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Abstract

In this study, we present the effect of two-dimensional magnetohydrodynamics of a nanofluid
over a stretching sheet in the presence of chemical reaction, as well as heat generation or
absorption. The partial differential equations are reduced to coupled nonlinear ordinary dif-
ferential equations using similarity transformations, which are then solved numerically using
spectral local linearization and spectral relaxation methods. The effects of different param-
eters, Lewis number, Eckert number, stretching, chemical reaction, local Reynolds number,
Prandtl number, constant, heat source, Brownian motion, and Thermophoresis are analysed
and compared. The numerical results for velocity, temperature, skin friction coefficient,
concentration, Sherwood number, and Nusselt number are presented in tabular form and vi-
sualized graphically. The findings of the spectral local linearization and spectral relaxation
methods are very similar to the bvp4c method’s results. When compared to the spectral re-
laxation method, the results from the spectral local linearization method were more effective.
We found that the velocity profile are increased with increasing values of the Grashof number
(Gr). Since Grashof number (Gr) is ratio of buoyancy to viscous forces in the boundary layer
it causes an increase in the buoyancy forces relative to the viscous forces which influence
the velocity in the boundary layer region. An increase in the heat source/sink parameter
(S) results in the increase in velocity and temperature, but a decrease in concentration. The
concentration diffusion species were reduced due to the heat source/sink parameter (S). The
results also show that heat generation increases the momentum and thermal boundary layer
thickness while decreasing the nanofluid concentration boundary layer thickness.

Keywords: boundary layer flow; heat transfer; mass transfer; nanofluid; magnetohydrody-
namics; heat generation/absorption; chemical reaction; thermophoresis; spectral local lin-
earisation method; spectral relaxation method.
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Nomenclature

u velocity component in the x-direction
v velocity component in the y-direction
x direction coordinate
y direction coordinate
B0 induced magnetic field strength
k thermal conducivity
T temperature of nanofluid

(ρc)f heat capacitance of the base fluid
(ρc)p heat capacitance of the nanoparticles
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
M magnetic parameter
Pr Prandtl number
Le Lewis number
C concentration of nanofluid
Nb Brownian motion parameter
Nt thermophoresis parameter
Cw specific heat capacity of the nanoparticle
Rex local Reynolds number
qr radiative heat flux
Cfx skin-friction coefficient
Cw temperature along the stretching sheet
Tw concentration along the stretching sheet
T∞ ambient temperature
C∞ ambient concentration
m constant parameter
R radiation parameter
Ec Eckert number
S heat generation/sink parameter
l characteristics length
λ stretching constant
k∗ mean absorption coefficient
Q heat generation/absorption coefficient
Uw stretching sheet wall velocity
βt thermal expansion coeffient
βc concentration expansion coeffient
g gravitational acceleration
Ko chemical reaction parameter
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Greek symbols

σ Stefan-Boltzmann
α thermal diffusivity
ρ density of the nanofluid
η transformed variable
γ chemical reaction parameter
ψ stream function
φ dimensionless species concentration
θ dimensionless temperature

Abbrevations

SLLM - Spectral Local Linearization Method
SRM - Spectral Relaxation Method
MHD - Magnetohydrodynamics
PDE - Partial Differential Equation
ODE - Ordinary Differential Equation
SIM - Simple Iteration Method
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Chapter 1

Introduction

This chapter introduces the problem statement, research question, purpose of the study, aim
and objectives of the study. The chapter also discusses the background to the study and
definition of key terms.

1.1 Background

In this study, we focus on the heat generation/absorption and chemical reaction effects with
viscous dissipation on MHD boundary layer flow. The study of boundary layer flow began in
1904 by German engineer called Ludwing Prandtl, who wrote perhaps the most important
article on fluid mechanics. Prandtl presented a paper on the motion of fluid flow with small
viscosity (water and air flow) at the Third International Congress of Mathematics, Anderson
[9]. The boundary layer flow theory have been proven to be the single most important tool
in modern flow analysis Ibrahim and Tulu [19]. The analysis of MHD flow and heat transfer
has been given much attention because of the effect of magnetic field on the boundary layer
flow control and on the performance systems using electrically conducting fluids.

The study of heat generation/absorption and chemical reaction in moving fluids is of practical
importance to many processes in several branches of science and technology. The engineering
application involves chemical distillation process, formation and dispersion of fog, channel
type solar energy collectors and thermo-protection systems, Kuppala et al.[27]. Chemical
reaction can be classified as heterogeneous or homogeneous. This depends on whether they
occur as a single phase volume reaction or chemical reaction is of first order, if the rate
of reaction is directly proportional to the species concentration. Sarojamma et al. [39]
investigated the influence of Hall currents on cross diffusive convection in a MHD boundary
layer flow on stretching sheet in porous medium with heat generation. Shateyi and Marewo
[42] also studied numerical analysis of unsteady MHD flow near a stagnation point of two
dimensional porous bodies with heat and mass transfer thermal radiation and chemical
reaction. The effect of chemical reaction and heat generation/absorption on unsteady mixed
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convection MHD flow over a vertical cone with non-uniform slot mass transfer was analyzed
by Ravindran et al. [38]. Shateyi and Motsa [46] studied unsteady magnetohydrodynamics
convective heat and mass transfer past an infinite vertical plate in a porous medium with
thermal radiation heat generation/absorption and chemical reaction.

1.2 Problem statement

This project is briefly described above, the work jointly with effects of chemical reaction, heat
generation or absorption, buoyancy force thermal expansion, buoyancy force concentration
expansion. The study focus on boundary layer flow and heat transfer characteristics on the
MHD of nanofluid over stretching sheet.

1.3 Research question

How effective are the proposed numerical methods in the numerical solution process of the
steady MHD boundary layer flow and heat transfer characteristics in the presence of chemical
reaction effects of nanofluid over stretching sheet?

1.4 Purpose of the study

The purpose of this project is to numerically analyze the effects heat generation/absorption,
chemical reaction, buoyancy force thermal expansion, buoyancy force concentration expan-
sion on boundary layer flow and heat transfer characteristics on the MHD of nanofluid over
stretching sheet in the presence of thermal radiation and viscous dissipation.

1.5 Aim and objectives

Aim

To analyse the steady state MHD boundary layer flow and heat transfer that characterise
free convection flow in the presence of heat generation/absorption, thermal radiation viscous
dissipation, chemical reaction of nanofluid over stretching sheet.

The objectives of the study are to:

(i) Formulate a mathematical model of steady MHD flow and heat transfer characteristics
in the presence of heat generation/absorption and chemical reaction of a nanofluid over
a stretching sheet.
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(ii) Transform the partial differential equations (PDEs) of the governing equations into
ordinary differential equations (ODEs) by using similarity variables.

(iii) Determine the numerical solution of ODEs using spectral relaxation method and spec-
tral local linearization method.

(iv) Investigate the effect of permeable sheet and other governing parameters on steady
MHD boundary layer flow and heat transfer characteristics in the presence of heat
generation/absorbption and chemical reaction of a nanofluid over a stretching sheet in
order to get an engineering point of view.

1.6 Definition of Keywords

Thermal radiation: is one of three ways for exchanging energy between bodies of differ-
ent temperatures. The emission of electromagnetic waves from the substance characterizes
thermal radiation (variation of its internal energy). It transmits radiation ranging from ul-
traviolet to far field infrared depending on the temperature of the substance. The entire
body functions as a continuous emitter of thermal radiation as well as a continuous receiver
of radiation from far-field bodies. Thermal radiation, on the other hand, is linked to the
transmitter’s, receiver’s, and crossed medium’s molecular structure, Derobert and Dumoulin
[14].

Brownian motion: is a random movement of microscopic molecule suspended in fluids or
gases coming about because of the effect of atoms of the fluid surrounding the particles and
furthermore called Brownian developments, Parimal [37].

Thermophoresis: is observed in blends of versatile particles where the various particles
and where the diverse molecule types show various reactions to the force of a temperature
gradient, Brinker [8].

Magnetohydrodynamics (MHD): is defined as the investigation of magnetic properties
and practices of electrically directing fluids, at that point model magneto liquids incorporate
fluid, plasma, salt water, metals and electrolytes, Alfvé [2].

Steady flow and unsteady flow: a steady flow is where the flow parameters such as ve-
locity, pressure, and density are independent of time, whereas in an unsteady flow, they are
dependent on time. Flow in a pipe of variable diameter with a constant pressure head is
an example of steady flow (e.g reservoir of tank). Unsteady flow can be described as flow
via a pipe of variable diameter under varied pressure caused by changes in the reservoir’s
water level, the opening or closing of a valve, or the stopping or starting of hydraulic devices
connected to the pipe. Landau [29].
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Incompressible flow: refers to the fluid flow where the fluid thickness steady for a thick-
ness to stay constant, the control volume needs to stay even through the pressure changes the
thickness will be consistent for an incompressible stream with variety of thickness because of
pressure changes is irrelevant or infinitesimal. Fluid at steady temperature is incompressible,
Anderson [4].

Compressible flow: means a flow that experiences prominent variety in thickness with
trending pressure thickness r(x, y, z) is considered as a field variable for the flow dynamics.
At the point when the estimation of mach and the crosses above 0.3 thickness starts to vari-
able and the adequacy of variable spikes when mach number reaches and surpass solidarity,
Anderson [4].

The different between Newtonian and non-Newtonian: is that Newtonian fluids have
constant viscosity, whereas non-Newtonian fluids have a variable viscosity is the state of be-
ing thick and sticky due to the internal friction of the fluid e.g (some liquid such peanut
butter, sauce and butter ), William et al. [52].

Outline of the project

The structure of the project design as follows:

• In Chapter 2, we discuss literature review followed by discussing some explanation of the
area of study.

• In Chapter 3, we formulate the mathematical problem.

• In Chapter 4, we transform the PDEs into ODEs

• In Chapter 5, we have the methodology of solution.

• In Chapter 6, we present results and discussion.

