = [a+b+(b−a)ξ ]/2 to
transform the differential equation (16) on the phys-
ical domain [a, b] to its counterpart

cr,n(ξ )αn
dnur+1
dξ + · · · + c1,n(ξ )α1

dur+1
dξ (18)

+ c0,n(ξ )α0ur+1 = Rr(x(ξ )),

on the computational domain [−1, 1], where α =
2/(b − a).

3. On [−1, 1] define grid points ξ0, ξ1, . . . , ξN by ξj =
cos(πj/N) for each j = 0, 1, . . . , N.

Chebyshev differentiation evaluates the p-th derivative of
u with respect to ξ at ξ = ξj using the formula

dpu
dξ (ξj) =

N∑︁
k=0

[D̂p]jku(ξk), (19)

where D̂ is the (N + 1) × (N + 1) Chebyshev differentiation
matrix [20]. If we evaluate Equation (18) at ξ = ξj for each
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j = 0, 1, . . . , N and then evaluate each derivative using
Formula (19), we end up with a linear system

A

⎛⎜⎜⎜⎜⎝
u(ξ0)
u(ξ1)
...

u(ξN)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Rr(x(ξ0))
Rr(x(ξ1))

...
Rr(x(ξN))

⎞⎟⎟⎟⎟⎠ (20)

where A is a function of D. Upon solving (20) we get u at
each grid point and

u(ξ ) =
N∑︁
j=0

u(ξj)Lj(ξ ), (21)

for any ξ ∈ [−1, 1], where Lj is the Lagrange polynomial of
degree N associated with node ξj. Since (21) is the solution
of (18), if we write ξ in terms of x then we get a solution
u(x) of the original differential equation (13).

3.2 Application of SQLM to current problem

If Equation (8) is written in the compact form of (13), we
get

F(u) = 0, (22)

where u = (f , f ′, f ′′, f ′′′, θ, ϕ). Upon applying Quasi-
linearization on (22) we get

a0,r fr+1 + a1,r f ′r+1 + a2,r f ′′r+1 + a3,r f ′′′r+1 (23)

+ a4,r f (iv)r+1 + a5,rθr+1 + a6,rϕr+1 = R
(1)
r ,

where

a0,r : = Ff (ur) = β(f ′′r −
1
2 f

(iv)
r ) + (1 + λ1)f ′′r ,

a1,r : = Ff ′ (ur) = (1 + λ1)(−M2 − 4f ′r ))
a2,r : = Ff ′′ (ur) = β(fr + 3f ′′r ) + (1 + λ1)fr ,
a3,r : = Ff ′′′ (ur) = 1,

a4,r : = Ff (iv) (ur) = −
β
2 fr

a5,r : = Fθ(ur) = 2(1 + λ1)λ3,
a6,r : = Fϕ(ur) = 2(1 + λ1)λ4

R(1)r = fr f ′′r + 3
2β(f

′′
r )2 − 2(f ′r )2λ1 − 2(f ′r )2

− 1
2βfr f

(iv)
r + βfr f ′′r + λ1fr f ′′r

Similarly, Quasi-linearization transforms (9) to

b0,r fr+1 + b1,r f ′r+1 + b2,rθr+1 (24)

+ b3,rθ′r+1 + b4,rθ′′ = R(2)r ,

where

b0,r : =
1
2 θ

′
r , b1,r := −θr , b2,r := −f ′r , b3,r :=

1
2 fr ,

b4,r : =
4 + 3R
6Pr R , R(2) = 1

2 frθ
′
r − f ′rθr .

