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Abstract
Energy demand forecasting is a vital tool for energy management, maintenance
planning, environmental security, and investment decision-making in liberalised
energy markets. The mini-dissertation investigates ways to anticipate power usage
using hierarchical time series and South African data. Approaches such as top-
down, bottom-up, and optimal combination are applied. Top-down forecasting is
based on disaggregating total series projections and spreading them down the hi-
erarchy based on historical data proportions. The bottom-up strategy aggregates
individual projections at lower levels, whereas the optimal combination method-
ology optimally combines bottom forecasts. An out-of-sample prediction perfor-
mance evaluation was performed to assess the models’ predicting ability. The best
model was chosen using mean absolute percentage error. The top-down technique
based on predicted proportions (Top-down forecasted proportions) was superior to
the optimal combination and bottom-up approach. To integrate forecasts and build
prediction ranges for the proposed models, linear quantile regression, linear regres-
sion, simple average, and median were used. The best set of forecasts was picked
based on the prediction interval normalised average width. At 95%, the best model
based on the prediction interval normalised average width was a simple average.

Keywords: Bottom-up approach, energy demand, hierarchical forecasting, optimal ap-
proach, top-down approaches
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Chapter 1

Introduction

1.1 Background

Electricity is regarded as a significant contributor to wealth development and a vital
component of economic growth [8]. As a result, electricity demand forecasting is a
critical energy system issue. Accurate forecasting can help rational decision-making
and management in the power generation and supply sectors while also address-
ing economic and environmental problems. It can be described as a hierarchical
time series forecasting issue with geographical hierarchy aggregation constraints
because the sum of the disaggregated time series prediction results should equal
the aggregated time series prediction results [26].

Hierarchical time-series are composed of many hierarchical time-series that may
be aggregated and disaggregated on several levels based on characteristics such as
location, size, and product type [34]. Hierarchical forecasting systems can also de-
liver predictions for items and respective groups [6]. Electricity demand forecasting
has long been demonstrated to be significant in the planning of electricity utilities.
The provision of electricity demand can be split into short-term forecasts covering
hours to weekly projections, medium-term projections for months to years, and
long-term forecasts, from one year to many decades.

Consumption over the entire geographical area can be broken down into multiple
sub-regions, which can be broken down further into lower-level regions. Electric-
ity usage in countries, for example, can be separated into provinces, municipalities,
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and districts. Forecasting electricity demand is difficult due to several factors, in-
cluding underlying population growth, technology advancements, economic con-
ditions, and current weather conditions [13].

Forecasts in hierarchical data systems to aid decision-making are critical in a va-
riety of applications, including retail and tourism [34]. Depending on the hierar-
chy’s many tasks, hierarchical time series may be constructed in a variety of ways
[1]. There have been various debates over the precision of hierarchical forecasting
models, but no agreement has been reached on their accuracy [6] [9].

Traditionally, top-down and bottom-up methodologies have been used in hierar-
chical forecasting. The top-down approach entails projecting a complete series and
splitting the predictions into historical or predicted proportions. Bottom-up fore-
casting anticipates each disaggregate sequence at the lowest hierarchical level, then
averages the findings to get higher-level forecasts [15].

Based on the UK home smart meter data, Taieb and Hyndman [31] created a unique
probabilistic forecasting approach for a large hierarchy. The method combines an
effective mix of forecasts to generate trustworthy and accurate probabilistic projec-
tions. The technique also captured the spectrum of distributions in the hierarchy
of smart meters. According to the study’s findings, we are modelling a smaller set
of dependencies rather than the distribution of all the series in the hierarchy as a
whole appears to be better to ensure a coherent hierarchy.

This mini-dissertation focuses on using hierarchical forecasting methods to antic-
ipate energy consumption in South Africa, including the top-down approaches, op-
timal combination strategy, and bottom-up approach. South Africa’s energy con-
sumption is among the highest in Africa since the country has one of the world’s
largest and fastest-growing populations. There has been little research on hierar-
chical electrical demand forecasting in South Africa, and this dissertation attempts
to contribute to this important topic.
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1.2 Problem Statement

There are no probabilistic methodologies in the literature on hierarchical forecast-
ing. Random unit interaction models, energy design, operating reserves configura-
tion, value forecasting, and electricity sector commercialism use probabilistic esti-
mates of total device load for power demand. Electrical corporations can use pre-
cise forecasting to advocate for expanding energy networks to expand and develop
economies. As a result, one of the most important concerns in power management
is the demand prognosis for electricity.

1.3 Research Aim and Objectives

1.3.1 Research Aim

This mini-dissertation aims to create a model for forecasting monthly power con-
sumption using hierarchical time series.

1.3.2 Objectives

This study’s main objectives are:

• utilize a combination of top-down, bottom-up, and optimal combination meth-
ods for medium-term forecasting of monthly electricity demand data,

• use mean absolute percentage error (MAPE), mean absolute error (MAE),
mean absolute scaled error (MASE), and root mean square error(RMSE) to
compare the performance of various approaches,

• assesses forecast accuracy.

1.4 Significance of the Study

This dissertation is important because forecasting energy demand is essential for
utility management, maintenance, and power purchasing and selling. Power de-
mand provision is crucial in the energy business because it provides the foundation
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for power system planning and operation. It is critical to generate more accurate
projections of electricity consumption.

1.5 Scope of the Study

Statistics South Africa provided monthly power demand statistics. To evaluate the
model’s performance, the accuracy metrics root mean square error (RMSE) and
mean absolute error (MAE) were utilised, and the best model was chosen based
on the mean absolute percentage error (MAPE). It was compared to find the best
model combination of shorter prediction range, top-down, bottom-up prediction
intervals, quantile regression mean and linear regression.

