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ABSTRACT 
 

Chlorophyll–a (chl–a) is an optical active compound used as proxy for phytoplankton biomass 

to determine the trophic state of the aquatic ecosystem. Traditional approaches for monitoring 

aquatic system are time consuming, expensive, and non–continuous, therefore, Remote 

Sensing technologies are qualitative for monitoring the status for water quality in large scale 

and low cost. The aim of this study was to assess the spatial and temporal variation of 

phytoplankton biomass in Nandoni reservoir, Limpopo to examine the relationship that exist 

between the physico–chemical variables and chl–a concentration using readily available 

Landsat multispectral images. Multispectral resolution of (30 m) Landsat 7 ETM+ and Landsat 

8 OLI images for June to December 2008 to 2020 were used to derive the distribution of chl–

a concentration. The spatial distribution of chl–a concentration in wet and dry season of these 

years was obtained. By using regression techniques, in situ measured chl–a was related to 

construct and validate Landsat predicted chl–a to determine the distribution of chl–a in the 

reservoir. The results indicate that Landsat derived chl–a was similar with the observed 

measured chlorophyll–a (R2 = 0.91). There was a negative significant correlation among Land 

Use and Land Cover with water quality (P > 0.05). Using permutational multivariate analysis 

of variance (PERMANOVA) analysis, there was significant differences for chl–a 

concentration in sites, seasons, and zones. There was positive significant correlation observed 

on water temperature with strong negative significant with salinity and TDS. A strong perfect 

linear association among predicted vs measured chl–a were found. Chlorophyll–a 

concentration in Nandoni reservoir was derived using Landsat remote sensing images, 

suggesting that Landsat sensor is suitable for monitoring small reservoir in a short timescale. 

Remote sensing techniques can be used to control the development of an early warning system 

of this study and other reservoirs. 
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CHAPTER ONE: INTRODUCTION 
 

1.1 Introduction   

Phytoplankton are microscopic plants that are free floating in the freshwater, brackish and/or 

marine ecosystems, and are autotrophic organisms that produce food through photosynthesis. 

Therefore, phytoplankton plays an important role in producing food in aquatic ecosystems 

(Berglund et al. 2007). Phytoplankton contain chlorophyll–a which assist them to capture light 

energy and utilise the energy during photosynthesis to turn it into carbohydrates and oxygen. 

Chlorophyll–a is a colour pigment found primarily in plant taxa such as phytoplankton, the 

biomass of phytoplankton can be determined by examining the concentration of chlorophyll–

a in water bodies (Gregor and Marsalek, 2004; Bowes et al. 2012).  

 

The chlorophyll–a concentration levels indicate the abundance of phytoplankton and possible 

the level of primary production in aquatic ecosystems (Gurung et al. 2006). Therefore, elevated 

chlorophyll–a concentrations are generally associated with a change in the trophic status of a 

water body and are traditionally associated with a reduction in water quality and lowered 

biodiversity, which destabilizes ecosystem services and functioning (Dalu et al. 2013). 

Phytoplankton abundances in reservoirs are experience seasonal changes due to nutrient 

variability between seasons (Paulett et al. 2011). Physical factors of the reservoir greatly 

influence phytoplankton structure, for examples water flow fluctuation in reservoirs allows for 

the exchange and recruitment of species (Moura et al. 2013).  

 

Phytoplankton growth rate depends on factors such as water temperature, water depth, wind, 

and a variety of predators that graze on them (Margalef, 1958). Due to natural and 

anthropogenic disturbance occurring in the waterbodies, different water quality parameters 
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present in the reservoirs are likely to be affected by these activities. Chemical parameters 

include pH, nitrogen, chemical dissolved oxygen (COD), and dissolved oxygen (DO), 

biological parameters include algae and bacteria, and physical parameters include temperature, 

turbidity, and electrical conductivity (EC) (Supp and Ernest, 2014). The main processes that 

structure phytoplankton in reservoirs differ in space and time due to the changes in chemical 

and physical parameters creates a vital influence on the trophic change of aquatic ecosystems 

(Kimmel et al. 1990; Li et al. 2018). These normally take place as water bodies undergo a 

gradual process of nutrient enrichment as the reservoirs ages (Supp and Ernest, 2014; Tijare et 

al. 2015). The activities taking place in reservoirs leading to phytoplankton production can be 

determined by the reservoir ages. The source of nutrients such as nitrate and ammonia, include 

urban developments, raw sewage effluent, fertilisers, and livestock (Lehman, 2014). Water 

quality in reservoirs worldwide faces various problems emanating from anthropogenic 

activities (El–Serehy et al. 2018). 

 

Anthropogenic activities have accelerated the rate of eutrophication in aquatic ecosystems 

through point source discharge (partially treated wastewater effluents, raw sewage, treated or 

untreated industrial effluent) and non–point (fertiliser application, land clearing, farming). 