• In Chapter 7, conclusion and project outlook.
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Chapter 2

Literature Review

Nanofluids are base fluids with nanoparticles suspended in them. Metals, oxides, carbides,
and carbon nanotubes are common materials for these nanoparticles. Water, ethyleneglycol,
toluene, and oil are some of the most common base fluids. The study of nanofluid flow and
stretching sheet has recently gained a lot of attention due to its numerous industrial applica-
tions. Polymer extrusion, stretching of plastic films, wire drawing, continuous casting, food
and paper manufacturing, glass fiber production, crystal growing, glass blowing, manufac-
turing of plastic and rubber sheets, and continuous cooling are just a few of these engineering
applications Abdelhalim et al. [1]. Researchers in fluid dynamics have regularly used fluids
in the study of nanofluids during last several decades due to its applications in numerous
fields. To improve the heat transfer capability of the fluids, it is necessary to combine both
the metal (nano-sized) and fluids. During an investigation of cooling technologies at Argonne
National Lab, Choi [10] was the first to establish the notion of nanofluid. There are different
types of nanofluids, including environmental process nanofluids, medicinal nanofluids, and
extraction nanofluids. The thermal conductivity of nanofluids is affected by particle sizes,
particle material, base fluid material, base fluid PH value, temperature, and particle volume
concentration. To provide adequate heat transfer increases, nanofluids generally comprise up
to 5% volume fraction of nanoparticles. Shagaiya [40] reported the MHD boundary layer slip
flow and heat transfer of a permeable sheet. Numerous researchers have conducted numerous
experimental and theoretical studies on the thermal conductivity of nanofluids, Khaled et al.
[23, 25], Yang et al [54], Ibrahim and Negera [21], Sudipta and Swati [48].

The field of research in which the magnetic properties of electrically conducting fluids are
studied is called magnetohydrodynamics (MHD). Magnetic fluids, liquids, metals and mix-
tures containing water, salt and other electrolytes are examples of materials that can be
investigated via MHD. The MHD is one of the most critical factors in controlling the cooling
rate and producing a product of the desired quality. During the past few decades, the study
of MHD boundary layer flow on a continuous stretching sheet has received a lot of attention.
It has a wide range of uses in industrial manufacturing processes, Dharmendar [13]. The
MHD boundary layer flow as a result of an exponentially stretching sheet with radiation effect
was discussed, Anuar [6]. Kumaran et al. [26] investigated magnetohydrodynamic Casson
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and Maxwell flow over a stretching sheet with cross diffusion. Khanba et al. [24] conducted
MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet
using the Runge–Kutta–Fehlberg fourth order method. They found out that an increase in
Brownian motion parameter and thermophoresis parameter increase the temperature in the
thermal boundary layer which consequently reduces the heat transfer rate at the surface.

The study of heat and mass transfer in moving fluids is crucial due to a variety of physical
issues, including fluids undergoing exothermic and endothermic chemical reactions. In many
chemical engineering processes, chemical reactions take place between a foreign mass and
the working fluid which moves due to the stretching of a surface. The order of the chemical
reaction depends on several factors. The conveyance of one segment in a mix from a region of
high focus to an area of low fixation is called mass transfer. Coupled heat and mass transfer
flow create a notable study area in today’s fluid flow. Some basic examples are water flow
from a lake to the environment, liquor refinement, and so on Goyal et al. [17]. The optimal
homotopy analysis method (OHAM) and Mathematica package BVPh 2.0 is employed to
find a semi-analytical solution. Muriuki [34] examined the MHD flow and heat transfer of a
Newtonian fluid moving through parallel porous plates in the presence of an angled magnetic
field. Cortell [11] studied the MHD flow and mass transfer of a second-grade electrically con-
ducting fluid in a porous media over a stretching sheet containing chemically reactive species.
Other heat and mass transfer can be found in Gnaneswara et al. [18], Sudarsana et al [49]
and Vardya et al [51].

The investigation of heat generation or absorption effects is important in cooling processes,
which is the main focus of this study. Alsaedi et al. [3] studied the effects of heat generation
or absorption on nanofluid stagnation point flow over a surface with convective boundary
conditions. Mohanty et al. [33] studies the chemical reaction effect on MHD Jeffery fluid
over a stretching sheet with heat generation/absorption. On MHD stagnation-point flow
of a nanofluid over a porous sheet, chemical reactions and uniform heat generation or ab-
sorption effects were investigated by Anwar et al. [7]. Shateyi et al. [43, 45, 47] investigated
an unsteady electrically conducting viscous fluid along an infinite vertical permeable plate.
Kasmani et al. [28] investigated the effect of chemical reaction on boundary layer flow in
nanofluid over a wedge with heat generation/absorption and suction on convective heat
transfer. Magyaria and Chamkhab [9] studied flow on micropolar fluid flows over a uni-
formly stretched permeable surface, the combined effect of heat generation or absorption
and first-order chemical reaction.

Very recently, Hari et al. [30] investigated the effects of chemical reaction and heat genera-
tion on MHD Casson fluid flow over an exponentially accelerated vertical plate embedded in
a porous medium with ramped wall temperature and ramped surface concentration. Several
researchers have focused on MHD boundary layer flow in the last few decades; Mohammed
[32], Das [12], and Dodda et al [15] have all done work on the topic. The present work
follows the direction of the work done by Ferdows et al. [16], hence this work has been
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modified by including the effects of chemical reaction, heat generation or absorption, buoy-
ancy force thermal expansion and buoyancy force concentration expansion. We compare
two recently established approaches by Motsa [35], SLLM and SRM methods on solving the
effects of heat generation or absorption and chemical reaction for magnetohydrodynamics
boundary layer flow of nanofluid over a stretching sheet. The method relies on converting
ODEs into an iterative scheme. The iterative scheme is combined with Chebyshev spectral
method, Trefethen [50]. Shateyi and Mukwevho [41], Shateyi [44], and Motsa et al. [36] used
a similar approach to our current proposed method. The results obtained using the SLLM
and SRM methods are compared to those obtained using the Runge Kutta bvp4c matlab
inbuilt technique. The purpose of this investigation is to numerically analyze the effects of
heat generation or absorption and chemical reaction, boundary layer flow and heat transfer
characteristics on the steady MHD of nanofluid over a stretching sheet.
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Chapter 3

Mathematical Formulation

The governing equations of the laminar MHD boundary layer flow and heat transfer charac-
teristics of nanofluid over stretching surface are derived. In this chapter we derive equations
of continuity equation, momentum equation, energy equation, species concentration equa-
tion and also boundary conditions.

3.1 The continuity equation

Conservation law which state that certain physical properties (i.e., measurable quantities)
do not change in the course of time within an isolated physical system. Mass inside the
control volume is identical to the mass flux crossing the surface S of volume V in essential
structure Jiyuan et al [22];

d

dt

∫
V

ρdv = −
∫
S

ρu · ndS, (3.1.1)

where,
• n - is the outward normal.
• ρ - is density.
• u - the velocity

The left hand side indicates mass change in the volume V, whereas the right hand side
represents in and out flow via the volume’s limits. We can take the derivative inside
the integral because the volume is fixed in space, and by applying the divergence theo-
rem (

∫
V
∇.adv =

∮ ∮
S
a.nds) to the boundary fluxes on the right hand side, we get

∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dv = 0. (3.1.2)
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If the flow field is smooth, this must hold for any arbitrary volume, no matter how tiny, and
so must likewise hold at a point. As a result, the partial differential equation representing
mass conservation is:

∂ρ

∂t
+∇ · (ρu) = 0. (3.1.3)

By using the definition of the substantial derivative

D()

Dt
=
∂()

∂t
+ u.∇(). (3.1.4)

The equation for continuity can be rewritten as

∂ρ

∂t
+ u∇ρ+ ρ∇u

Dρ

D T
+ ρ∇u, (3.1.5)

or by using equation (3.1.3) of the mass conservation. In the cartesian coordinate system
and can be written as;

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0, (3.1.6)

where the fluid velocity u at any point in the flow field is portrayed by nearby velocity
components u and v which are in general function of location (x, y) and time (t).
Then we obtain,

∂ρ

∂t
+ ρ

(
∂u

∂y
+
∂v

∂x

)
= 0, (3.1.7)

where,
• Dρ

Dt
=0 (steady flow) stated as substantial derivative in cartesian coordinates,

• Dρ
Dt

is the material derivative
• ρ is the constant total mass density
We obtain the continuity equation as follows;

∂u

∂y
+
∂v

∂x
= 0. (3.1.8)

3.2 The momentum equation

Consider the general variable property per unit mass indicated by φ, where Dφ
Dt

is the sub-
stantial derivative of φ with respect of time Jiyuan et al. [22].

Dφ

Dt
=
∂φ

∂t
+ u

∂φ

∂y
, (3.2.1)
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the above equation characterizes the rate of change of the variable property φ per unit mass.
The rate of change of the variable property φ per unit volume can be acquired by multiplying
the density ρ with the considerable derivative of φ that is given by,

ρ
Dφ

Dt
= ρu

∂φ

∂x
+ ρv

∂φ

∂y
. (3.2.2)

The mass conservation equation derived from equation (3.1.6) defines the sum of the rate
change of density and is called the advection term, and can be written as,

∂φ

∂t
+
∂(φu)

∂x
+
∂(φv)

∂y
= 0, (3.2.3)

the variable property φ in conservation form will be ;

∂(ρφ)

∂t
+
∂(φuρ)

∂x
+
∂(φvρ)

∂y
= 0, (3.2.4)

from above equation (3.2.2) shows the rate of change of φ per unit volume with the addition
of the net flow of φ out of the liquid component per unit volume, illustrate the connection
between the moderate type of equation (3.2.4) and nonconservative form of equation (3.2.3),
by using the x component of Newton’s second law as follows,

ΣFx = max. (3.2.5)

Where,
• Fx - is force along the x-direction,
• ax - is acceleration along the x-direction.