1.6 Structure of the study

The remainder of the paper is laid out as follows: The strategies are described in
Chapter 3 after a brief survey of the literature on hierarchical forecasting in Chap-
ter 2. The results are described in Chapter 4 and the conclusions are presented in
Chapter 5.
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Chapter 2

Literature review

2.1 Introduction

This chapter includes an overview of hierarchical time series forecasting and synop-
sis of research that employed the suggested technique to forecast energy demand.

2.2 An overview of Hierarchical Forecasting

Hierarchical time series forecasting has been the subject of several types of research.
Makoni et al. [22] studied the bottom-up, optimum combination, and top-down hi-
erarchical forecasting strategies of foreign visitor arrivals in Zimbabwe. According
to the findings of this study, the bottom-up approach provided the most accurate
method of calculating foreign visitor arrivals in Zimbabwe. Aggregate series are
expected to rise in general, according to predictions.

Athanasopoulos et al.[3] investigated hierarchical projections for domestic tourism
in Australia. They looked at five different hierarchical forecasting techniques. The
recently proposed top-down approach decomposes top-level predictions based on
the predicted proportions of lower-level series, one of two versions of the bottom-
up and top-down approaches. According to predicted performance ratings, top-
down and optimal combinations based on expected ratios are preferable to bottom-
up procedures and are best suited for the tourist class. This approach was then
utilised to develop a quantitative projection for Australia’s domestic tourism sector.
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Hierarchical forecasting approaches have been frequently employed to aid har-
monized decision-making by delivering coherent projections at various aggregate
levels. Gontijo and Costa [30], investigated Brazil’s hourly electricity generation,
broken down into subsystems and their energy sources. The hierarchy techniques
studied were top-down (TD), optimal reconciliation, and Bottom-up (BU). Accord-
ing to the study findings, the optimum mean performance in the optimal reconcili-
ation models is obtained when the prime predictive windows are used. The south
subsystem’s energy forecasting was likewise shown to be more inaccurate than the
others, emphasizing the necessity for individual modeling for this subsystem.

Wickramasuriya et al. [34], investigated the prediction of hierarchical and group
time series using trace reduction. They used a composite prediction technique
to generate a set of aggregated and consistent predictions by incorporating infor-
mation from the entire prediction error covariance matrix. Given fairness, the ap-
plied method minimizes the mean square error of consistent predictions aggregated
across a set of time series. The proposed strategy is compared against rival tech-
niques using several simulated settings.

Pang et al. [26] propose a new clustering method based on time-series hierarchi-
cal electrical prediction. They investigate energy consumption patterns using clus-
tering analyses rather than directly dealing with geographical hierarchy, and they
develop a new time series hierarchy on consumption patterns. They discovered
that their membership in the relevant consumption patterns is connected with the
reconciliation error in the low-level time series. They also performed large-scale
experiments on real-time datasets to show that their strategy has the highest pre-
dictive accuracy compared to modern methods.

Hyndman et al. [12], proposed a novel hierarchical forecast technique that produces
better forecasts than either. Their approach was based on independent forecasting
of the complete range across all hierarchies, followed by an optimum combination
and a regression model reconciliation of the forecasts. The study’s findings demon-
strated that their method outperformed the top-down and bottom-up approaches.
The proposed method was then shown by forecasting Australia’s visitor demand,
with data broken down by traveling and geographical area.



7

All forecasts must be reconciled when developing a time series with hierarchical
architecture. Roach [28], created a new hierarchical quantile forecast technique that
outperforms a conventional benchmark model. Demand projections were devel-
oped using a simulation-based method. To secure the correct reconciliation of all
the zonal forecasts and to execute a weighted approach to assure a legitimate total
of the bottom-level zonal projections for each of these demand scenarios, the ag-
gregate zonal projections were changed. Discussions were also held on hierarchical
time series forecasting and gradients boosting.

Taieb et al. [32], has proposed a unique hierarchical forecasting method for cal-
culating sparse fits while respecting the constraints of aggregation. This issue is
characterised as a high-dimensional penalised regression that can be solved fast
using the circular coordinate descent approach. In their testing, they also used
large-scale hierarchical electricity demand data. The study’s findings reveal that
their solution outperforms contemporary hierarchical prediction systems in terms
of corrected parity and prediction accuracy.

Almeida et al. [2], investigated a hierarchical time series forecasting in electrical
grids. This study explored three separate steps: two standard steps, a top-down
approach, another step based on a hierarchical data structure, the optimal combina-
tion of regressions, and a bottom-up approach. The investigation takes into account
short-term forecasts (24-h ahead). Furthermore, the importance of series correlation
degrees in increasing forecasting accuracy was emphasized. The study’s findings
demonstrated that the hierarchical strategy outperforms the bottom-up technique
at middle or high levels.

Traditional forecasting methods are often used to predict all hierarchy levels and
adjust the estimates to meet this constraint. Roque et al. [29] provided a unique way
to predict a large number of hierarchically dependent time series autonomously. An
additive Gaussian (GP) process was combined with a hierarchical piecewise linear
function to estimate stable, unexplained components of a time series. Each aggre-
gate group in the data hierarchy generates further GPs, which they described as a
programmable structure. Two distinct real-world datasets were used to verify the
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proposed technique, proving its capacity to compete with state-of-the-art method-
ologies.