Nutrient loading (i.e., nitrogen, phosphorus) into aquatic environments lead to dramatic 

consequences for both fisheries, domestic and industrial water uses. Nutrient enrichment in 

aquatic ecosystems has becoming an area of increasing concern particularly in lakes, rivers, 

wetland, and reservoirs worldwide (Smith et al. 2006). Nutrients exported directly or indirectly 

into aquatic ecosystems can lead to rapid and extreme eutrophication. Eutrophication can lead 

a wide range of positive and negative effects on aquatic ecosystems. The relative nutrient 

concentration varies spatially and temporally.  Aquatic ecosystems that are in landscapes 

dominated by nutrient–rich and fluvial sediments may naturally, become eutrophied even in 



3 

the absence of anthropogenic activities. This normally takes place as aquatic ecosystems 

undergo a gradual process of nutrient enrichment as the reservoir age and this process is termed 

natural eutrophication (Reynolds, 2006; Mouillot et al. 2013; Supp and Ernest, 2014).  

 

The flow of water in aquatic ecosystems serve as the main hydrological factor that influence 

phytoplankton structure, due to its ability to act upon a variety of environmental factors such 

as turbidity, turbulence, and residence time which may alter community dynamics (Kenderov 

et al. 2014). The quantity and size of phytoplankton biomass strongly influence the trophic 

level in reservoirs. Water in a reservoir is prone to longitudinal and vertical movement created 

by the climatic forces (Souza et al. 2016). The relationship between phytoplankton biomass 

and nutrients is likely to show a complex situation in tropical aquatic ecosystems, due to the 

influence of light, hydrology and grazing which may reduce phytoplankton production and 

biomass s (Rangel et al. 2012). Temporal changes in rainfall, land–use, use of reservoirs, 

hydrology, and morphology can affect the trophic state of the reservoirs (An and Kim, 2003). 

Reservoirs also experience environmental changes due to land–use shifts, geology, climate 

change, catchment hydrology, and species invasion (Jeppensen et al. 2015; Haliuc et al. 2020). 

 

Remote sensing is a technology that be used to detect and monitor water quality variables using 

satellites, where satellite create images consisting of several spectral band sensors (Danoedoro, 

2012). Remote sensing techniques can be used to monitor the spatio–temporal dynamics of 

reservoirs and other aquatic ecosystems to predict ecological changes and prepare for the 

consequences of these changes (Dall’Olmo et al. 2005). The surface reflectance of the water 

body is measured using remote sensing to determine the chlorophyll–a concentration. The use 

of remote sensing has the potential to provide synoptic estimates of chlorophyll–a 

concentration in aquatic environments (Harvey et al. 2015). Chlorophyll–a can also be 
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employed as a proxy to estimate primary production of aquatic ecosystems (Olmanson et al. 

2005; Matthews et al. 2010). 

 

The estimation and mapping water quality variables is important in water management and 

planning, and therefore water quality information necessary to comprehend the current 

conditions and future trends of natural aquatic ecosystems (McGrane et al. 2016). The factors 

that can alter the spectral reflectance properties of water can be identified and quantified 

through hyper–spectral and multispectral remote sensing techniques (Melin et al. 2015). 

Mapping of water quality can be done through remote sensing (RS) and geographic information 

systems (GIS) to identify the types of variability that exist in the aquatic ecosystems (Schiebe 

et al. 2000). 

 

Remote sensing techniques can be used to detect and map water quality variables and to help 

in decision–making by various organisations for future planning of water resource allocation, 

as well as agricultural and industrial impacts (Dube et al. 2015). This is because remote sensing 

techniques can be used to map and estimate water quality parameters of the entire aquatic 

waterbody. However, the measurement techniques of water quality variables can be measured 

at specific points where samples are collected (Gholizadeh et al. 2016). The advantage of 

remote sensing is the continuous monitoring of the entire aquatic waterbody and help with the 

refining and testing of biological models by serving as a link between laboratory measurements 

and the real time data (Dube et al. 2015). 

 

Remote sensing methods have been used widely to detect and map various water physical 

parameters (Lavery et al. 1993; Gitelson et al. 2007). With its high spatial and spectral 

resolution, remote sensing can be useful in detecting and mapping water quality variables of 
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large water bodies (Ekercin, 2007; Blondeau–Patissier et al. 2014). Remote sensing of water 

quality is regarded as promising and cost effective. There are free readily available remote 

sensing data such as Landsat 7 ETM+ and 8 OLI that often provide a synoptic and constituent 

view of aquatic ecosystem parameters (Olmanson et al. 2015).  

 

Water quality classification forms part of supervised classification of remote sensing images 

which allows for the selection of sample pixels in an image that are representative of specific 

classes and then direct the image processing software as the classification of all other pixel in 

the image (Blakey et al. 2015). Most chlorophyll–a are based on simple blue to green band of 

ratio unlike for the aquatic ecosystems where a simple band ratio is not suitable for the covering 

water parameters. But for inland waters that are rich in biomass where phytoplankton 

dominates the optical properties where simple band ratio can be utilised (Toming et al. 2016). 

The bands in the green to near infrared (NIR) region are more effective for retrieving 

chlorophyll–a concentration (Rodriguez et al. 2020). 