The acceleration ax at the right-hand side of equation (3.2.4) is simple the time rate change
of u, which is given by substantial derivative,

ax =
Du

Dt
, (3.2.6)

the mass of the fluid element m is ρ∆x∆y∆z, the rate of increase of x-momentum is,

ρ
∆u

∆t
∆x∆y. (3.2.7)

On the left hand side rule of equation (3.2.7), there are two bases of force that the moving
fluid element experiences. The surface force that the velocity component u, that deform the
fluid element are due to the normal stress δxx and tangential stresses yx acting on the surface
of the fluid element combining the sum of these surface forces on the fluid element and the
time rate change of u from equation (3.2.8) into equation (3.2.6) the x-momentum equation
becomes,

ρ
Du

Dt
=
∂δxx
∂x

+
∂δyx
∂y

+
∑

Fx, (3.2.8)
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where Fx = body force and y-momentum can be obtained as,

ρ
Du

Dt
=
∂δxy
∂x

+
∂δyy
∂y

+
∑

Fy, (3.2.9)

where Fy = body force for each structures which can be utilized to express the conser-
vation of a physical quantity for velocity, just nonconservative structure is derived to in-
fer the following physical law known in flow problems. Dividing both equation by ρ, but
∂δxy
∂x

= v ∂
2u
∂x2

+v ∂
2u
∂y2

+ ∂
∂x

[
λ
(
∂u
∂x

+ ∂u
∂y

)]
and ∂δyy

∂y
= v ∂

∂x

[
∂u
∂x

+ ∂u
∂y

]
+ ∂v

∂x
∂u
∂x

+ ∂v
∂y

∂v
∂x

, thus equation

(3.2.9) become,

Du

Dt
= −1

ρ

∂ρ

∂x
+ v

∂2u

∂x2
+ v

∂2u

∂y2
+

∂

∂x

[
λ

(
∂u

∂x
+
∂u

∂y

)]

+v
∂

∂x

[
∂u

∂x
+
∂u

∂y

]
+
∂v

∂x

∂u

∂x
+
∂v

∂y

∂v

∂x
+
∑

Fx, (3.2.10)

and,

Dv

Dt
= −1

ρ

∂ρ

∂y
+ v

∂2v

∂x2
+ v

∂2v

∂y2
+

∂

∂y

[
λ

(
∂u

∂x
+
∂v

∂y

)]

+v
∂

∂y

[
∂u

∂x
+
∂v

∂y

]
+
∂v

∂x

∂u

∂y
+
∂v

∂y

∂v

∂y
+
∑

Fy, (3.2.11)

we find that,

Dv

Dt
= −1

ρ

∂ρ

∂y
+ v

∂2v

∂x2
+ v

∂2v

∂y2
, (3.2.12)

or,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂ρ

∂y
+ v

∂2v

∂x2
+ v

∂2v

∂y2
, (3.2.13)

and,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂ρ

∂y
+ v

∂2u

∂x2
+ v

∂2u

∂y2
. (3.2.14)

If the time independent term ∂v
∂t

= 0, ∂2u
∂x2

= ∂U
∂x

and 1
ρ
∂ρ
∂y

= σB2
o(U−u)
ρ

we get

u
∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+ v

∂2u

∂y2
+
σB2

o

ρ
(U− u). (3.2.15)
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3.3 The energy equation

The equation of conservation of energy which has been derived from consideration of the
first law of thermodynamics Jiyuan et al [22];

(
Time rate of

change of energy

)
=

(
Net rate of

heat added

)(∑
Q̇
)

+

(
Net rate of

work done

)(∑
Ẇ
)
, (3.3.1)

where
∑
Q̇ is heat added to the system from surroundings and

∑
Ẇ workdone by the

system on its surroundings. The time rate of change in energy for the moving fluid element
is simplified as,

ρ
Dε

Dτ
∆x∆y, (3.3.2)

when we put together all the inputs of the surface forces in the x and y directions and
substituting these expressions along with the time rate change of energy E, from equation
(3.3.1) into (3.3.2) the equation for the conservation of energy can be written as,

ρ
DE

Dt
=
∂τxx
∂x

+
∂τyy
∂y

+
∂τyx
∂y

+
∂τxy
∂x

+
∂qx
∂x

+
∂qy
∂y

, (3.3.3)

the energy fluxes qx and qy equation (3.3.3) can be expressed by applying Fourier’s law of
the heat conduction that relates flux to the local temperature gradient,

qx = −k∂T
∂x

and qy = −k∂T
∂y

, (3.3.4)

where k given as the thermal conductivity, substitute equation (3.3.4) into equation (3.3.3),
applying the normal stresses and the energy equation is as follows;

ρ
DE

Dt
=

∂

∂x

[
k
∂T

∂x

]
+

∂

∂y

[
k
∂T

∂y

]
− ∂(up)

∂x
− ∂(vp)

∂y
+ ϕ, (3.3.5)

the effects expected viscous stresses of the energy equation are written as,

φ =
∂(uτxx)

∂x
+
∂τyy
∂y

+
∂(uτyx)

∂y
+
∂(vτxy)

∂x
, (3.3.6)

where the fluid is assumed to be incompressible, the continuity equation applies by neglecting,
the enthalph(thermodynamic system, is equal to the system is internal energy plus the
product of its pressure), the kinetic energy can be reduced to CpT where Cp is the specific
heat and is assumed to be constant, equation (3.3.5) can be written follows,

ρCp
DT

Dt
=

∂

∂x

[
k
∂T

∂x

]
+

∂

∂y

[
k
∂T

∂y

]
+
∂p

∂x
+ ϕ, (3.3.7)
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in most functional liquid engineering complications, the local time derivative of pressure ∂p
∂t

and the dissipation function φ can be left out and equation (3.3.7) reduce as,

ρCp
DT

Dt
=

∂

∂x

[
k
∂T

∂x

]
+

∂

∂y

[
k
∂T

∂y

]
, (3.3.8)

expecting that the temperature which invariant along the y-direction and the thermal con-
ductivity is constant, then the equation for the conservation of energy in two-measurements
can be written as,

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρCρ

∂2T

∂x2
+

k

ρCρ

∂2T

∂y2
, (3.3.9)

time independent ∂T
∂t

= 0 by using continuity equation ∂u
∂x

+ ∂v
∂y

= 0, then consider the fact

that ∂2T
∂x2

<< ∂2T
∂y2

, α = k
ρ

and k
ρcρ

(∂
2T
∂x2

) = α∂
2T
∂y2
− α

k
∂qr
∂y

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− α

k

∂qr
∂y

+
α

cp

(
∂u

∂y

)2

+ τ

(
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
)

± Q

ρcρ
(T − T∞). (3.3.10)

3.4 Derivation of the species equation

The pertinent form of the conservation equation can be obtained by identifying the processes
that affect the transport and generation of species B for a differential control volume in the
fluid, Wongwise [53].

Species B can be moved in each of the coordinate directions by advection (with the mixture’s
mean velocity) and diffusion (relative to the mean motion). The concentration may also be
affected by chemical reactions, and we designate the rate at which the mass of species A is
generated per unit volume due to such reactions as ṅ. The net rate for which species (B)
enters the control volume due to advection in the x-direction is,

ṀB,bdv,x − ṀB,bdv,x+dx = (ρBu)dy −
[
(ρBu) +

∂(ρBu)

∂x
dx

]
dy (3.4.1)

=
∂(ρBu)

∂x
dxdy. (3.4.2)

• ṀB is the molecular weight in (kg/kmol).

Similarly, the net rate at which species (C) enters the control volume due to diffusion in the
x-direction is calculated by multiplying both sides of Fick’s equation (Equation 3.4.2) by the
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molecular weight (B)µ(kg/kmol)) of species A.

ṀB,dif,x − ṀB,dif,x+dx =

(
−DBC

∂ρBu

∂x

)
dy −

[(
−DBC

∂ρB
∂x

)
+

∂

∂x

(
−DBC

∂ρB
∂x

)
dx

]
dy

=
∂

∂x

(
DBC

∂ρB
∂x

)
dxdy. (3.4.3)

For the y-direction, expressions similar to Equations (3.4.2) and (3.4.3) can be used.

ṀB,bdv,x − ṀB,bdv,x+dx + ṀB,bdv,y − ṀB,bdv,y+dy + ṀB,dif,x − ṀB,dif,x+dx

+ṀB,dif,x − ṀB,dif,x+dx − ṀB,dif,y+dy + ˙MB,g = 0, (3.4.4)

by substituting equations (3.4.2) and (3.4.3) and as well as from similar form for the y-
direction, we get the following:

∂ (ρBu)

∂x
+
∂(ρBv)

∂y
=

∂

∂x

(
DBC

∂ρB
∂x

)
+

∂

∂y

(
DBC

∂ρB
∂x

)
+ ṅB. (3.4.5)

This equation is obtained by expanding the terms on the left-hand side and substituting from
the overall continuity equation for an incompressible fluid. The equation (3.4.5) is reduced to

u
∂ρB
∂x

+ v
∂ρB
∂y

=
∂

∂x

(
DBC

∂ρB
∂x

)
+

∂

∂y

(
DBC

∂ρB
∂y

)
+ ṅB, (3.4.6)

or put it in a molar form :

u
∂CB
∂x

+ v
∂CB
∂y

=
∂

∂x

(
DBC

∂CB
∂x

)
+

∂

∂y

(
DBC

∂CB
∂y

)
+ ṄB, (3.4.7)

by replacing ṄB = −Ko(C − C∞), ∂
∂x

(
DBC

∂CB
∂x

)
= DB

∂2C
∂y2

and ∂
∂y

(DBC
∂CB
∂x

) = DT
T∞

(
∂2T
∂y2

)
u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
−Ko(C − C∞). (3.4.8)
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3.5 Derivation of boundary conditions

For this research, a steady two-dimensional boundary layer flow of a nanofluid toward stretch-
ing sheet is considered. A linearly variation of uw = ax with the distance x, where a is
constant and x is the coordinate measured along the stretching surface. The flow considered
to be laminar, incompressible, Newtonian and electrically conducting fluid. Steady uniform
stress leading to equal and opposite is applied along the x-axis so that the sheet is stretching
keeping the origin fixed. The electrical field is assumed to be zero and both the induced
magnetic and electric field of the flow are insignificant compared with the small Reynolds
number and U = bx where U is considered to magnetic field and b is constant. The temper-
ature and concentration of the ambient fluid are T∞ and C∞, the stretching sheet surface is
maintained at a uniform temperature Tw and concentration Cw respectively. The boundary
condition for velocity component, temperature and concentration of nanofluid, therefore can
be given as follows;

v = 0, u = ax, C = Cw = C∞ + A2

(x
l

)m
, T = Tw = T∞ + A1

(x
l

)m
at y = 0

T = T∞, C = C∞, U = bx as y →∞. (3.5.1)

Where A1, A2 are constant whose values depend on the properties of the fluid T∞ tem-
perature of the ambient fluid, subscript ∞ indicate the condition at the outer edge of the
boundary layer, and λ is linear stretching constant parameter.