Li et al. [20] investigates and compares two commonly used methods for calculating
energy output in photovoltaic (PV) systems in Florida: artificial neural networks
(ANN) and support vector regression (SVR). Based on reviewed machine learning
technology, hierarchical methods were constructed 15 minutes, 1 hour, and 24 hours
ago. The production statistics used in this study are based on 15-minute averaged
power measurements taken in 2014. To test the model’s validity, error statistics
such as mean bias error (MBE), mean absolute error (MAE), root mean square error
(RMSE), relative MBE (rMBE), mean percentage error (MPE), and relative RMSE
were utilised. This research looked into how individual inverter projections may
help the whole solar system.

Mijung and Marce [27] developed a probabilistic model with dynamically changing
latent variables to describe percentage changes in time series at each layer. Under
the new model, they developed the variational Bayesian expectation-maximization
(VBEM) approach. They use a sequential implementation of posterior inference in
their method, which reduces the processing cost of huge hierarchical time series
data. In addition, unlike the traditional EM technique, which produces point esti-
mates of model parameters, their algorithm yields the distribution across the model
parameters, revealing which subset of features is responsible for time series propor-
tion changes. The study’s simulation findings showed that their strategy beats other
methods in terms of prediction.

Quantile combination approach (QCA) in mixed frequency environments was ex-
amined by Lima et al. [21]. MIDAS and soft (hard) thresholding approaches were
utilized to address the issue of proliferation parameters by estimating quantile re-
trenchment using mixed frequency data. The proposed method was used to fore-
cast the industrial production index’s growth rate. According to the findings, high-
frequency information in the QCA enhances predicted accuracy substantially.
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Kanda and Veguillas [16] studied data preparation and quantile regression for prob-
abilistic load prediction in the final round of GEFCom 2017. In the GEFCom 2017 fi-
nal match of hierarchical stochastic load prediction, the quantile regression method
created by the R package "quantreg" [18] was applied. In this study, meteorologi-
cal stations were divided into 11 groups, from which the appropriate stations were
selected for each load meter using a boosting process. Strain gauge records were
cleaned up and updated in various ways to provide robust quantile estimates. Even
though the industrial load meter’s equation was used, the variance of the regression
equation was minimized by incorporating strategies to reduce forecast instability.

2.3 Conclusions from Literature

This chapter summarizes some of the research that employed the proposed tech-
nique to anticipate power consumption. Few studies have been conducted on pre-
dicting electricity demand using bottom-up, top-down, or optimal combination ap-
proaches. Regarding power usage, quantile regression approaches were also gener-
ally overlooked. Some work has been done using two hierarchies [24]. The current
study is different because it is based on three hierarchies and considers only cross-
sectional hierarchies.
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Chapter 3

Research Data and Methodology

3.1 Introduction

This chapter discusses the tools and strategies utilised in this study to anticipate en-
ergy consumption in South Africa. The optimal combination strategy, the Bottom-
up approach, the Top-down approach based on historical proportions, the Top-
down approach based on proportions expected, and the Bottom-up approach are
all covered. This chapter will also cover the methods utilised in model selection
and prediction accuracy assessment.

3.2 Data

The mini-dissertation will use monthly electricity demand (GWh) data obtained
from Statistics South Africa between January 2002 and October 2020. The data
can be studied using two hierarchical methods, namely, cross-sectional and tem-
poral hierarchical time series, but in this mini-dissertation, we will only use cross-
sectional hierarchical time series. The data will be disaggregated according to South
Africa’s nine provinces and fifty-two districts to create a hierarchy of levels 0, 1, and
2. The main reason for selecting this data is that it is traceable and contains some of
the local and global events that affected the production and distribution of electric-
ity. Figure 3.1 shows the maps of South Africa indicating all nine provinces (3.1a)
and fifty-two districts (3.1b), respectively.
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(A) Map of South Africa provinces.

(B) Map of South Africa districts.

FIGURE 3.1: Maps of all districts and provinces of South Africa.
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3.3 Hierarchical Time Series Structure

3.3.1 Cross-sectional Hierarchical Time Series

Municipalities and districts can display electricity demand as a hierarchical time se-
ries. We propose a three-level hierarchical model of South African power demand
based on Hyndman et al. [1] (See Figure 3.2). Level 0 denotes the complete mass
series, level 1 the first level of disaggregation, and so on until level K, which con-
tains the most disaggregated series. As a result, Figure 3.2 represents a K = 2 level
hierarchy.

FIGURE 3.2: Cross sectional hierarchical tree diagram for South
African electricity demand.

Let ŶX,t be the tth observation (t=1,...,n) of series ŶX,t that corresponds to the node
X on the hierarchical tree, using the notation of [12]. Where each province and
district will be presented, respectively, P1 =Western Cape, P9=Limpopo, d11=West
Coast District Municipality of Western Cape, d1k=City of Cape Town Metropolitan
Municipality of Western Cape, d91= Mopani District Municipality of Limpopo, and
d9i= Sekhukhune District Municipality of Limpopo. The individual nodes are de-
noted by a sequence of letters and numbers, as shown in Figure 3.2. For example,
YP1,t signifies the tth series observation corresponding to the node P1 at level 1, Yd11,t

denotes the tth series observation corresponding to the node d11 at level 2, and so
on.
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3.4 Approaches to Hierarchical Forecasting

To expand the hierarchy rating, we enable the vector Ŷi,t to encompass all levels
of electricity demand observations i at time t. At time t, each observation from all
series is kept in a column vector described as Ŷt = [Ŷt, Ŷ1,t, ..., ŶK,t]

′
. We can now

write

Ŷt = SỸK,t, (3.1)

where Ŷt is an n-dimensional vector h-step-ahead forecast for the total electricity
demand, ỸK,t is an n-dimensional of h-step-ahead forecasts for each of the electric-
ity demand at the bottom-level, and S is a summing matrix of order n × nk that
aggregates the lowest level series across the hierarchy. For example, consider the
hierarchy in Figure 3.2 we have



Ŷt

ŶP1,t

.