 

1.2 Problem statement 

Phytoplankton biomass in reservoirs plays a significant role. However, the spatio–temporal 

variation in their biomass which can either be seasonally or annually, and it is often affected 

by anthropogenic activities such as agricultural development, urbanisation, and 

industrialisation which can introduce excessive nutrients into the ecosystem and accelerate the 

rate of eutrophication (Freeman et al. 2015). However, under favourable environmental 

conditions, the excessive nutrient enrichment (nitrogen and phosphorus) deposited into the 

reservoirs can trigger a rapid reproduction and growth of microscopic phytoplankton. The 

abrupt changes of phytoplankton productivity in reservoirs due to seasonal changes and their 

spatial location may lead to serious environmental problems such as low dissolved oxygen, 
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death of aquatic organisms (e.g., fish), and decrease in ecological diversity (Kuang et al. 2005). 

The need therefore arises that phytoplankton biomass production in reservoirs be further 

investigated to determine whether the location of reservoirs and seasonal changes affect 

biomass composition and the effects on the aquatic ecosystem functioning.   

 

Phytoplankton biomass is the base foundation of the aquatic food webs. They are primary 

producers that play a vital role of feeding every species from microscopic zooplankton to large 

vertebrate species (Isari et al. 2013). It is important to study how variations in chlorophyll–a 

changes seasonally and temporally in lentic environments for the better understanding of 

aquatic ecosystem functioning during different times of the year and in different environmental 

locations. This research will shed more light on the understanding of aquatic processes, and 

this will help to formulate better water quality management strategies for domestic, 

agricultural, and industrial use.  Many studies on phytoplankton focused mainly on their 

productivity and largely on chlorophyll concentrations in water, as well as their role in 

photosynthesis of aquatic environments.   

  

1.3 Research aim and objectives 

1.3.1 Aim 

To assess the spatial and temporal variation of phytoplankton biomass (i.e., chlorophyll–a 

concentration as a proxy) in Nandoni reservoir. 

 

 

1.3.2 Objectives 

• To examine water quality parameters of the reservoir and assess their relationship 

with phytoplankton biomass. 
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• To map spatio–temporal variation of phytoplankton biomass using remote satellite 

imagery across seasons and years 

 

1.5 Hypotheses 

• Remote sensing coupled with in situ measurements accurately predict chl–a fluctuation 

within tropical water bodies. 

• Remote sensing and in situ measurements have little accuracy within the tropical water 

bodies. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.1 Introduction 

Bellinger et al. (2000) define phytoplankton as microscopic algae usually occurring in 

unicellular forms and are mostly photosynthetic. It is also an essential component of aquatic 

food chain. Phytoplankton has been used as an indicator of water quality. Phytoplankton plays 

a crucial role in regulating carbon concentration in the atmosphere. Given their short life span, 

they also respond swiftly to environmental changes such as temperature. Algae are 

photosynthetic eukaryotes that are single–celled, colonial, or multicellular. Some multicellular 

members are grouped into two main Empires or Domains (Prokaryota and Eukaryota) and then 

further down into multiple Kingdoms (e.g., Plantae), Supergroups, Divisions, etc. mainly in the 

Eukaryota Domain: Phylum Rhodophyta (red algae), Class Phaeophycea (brown algae) and 

Phyla Chlorophyta and Charophyta (green algae) (Collins et al. 2000). There are two main 

dominant types of phytoplankton species, which are diatoms and dinoflagellates. Diatoms are 

a single celled algal that live in a house which is made of glass. They are the only organisms 

on the planet characterised with cell walls which are composed of transparent, opaline silica 

structure. Diatoms have light absorbing molecules (chlorophyll–a) that assimilate solar energy 

and convert it into chemical energy through photosynthesis (Katsiapi et al. 2011). 

Phytoplankton species are mainly controlled by temperature, sunshine hours, nutrients, salts, 

water level and predation intensity. Previous research revealed that N and P are the main 

nutrients that limit the growth of phytoplankton in aquatic ecosystems (Xu et al. 2015; Yang 

et al. 2016, 2017).  

 

 

 

http://www.algaebase.org/browse/taxonomy/?id=86700
http://www.algaebase.org/browse/taxonomy/?id=86701
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Chromista
https://en.wikipedia.org/wiki/Chlorophyta
http://www.algaebase.org/browse/taxonomy/?id=97242


9 

2.2 Reservoir 

Allan et al. (2006) defines a reservoir as an artificial place where water is stored and collected 

for multipurpose such as irrigation use, for domestic purpose, recreational, and fishery 

development. Reservoirs play a crucial role in the flood regulation by storing water and 

reducing flood risks (Danz et al. 2007). Reservoirs are important not only for electrical power 

generation but also for their multiple roles such as water supply, flood control, and navigation 

(Straskraba and Tundaris, 2013). Seasonal cooling together with other physical factors that 

occur daily in a reservoir combined with the mixing caused by wind leads to seasonal 

stratification (Wetzel, 2009). Low water velocities limit sediment suspension of the fine 

particles, leading to a more developed planktonic community. Anoxic conditions develop when 

organic matter settles into unmixed deep water when microbial consumption of DO takes place 

(Wetzel, 2001).  