Proceeding in a similar manner also transforms (10) to

c0,r fr+1 + c1,r f ′r+1 + c2,rϕr+1 (25)

+ c3,rϕ′
r+1, +c4,rϕ′′ = R(3)r

where

c0,r : =
1
2ϕ

′
r , c1,r := −ϕr , c2,r := −f ′r − 𝛾,

c3,r : =
1
2 fr , c4,r :=

1
2Sc , R

(2) = 1
2 frϕ

′
r − f ′rϕr

Equations (23), (24) and (25) are subject to boundary con-
ditions

fr+1(0) = 0, f ′r+1(0) = 1, f ′r+1(∞) = 0, f ′′r+1(∞) = 1, (26)

θr+1(0) = 1, θr+1(∞) = 0, (27)

ϕr+1(0) = 1, ϕr+1(∞) = 0, (28)

respectively. Chebyshev differentiation replaces the differ-
ential equations (23), (24) and (25) with a single linear sys-
tem

AUr+1 = Rr , (29)

where

A =

⎛⎜⎝A(11) A(12) A(13)

A(21) A(22) O
A(31) O A(33)

⎞⎟⎠ , Ur+1 =

⎛⎜⎝Fr+1
Θr+1
Φr+1

⎞⎟⎠ , (30)

Rr =

⎛⎜⎝R(1)
r

R(2)
r

R(3)
r

⎞⎟⎠

A(11) = diag
{︂
− β2Fr

}︂
D̂4 + D̂3 + diag{β(Fr + 3F′′r )

+ (1 + λ1)Fr}D̂2 + [−(1 + λ1)M2I − 4(1 + λ1)F′r]D̂+

diag
{︂
β(F′′r −

1
2F

(iv)
r ) + (1 + λ1)F′′r

}︂
,

A(12) = 2(1 + λ1)λ3I, A(13) = 2(1 + λ1)λ4I

R(1)
r = Fr ∘ F′′r +

3
2βF

′′
r ∘ F′′r − 2λ1F′r ∘ F′r

− 2F′r ∘ F′r −
β
2Fr ∘ F

(iv)
r
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+ βFr ∘ F′′r + λ1Fr ∘ F′′r ,

A(21) = diag{−Θr}D̂ + diag
{︂
1
2Θ

′
r

}︂
,

A(22) = 4 + 3R
6 Pr R D̂

2 + diag
{︂
1
2Fr

}︂
D̂ + diag−F′r ,

R(2)
r = 1

2Fr ∘ Θ
′
r − F′r ∘ Θr ,

A(31) = diag{−Φr}D̂ + diag
{︂
1
2Φ

′
r

}︂
,

A(33) = 1
Sc D̂

2 + diag
{︂
1
2Fr

}︂
D̂ + diag{−F′r} − 𝛾I,

R(2)
r = 1

2Fr ∘ Φ
′
r − F′r ∘ Φr ,

Fr = [fr(ξ0) fr(ξ1) . . . fr(ξN)]T ,

Θr = [θr(ξ0) θr(ξ1) . . . θr(ξN)]T .

Φr = [ϕr(ξ0)ϕr(ξ1) . . . ϕr(ξN)]T , I is the (N + 1) × (N + 1)
identity matrix and

diag{u0, u1, . . . , uN} =

⎛⎜⎜⎜⎜⎝
u0

u1
. . .

uN

⎞⎟⎟⎟⎟⎠
is an (N + 1) × (N + 1) diagonal matrix. The linear system
(29) is subject to boundary conditions

fr+1(ξN) = 0,
N∑︁
k=0

D̂Nk f (ξk) = 1, (31)

N∑︁
k=0

D̂0k f (ξk) = 0,

N∑︁
k=0

[D̂2]0k f (ξk) = 0, (32)

θr+1(ξN) = 1, θr+1(ξ0) = 0, (33)

ϕr+1(ξN) = 1, ϕr+1(ξ0) = 0. (34)

Solution of the linear system (29) is preceded by the fol-
lowing:

1. We include boundary conditions (32) through (34) in
a manner similar to that as in paper by Motsa et al.
[21].

2. We choose initial approximations as

f0(η) = 1 − e−η , θ0(η) = e−η , ϕ0(η) = e−η ,

so that we satisfy boundary conditions (26) through
(28).

Since U0 is now known, if we solve Equation (29) for
each r = 0, 1, · · · we get subsequent approximations
U1,U2, · · · .