3.6 Physical model of the problem

We consider a steady two-dimensional magnetohydrodynamics boundary layer flow of nanofluid
over a stretching sheet in the presence of heat generation or absorption, as well as a varia-
tion in chemical reaction velocity with distance uw = ax. The flow is described as laminar,
incompressible, electrically conducting, and Newtonian, with x representing the coordinate
measured along the stretching surface and a representing a constant. The coordinate of a
constant uniform stress resulting in equal and opposite forces is applied along the x-axis to
stretch the sheet while keeping the origin constant. Ferdows et al. [16] provides an approx-
imation of the governing boundary layer equations for continuity, momentum, energy, and
concentration based on the above assumptions:

∂u

∂x
+
∂v

∂y
= 0, (3.6.1)

u
∂u

∂x
+ v

∂v

∂y
= U

dU

dx
+ v

∂2v

∂y2
+
σB2

o

ρ
(U− u) + gβt(Tw − T∞) +Gβc(Cw − C∞), (3.6.2)
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u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
− α

k

∂qr
∂y

+
α

cρ

(
∂u

∂y

)2

+ τ

{
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
}

± Q

ρcρ
(T − T∞), (3.6.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
−Ko(C − C∞). (3.6.4)

Where u and v are the fluid velocity components along x and y axes, respectively, U repre-
sents the plate velocity (uniform velocity), cρ represents the specific heat at constant pres-
sure, ρ represents the density of the fluid, qr represents the radiation heat flux, τ represents
the Stefan-Boltzmann constant, Bo represents externally imposed magnetic field strength in
the y direction, DB represents the Brownian diffusion coefficient, DT represents the ther-
mophoresis diffusion coefficient, k represents the thermal, α represents the thermal diffusivity,
Tw represents the temperature of the wall, T and C are the fluid’s local temperature and
concentration, T∞ and C∞ are the ambient fluid’s temperature and concentration, Ko is
the chemical reaction parameter and Q is the heat generation/absorption coefficient with
boundary conditions.

v = 0, u = ax, C = Cw = C∞ + A2

(x
l

)m
, T = Tw = T∞ + A1

(x
l

)m
at y = 0,

T = T∞, C = C∞, U = bx as y →∞. (3.6.5)

Where A1, A2 are constants whose values are determined by the fluid properties, a and b are
linear stretching constants, l is the characteristic length m is constant parameter.
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Chapter 4

Transformation Techniques

In this chapter, we focus on similarity transformations, whereby the stream function and
stretching sheet velocity are defined. Then governing non-linear PDEs are converted into
non-linear ODEs then transformed into continuity, linear momentum, energy, species con-
centration equation and the quantities of physical interest, Jiyuan et al [22].

4.1 Stream function and dimensionless variable

The stream function is ψ(x, y) such that u = ∂ψ
∂y

and v = −∂ψ
∂x

satisfies the equations (3.6.1

- 3.6.4).

ψ = x
√
aυf(η), η = y

√
a

υ
. (4.1.1)

θ =
T − T∞
Tw − T∞

=⇒ T = θ(Tw − T∞) + T∞, (4.1.2)

φ =
C − C∞
Cw − C∞

=⇒ C = φ(Cw − C∞) + C∞, (4.1.3)

firstly, we derive the transformed variable η with respect to (x, y) respectively as follows;

η =
∂η

∂y
=

√
a

υ
, η =

∂η

∂x
= 0, (4.1.4)

the y-direction for u velocity,

u =
∂ψ

∂y
= u = xaf ′(η), (4.1.5)
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the x-direction for v velocity,

ν = −∂ψ
∂x

= −
√
aυf(η), (4.1.6)

the Rosseland approximation have been considered for radiative heat flux leads to;

qr =
4σ

3k∗
∂T 4

∂y
, (4.1.7)

where k∗ is the mean absorption coefficient, qr is radiative heat flux. σ is Stefan-Boltzmann
constant and we can obtain T 4 by expanding in a Taylor series about T∞ and neglecting the
higher order term, we get;

T 4 = T 4
∞ + (T − T∞)f ′(T∞) +

(T − T∞)2

2!
f ′′(T∞)

+
(T − T∞)3

3!
f ′′′(T∞) +

(T − T∞)4

4!
f ′′′′(T∞) + ...

T 4 + 4TT 3
∞ − 4TT 4

∞ + 6TT 2
∞ + 6TT 2

∞(T 3 − 3T 2T∞ − T 3
∞)+

= 4TT 3
∞ − 3T 4

∞, (4.1.8)

so then radiation term in energy equation take a form,

∂qr
∂y

=
16σT 3

∞
3k∗

∂2T

∂y2
. (4.1.9)

4.2 Similarity transformation of the continuity equa-

tion

Consider the function for u and v velocity components :

u =axf ′(η), v = −
√
aυf(η), (4.2.1)

then we compute equation (4.2.1) using partial derivative as follows:

∂u

∂x
= af ′ + axf ′′

∂η

∂x
= af ′,

∂v

∂y
= −
√
aυf ′(η)

√
a

υ
= −af ′. (4.2.2)

Therefore, we substitute equations (4.2.1) and (4.2.2) into (3.6.1) to obtain;

∂u

∂x
+
∂ν

∂y
= 0⇒ af ′ − af ′ = 0. (4.2.3)

The continuity equation is satisfied.
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4.3 Similarity transformation of the linear momentum

equation

We use similarity transformation of momentum equation to reduce non-linear equation
(3.6.2) coupled ODEs by dimensionless variable,

u
∂u

∂x
+ v

∂v

∂y
= U

dU

dx
+ v

∂2v

∂y2
+
σB2

o

ρ
(U− u) + gβt(Tw − T∞) +Gβc(Cw − C∞). (4.3.1)

We compute from equation (4.2.2) and U = bx using partial derivative to form;

∂u

∂x
= af ′,

∂u

∂y
= ax

√
a

υ
f ′′, (4.3.2)

⇒ ∂2u

∂y2
=
a2

υ
xf ′′′,

∂U

∂x
= b, (4.3.3)

(4.3.4)

gβt(Tw − T∞) = gβt(T∞ + θ(Tw − T∞)− T∞) = gθβt(Tw − T∞), (4.3.5)

Gβc(Tw − T∞) = Gβc(C∞ + φ(Cw − C∞)− C∞) = Gφβc(Cw − C∞), (4.3.6)

by substituting (4.3.2), (4.3.3), (4.3.4) and (4.3.5) into (4.3.1) we have,

axf ′af ′ +
√
aυfa

√
a

υ
f ′′ = bx ∗ b+ v

a2

υ
xf ′′′ +

σB2
o

ρ
(bx− axf ′)

+gθβt(Tw − T∞) +Gφβc(Cw − C∞), (4.3.7)

then after substituting we get,

a2xf ′2 − a2xff ′′ = b2x+ a2xf ′′′ +
σB2

o

ρ
(bx− axf ′) +Gtθ +Gcφ, (4.3.8)

divide the equation by a2x both sides and given that λ = b
a

so we have,

f ′2 − ff ′′ = λ2 + f ′′′ +
σB2

o

aρ
(λ− f ′)Gtθ +Gcφ, (4.3.9)

setting M = σB2
o

aρ
the magnetic parameter, βt is thermal expansion coefficient, βc is concen-

tration expansion coefficient, g is gravitational acceleration, Cw is concentration along the
stretching sheet and C∞ ambient concentration.

Therefore,

f ′′′ + ff ′′ − f ′2 +M (λ− f ′) + λ2 +Gtθ +Gcφ = 0. (4.3.10)
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4.4 Similarity transformation of the energy equation

We use similarity transformation of energy equation to reduce equation (3.6.3) to non-linear
coupled ODEs by dimensionless variable,

u
∂T

∂x
+ ν

∂T

∂y
= α

∂2T

∂y2
− α

k

∂qr
∂y

+
α

cp

(
∂u

∂y

)2

+ τ

(
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
)

± Q

ρcρ
(T − T∞). (4.4.1)

We compute equations (4.1.2), (4.1.3) of nanofluid and (4.1.9) using partial derivative this
form;

∂T

∂y
=

√
a

ν
θ′(Tw − T∞)⇒ ∂2T

∂y2
=
a

v
(Tw − T∞)θ′′,

∂C

∂y
= φ′

√
a

µ
(Cw − C∞), (4.4.2)

we use boundary condition (3.6.5) to derive partial derivative this form;

T = Tw = T∞ + A1

(x
l

)m
θ ⇒ T = Tw = T∞ + A1

(x
l

)m
θ,

⇒ ∂C

∂x
= mA1

(x
l

)m−1
θ, (4.4.3)

u
∂T

∂x
= axf ′mA1

(x
l

)m−1
θ, (4.4.4)

v
∂T

∂y
=
√
aυf

√
a

υ
(Tw − T∞) θ′ = −afθ′ (Tw − T∞) , (4.4.5)

α
∂2T

∂y2
= α

a

v
(Tw − T∞) θ′′, (4.4.6)

α

k

∂qr
∂y

= −16σαT 3
∞

3kk∗
∂2T

∂y2
= −16σαT 3

∞
3kk∗

a

υ
(Tw − T∞) θ′′, (4.4.7)

α

cρ

(
∂u

∂y

)2

=
αa3x2f ′′2

υcρ
, (4.4.8)
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DB
∂T

∂y

∂C

∂y
= DB

√
a

υ
(Tw − T∞)

√
a

υ
(Cw − C∞)φ′θ′

= DB
a

υ
(Tw − T∞) (Cw − C∞)φ′θ′, (4.4.9)

DT

T∞

(
∂T

∂y

)2

=
DT

T∞

(√
a

υ
(Tw − T∞) θ′

)2

=
DT

T∞

a

υ
(Tw − T∞)2 θ′2

Q

ρcρ
(T − T∞) =

Q

ρcρ
(Tw − T∞) θ, (4.4.10)

by substituting (4.4.4), (4.4.5), (4.4.6), (4.4.7), (4.4.8), (4.4.9), (4.4.10) and (4.4.11) into
(4.4.1) we have,

axf ′mA1

(x
l

)m−1
θ − afθ′ (Tw − T∞) = α

a

υ
(Tw − T∞) θ′′ +

16σαT 3
∞

3kk∗
a

υ
(Tw − T∞) θ′′ +

αa3x2f ′′2

υcρ

+DB
a

υ
(Tw − T∞) (Cw − C∞)φ′θ′ +

DT

T∞

a

υ
(Tw − T∞)2 θ′2 ± Q

ρcρ
(Tw − T∞) θ, (4.4.11)

divide the equation (4.4.12) by aα(Tw−T∞)
v

both sides, we have,

mA1(
x
l
)m−1axf ′v

aα(Tw − T∞)
− υ

α
fθ′ = (1 +

16σαT 3

3kk∗
)θ′′ +

αa2x2f ′′2

(Tw − T∞) cρ
+
DB

α
(Cw − C∞)φ′θ′

+
DT

T∞
(Tw − T∞) θ′2 ± v

α

Q

ρcρa
θ, (4.4.12)

where Pr = v
α

is Prandtl number, Tw is the temperature of the wall and, T∞ is the tempera-

ture, l =
√

v
a

is a characteristics length, R = 16σαT 3

3kk∗
is radiation parameter, A depends on the

thermal properties of the liquid, Ec = αa2x2

(Tw−T∞)cρ
is the Eckert number, DB =

vNb(ρc(Cw−C∞))f
(ρc)ρ

is the Brownian diffusion coefficient, DT =
vNt(ρc)f (Tw−T∞)

(ρc)ρ
is the thermophoresis diffusion

coefficient, uw = ax is the linear velocity and S = Q
ρcρa

is the heat generation parameter.