 

Understanding of phytoplankton dynamics in reservoirs can also be beneficial in evaluating the 

resilience standing water ecosystem, which can lead to a remarkable change of the limnological 

conditions that happens relatively in a short period. Phytoplankton in river channels is affected 

by cumulative effects of reservoirs in catchment basins by significantly blocking nutrient flow. 

Lentic aquatic habitats are formed by impoundment of rivers, and this makes phytoplankton to 

become the main primary producers of the pelagic zone by influencing the whole aquatic food 

web of newly created lentic ecosystems (Reynolds, 2006).  

 

2.3 Seasonality and phytoplankton variation 

Anthropogenic activities and climate change worldwide compromises the freshwater aquatic 

environments, especially shallow lakes and reservoirs (Jeppesen et al. 2014). Seasonal rainfall 

variation can change the amount of water stored in the reservoirs and other environmental 
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variables such as turbidity, oxygen, and nutrients contents in the water column (Chaves et al. 

2013; Mosley et al. 2015; Santos et al. 2017). Seasonal changes in phytoplankton population 

typically rely on seasonal variation of atmospheric physical factors, nutrient concentration, and 

biotic factors. Changes in climate and eutrophication rates strongly affect the aquatic 

ecosystems in shallow reservoirs (Sommer et al. 1986; Hong et al. 2014). 

 

Reservoirs have two alternate key stable states in temperate environments, one in clear water 

and low phytoplankton biomass and other with turbid water (Carmignani et al. 2017). These 

seasonal changes have a major effect on the composition and structure of phytoplankton 

communities which are dominated by cyanobacteria and chlorophytes (Chakraborty et al. 

2015). Variations in temperature and other environmental factors in subtropical regions can 

cause predictable changes in the phytoplankton composition in aquatic ecosystems (Grover and 

Chrzanowsli, 2006). Tropical areas, on the other hand, show little annual variation in 

temperature and successive shifts in the phytoplankton populations that are the products of 

seasonal rainfall trends, with various phytoplankton taxa in the wet and dry seasons (Ibanez, 

1998; Enio, 2006). 

 

Water level fluctuations have a significant consequence in reservoirs and other habitats and are 

a key factor for controlling phytoplankton biomass and species diversity, evenness, and 

community change in the reservoirs. Various phytoplankton groups respond to different 

changes in water level changes in the reservoirs (Naselli–Flores and Barone, 1997; Donagh et 

al. 2009; Arfi, 2005; Cott et al. 2008). Changes in water level can affect phytoplankton biomass 

and species composition in reservoir ecosystem (Naselli–Flores and Barone, 1997; Donagh et 

al. 2009).  
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2.4 Spatial location and phytoplankton variation 

Spatial changes in the aquatic community structure occur due to a variety of factors present at 

different scales, especially within the tropical regions (Fonseca and Bicudo, 2008; Becker et 

al. 2009; Yang et al. 2018). Species composition and biomass of organisms is influenced by 

physical (e.g., light availability and mixing regime) and chemical factors (e.g., nutrient 

concentrations) that explain the longitudinal reservoir gradients (Thornton et al. 1998). 

Phytoplankton occurrence and development varies with season and can be attributed to factors 

such as rainfall patterns, light intensity, and temperature (DWAF, 2002). 

 

Phytoplankton spatial heterogeneity could be decreased by the mass effect in spatially related 

aquatic environments such as streams and reservoirs. Therefore, strong species dispersal is 

promoted by water flow events. Reservoirs are extremely heterogeneous structures 

characterised by a range of habitats in the ecosystem with different environmental conditions 

(Kimmel et al. 1990). Therefore, the morphological and hydrological complexity may serve as 

an effective model for studying the relative importance of both environmental filtering (which 

should promote species sorting) and water flow (which should support mass effect) as a driving 

force of phytoplankton spatial distribution (Chorus and Bartram, 2002). 

 

2.5 Age of catchment and phytoplankton  

Population growth and development play an important role in the natural environment and this 

can be affected by human activities (Halpern et al. 2008). Human activities such as industrial 

wastewater, human water consumption increases, domestic sewage overflows and agricultural 

water withdrawal and fertilisers are impacting aquatic ecosystems within the aquatic 

ecosystems which impact reservoirs. Therefore, all these activities can lead to an increase of 

eutrophication in the reservoirs (Eom et al. 2017; Lv et al. 2014; Zhao et al. 2018a).  
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Reservoirs are water bodies that have a slow flow rate, low self–purification, and long water 

residence time. Therefore, nutrients are more likely to accumulate and create an environment 

that is conducive to phytoplankton (Toporowska et al. 2018). According to Dodds (2009), the 

water quality of reservoirs shifts markedly in chemical and physical characteristics. These 

changes are beneficial but there are many harmful changes that take place particularly during 

the early years that are dependent on reservoir’s initial filling. These changes may reduce water 

quality directly or indirectly by encouraging rapid growth of phytoplankton in the aquatic 

environments (Smith et al. 2008). 