4 Results and discussion
A parametric study is conducted and the results are pre-
sented in both graphical and tabular forms, as well as be-
ing discussed. The numerical results are iteratively gener-
ated by the Spectral Quasi-Linearization Method (SQLM)
for the parameters that are significant in the current work.
It is remarked that the SQLM results presented in this work
were obtained using N = 50 allocation points with the in-
finity value n∞ taken as 30. The tolerance level was set to
be ϵ = 10−8. The following are the default values for perti-
nent parameters considered in this study:
β = 0.5, λ1 = 0.3, λ3 = 0.5, λ4 = 0.5,M = 1, R =
1, Pr = 0.71, Sc = 0.22. The number of collocation points
N was fixed as the smallest values of N which gives a con-
sistent solution with the stipulated tolerance level ε. Fig-
ure 1 shows the convergence and stability of the solutions
generated by the SQLM. We can observe from this figure
that convergence is realised at as low as 5 iterations which
shows that this method as equally good as other numer-
ical and analytical methods such as the variational itera-
tion method or the homotopy perturbation method.

1 1.5 2 2.5 3 3.5 4 4.5 5

Iterations

-30

-25

-20

-15

-10

-5

0

ln
(E

d
)

M=0,1,3,5

Figure 1: Logarithm of the SQLM error when varying M.

Table 1 presents a comparison between SQLM approx-
imate results and bvp4c results for default values of mag-
netic parameter M. We observe that there is an excellent
agreement between the results from the two methods.

The influences of the Deborah number, the ratio of the
relaxation to retardation times, thermal buoyancy, mag-
netic and thermal radiation parameters on the skin fric-
tion coefficient, and Nusselt and Sherwood numbers are
displayed in Tables 2, 3 and 4, respectively. We observe in
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Table 1: SQLM results of −f ′′(0), −θ′(0) to bvp4c results for different values of the magnetic parameter

−f ′′(0) −θ′(0)
M bvp4c SQLM bvp4c SQLM
1 1.08728035 1.08728035 1.90242286 1.90242286
3 2.58326872 2.58326872 1.51912627 1.51912627
5 4.28753502 4.28753502 1.15798805 1.15798805

0 0.5 1 1.5 2 2.5 3 3.5 4

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
′
(η
)

β= 0,2,4,6

Figure 2: Effects of the Deborah number on dimensionless velocity.

these respective tables that the Deborah number has very
significant influence on skin friction coefficient and Nus-
selt and Sherwood numbers. We observe that the skin fric-
tion coefficient is reduced when the Deborah number β in-
creases. Increasing the value of β implies that fluid elastic-
ity is enhanced at the same time reducing viscosity, thus
reducing the frictional force on the surface. However, the
Nusselt number and Sherwood number are enhanced by
increasing values of the Deborah number. Increasing the
values of the ratio of relaxation time to retardation time
significantly increases the skin friction coefficient but at
the same time reduces theNusselt andSherwoodnumbers.
The fluid particles need much more time to come back
from a perturbed system to an equilibrium system, thus
increasing frictional force on the surface at the same time
reducing the rates of heat and mass transfer on the wall
surface. Increasing the buoyancy forces, as expected, has
significant effects on the skin friction coefficient, Nusselt
number and Sherwood numbers. The skin friction coeffi-
cient is reduced with enhanced values of buoyancy forces,
whereas the opposite effect is encountered on the rates of
heat and mass transfer on the surface. We also observe in
these tables that the skin friction coefficient increaseswith
increasing values of the magnetic parameter, but the rates
of heat and mass transfer are reduced. Lastly, we see in
Table 2 that increasing the value of thermal radiation en-
hances the skin friction coefficient as well as the Nusselt
number but has little effect on the Sherwood number.

Figure 2 depicts the influence of the Deborah num-
ber, β, on velocity profiles. As β depends on the retarda-

Table 2: Values of skin friction coeflcient, for different values of
β; λ1; λ3;M; R.