Substituting the explained parameters above into equation (4.4.13), we get:

mf ′θ
A1(

x
l
)mv

α(Tw − T∞)
− Prfθ′ = (1 +R)θ′′ + Ecf ′′2 +

v · v Nb(ρc)f (Cw − C∞)

α(ρc)ρ
φ′θ′+

v · v Nt(ρc)f (Tw − T∞)

α(ρc)ρ
θ′2 −mf ′θPr (Tw − T∞)

(Tw − T∞)
± v

α

Q

ρcρa
θ, (4.4.13)

hence the energy is given,

(1 +R)θ′′ + EcPrf ′′2 + Prfθ′ −mPrf ′θ + PrNbφ′θ′ + PrNtθ′2 ± PrSθ = 0. (4.4.14)
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4.5 Similarity transformation of the concentration equa-

tion

We use similarity transformation of concentration equation to reduce non-linear equation
(3.6.4) coupled ODEs by dimensionless variable,

u
∂C

∂x
+ ν

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

(
∂2T

∂y2

)
−Ko(C − C∞). (4.5.1)

The transformed derived equations (4.1.2) and (4.1.3) are as follows;

C = Cw = C∞ + A2

(x
l

)m
φ⇒, C = Cw = C∞ + A2

(x
l

)m
φ,

⇒ ∂C

∂x
= mA2

(x
l

)m−1
φ, (4.5.2)

u
∂C

∂x
= axf ′mA2

(x
l

)m−1
φ, (4.5.3)

ν
∂C

∂y
= −afφ′(Cw − C∞), (4.5.4)

DB
∂2C

∂y2
= DB

a

υ
(Cw − C∞)φ′′, (4.5.5)

DT

T∞

(
∂2T

∂y2

)
=
DT

T∞

a

υ
θ′′(Tw − T∞), (4.5.6)

k(C − C∞) = −Ko(Cw − C∞)φ, (4.5.7)

by substituting (4.5.2), (4.5.3), (4.5.4), (4.5.5), ((4.5.6), (4.5.7) and (4.4.11) into (4.5.1) we
have,

axmA2

(x
l

)m−1
f ′φ− afφ′(Cw − C∞) = DB

a

υ
φ′′(Cw − C∞)

+
DT

T∞

a

υ
θ′′(Tw − T∞)−Ko(Cw − C∞)φ, (4.5.8)
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divide the equation (4.5.8) by axDB(Cw−C∞)
υ

both sides, we have,

φ′′ +
υ

DB

fφ′ +
DTT∞
DB

Tw − T∞
Cw − C∞

θ′′ − γxuw
υ

υ

DB

φ−mf ′φ
A2(

x
l
)m−1

a (Cw − C∞)

υ

DB

= 0, (4.5.9)

φ′′ +
υ

DB

fφ′ +
DTT∞
DB

Tw − T∞
Cw − C∞

θ′′ − γxuw
υ

υ

DB

φ−mf ′φ υ

DB

A2(
x
l
)mx

l
−1

Cw − C∞
= 0, (4.5.10)

φ′′ +
υ

DB

fφ′ +
DTT∞
DB

Tw − T∞
Cw − C∞

θ′′ − γxuw
υ

υ

DB

φ−mf ′φ υ

DB

Cw − C∞
Cw − C∞

= 0, (4.5.11)

where Tw is temperature of the wall, T∞ is temperature, l =
√

v
a

is a characteristics length,

A depends on the thermal properties of the liquid, Ko = γU2
w

v
is the reaction parameter, DT

is thermophoresis diffusion coefficient, Rex = xu
v

is the local Reynolds number, Le = v
DB

is Lewis number, Nt is thermophoresis parameter, m is constant, Nbt = DTT∞
DB

Tw−T∞
Cw−C∞ = Nt

Nb

where Nb is Brownian motion parameter, DB is Brownian diffusion coefficient. Substituting
the explained parameters above into equation (4.5.11), we have

φ′′ + Lefφ′ +Nbtθ
′′ − γRexLeφ−mLef ′φ = 0, (4.5.12)

therefore the concentration is given,

φ′′ + Lefφ′ +
Nt

Nb
θ′′ − γRexLeφ−mLef ′φ = 0, (4.5.13)

or,

φ′′ + Lefφ′ +
Nt

Nb
θ′′ − Leφ(γRex +mf ′) = 0. (4.5.14)

4.6 Similarity transformation of boundary condition

Our boundary conditions are transformed using the simulation u = ∂ψ
∂y

, v = ∂ψ
∂x

and ψ =√
aνxf(η), we get u = axf ′(η) and v = −

√
νf(η) from (4.1.1), u = uw(x) = ax is a stretch-

ing velocity with (a > 0) being the stretching constant, (Rex) is local Reynolds number and
y = 0 together with T → T∞ and C → C∞ now we can derive boundary condition as follows;

when y = 0,

u = axf ′, ax = axf ′ ⇒ f ′(0) =
ax

ax
= 1, (4.6.1)
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then,

v = −
√
aνf, 0 = −

√
aνf ⇒ f(0) = 0, (4.6.2)

T = Tw = T∞ + A1

(x
l

)m
, then we have θ(0) =

T − T∞
Tw − T∞

=
T∞ + A1(

x
l
)m

T∞ + A1(
x
l
)m

= 1, (4.6.3)

C = Cw = C∞ + A1

(x
l

)m
, then we have φ(0) =

C − C∞
Cw − C∞

=
C∞ + A1(

x
l
)m

C∞ + A1(
x
l
)m

= 1, (4.6.4)

and we solve at y →∞,

u = axf ′, (4.6.5)

bx = axf ′ ⇒ f ′(∞) =
bx

ax
=
b

a
= λ, (4.6.6)

T → T∞, θ(∞) =
T − T∞
Tw − T∞

⇒ θ(∞) =
T∞ − T∞
Tw − T∞

= 0, (4.6.7)

therefore,

C → C∞, θ(∞) =
C − C∞
Cw − C∞

⇒ θ(∞) =
C∞ − C∞
Cw − C∞

= 0, (4.6.8)

the boundary conditions can be transformed as;

f(η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 at η = 0. (4.6.9)

f ′(η) −→ λ, θ(η) −→ 0, φ(η) −→ 0 as η −→∞. (4.6.10)

4.7 Resulting equations after the similarity transfor-

mation

Through the use of suitable similarity transformation, the governing equations (3.6.1 - 3.6.4)
and boundary conditions (3.6.5) and reduced to strongly nonlinear couple ODEs are then
substituted in the (3.6.1 - 3.6.4) governing equations, and Ferdows et al. [16] use the follow-
ing dimensionless variables.

η = y

√
a

ν
, ψ = x

√
aνf(η), θ(η) =

T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

, (4.7.1)
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ψ(x, y) is the stream function, η is the similarity variable, a is the intensity of the stagnation
point in the above comparison. The stream function is satisfied by the continuity equation
(3.6.1), which is written as;

u =
∂ψ

∂y
and ν = −∂ψ

∂x
. (4.7.2)

Using the equation (4.7.1) dimensionless variable, we get the following transformation of
highly nonlinear coupled ODEs:

f ′′′ + ff ′′ − (f ′)2 +M (λ− f ′) + λ2 +Grθ +Gcφ = 0. (4.7.3)

(1 +R)θ′′ + EcPr(f ′′)2 + Pr fθ′ −mPr f ′θ

+PrNbφ′θ′ + PrNt(θ′)2 + Pr Sθ = 0. (4.7.4)

φ′′ + Le fφ′ +
Nt

Nb
θ′′ − γRexLeφ−mLf ′φ = 0. (4.7.5)

Where M = σB2
o

ρa
is magnetic parameter, R = 16σT 3

∞
3k k∗

is a radiation parameter, Ec = u2w
cp(Tw−T∞)

is Eckert number parameter, Gr = g βt(Tw−T∞)
U

is the Grashoff number, Gc = Gβt(Cw−C∞)
U

modified Grashoff number, Le = v
DB

is Lewis number parameter, Pr = v
α

is the Prandtl num-

ber parameter, γ = v Ko
U2 is chemical reaction parameter, Re =

xuw(x)

v
is the local Reynolds

number, Nb = (ρc)pDB(ϕw−ϕ∞)

v(ρc)f
is Brownian motion parameter, S = Q

ρ cρ a
is the heat genera-

tion/sink parameter, Nt = (ρc)pDB(Tw−T∞)

v T∞(ρc)f
is thermophoresis parameter, constant parameter

m and stretching parameter λ = b/a.