 

Human activities have become the dominant negative factor affecting the aquatic environments 

worldwide and this has resulted in the water quality deterioration. Poor water quality can lead 

to many issues that can lead to deaths of many aquatic animals and seriously impacting the 

natural environment. Phytoplankton blooms can lead to large–scale reproduction of 

phytoplankton under suitable environment that can change dissolved oxygen (DO) 

concentration in the reservoir (O’Boyle et al. 2016). Furthermore, phytoplankton produces 

biotoxins such as microcystin that may pose serious health risks to humans, livestock, and 

safety of water consumption. All these water quality issues may result in large economic 

impacts such as increased water treatment costs and reduced tourism (Tollefson, 2018). 

 

 

2.6 Physio–chemical variables and their relationship to phytoplankton community 

structure 

The rapid increase of phytoplankton biomass and their production in reservoirs are often 

associated with environmental parameters (Oberholster et al. 2003). The physical water quality 
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parameters include temperature, pH, salinity, electrical conductivity, total dissolved solids, and 

dissolved oxygen, while chemical parameters include nitrogen and phosphorus, ammonia, 

nitrate, and nitrite. 

 

2.6.1 Temperature  

Phytoplankton biomass favours the hot environment because their survival is impacted in cold 

environmental conditions. It is well known that phytoplankton prefers higher temperatures for 

survival ranging between 26 °C and 35 °C (Robarts and Zohary, 1987). As a major factor in 

the phytoplankton growth in freshwater bodies, high temperatures due to climate change have 

also been noted to lead to changes in community structure (Paul, 2008). Water temperature is 

also essential because phytoplankton growth rates are highly affected by water temperature. 

Phytoplankton is affected by water temperature directly by impacting the physiology and 

metabolic rates, and indirectly by its aquatic growth environment (Naselli–Flores et al. 2020). 

Phytoplankton can grow much faster in warmer waters than in cold waters. Increased water 

temperatures associated with global climate change are also likely to trigger phytoplankton 

shifts. Water temperature also influences the viscosity and water density, thus directly 

influencing the rate of sinking of small, suspended particles such as phytoplankton (Oberholster 

et al. 2013). 

 

Phytoplankton biomass of reservoir in warmer tropical climate shares a biological unit which 

present the patterns of seasonal variation, in both cooler and warmer climates (Roelke et al. 

2004). As global temperature increases, this tends to change the seasonality and precipitation 

around the reservoirs (IPCC, 2013). According to Moss et al. (2011), temperature will increase 

significantly, and this will affect water availability, quality, agricultural production and 

economies, and ecosystems.  
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2.6.2 pH 

Phytoplankton finds their optimal growing conditions between 7.4 and 8.0 pH range. 

Phytoplankton can adapt in acidic surroundings, but their rate of development is impacted as 

their surrounding environment becomes more acidic (Rai and Rajashekar, 2014). 

Phytoplankton abundance increases in reservoirs when the pH is lowered, however, the 

phytoplankton abundance is expected to decrease when the pH is increased. Phytoplankton 

biomass is tolerant to pH, but when the water is more alkaline, this can reduce their growth as 

this was noted when pH exceeds 9.5 (Pendersen, 2003). Studies have shown that water 

contaminated generally have high pH which have negative effects on phytoplankton 

abundances (Leo and Dekkar, 2000). 

 

2.6.3 Oxidation reduction potential (ORP) 

Oxidation reduction potential measures the potential of lakes to purify itself or break down 

waste products. Phytoplankton usually grow within the range of 200 to 250 mV. Therefore, the 

higher the ORP value the healthier the reservoir, and there is lots of oxygen present in the water 

(Horne and Goldman 1994). ORP is measured in addition to dissolved oxygen because ORP 

can provide information on water quality and the degree of pollution in the water. Studies have 

shown that ORP depend on the amount of dissolve oxygen in the water as well as other 

elements that function similar to ORP. Additionally, when ORP is low, dissolve oxygen is low, 

this can be resulted because of sewage input and anthropogenic activities closer to the shoreline 

(Lopez et al., 2008).  

 

2.6.4 Total dissolved solids and electrical conductivity (EC) 
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Total dissolved solids (TDS) occur naturally in aquatic ecosystems and also as a result of 

human activities. The TDS may come from a variety of natural and human–made sources. For 

example, mineral springs have high total dissolved solids due to high salt content from 

underground rocks. Human activities such as agricultural pesticides and urban runoff may bring 

excessive minerals to water bodies (Stensel, 2004). The TDS is also an important water 

chemical parameter primarily indicating the existence of different minerals including, 

ammonia, nitrate, nitrite, phosphate, alkaline, acids in dissolved forms (Rahman et al. 2012). 

The concentration of TDS in water has been one of the important features in water quality with 

values ranging from 0 to 250 mg/L (Dallas and Day (2004). Most freshwater bodies have 

conductivity values ranging from 1 to 100 µS/cm (Chapman and Kimstach, 1996). According 

to South African domestic water quality guidelines (DWAF, 1996b), there are no reports of 

health, aesthetic and/or therapeutic risk associated with conductivity ranging from 0 to 70 

µS/cm. 