β λ1 λ3 M R −f ′′(0)
0 0.1 0.5 1 1 4.67874200
2 2.66663467
4 2.04581283

0 2.23971109
3 4.39534222
6 5.79030365

0 2.75976983
1 2.32371133
3 1.4420629

0 0.42483935
2 1.62729681
4 3.46315415

1 0.80765164
3 0.83641333
5 0.84491745

Table 3: Values of Nusselt number for different values of
β; λ1; λ3;M; R.

β λ1 λ3 M R −θ′(0)
0 0.1 0.5 1 1 0.38872137
2 0.43632230
4 0.46514657

0 0.46793594
3 0.39080196
6 0.36932417

0 0.34822841
1 0.50505217
3 0.63587307

0 0.74230941
2 0.56420731
4 0.36408773

1 0.68553175
3 0.90558795
5 0.97707718
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Table 4: Values of Sherwood number for different values of
β; λ1; λ3;M; R.

β λ1 λ3 M R −ϕ(0)
0 0.1 0.5 1 1 0.78619180
2 0.81212278
4 0.82661696

0 0.82689792
3 0.78754319
6 0.77516374

0 0.80023181
1 0.83418647
3 0.88378152

0 0.93356195
2 0.85992176
4 0.78907194

1 0.90836827
3 0.90288648
5 0.90135709

Figure 3: Variation of the relaxation time parameter on dimension-
less velocity.

tion time λ2, increasing the value of β corresponds to in-
crease in the retardation time. Physically, elasticity is en-
hanced by an increase in the retardation time. It is noted
that elasticity and viscosity effects are inversely propor-
tional to each other so the fluid velocity is enhanced by
a decrease in viscosity. This explains why the velocity in-
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Figure 4: Variation of thermal buoyancy parameter on dimension-
less velocity.
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Figure 5: Effect of the magnetic parameter on the velocity distribu-
tion

creases as the value of the Deborah number increases as
can be clearly observed in Figure 2.

The influence of the ratio of relaxation time to retar-
dation time, λ1, on the velocity is illustrated in Figure 3.
Physically, an increase in λ1 corresponds to increase in the
relaxation time and/or a decrease in the retardation time.
This then means that fluid particles need much more time
to come back from a disturbed system to an equilibrium
system. Thus the velocity decreaseswith increasing values
of λ1 as can been seen in Figure 3.

Figure 4 displays effects of the thermal buoyancy pa-
rameter λ3 on velocity profiles. As expected, it is clearly
observed that the velocity profiles are enhanced by in-
creasing the value of λ3. Increasing λ3 makes the buoy-
ancy force stronger and stronger and this in turn increases

Unauthenticated
Download Date | 5/31/18 7:09 AM



256 | S. Shateyi and G. T. Marewo

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f
′ (
η
)

Pr=0.72, 1,7

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f
′ (
η
)

R=0.5, 1,2,3

(b)

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f
′ (
η
)

Sc =0.22, 0.66, 1

(c)

Figure 6: Variation of the Prandtl number (a), thermal radiation
number (b) and the Schmidt number on the velocity profiles

0 2 4 6 8 10 12 14 16 18

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
(η
)

β = 0,2,4,6

Figure 7: Effects of the Deborah number on dimensionless tempera-
ture.

the velocity profiles. The effect of the magnetic parameter
on the velocity distribution is depicted in Figure 5. An in-
crease in the strength of themagnetic field produces a drag
force which reduces the fluid velocity. The application of a
controlled transverse magnetic field can be used as a sta-
bilizing mechanism to boundary layer flow. This can also
be used to delay the transition from laminar to turbulent
flow.