4.8 The quantities of physical interest

The physical quantities are reduced to Nusselt number (Nu), Sherwood number (Sh) and
local skin friction coefficient are as follows:

CfRe
−1
2 =

(xuw
v

)−1
2 τw

(ρU
2

2
)

= −f ′′(0), (4.8.1)

where Rex = xuw
v

is the local Reynolds number and reduced local skin friction f ′′(0). Then

NuRe
−1
2 =

(
xq′′w

DB(φw − φ∞

)(xuw
v

)−1
2

= −(1 +R)θ′(0), (4.8.2)
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and,

ShRe
−1
2 =

(
xq′′m

DB(φw − φ∞

)(xuw
v

)−1
2
φ′(0) = −φ′(0), (4.8.3)

The velocity of the plate is denoted by U, reduced Nusselt number θ′(0) and reduced local
Sherwood number φ′(0), q′′w and q′′m are the heat and mass flux, τw is the wall shear stress,ρ
is the density of the fluid, uw and um the stretching velocity m/s−1.

26



Chapter 5

Numerical Solution Methods

This study considers the SLLM and SRM methods, which are based on the spectral pro-
cess. Motsa [35] invented and popularized the SLLM and SRM techniques. Both SLLM and
SRM are highly accurate algorithms with a wide convergence area. We solve the nonlinear
ODEs using SLLM and SRM methods. We compare the results obtained from two numerical
methods with those obtained from the bvp4c solver of the implicit Runge Kutta fourth order
method.

5.1 Basic idea of the SLLM

We consider a system of differential equations let m be the number of differential equations,
we have z = [z1(η), z2(η), ...., zm(η)] satisfies the system,

Li[z1(η), z2(η), ...., zm] +Ni[z1(η), z2(η), ...., zm] = Hi(η), η ε [a, b], (5.1.1)

where i = 1, 2..,m and each Hi is a function of η, also linear Li and nonlinear Ni components
of differential equations, respectively. Basically the SLLM is an iterative method for solving
differential equations such as equation (4.7.1) which start with an initial approximations zi
successive application of the SLLM.

zr = [z1,r(η), z2,r(η), ...., zm,r(η)] for each r = 0, 1, 2..., (5.1.2)

after the linearization of component of Ni, the differential equation (5.1.1) can be solved
numerically using a Chebyshev spectral collocation method (5.1.2) which denote the i-th
differential equation (5.1.3) after the first (r + 1) iterations of the SLLM.

Li |r+1 +Ni |r+1 = Hi. (5.1.3)

The nonlinear component Ni can be linearized using the Taylor series,let wr be an n-tuple
of Zi,r and its derivative. If we assume that Ni is a function of wr only, then linearization of
Ni at Wr

Ni |r+1 = Ni |r +∇Ni |r (Wr+1 −Wr), (5.1.4)
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where Wr is an n-tuple of zi,r and its derivatives (4.2.3) can be approximated as,

Li |r+1 +∇Ni |r+1 ∗Wr+1 = Hi +∇Ni |r ∗Wr −Ni |r, (5.1.5)

equation (4.2.5) is then solved with Chebyshev spectral collocation method by Trefethen
[50].

5.2 Application of SLLM

We solve the model equations (4.7.2 - 4.7.4) as follows:

f ′r+1 = gr, (5.2.1)

g′′r+1 + frg
′
r+1 +M gr+1 + 2grgr+1 = −Mλ− λ2 + (gr)

2 −Grθ −Gcφr (5.2.2)

(1 +R)θ′′r+1 + Pr frθ
′
r+1 −mPr grθr+1 + PrNbφ′rθ

′
r+1 + 2PrNtθ′rθr+1 + Pr Sθr+1

= PrNt(θ′r)
2 − EcPr (f ′′r )2. (5.2.3)

φ′′r+1 + Le frφ
′
r+1 − γRexLeφr+1 −mLegrφr+1 = −Nb

Nt
θ′′r . (5.2.4)

The boundary conditions are

fr+1(η) = 0, gr+1(η) = 1, θr+1(η) = 1, φr+1(η) = 1 at y = 0. (5.2.5)

gr+1(η) −→ λ, θr+1(η) −→ 0, φ(η)r+1 −→ 0 as y −→∞. (5.2.6)

Applying Chebyshev differentiation to equations (5..2.1 - 5.2.3), we get :

A1 = D2 + diag{fr}D − 2 diag{gr} −M I (5.2.7)

B1 = −Mλ− λ2 − (gr)
2 −Grθ −Gcφr (5.2.8)

A2 = (1 +R)D2 + Pr diag{fr +Nbφ′r}D + 2PrNt diag{θ′r}D

−mPr diag{gr}+ Pr S I (5.2.9)
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B2 = −EcPrg′2r + PrNt(θ′r)
2 (5.2.10)

A3 = D2 + Le diag{fr}D − Lem diag{gr} − LeγRe I (5.2.11)

B3 =
Nt

Nb
Θ′′r (5.2.12)

where diag represents a diagonal matrix. The equations (4.7.6 - 4.7.7) satisfies the boundary
conditions for an identity matrix (I) of size (N̄ + 1)× (N̄ + 1) where (N̄ + 1) is the number
of collocation points. For equations (4.7.2 - 4.7.4), the initial guess for the SLLM scheme are
functions that satisfy the boundary conditions. The temperature, velocity and concentration
profiles for the boundary layer problem are discussed in this study based on a physical
understanding of how they decay exponentially as η →∞. The initial guesses are chosen in
the following order to fulfill the boundary conditions (5.2.10 - 5.2.11):

f0(η) = 1− e−η, θ0(η) = e−η, φ0(η) = e−η. (5.2.13)

The iterative procedure is stopped after the corresponding solutions fr+1, θr+1, φr+1 for each
r > 1 satisfy the convergence tolerance of ε = 10−8. That is iterative procedure is stopped
when Ed = max(||fr+1 − fr||∞, ||θr+1 − θr||∞, ||φr+1 − φr||∞, ) < ε where Ed is difference
error.

5.3 Basic idea of the SRM

We give a brief description of the SRM which can be applied to equations (4.7.2 - 4.7.4). Like
SLLM, the SRM also imports the Gauss Seidel idea for decoupling the system into sequence
of subsystem. The iteration method of the solution is developed through the application of
simple iteration method (SIM) so that we can apply SRM as follows: Consider n-th order
nonlinear differential equation expressed in terms of the nonlinear operation F as

F [y(x), y′(x), ..., y(n)(x)] = 0. (5.3.1)

To develop the iteration scheme of equation (5.3.1) is expressed as a sum of its linear and
nonlinear components as

F [y, y′, ..., y(n)] = L[y, y′, ..., y(n)] + N[y, y′, ..., y(n)] = 0, (5.3.2)

through minimizing of the equation (5.3.2), can be written as

F [y(i)]ni=0 = L[y, y′, ..., y(n)] + N[y, y′, ..., y(n)] = 0, (5.3.3)

where

[y(i)]ni=0 = [y(0)(x), y(1)(x), y(2)(x), ..., y(n)(x)], (5.3.4)
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for nonlinear component N is provided and be written as the sum of nonlinear terms,

N[y(k)]nk=0 = y(n)Nn[y(k)]nk=0 + y(n−1)Nn−1[y
(k)]n−1k=0 + ...+ y(2)N2[y

(k)]2k=0

+y(1)N1[y
(k)]1k=0 + y(0)N0[y

(k)]0k=0. (5.3.5)

The simple iteration method is developed for differential equation as follows:

n∑
k=0

αk(x)y
(k)
r+1 +

n∑
k=0

y
(k)
r+1Nk[y

(i)
r ]ki=0 = 0, (5.3.6)

where

n∑
k=0

αk(x)ykr+1 = L[y
(k)
r+1]

n
i=0. (5.3.7)

The subscript r + 1 stands for the current iteration level. The equation (5.3.6) and initial
guess y0(x) can be used to obtain successive approximations, yr+1(x), for differential equation
(5.3.7) for r= 0, 1, 2..., the simple iteration scheme is linear can be solved, subject to
appropriate boundary conditions. In terms of the spectral collocation method continuous
derivatives are evaluate at the M + 1 collocation point xs for s = 0, 1, ...,M to obtain the
transformation

y(i)(xs)D
(i)Y. (5.3.8)

Where D is the so called differention matrix and

Y = [y(x0), y(x1), ..., y(xm−1), y(xm)]T . (5.3.9)

applying equation (5.3.7) in the iteration scheme (5.3.6) gives

AY = B, (5.3.10)

then

A =
n∑
i=0

[αDi + β], βk = Nk[y
(i)
r ]ki=0, (5.3.11)

where B is a vector with elements taken from the problem’s boundary condition, α and β are
diagonal matrices obtained from evaluating α and β at the collocation point. The coupled
equations (4.7.2 - 4.7.4) can be configured to a form convenient direct application of the
SIM scheme and also tested SRM on the well-known boundary layer problem. The vector is
defined by zi and derivatives of the variable zi with respect to η, so

zi(η) = [z
(0)
i , z

(1)
i , ..., z

(ni)
i ]. (5.3.12)
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• The equation of the written in term of zi and sum of its linear (Li), and non-linear (Ni)
components where;

Li[z1, z2, z3..., zm] +Ni[z1, z2, z3, ..., zm] = Hi, i = 1, 2, 3, ..,m (5.3.13)

• The Hi is a known function of η by applying the SRM and implementing the boundary
conditions.

5.4 Application of SRM

The SRM follows the same methodology as the SLLM. We write the iteration scheme as
follows, using the equations (4.7.2 - 4.7.4).

f ′r+1 = gr. (5.4.1)

g′′r+1 + frg
′
r+1 − g2r +Mλ− gr+1 + λ2 +Grθ +Gcφr = 0. (5.4.2)

(1 +R)θ′′r+1 + Ec g′2r+1 + Pr frθ
′
r+1 −mPr gr+1θr+1 + PrNbφ′rθ

′
r+1

+PrNt(θ′r)
2 ± Pr Sθr+1 = 0. (5.4.3)

φ′′r+1 + Le frφ
′
r+1 +

Nt

Nb
θ′′r − γRexLeφr+1 −mLegr+1φr+1 = 0. (5.4.4)

The boundary conditions become:

fr+1(η) = 0, gr+1(η) = 1, θr+1(η) = 1, φr+1(η) = 1 at y = 0. (5.4.5)

gr+1(η) −→ λ, θr+1(η) −→ 0, φ(η)r+1 −→ 0 as y −→∞. (5.4.6)

as in SLLM, applying the Chebyshev differentiation and using similar approach for the SRM
gives the following:

A1 = D2 + diag{fr}D −M I, (5.4.7)

B1 = −Mλ− λ2 + g2r −Grθ −Gcφ, (5.4.8)

A2 = (1 +R)D2 + Pr diag{fr +Nbφ′r}D −mPr diag{gr}+ Pr S I, (5.4.9)
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B2 = −EcPr g′2r − PrNt(θ′r)2, (5.4.10)

A3 = D2 + Le diag{fr}D −mLe diag{gr} − γRexLe I, (5.4.11)

B3 = −Nt
Nb

θ′′r , (5.4.12)

The initial guesses for satisfying the boundary conditions (5.2.10 - 5.2.11):

f0(η) = 1− e−η, θ0(η) = e−η, φ0(η) = e−η. (5.4.13)

The iterative procedure is stopped after the corresponding solutions fr+1, θr+1, φr+1 for each
r > 1 satisfy the convergence tolerance of ε = 10−8. That is iterative procedure is stopped
when Ed = max(||fr+1 − fr||∞, ||θr+1 − θr||∞, ||φr+1 − φr||∞, ) < ε where Ed is difference
error.