 

2.6.5 Salinity 

Salinity is a total inorganic ion concentration and essential environmental factor that influence 

species growth such as algae in the water ecosystem. Salinity has been confirmed as a strong 

determinant of phytoplankton by demonstrating the importance of nutrients supply Galloway 

and Winder (2015). Salinity concentrations in estuaries vary spatially and temporally, 

reflecting to relative inputs from the watershed and tidal water intrusion. Salinity has been 

suggested as a controlling factor of phytoplankton growth in freshwater (Baek et al. 2015). 

Salinity has been linked to phytoplankton diversity within the water ecosystem. Increased 

salinity reduces the rate of net carbon fixation in estuaries (Moisander et al. 2015). The 

tolerance of salinity determines how long phytoplankton will survive in tropical fresh 

water/marine ecosystem. Phytoplankton tolerate ranges of salinity values exceeding 7.5 PSU. 
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2.6.6 Resistivity 

Formation water is the free water which supplies the energy for the water drive in reservoirs; 

and its resistivity is variable depending on the salinity, temperature and whether or not the 

formation contains hydrocarbons (Ushie, 2001). The electrical resistivity of a material is a 

number describing how much that material resists the flow of electricity. Resistivity is 

measured in units of ohm meters (Ω m). If electricity can flow easily through a material, that 

material has low resistivity. If electricity has great difficulty flowing through a material, that 

material has high resistivity (Heaney, 2003). The electrical resistivity contrasts that exist across 

interfaces of lithologic units in the subsurface are used to delineate discrete geoelectric layers 

and identify aquiferous or non–aquiferous layers (Aweto, 2013).  

 

2.7 Remote sensing and water quality  

Pettorelli (2016) defined remote sensing as a process of detecting and monitoring the physical 

characteristics of an area by measuring its reflected and emitted radiation at a distance. Remote 

sensing can provide water quality data for thousand reservoirs with high spatial and temporal 

resolution (Brando and Dekker, 2003). The assessment of environmental issues is supported 

by remote sensing through improving water quality and detecting phytoplankton biomass 

(Arief, 2017). The use of remote sensing to monitor the water quality is considered promising 

and less expensive (Vapnik, 2000).  

 

Remote sensing tool provides spatial and temporal variation of the surface water quality 

parameters that are not readily accessible from in situ measurements, by enabling the landscape 

to be monitored accurately and efficiently, identifying, and quantifying parameters and 

problems of water quality (Oppelt, 2016). According to Matthews (2011) and Dornhofer and 
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Oppelt (2016), remote sensing can monitor water quality, and is a powerful support tool for 

assessing temporal and spatial variations in water quality of aquatic ecosystems, particularly in 

countries where water quality monitoring programmes are lacking (Concha and Scott, 2016). 

 

To measure water surface temperature in lakes and reservoirs, remote sensing techniques have 

been commonly used (Ritchie, 2000). Several multispectral sensors with high resolutions such 

as Landsat, Sentinel, Moderate Resolution Imaging Spectroradiometer (MODIS), IKONOS, 

Medium Resolution Imaging Spectrometer (MERIS), Landsat TM and ETM+, Satellite pour 

l`observation de laTerre (SPOT), have been effectively used in large areas to estimate water 

quality variables of inland waters, including water surface temperature, water clarity, chl–a and 

total suspended solids (Ekercin, 2007; Blondeau–Patissier et al. 2014). 

 

2.8 Multispectral sensors used in water quality monitoring 

2.8.1 Landsat 7 Enhance Thematic Mapper Plus (ETM+) 

Landsat series of satellites provides a data source for mapping and monitoring the surface. The 

Landsat sensors include the Landsat 7 which is equipped with ETM+ (Enhanced Thematic 

Mapper Plus) provides a ground survey in four modes: visible near infrared (VNIR), shortwave 

infrared (SWIR), panchromatic range, thermal infrared range. Landsat 7 ETM+ was launched 

on 15 April 1999 with a high spatial resolution of 30 m and visible through middle infrared 

channels and 120 m for thermal infrared band (Loveland and Dwyer, 2012). This has been 

widely used to estimate water quality parameters such as chlorophyll–a (Han and Jordan, 

2005). Landsat 7 is still being operated in orbit for data collection, although the sensors have 

exceeded the expected service time and always readily experienced malfunction. The ETM + 

sensor has the same set of bands as the TM sensor but adds a 60 m thermal band and a 15 m 

panchromatic bands. To calibrate algorithms and minimise errors, nearly simultaneous ground 
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observations are required when estimating water quality characteristics from Landsat data 

(Brezonik et al. 2005). The satellite carries the enhance thematic mapper. 