.

.
ŶP9,t

d11,t

.

.

.
d9i,t



=



1 1 1 . . . 1 1 1
1 1 1 . . . 0 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1 1 1

I52





d11,t

.

.

.

.

.

.

.

.
d9i,t



where Ik denotes an identity matrix of order k× k.
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3.4.1 The Bottom-up Approach

The Bottom-up technique is the most often utilised methodology in hierarchical
forecasting. This method generates the lowest predictions, which are then aggre-
gated to the highest level using the summing matrix [12]. One can define the
Bottom-up approach as:

B̄ = [0nk×(n−nk)
|Ink], (3.2)

where 0i×j is the i × j null matrix. The B̄ matrix is responsible for collecting the
lowest level predictions, which are subsequently aggregated by the S matrix for
the full hierarchy to provide the revised provision. The benefits of this technique
include the preservation of information and a better understanding of the dynamics
of particular series. On the other hand, Bottom-level data may be excessively noisy,
making modelling more difficult.

3.4.2 Top-down Approaches Based on Historical Proportions

The top-down technique is the second most commonly used method in hierarchical
forecasting. Forecasts are prepared and disaggregated at the highest level of the
hierarchy utilising proportions at lower levels of the hierarchy [12]. The approach
works well with insufficient counting data. However, it can be difficult to distribute
forecasts at low levels. Top-down approaches based on historical proportions can
be represented by:

T̄h = [q̃|0nk×(nk−1)], (3.3)

where q̃ = [q̃1, q̃2...q̃mk]
′ is a collection of proportions for the bottom level series

in this example, T̄h’s duty is to disseminate the top-level projections into low-level
forecasts. In our mini-dissertation, we will look at two variations of this strategy,
both of which performed brilliantly in Gross and Sohl [10]. In the first case,

q̃j,t =
∑nk

t=1
Ỹ(j,t

Ŷt

nk
(3.4)

for i = 1, ..., nk. This will be referred to as Top-down HP1 throughout the study.
Each proportion q̃j,t indicates the average of the historical proportions of the bottom
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level series Ỹ(j,t) relative to the entire aggregate Ŷt during the period t = 1, ..., nk;
i.e., vector p̃ reflects the average historical proportions. In the second version under
consideration,

q̃j,t =
∑nk

t=1
Ỹ(i,t)

nk

∑nk
t=1

Ŷt
nk

(3.5)

for i = 1, ..., mk. Throughout the research, this will be referred to as Top-down HP2.
Each q̃j,t proportion here captures the average historical value of the bottom level
series Ỹ(i,t) relative to the average value of the total aggregate Ŷt; i.e., vector q̃ reflects
the proportions of the historical averages.

3.4.3 Top-down Approach Based on Forecasted Proportions

We present a top-down way of increasing the historical and statistical character
of the levels utilised to break down the high-level predictions to split the share
of high-level expectations into predicted proportions for the lower-level series. To
demonstrate the intuition of this methodology, we take into account a one-stage hi-
erarchy and a first-stage forecast, which we generate severely for all series. We will
calculate the share of each forecast in this level for all individual forecasts at level 1.
This procedure will be repeated for each node for a K-level hierarchy, from top to
bottom. This will be referred to as top-down FP throughout the study. The biggest
disadvantage of this system, which is true of every top-down strategy, is that im-
partial revised predictions are avoided while bottom projections remain unbiased
[12]. As with the previous two top-down techniques,

T̄f = q̃|0nk×(nk−1)], (3.6)

where q̃ = [q̃1, q̃2, ...q̃nk]
′

is a collection of proportions for the bottom level series to
offer a generic form for the bottom level proportions, we must add a new note. In
order to present a general form for the bottom level proportions, we must introduce
a new note. Let Ỹ(`)

j,nk
be the h-step-ahead forecast of the series that corresponding

to the node which is ` levels above j. Let S̃j,nk(h) be the sum of the h-step-ahead
predictions below node j which are directly connected to node j. The two notations
are going to be integrated. As an example, in Figure 3.2, S̃(2)

AA,nk
(h) = S̃Total,nk

(h) =
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ỸA,nk(h)+ ỸB,nk(h)+ ỸC,nk(h). If we construct h-step-ahead predictions for the series
in Figure 3.2, the updated final forecasts travelling down the furthest left branch of
the hierarchy will be where q̃ = [q̃1, q̃2, ...q̃nk]

′
is a set of proportions for the lowest

level series. A new note is required to provide a generic form for the bottom level
proportions.

ỸA,nk(h) =

 ỸA,nk(h)

S̃(1)
A,nk

(h)

 ŶTotal,nk
(h)

=

 Ỹ(1)
AA,nk

(h)

S̃(2)
AA,nk

(h)

 ŶTotal,nk
(h),

and

ỸAA,nk(h) =

 ỸAA,nk(h)

S̃(1)
AA,nk

(h)

 ỸA,nk(h)

=

 Ỹ(1)
AA,nk

(h)

S̃(1)
AA,nk

(h)

 Ỹ(1)
AA,nk

(h)

S̃(2)
AA,nk

(h)

 ŶTotal,nk
(h).

Consequently,

q̃1 =

 Ỹ(1)
AA,nk

(h)

S̃(1)
AA,nk

(h)

 Ỹ(1)
AA,nk

(h)

S̃(2)
AA,nk

(h)

 .