5.5 Test for convergence

This summary on how to test for convergence is derived from Mdziniso [31]. We evaluate
the error due to decoupling (Ed) of the unknown functions at each (r + 1)th iteration.

Ed = max(‖ni,r+1 − n1,r‖∞, ‖n2,r+1 − n2,r‖∞, ....‖nm,r+1 − nm,r‖∞). (5.5.1)

Where ni, i = 1, 2, 3, ...,m are the controlling unknown functions. We consider the error
caused by decoupling at each rth iterative step, given by er, where r = 1, 2, 3...,M , where
M is the total number of iterations. Because two iterations, (Ed) is essentially the infinity
norm of the solutions to each unknown. The convergence occurs if,

e1 < e2 < e3 < .... < eM . (5.5.2)

Basically the iterative scheme is convergent if and only if (Ed) is inversely proportional to
the number of iterations. The convergence tolerance is considered to be ε = 10−8 in this
study, and the iterative procedure is terminated when the following condition is met,

‖Xr+1 −Xr‖∞
‖Xr+1‖∞

≤ ε, (5.5.3)

where ε is the convergence tolerance level and Xr represent it is unknown function at iteration
r. The effect of the number of collocation point N was observed in order to select the smallest
value ofN which gives a steady solution to the ε error level. To upgrade the convergence rate
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we apply the spectral relaxation method SRM. The SRM scheme for solving the function
say X at the (r + 1)th iteration give as follows:

AXr+1 = B, (5.5.4)

then upgrade version of the SRM is

AXr+1 = (1− w)AXr + wB, (5.5.5)

where A and B are matrices and w is the convergence controlling relaxation parameter.
Then when w = 1 is substituted in equation (5.5.4) reduces the original SRM method.
Figure 5.1 show the demonstrate of the convergence and stability of the SLLM. The SRM log-
eror plot for the problem steady MHD boundary layer flow and heat transfer characteristics
are given in is clear that the logarithm of the number of iteration when heat source parameter
is varied. The governing values of the unsteady or steady parameters used are: Pr = 10,
Nt = 0.1, Gr = 7, Gc = 0.5, λ = 0, Nb=0.1, Re=1, Ec=0.1, m=1, R=1 and γ = 0.1. During
the computation by each iterative technique, the tolerance was specified to be (Ed) less than
10−8. We can observe that the SLLM technique ensures a maximum number of iterations, so
that as the number of iterations increases, Ed decreases as they converge to the inaccurate
answer.
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Figure 5.1: Logarithm of SRM decoupling error
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Chapter 6

Results and Discussion

The numerical study of steady MHD boundary layer flow over a stretching sheet in the pres-
ence of heat generation/absorption and nanofluid chemical reaction has been investigated.
The spectral relaxation method (SRM) is used to solve the transformed nonlinear ordinary
differential equations (4.7.2 - 4.7.4), with the boundary conditions (4.7.5 - 4.7.6), and the
results are compared to the spectral local linearization method (SLLM).

The values of the unsteady or steady parameters are as follows: Pr = 10, Nt = 0.1, Gr = 7,
Gc = 0.5, λ = 0, Nb=0.1, Re=1, Ec=0.1, m=1, R=1, γ = 0.1 and S=0.1 Ferdows et al. [16].
The effects of physical parameters on dimensionless velocity, temperature, and concentration
are investigated, as well as the local skin friction coefficient, local Nusselt number, and local
Sherwood number. In all cases, the number collocation points of both SRM and SLLM were
Nx = 100 and a finite computational value of η∞ = 30 was chosen in the η direction. The
tolerance level for each method was set to ε = 10−8. To verify the accuracy and validate the
SRM and SLLM, the results are presented and compared with the bvp4c solver of implicitly
Runge-Kutta fourth order process in terms of the number of iteration step (iter) and the
computing times. The Matlab programming language was used on the windows 10 platform
AMD E2-7119 APU with AMD Radeon R2 Graphic 1.80 GHZ. 4.00 GB speed ADM.

Table 6.1: Comparison of the SRM, SLLM and those obtained by bvp4c of current results
for f ′′(0) when varying stretching parameter (λ)

SRM SLLM bvp4c
λ iter time(sec) f ′′(0) iter time(sec) f ′′(0) iter time(sec) f ′′(0)

0.1 26 36.519939 1.72998286 09 8.235677 1.72998286 30 189.8765 1.72998286
0.3 29 20.968766 0.77085842 08 10.875781 0.77085842 34 289.603919 0.77085842
0.4 54 31.136881 0.87180975 09 7.942629 0.87180975 37 366.604432 0.87180975

Table 6.1 shows a comparison of SLLM and SRM results to the bvp4c result. Table 6.1
shows the effects of increasing the stretching parameter λ on the reduced local skin coef-
ficient f ′′(0). The output of two methods and also the bvp4c method were compared by
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testing computational time required to generate the results. We can see that the SLLM
takes less time to compute than SRM and bvp4c, and that bvp4c is the slowest to converge.
The results of the SRM, SLLM, and bvp4c methods all have the same −f ′′(0) values. Table
6.1 shows that SLLM is the better method because it is faster than SRM and bvp4c. As a re-
sult, the rest of the results will be produced by SLLM and shown in tabular and graphic form.

Table 6.2: Comparison of SLLM and SRM with different value of S and γ
θ′(0) φ′(0) θ′(0) φ′(0)

γ iter time(tsec) SRM SRM iter time(sec) SLLM SLLM
0.08 27 23.149603 1.72748747 3.59419487 07 6.763667 1.72748747 3.59419487
0.1 26 36.519939 1.72998286 3.54856202 09 8.235677 1.72998286 3.54856202
0.3 12 26.604175 1.73167707 3.84273570 09 19.021493 1.71429634 3.84273570
S

0.04 25 26.808476 1.77900595 3.51389970 07 19.236405 1.77900595 3.51389970
0.06 12 6.440782 1.76276680 3.52540393 09 6.894574 1.76276680 3.52540393
0.1 26 36.519939 1.72998286 3.54856202 09 8.235677 1.72998286 3.54856202

Table 6.2 compares the two approaches used for different chemical reaction (γ) and heat
source/sink parameter (S) on reduced Nusselt number θ′(0) and reduced local Sherwood
number φ′(0). When comparing the numerical results obtained, it is clear that the SLLM is
the superior approach to the SRM in terms of the nuber of iterations and computing times.
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Figure 6.1: The effects of Grashof number (Gr) of the velocity profile

The effect of the thermal Grashof number (Gr) on the velocity profile is shown in Figure
6.1. We noticed that as the Grashof number (Gr) rises, so does the velocity profile. Since
the Grashof number (Gr) is the ratio of buoyancy to viscous forces in the boundary layer,
it induces an increase in buoyancy forces relative to viscous forces in the boundary layer,
which influences the velocity in the field.
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Figure 6.2: The effects of thermophoresis parameter (Nt) of the velocity profile

Figure 6.2 shows how the thermophoresis parameter (Nt) affects the velocity profile. We
observe that the velocity profile increase with an increase of the (Nt).We observe that the
velocity profile increases with an increase of (Nt). This is due to the fact that the ther-
mophoresis parameter (Nt) is the transport force that arises as a result of the existence of a
temperature gradient.

0 0.5 1 1.5 2 2.5 3 3.5

η

0

0.2

0.4

0.6

0.8

1

1.2

f
′ (η

)

R= 0.2

R= 0.5

R=   2

Figure 6.3: The effects of radiation parameter (R) of the velocity profile
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Figure 6.4: The influence of the radiation parameter (R) temperature profile
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Figure 6.5: The influence of the radiation parameter (R) on the concentration profile

Figures 6.3, 6.4 and 6.5 display the influence of the radiation parameter (R) on the velocity,
temperature and concentration profiles. As the value of the radiation parameter (R) rises,
so does the velocity and temperature profile. The relative contribution of conduction heat
transfer to thermal radiation transfer is defined as the radiation parameter (R). As the
radiation parameter (R) increases, the temperature inside the boundary layer rises, causing
the velocity to rise. As a result, the decrease in the concentration profile is influenced.
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Figure 6.6: The effects of the Lewis number (Le) of the velocity profile

Figure 6.6 shows the effect of Lewis number (Le) velocity profile. It can be seen that as
Lewis number (Le) increases when the velocity decreases. The heat transfer rate falls while
the mass transfer rate increases.
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Figure 6.7: The effects magnetic parameter (M) on the velocity profile

The effect of magnetic parameter (M) on the velocity profile is shown in Figure 6.7. Since
the Lorentz force is generated by applying a magnetic field to an electrically conducting
fluid, the velocity profile decreases as the magnetic parameter (M) increases, thickening the
boundary layer. The force is similar to a drag force, causing the velocity to decrease.
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Figure 6.8: The effects of the Brownian motion (Nb) on the velocity profile

Figure 6.8 depicts the effects of Brownian motion (Nb) on the velocity profile. As the Brow-
nian motion (Nb) increases, so does the velocity profile. In all liquids and gases, particles
travel at random, causing larger particles to be carried by light fast moving molecules.
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Figure 6.9: The effects of the Pandtl number (Pr) on the velocity profile
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Figure 6.10: The influence of the Pandtl number (Pr) on the temperature profile