 

Landsat 7 is good but the scan–line corrector (SLC) for the ETM+ sensor on board the satellite 

failed permanently on 31 May 2003. Efforts to recover the SLC was not successful, and this 

make the sensor line of sight trace to be a zig zag pattern along the satellite ground track. This 

also causes the image area to be duplicated with a width that increases towards the edge of the 

scene. When the Level–1 data are processed, the duplicated areas are removed, leaving data 

gaps (USGS and NASA, 2003). The SCL expressed the results in about 22 % pixels of the 

images that are unscanned. Therefore, the failure of the SLC (also known as the SLC–off 

problem) makes it difficult to use the Landsat 7 ETM+ data, while SCL also compensate for 

the forward motion. Under the abnormal circumstances, without an operating SLC on images, 

the wedge–shaped gaps that range from a single pixel in the width near nadir point for about 

12 pixels found towards the edges of the scene (Pringle et al. 2009). Fortunately, the SLC–off 

has not been affected by the radiometric and geometric quality of the sensor. Approximately 

80 % of the pixels in each image are being scanned (The USGS and National Aeronautics 

Space Administration [NASA], 2003). 

 

2.8.2 Landsat 8 Operation Land Imager (OLI) 

Landsat is the longest operating enterprise for satellite imagery acquisition of the earth (He et 

al. 2012; Dai et al. 2017). Among several satellite systems used to monitor water quality, the 

Landsat system offers a high coverage of the Earth's surface status and dynamics, is especially 

useful for the assessment of inland lakes and reservoirs (Kloiber et al. 2002b; Matthews, 2010; 

Chao Rodríguez et al., 2014). Landsat 8 operational land imager (OLI) was launched in 2013 
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with a high spatial and spectral resolution with the ability to detect and map water quality 

variables (Pahlevan et al. 2014; Franz et al. 2015).  

 

The OLI has the enhancement capabilities of 30 m spatial resolution in the visible and near–

infrared bands, and additional red–edge bands that allow the sensor to absorb very low 

chlorophyll–a concentrations. This has also allowed human impacts to be mapped from space 

such as quarrying (Barnes et al. 2015) and offshore construction to be resolved (Vanhellemont 

and Ruddick, 2014). 

 

As a result of the high spatial resolution and atmospheric correction using shortwave–infrared 

bands, turbid rivers have been studied in more detail (Giardino et al. 2014; Ruddick et al.  

2006), and various optically active constituents have also been retrieved. The key objective is 

to obtain features of surface temperature, heat and moisture transfer process in agriculture and 

water management (Concha and Schott, 2016). The water presents obstacles to monitoring 

systems for both in situ and remote sensing (Vanhellemont and Ruddick, 2016).  

 

2.9 Previous studies on using remote sensing on monitoring water bodies 

2.9.1 MODIS 

The launch of Moderate Resolution Imaging Spectroradiometer (MODIS) was in 2002. The 

variation of spatial resolution of (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km) 

MODIS comes with 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm because 

of their spatial and temporal resolution are suitable for monitoring water turbidity (Lillesand, 

2002). MODIS is a powerful imaging sensor, installed on two satellite platforms; Terra and 

Aqua launched in 1999 and 2002 respectively (Chen et al. 2015). 
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The orbits of Terra and Aqua satellites are designed revisit any location on the earth’s surface 

approximately every 1 to 2 days, which means that temporal resolution of MODIS imagery is 

very suitable for spatiotemporal studies (Hou et al. 2017). Each MODIS image consists of 36 

image bands that range from 400 to 14 400 nm wavelength and 250 to 1 000 m in spatial 

resolution. The Land Processes Distributed Active Archive Center (LP DAAC) is an agency 

that processes, archives, and distributes 68 different data items from MODIS data, such as 

surface reflectance, surface temperature and vegetation index (https://www.Ipdaac.usgs.gov; 

Doxaran et al. 2009).  

 

Surface reflectance products are useful in extremely turbid water bodies because water is a 

strong reflector of the sun's radiation (Petus et al. 2014). The MYD09GQ image of Band 1 has 

spatial resolution of 250 m with a temporal resolution of 1 day and a wavelength centred at 645 

nm. The reflectance of wavelength is susceptible to mineral suspended matters and water 

turbidity (Bowers et al. 2007). The estimation of chl-a concentration in waters with spectral 

algorithm based on reflectance in the near-infrared (NIR) (Dall`Olmo et al., 2005). Using the 

reflectance data collected in the field with spectrometers, Dall`Olmo and Gitelson (2005) 

demonstrated that NIR and Red models given by three band NIR-Red model to give an accurate 

estimation of chl-a concentration for inland water bodies with the wide range of bio-physical 

and optical characteristics. The model has shown that NIR-Red models works well with 

waveband location and width to match the waveband of MODIS. 