Similarly, the other proportions are calculated. The overall conclusion is as follows:

q̃1 =
K=1

∏
`=0

Ỹ`
j,nk

(h)

S̃`+1
j,nk

(h)
, (3.7)

for j = 1, 2, ..., nK.
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3.4.4 The Optimal Combination Approach

The last hierarchical prediction approach that we investigate is the optimal com-
bination technique. This approach optimally combines the basic forecasts to of-
fer an updated forecast that is as near to the univariate forecasts as feasible while
meeting the requirements for higher-level predictions as a sum of the appropriate
lower-level forecasts [14]. Furthermore, unlike any other known methodology, this
method may provide uncertain forecasts that are consistent at a hierarchical level.
The following are the fundamental forecasts in a hierarchy for h-step forward:

Ŷnk(h) = Sβ̄h + εh, (3.8)

where

β̄h = E[ỸK,nk(h)|Ŷ1, Ŷ2, ...Ŷnk ], (3.9)

is the unknown mean of the bottom level K base forecasts, εh has zero mean, and
covariance matrix V[ε1]=∑h. 3.8 then reduces to:

Ŷnk(h) = E[ỸK,nk(h)|Ŷ1, Ŷ2, ...Ŷnk ] + εh. (3.10)

The error is anticipated using the forecast error of the lowest level, according to
Handyman et al. [14], so εh ≈ Sεk,h . The error terms fulfil the aggregate limit as the
hierarchical data under this hypothesis. For βh, the unbiased estimator is:

β̂h = (S′S)−1S′Ŷnk(h). (3.11)

As a result, the following estimates have been updated:

Ŷnk(h) = SB̂h, (3.12)

hence

Ōp = (S′S)−1S
′
. (3.13)
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3.5 Forecast Combination

Bates and Granger [4] was the first to propose combining predictions. It is especially
important when you are unsure about a circumstance or whether the approach is
the most accurate, and you want to avoid making big mistakes. It enhances predic-
tion accuracy to the degree that it incorporates valuable and independent data.

Let the total forecasts from the different methods be defined as follows: yTi, i =

1 (Bottom-up(M1)), 2 (Top-down HP1(M2)), 3 (Top-down HP2(M3)), 4 (Top-down
FP (M4)), 5 (Optimal(M5)). The forecasts will be combined using the simple average
(M6), median (M7). The average method is given as:

ŷT(ave) =
∑M

i=1 (ỹT,i)

M
, (3.14)

and the median method as

ŷT(med) = Median (ŷT1, ŷT2, ŷT3, ŷT4, ỹT5) (3.15)

3.6 Prediction Intervals

In this section we discuss two methods which will used to estimate the prediction
intervals. Initially we fit a penalised cubic regression spline given in Equation 3.16.

τ(t) =
n

∑
i=1

(yi − f (ti))
2 + λ̂

∫ (
f ′′(t)

)2 dt (3.16)

,
where yi denotes electricity demand, λ̂ is a smoothing parameter. We then extract
the fitted values and use them in estimating the prediction intervals.

3.6.1 Linear Regression

By adding a linear equation into observational data, linear regression aims to de-
pict the relationship between two variables. The explanatory variable is the first
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variable, whereas the dependent variable is the second. A definition of the linear
regression model is as follows:

yt = β0 + β1x + εt, (3.17)

where yt are the observed values (electricity demand), β0 and β1 are the intercept
and parameters, x are the fitted values obtained after fitting the cubic regression
spline model described in 3.16 and εt is the error term.

3.6.2 Linear Quantile Regression

To integrate forecasts, Quantile Regression (QR) is utilised [25]. Combining or av-
eraging projections from two or more models enhances accuracy while reducing
forecasting error variation, according to Koenker and Basset [17]. In this study, we
also employ QRA to compute predicted intervals. The QR code is represented as:

yt,τ =
p

∑
j=1

β j,τxtj + εt,τ; τ ∈ (0, 1). (3.18)

3.18 parameter estimations are obtained by minimising the supplied function in
3.19 as:

q̃Y|X(τ) =
nk

∑
t=1

ρ̄τ

(
ŷt,τ −

p

∑
j=1

β̂ j,τxtj

)
, (3.19)

where q̃Y|X(τ) is the extreme conditional quantile function of τ and ρ̄τ(u) = u[τ −
I(u < 0)] is a check function. In this paper, we’re interested in estimating extreme
conditional quantiles in this work, i.e. for τ ∈ (0, 1).

3.6.3 Combining Prediction Limits

According to [5][7], combining predictions can improve prediction accuracy. This is
then broadened to include both forecast prediction limits. In this section, the GRA
and LR combine with a preview interval, and the models’ interval is compared.

Robust prediction intervals (PIs) are known to be produced from combining predic-
tion limits from various models [23]. This study shall use the simple average and
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median methods for combining the prediction limits. The simple average method
can be expressed as in 3.20.

LAv =
1

mk

mk

∑
t=1

Lt, UAv =
1

mk

mk

∑
t=1

Ut (3.20)

The median method is known to be less sensitive to outliers. This is given in 3.21
[23]

LMd = Median(L1, · · · , Lm), UMd = Median(U1, · · · , Um) (3.21)

3.6.4 Evaluation of Prediction Intervals

The models used in this study are only a simplification and approximation of the
actual electricity demand (patterns). The first index for estimating PI is the predic-
tion interval width (PIW). It is estimated using lower and upper prediction limits
and calculated as shown in 3.22.

PIWt = Uα(yt)− Lα(yt) t = 1, · · · , mk (3.22)

where Uα(yt) and Lα(yt), denote the upper and lower prediction limits respectively,
and α is the nominal confidence.