Figures 6.9 and 6.10 show the effects of the Pandtl number (Pr) on velocity and temperature
profiles. It can also be seen that increasing the Prandtl number Pr the temperature of the
fluid because of the decrease of the thermal boundary layer thickness.
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Figure 6.11: The influence of the Brownian motion (Nb) on the concentration profile

The effect of the Brownian motion parameter (Nb) on the dimensionless concentration φ(η)
profile is shown in Figure 6.11. It is found that larger Brownian motion parameter (Nb),
results in a poor reduction in dimensionless species concentration profile. The argument for
this is that as Brownian motion increases, so does random motion and collision of the fluid’s
nanoparticles, lowering the fluid’s concentration.
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Figure 6.12: The effects of the heat source/sink parameter(S) on the velocity profile
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Figure 6.13: The influence of the heat source/sink parameter (S) on the temperature profile
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Figure 6.14: The influence of the heat source/sink parameter (S) on the concentration profile

The effect of the heat source/sink parameter (S) is shown in Figures 6.12, 6.13 and 6.14
where an increase in the heat source/sink parameter (S) results in an increase in velocity
and temperature, but a decrease in concentration. The concentration species were reduced
due to the heat source/sink parameter (S) because heat generation increases the momentum
and thermal boundary layer thickness while decreasing the nanofluid concentration boundary
layer thickness.
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Figure 6.15: The influence of the Brownian motion (Nb) on the temperature profile
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Figure 6.16: The influence of the thermophesis parameter (Nt) on the temperature profile

The effect of the Brownian motion parameter (Nb) and the thermophoresis parameter (Nt)
on the dimensionless temperature θ(η) profile is shown in Figures 6.15 and 6.16. As the
value of the Brownian motion parameter (Nb) increases in Figure 6.15 , the temperature
rises, Brownian motion is responsible for a nanofluid’s thermal conductivity. However, as
Brownian motion parameter Nb levels increase and we can see that the thermophoresis
parameter (Nt) increase as the temperature approaches the wall.
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Figure 6.17: The influence of the magnetic parameter (M) on the temperature profile
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Figure 6.18: The influence of the magnetic parameter (M) on the concentration profile

In Figures 6.17 and 6.18, we display the effect of magnetic field parameter (M) on the
dimensionless temperature θ(η) and dimensionless concentration φ(η) distribution profile
respectively. It is observed that steady increasing both temperature θ(η) and concentration
φ(η) when the magnetic field parameter (M) increases. This is because when a transverse
magnetic field is applied to an electrically conducting fluid, it causes the Lorentz force, which
is a resistive force. This force causes resistance in the fluid by increasing friction between its
layers, resulting in an increase in temperature and concentration.
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Figure 6.19: The influence of the Eckert number(Ec) temperature profile
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Figure 6.20: The influence of the Eckert number(Ec) on the concentration profile

We show the effect of Eckert number (Ec) on the dimensionless temperature θ(η) and di-
mensionless concentration φ(η) distributions in Figures 6.19 and 6.20, respectively. Eckert
number (Ec) increases as temperature drops and concentration profile rises. The Eckert
number (Ec) is the ratio of the flow’s kinetic energy to the enthalpy difference between the
boundary layers. This is because viscous dissipation generates heat as a result of drag be-
tween nanofluid particles, and this extra heat causes the initial fluid temperature to rise. The
existence of viscous dissipation causes the momentum and heat boundary layers to thicken
while the concentration boundary layer’s thickness decreases.
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Figure 6.21: The influence of the Grashof number (Gr) on the temperature profile
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Figure 6.22: the influence of the Grashof number (Gr) on the concentration profile

The effect of Grashof number (Gr) on temperature and concentration profile are represented
in Figures 6.21 and 6.22. We notice that the temperature and concentration profiles decrease
with the increase on Grashof number (Gr). As the Grashof number (Gr) rises, the ther-
mal boundary layer and the concentration boundary layer both shrink, lowering the fluid
temperature everywhere but not next the wall.
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Figure 6.23: The effects of the stretching parameter (λ) on the velocity profile

Figure 6.23 depicts the effect of stretching parameter(λ) in velocity profile. It is noticed that
the velocity profile increase as the stretching parameter (λ) increase. This is because the
sheet after being stretched is now smoother and the fluid flow is faster than stretching sheet.
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Figure 6.24: The influence of the stretching parameter (λ) on the temperature profile
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Figure 6.25: The influence of the stretching parameter (λ) on the concentration profile

In Figures 6.24 and 6.25, we show dimensionless temperature θ(η) and dimensionless con-
centration φ(η). Since the stretching parameter (λ) is a criteria relative effect of momentum,
energy and mass diffusion equation in temperature and concentration respectively. It is seen
that an increase in stretching parameter (λ) causes a decrease in both temperature and
concentration profile.
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Figure 6.26: The influence of the Lewis number (Le) on the temperature profile

Figure 6.26 represents the effect of Lewis number (Le) on the dimensionless θ(η) distribution
profile. It is observed that the temperature increase with the increase of Lewis number (Le).
The nanoparticle volume percentage and nanoparticle volume boundary layer thickness both
decrease dramatically when the Lewis number (Le) rises.
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Figure 6.27: The influence of the Lewis number (Le) on the concentration profile

This Figure 6.27 show dimensionless velocity f ′(η) and dimensionless concentration φ(η) at
a point of flow decreases toward the wall with an increase in the Lewis number Le.. In the
boundary layer regime, the Lewis number is the ratio of thermal diffusion rate to species
diffusion rate. The concentration profile will be suppressed if the Lewis number is increased.
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Chapter 7

Conclusion and Recommendation

7.1 Conclusion

The effect of heat generation/absorption and chemical reaction on magnetohydrodynamics
boundary layer flow of nanofluid over a stretching sheet was investigated in this study. Using
similarity transformations, the governing nonlinear partial differential equation was trans-
formed into nonlinear ordinary differential equations, which were then numerically solved us-
ing both the spectral local linearization method (SLLM) and the spectral relaxation method
(SRM). The reduced local skin-friction f ′(η), the reduced Nusselt number −θ′(η) and the
reduced Sherwood number −φ′(η) numerical results are presented in tabular form. For vari-
ous governing parameters, the dimensionless velocity, temperature and concentration profile
along the stretching sheet was investigated and the results were graphically displayed. To
check the accuracy of SLLM and SRM they were compared to the Matlab bvp4c solver of
the implicit Runge Kutta fourth order method. The following is the conclusion drawn from
this study:

• The results of the SLLM process were similar to those of the SRM and bvp4c methods.
The findings show that the three methods produce similar results. The results of the SRM,
SLLM, and bvp4c methods all have the same reduced local skin coefficient −f ′′(0) values.
We infer from the results that heat generation/absorption and chemical reactions have an
effect on velocity, temperature and concentration.

• We noticed that Grashof number (Gr) rises, so does the velocity profile. This shows that
the heat transfer on the local skin coefficient transfers on the wall. Since Grashof number
(Gr) is ratio of buoyancy to viscous forces in the boundary layer it causes an increase in the
buoyancy forces relative to the viscous forces which influence the velocity in the boundary
layer region.
• Thermophoresis parameter (Nt) increased because the transport force that occurs due to
the presence of a temperature gradient hence as result of force the velocity increases. We
observed that the increases of velocity profile increases the (Nt). This is due to the fact
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that the thermophoresis parameter (Nt) is the transport force that arises as a result of the
existence of a temperature gradient because as the force of the velocity increases so does the
force of the velocity.

• An increase in the heat source parameter (S) results in an increase in velocity and tem-
perature, but a decrease in concentration. The concentration diffusion species were reduced
due to the heat source parameter (S). Heat generation increases the momentum and ther-
mal boundary layer thickness while decreasing the nanofluid concentration boundary layer
thickness.
• The thermophoresis and Brownian motion parameters dominated the heat transfer perfor-
mance. Increasing Brownian motion and thermophoresis also increase temperature.
• It is observed that both temperature θ(η) and concentration φ(η) steadily increase when
the magnetic field parameter (M) increases. This is because when a transverse magnetic
field is applied to an electrically conducting fluid, it causes the Lorentz force which is a
resistive force. This force causes resistance in the fluid by increasing friction between its
layers resulting in an increases in temperature and concentration.
• It is noted that increasing temperature the compression Eckert number (Ec) increase be-
cause of the effect of dissipation due to internal friction of the fluid. The Eckert number (Ec)
is the ratio of the flow’s kinetic energy to the enthalpy difference between the boundary lay-
ers. This is because viscous dissipation generates heat as a result of drag between nanofluid
particles, and this extra heat causes the initial fluid temperature to rise.
• It is seen that an increase in stretching parameter (λ) causes a decrease in both temper-
ature and concentration profile. Because the momentum, energy, and mass diffusion are all
connected in the current approach, this outcome is expected.

7.2 Recommendations

The influence of two-dimensional magnetohydrodynamics of a nanofluid over a stretching
sheet in the presence of chemical reaction, heat generation, or absorption, buoyancy force
thermal expansion and buoyancy force concentration expansion is presented in this thesis.
Using a similarity transformation, the governing partial differential equations for momentum,
energy, and concentration are determined and transformed to non-linear similar equations.
The dimensionless nonlinear differential equations that result are numerically solved using
the well-known spectral local linearization method (SLLM) and spectral relaxation method
(SRM). Different parameters, such as Lewis number, Eckert number, modified Grashoff
number, Grashoff number, stretching constant, chemical reaction, local Reynolds number,
Prandtl number, heat source/sink, Brownian motion, and Thermophoresis, are investigated
and compared. The numerical values for velocity, temperature, skin friction coefficient, con-
centration, Sherwood number, and Nusselt number are tabulated and visually represented.
Our findings showed that chemical reactions, heat generation or absorption, buoyancy force
thermal expansion, and buoyancy force concentration expansion all had an impact on magne-
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tohydrodynamics of a nanofluid over a stretching sheet. We recommend the use of the SLLM
in solving problems of MHD flows because it is fast and effective. However, other types of
equations, such as time-dependent evolution equations, partial differential equations, and
difference equations, require the procedure to be extended. For future studies we can try to
compact finite difference schemes on SLLM to see if it can be effective and faster.
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