Figure 6 shows variation of the Prandtl number, ther-
mal radiation number and Schmidt number on velocity
profiles. A small value of the Prandtl number, Pr << 1,
means that thermal diffusivity dominates while a large
value, Pr >> 1,means that themomentumdiffusivity dom-
inates the flow behavior. This explains why the fluid veloc-
ity is greatly reduced when the values of the Prandtl num-
ber are increased as can be clearly seen in Figure 6(a). Fig-
ure 6 (b) clearly indicates that the fluid velocity profiles
and boundary layer thickness increase with an increase
in thermal radiation parameter (R). However, the velocity
profiles and boundary layer thickness are greatly reduced
by increasing values of the Schmidt number. Physically,
Schmidt number is a dimensionless parameter which rep-
resents the ratio of momentum diffusion to mass diffusion
in fluid. When the Schmidt number is large, it means that
the momentum is transported by molecular means across
a liquid much more effectively than by species. Thus the
fluid becomes heavier thereby reducing the fluid velocity
as can clearly be observed in Figure 6 (c).

The effect of the Deborah number on the temperature
is depicted in Figure 7. It is observed that increasing the
value of the Deborah number yields a reduction in both
temperature and thermal boundary layer thickness. Fig-
ure 8 depicts the influences of the thermal buoyancy pa-
rameter, magnetic parameter and thermal radiation R on
the temperature profiles. We observe that temperature de-
creases with increasing values of the thermal buoyancy
force. Large values of λ3 produce large buoyancy force
which in turn produces large kinetic energy. Thus the tem-
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Figure 8: Variation of the thermal buoyancy parameters (a), mag-
netic parameter (b) and thermal radiation (c) on the temperature
profiles

0 1 2 3 4 5 6

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ
(η
)

γ= 1, 2, 3

(a)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ
(η
)

M=0, 1,3

(b)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

φ
(η
)

Sc=0.22,0.66,1

(c)

Figure 9: Variation of chemical reaction (a), magnetic parameter (b)
and Schmidt number (c) on the concentration profiles
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perature and thermal boundary layer are reduced as λ3 in-
creases. Increasing the strength of the magnetic field en-
hances the fluid temperature as can be seen in Figure 8(b).
Increasing the value of the thermal radiation R has a ten-
dency to increase conduction effects. Thus higher values
of R imply higher surface flux, therefore reducing the tem-
perature at each point away from the surface. This can be
seen in Figure 7(c). It is observed that the thermal bound-
ary layer thickness decreases as the value of R increases.

Figure 9 displays the influence of chemical reaction,
the magnetic parameter and the Schmidt number on con-
centration profiles. As expected, the concentration pro-
files are reduced with increasing values of chemical reac-
tion parameter. The velocity of the fluid is reduced as the
magnetic field parameter increases this in turn enhances
the species concentration. This explains why the concen-
tration profile and solutal boundary layer increase as the
magnetic parameter increases. Lastly, we observe that the
concentration and the solutal boundary layer are signif-
icantly reduced as the value of the Schmidt number in-
creases. This is becausewhen theSchmidt number is large,
momentum is transported by molecular means across liq-
uid much more effectively than by species.

5 Conclusions
The current study investigated the problem of mixed con-
vection flowof anMHD Jeffery fluid in the presence of ther-
mal radiation and chemical reaction. The following are the
main observations of this investigation:

1. Increases in the values of the Deborah number β,
lead to increasing values of the velocity profiles as
well as momentum boundary layer thickness. How-
ever, the fluid temperature and species concentra-
tion are decreasing functions of the Deborah num-
ber.

2. The fluid velocity is found to be an increasing func-
tion of the buoyancy parameters (λ3, λ4), thermal
radiation and retardation time. Meanwhile, fluid ve-
locity is found to decrease with increasing values of
the magnetic parameter, Prandtl and Schmidt num-
bers.

3. Fluid temperature as well as the thermal bound-
ary layer thickness increase with increasing values
of the magnetic parameter and retardation time,
but decreases with increasing values of the Debo-
rah number, Prandtl number, thermal radiation and
buoyancy parameter.

4. The species concentration and the solutal boundary
layer thickness increase with increasing values of
the magnetic parameter and retardation time. How-
ever, the opposite influences are observedwhen val-
ues of the Deborah number, buoyancy and chemical
reaction parameters are increased.

5. We also observe that the SQLM is a very fast reliable
method that can converge after as few as five itera-
tion.
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