Various indices, such as the prediction interval coverage probability and the pre-
diction interval normalised average width (PINAW), are used to assess the quality
of the PIs. The PINAW is used in this investigation. PINAW shows the model’s
capacity to collect uncertainty information on interval predictions. It calculates the
PIs’ average width and is expressed as:

PINAW =
1

mkR

mk

∑
t=1

(
PIWt

)
, (3.23)

where R is the rage of the variable yt. A smaller PINAW means the PIs are more
informative.
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3.7 Evaluation of Forecasts

To find the best model for making predictions, the prediction results use mean abso-
lute percent error (MAPE), mean absolute error (MAE), mean absolute scaled error
(MASE) and mean square error (RMSE) will be evaluated. The smaller the MAPE,
MAE, MASE, and RMSE, the closer the expected return is to the true return and the
more fit the model. The formulation of the performance evaluation method is as
follows:

Mean absolute percentage error

MAPE =
1

Nk
∑

[xt − x̂t]

xt
, (3.24)

where xt are the actual values observed, x̂t is a predicted value by the model, and
Nk is the number of predictions.

Mean absolute error

MAE =
1

Nk

Nk

∑
t=1
|xt − x̂t| (3.25)

where xt are the actual values observed, x̂t is a predicted value by the model, and
Nk is the number of predictions.

Mean absolute scaled error

q̂j =
et

1
T−Nk

∑T
t=Nk+1 |xt − xt−Nk |

, (3.26)

where Nk is the seasonal period, xt is the time series of actual observations, and et is
the forecast error for a specific period. As a result, the average absolute scaled error
is simply

MASE = mean(|q̂j|), (3.27)
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Root mean square error

The Root Mean Square Error (RMSE) is a metric for comparing the model’s pre-
dicted and observed values.

RMSE =

√
∑Nk

t=1(xt − x̂t)2

Nk
, (3.28)

where x̂t are predicted values by the model, xt are the observed values, and Nk is
the number of forecasts.

3.8 Conclusion

This chapter began by covering a discussion on variable selection and data pro-
cessing. It presents the mathematical formulations for the traditional hierarchical
time series models, namely bottom-up, optimal combination, and top-down. The
chapter further discusses the various formulae for prediction intervals, combining
prediction limits and forecast evaluation of prediction intervals.
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Chapter 4

Analysis and Empirical Results

4.1 Introduction

Data analysis in this chapter uses the concepts and procedures described in the
previous chapter. Fable R [11] is the statistical package that will be used to analyse
the data.

4.2 Exploratory Data Analysis

Exploratory data analysis (EDA) is a sort of data analysis that focuses on extract-
ing relevant statistics and other aspects from a dataset [33]. We use data analysis
to comprehend a data collection better, confirm basic assumptions, find signaling
variables, discover the structure behind them, detect outliers and anomalies, and
build models. From 2002 to 2020, the monthly electricity demand (GWh) in South
Africa is utilised. To create a hierarchy of levels 0, 1, and 2, the data will be disag-
gregated by South Africa’s nine provinces and fifty-two districts. The descriptive
data of all nine (9) provinces’ electricity demand are summarised in Table 4.1.
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TABLE 4.1: Monthly electricity demand summarry.

Provinces Min. 1st Qu. Median 3rd Qu. Mean Max. Skewness Kurtosis
WC 1464 1828 1894 1883 1960 1202 -0.71 3.88
EC 434 577 640 643 711 850 0.06 2.32
NC 330 422 453 458 497 495 0.15 2.62
FS 748 974 1017 1030 1086 1292 0.31 3.19

KZN 2847 3364 3530 3522 3689 4019 -0.23 2.79
NW 824 1638 1726 1705 1818 1976 -1.42 7.01
GP 3857 4775 5044 5139 5476 6486 0.47 2.67
MP 2077 2611 2710 2692 2794 3011 -0.78 4.19
LP 875 1231 1500 1439 1640 1832 -0.49 2.06

According to Table 4.1 above, the average monthly electricity demand ranges from
453 to 5044, with Gauteng (GP) having the highest mean of 5044. The electricity
consumption in Gauteng is the highest, while the Northern Cape (NC) has the low-
est number of 330 in one of the periods. The province’s highest population may
cause the highest electricity demand in Gauteng and the province’s lowest popu-
lation may cause the most insufficient electricity demand. The skewness values of
electricity demand in South Africa are positive for the Eastern Cape (EC), Northern
Cape (NC), Free State (FS), and Gauteng (GP), indicating that they are positively
skewed. Negative for the Western Cape (WC), Kwazulu-Natal (KZN), North West
(NW), Mpumalanga (MP), and Limpopo (LP), indicating that their distributions
are non-normal. All of the instances in the Western Cape, Free State (FS) North
West, and Mpumulanga (MP) have kurtosis larger than three, indicating that their
distributions are leptokurtic. This suggests that heavy-tailed distributions can be
used to mode the data sets. Eastern Cape, North West, Kwazulu-Natal, Gauteng,
and Limpopo have a kurtosis of less than three, indicating platykurtic distribution.
This implies that the dataset has lighter tails than a normal distribution.

Konarasinghe and Abeynayake [19] showed that patterns for electricity usage could
be revealed using box plots hence what follows below is a graphical representation
in the form of a box for monthly electricity demand for districts that are found in
Gauteng province only (Others are shown in Figure A.1:A.8). One of the reasons for
selecting Gauteng districts is that it is one of the provinces with the highest electric-
ity consumption (As shown in Table 4.1). The box plots for the monthly electricity
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demand for Gauteng districts are illustrated in Figure 4.1 below, where 42 is Sed-
ibeng West Rand District Municipality, 48 is West Rand District Municipality, Ek
is Ekurhuleni Metropolitan Municipality, J and T represent City of Johannesburg
Metropolitan Municipality and City of Tshwane Metropolitan Municipality, respec-
tively.

FIGURE 4.1: Box plots for Gauteng districts monthly electricity de-
mand data from January 2002 to October 2020.
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The box plots in Figure 4.1 above provide summaries of the minimum, lower quar-
tile, median, higher quartile, and highest power demand in Gauteng province’s
five districts. The trend in electricity demand can be observed. In appendix, we
also showed the monthly electricity demand per district in other provinces.

South African monthly electricity demand data

A time series plot in Figure 4.2 shows the behavior of monthly electricity demand
in South Africa for the period January 2002 to October 2020. It can be seen from the
level 0 (Total monthly electricity demand) plot that the electricity demand in South
Africa is increasing rapidly. The plot also shows some local and global events that
affected the electricity demand in 2008 and 2020 (great economic recession and 2020
covid-19). Level 1 and level 2 plots show the monthly electricity demand in South
Africa’s nine provinces and 52 districts, respectively (See Figure 4.2).
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FIGURE 4.2: Electricity demand time series plots in Gigawatt-hours
(GWh) from January 2002 to October 2020 (Level 0 is the total monthly
electricity demand, level 2 is the province’s electricity demand and

level 3 is the district’s electricity demand).



28

4.3 Forecasting Hierarchical Electricity Demand Series

Athanasopoulos et al. [3] used exponential smoothing based on an innovative state-
space model to estimate Austrian tourism demand. All Level 0, Level 1, and Level 2
monthly power consumption in South Africa will be modelled and forecasted using
the same approach in this study. According to [3], the strategies involve additive
models that improve forecast accuracy.

4.4 Forecasting Accuracy of Models

4.4.1 The Individual Models

The mean absolute percentage error (MAPE) is used to anticipate accuracy perfor-
mance at various hierarchy levels based on out-of-sample projections. The MAPE
method changed into selected because it is miles famous and easy to comprehend
within the literature, and the technique with the bottom MAPE can be decided to
be the most successful. The models were trained using data from January 2002 to
October 2020, and the models were validated using data from November 2019 to
October 2020. The bottom-up method, a top-down method primarily based totally
on the common of historic proportions, the proportion of historical averages and
due proportions, and the choicest aggregate method, are all used to count on elec-
tricity consumption. These strategies are used to reconcile and successfully com-
bine month-to-month electricity calls for predictions. Table 4.2 shows the MAPE,
RMSE, MAE, and MASE of each model-averaged across the five methods, which
are Bottom-up(M1), Top-down HP1(M2), Top-down HP2(M3), Top-down FP(M4),
and Optimal(M5).

TABLE 4.2: Comparative analysis of the fitted models.

Bottom-up Top-down HP1 Top-down HP2 Top-down FP Optimal
RMSE 4432.25 5660.50 5820.84 4428.09 4432.25
MAE 3019.58 4522.41 4698.82 3004.76 3019.58

MAPE 438.07 686.79 693.63 436.17 438.07
MASE 93.01 161.13 163.34 92.82 93.01
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The Table 4.2 displays the forecasting performance results for each district utilizing
the RMSE, MAPE, MAE, and MASE methods. The top-down based on forecasted
proportions (Top-down FP) strategy appears to be the overall best performing of
the three alternatives because it has the lowest MAPE of 436.17. It is followed by
the optimal combination and the bottom-up technique, both of which are equal to
438.07. Thus Top-down FP is regarded to be the overall best performer. This means
that this method is capable of producing accurate electricity demand forecasts.

4.4.2 Individual Models and the Forecast Combination Models

The simple average (M6) and median (M7) approaches to integrate the forecasts.
Figure 4.3 presents a comparative analysis of the individual models (M1-M5), with
the forecast combination models (M6-M7).

TABLE 4.3: Model comparisons.

M1 M2 M3 M4 M5 M6 M7

RMSE 4432.25 5660.50 5820.84 4428.09 4432.25 4954.78 4432.25
MAE 3019.58 4522.41 4698.82 3004.76 3019.58 3653.02 3019.58

MAPE 438.07 686.79 693.63 436.17 438.07 538.54 438.07
MASE 93.10 161.01 163.34 92.82 93.10 120.67 93.1

From Table 4.3 above, it can be clearly seen that the Top-down FP (M4) it is still the
best performing model with a MAPE of 436.17, followed by the optimal combination(M5)
and the bottom-up technique (M1), both of which are equal to 438.07, respectively.

4.5 Forecasts for Monthly Electricity Demand

The Top-down FP approach is used to forecast future out-of-sample monthly elec-
tricity demand for the next 60 months across all levels of the hierarchy. Figure 4.3
depicts the forecasts and the original data series graphically.
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FIGURE 4.3: Top-down FP forecasts.

From Figure 4.3, the top portion indicates South Africa’s overall electricity demand.
The solid lines on the middle and bottom show historical electricity demand statis-
tics, while the dashed lines represent anticipated electricity demand predictions for
each of South Africa’s nine provinces and fifty-two districts, respectively.
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4.6 Top-down FP Approach Forecasts

Figure 4.4 presents a time series plot of monthly electricity usage anticipated for
the next 60 months using a top-down FP approach, replete with density, normal
quantile to quantile (QQ), and box plots. The monthly electricity demand forecast
trend is depicted in Figure 4.5 using a smoothing spline fitted with an estimated
lambda value.

FIGURE 4.4: Top-down FP forecast diagnostic plots for monthly elec-
tricity demand.
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FIGURE 4.5: Top-down FP forecast plot of monthly electricity de-
mand from November 2020 to October 2025 superimposed with a fit-

ted smoothing spline trend.



33

4.7 Prediction Interval for Top-down FP Forecasts

Prediction intervals are significant because they represent forecast uncertainty. When
a prediction interval is calculated, it shows how much uncertainty each forecast has.
The penalised cubic smoothing spline function is used to smooth the forecasts. The
following is the function:

π =
m

∑
t=1

(ŷt − f (t))2 + α̂
∫
( f ”(t))2dx, (4.1)

where α is the smoothing parameter, f (t) is a smoothing spline function at time
t obtained from a noisy observation denoted by ŷt, and f ”(t) is the smoothing
spline function’s second derivative at time t. As indicated in Figure 4.5, the α̂ value
is based on generalised cross validation (GCV) (α = 434842.7).
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Intervals of prediction based on linear regression

The upper limit prediction interval is represented by the blue line in Figure 4.6,
while the black line shows the current top-down FP method forecast for the next
60 months. Figure 4.6 shows the top limit prediction interval for the 95 percent
confidence interval. The trend in the forecast and prediction lines is comparable.
We are 95% positive that the projections from the top-down FP method are inside
the upper limit since the top-down FP forecast line does not cross the prediction
interval.

FIGURE 4.6: Total forecasts with 95 % prediction interval based on lin-
ear regression.
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Prediction intervals based on linear quantile regression

The lower and upper limits prediction intervals for the 95% confidence interval of
the quantile regression model are shown in Figure 4.7.

FIGURE 4.7: Total forecasts with 95 % prediction interval based on lin-
ear quantile regression.

4.7.1 Evaluation of Prediction Intervals

Model comparisons are shown in Table 4.4, which displays a comparison of the
models utilizing PI indices for 95% PINAW. Simple average with 43.20% is the best
model based on PINAW at 95%.
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TABLE 4.4: Model comparisons.

LR LQR Average Median
PINAW 67.54 % 63.94 % 44.20% 63.94%

4.8 Conclusion

This chapter proposed monthly electricity demand (GWh) using data obtained from
Statistics South Africa for January 2000 and October 2020. Three hierarchical meth-
ods were developed. The empirical results showed that the top-down approach
produced the best forecast accuracy based on forecasted proportions.
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Chapter 5

Conclusions and Future Work

5.1 Introduction

This min-dissertation looked at how top-down, bottom-up, and optimum combi-
nation models for energy demand were implemented in South Africa. The models
were built using data from Stats SA on monthly power usage in South Africa’s
provinces. The fitted models were compared using linear regression, simple aver-
age, median, and linear quantile regression.

5.2 Research Findings

The purpose of the mini-dissertation was to forecast monthly electricity demand
(GWh) between January 2000 and October 2020 using data from Statistics South
Africa. This research aims to develop a modelling framework for estimating monthly
power consumption based on hierarchical time series models. Monthly electric-
ity consumption forecasting is essential for utility management, maintenance, and
power purchase and sale. There have been three hierarchical models established.
Based on the MAPE of the three fitted hierarchical models, the top-down technique
based on anticipated proportions produced the greatest forecast accuracy.

5.3 Recommendations

Because many members of our society are unaware of South Africa’s excessive
power use, the government should develop educational programmes on solar en-
ergy, wind turbines, generators, and other ecologically acceptable energy sources.



38

Energy-efficient technology should be pushed, minimising power waste and regu-
lating the amount of electricity used in the country. This study might be useful to
system operators, such as decision-makers at power utilities.

5.4 Limitations of the study

This mini-dissertation was based on provincial and district data, which only sup-
plied electricity demand for each province and district, making it hard to establish
what causes low or high electricity demand in each province or district. At times,
accurately incorporating several sophisticated factors affecting electricity demand
into forecasting models might be difficult.
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Appendices
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Appendix A

Monthly electricity demand
illustration per province using box
plots
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FIGURE A.1: Box plots for Limpopo districts monthly electricity de-
mand data from January 2002 to October 2020.
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FIGURE A.2: Box plots for Mpumalanga districts monthly electricity
demand data from January 2002 to October 2020.
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FIGURE A.3: Box plots for North-West districts monthly electricity de-
mand data from January 2002 to October 2020.
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FIGURE A.4: Box plots for Free state districts monthly electricity de-
mand data from January 2002 to October 2020.
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FIGURE A.5: Box plots for Kwazulu-Natal districts monthly electricity
demand data from January 2002 to October 2020.
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FIGURE A.6: Box plots for Western cape districts monthly electricity
demand data from January 2002 to October 2020.



47

FIGURE A.7: Box plots for Northern cape districts monthly electricity
demand data from January 2002 to October 2020.
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FIGURE A.8: Box plots for Eastern cape districts monthly electricity
demand data from January 2002 to October 2020.



49

Appendix B

Forecast of the bottom-up approach,
two top–down approaches and
optimal combination approach

FIGURE B.1: bottom-up approach forecasts in Gigawatt-hours (GWh).
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FIGURE B.2: Top-down HP1 approach forecasts in Gigawatt-hours
(GWh).
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FIGURE B.3: Top-down HP2 approach forecasts in Gigawatt-hours
(GWh).
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FIGURE B.4: Optimal combination approach forecasts in Gigawatt-
hours (GWh).
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Appendix C

Some selected R Code
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