 

2.9.2 IKONOS 

The amount of solar radiation transmitted by surface water at different wavelength is measured 

by remote sensing satellite, while the optical properties of water in this procedure depend on 

the concentration and character of the water quality parameters (Bilge et al. 2003). The water 
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quality is correlated to in situ measurements and measured by solar radiation. The IKONOS 

satellite was successfully launched in 1999 as the first commercially available high resolution 

satellite sensor determined by water quality monitoring studies (Thenkabail et al. 2003).    The 

spectral range of multispectral IKONOS imagery with high spatial resolution makes the sensors 

ideal for monitoring water quality. By observing the ratio of blue to red light in the satellite 

results, IKONOS is a false colour satellite that shows the water clarity and consistency of the 

reservoir (Arango and Nairn, 2019), by observing the blue to red light ratio in the satellite 

results. This indicates that the reservoir has high water quality because the amount of blue light 

reflected off the reservoir is high and red light is low. Therefore, algae and sediment loaded 

reservoirs show less blue light and more red light (Ozesmi and Bauer, 2002). IKONOS can 

capture 0.82 panchromatic resolution of 3.2 m multispectral, near–infrared (NIR) at nadir. In 

order to determine the water quality of water sources, a higher resolution satellite is needed. 

IKONOS's capabilities include recording a 0.82 panchromatic resolution of 3.2 m 

multispectral, near–infrared (NIR) at nadir. Four multispectral bands of IKONOS imagery are 

comparable to Landsat/TM bands 1–4 and high (4 m multispectral bands to 1 m panchromatic) 

spatial resolution by compiling the imagery to be a good candidate for applying previous 

methods to assess smaller lakes and reservoirs (LI., 2004). The algorithm to determine chl-a 

concentration in inland water were developed through simple linear regression analysis. 

Surface reflectance of each band and chl-a concentration values at a specific sampling point 

were regressed. The reflectance of all bands were selected to be independent for each value to 

form a relationship with reflectance by showing high coefficient of determination (R2) (He et 

al.2008). 
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2.9.3 SPOT 

Satellite pour l`observation de la terre (SPOT) images is characterised by three bands, near–

infrared, red, and green light that are applied to detect water quality i.e., chl–a density, disk 

depth and total phosphorus density. The SPOT multifrequency images have a ground resolution 

of 20 × 20 m2 and a panchromatic background resolution of 10 × 10m2 (Yang et al., 2000). To 

estimate phytoplankton growth and respiration rates, SPOT imagery is also applied to water 

quality monitoring of reservoirs. Usage of sensing data from SPOT and Landsat TM, in situ 

data and quality of water. 

In the previous studies Semi imperial algorithm was deployed to estimate chl-a concentration 

in inland water bodies. These has shown a close relationship between chl-a concentration and 

Red-NIR ratios that estimate chl-a in reservoirs. Evidence shows that the 3D model could be 

employed to derive chl-a concentration in reservoir. the 3D modelrelates to chl-a pigments to 

reflectance in the spectral bands where ℷ1 is in the red range (670nm) ℷ2 should be in the range 

between 700-710 nm and ℷ3 should be in the NIR between 700-750 nm ( Gitelson and 

Dall`Olmo, 2006). 

 

2.10 Spatial interpolation in water quality parameters analysis 

The distribution of spatio–temporal of both physical and socio–economic occurrence can be 

estimated depending on the location of the multi–dimensional space, multivariate scalar, and 

vector fields (Neisi et al. 2018). Typical examples of multivariate fields are water, soil 

properties, population densities, and fluxes of organic matter, therefore most of these fields are 

characterised with measured data or digitised point data that are often distributed irregularly in 

space and time, visualization, modelling, and analysis based on raster representation in GIS. 

Moreover, various phenomena in the fields can be measured using remote sensing and site 
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sampling (In–situ) leading to heterogenous datasets with a various digital representation and 

resolutions that need to be combined to create a single spatial model (Abbasnia et al. 2018).  

 

The predicted values of spatial phenomena in unsampled locations were developed using with 

interpolation and approximation methods. The application of GIS in these methods were 

designed to support the transformation of different discrete and continuous representation of 

spatio–temporal fields for the transformation of different raster resolution. The modelled data 

are very complex in the application of GIS, while data are spatially heterogenous based on the 

optimal sampling and the significant noise that can be present (Lotfi, 2014). The dataset can be 

very large with different accuracies that have originated from different sources. The reliable 

interpolation tool should be able to satisfy different demands suitable for the applications of 

GIS. Spatial interpolation methods are frequently used to estimate values of the physical and 

chemical constituents in an area where they are not measured. Therefore, this can relatively 

investigate the performance of difference interpolation methods in the water environment 

(Belkhiri et al. 2014).  

 

In recent years, with the increased number of physical and chemical water quality variables in 

the water environments and a broad scope geostatistical method are now utilized for a proper 

analysis and interpretation of information. Therefore, many researchers are concentrating more 

on the evaluation of spatial distribution of water quality using various statistical methods 

(Guettaf et al. 2014). Geostatistical methods are a helpful tool for analysing the structure of 

spatial variability, interpolating between point observations and creating the map of 

interpolated values with an associated error map. A few investigations have detailed that water 

quality is by and large described by a critical spatial variety. This proposes that geostatistical 

strategies, which are explicitly ready to join the spatial variability of water quality into the 
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estimated processes the aught to be utilized. Nowadays, different geostatistical techniques 

methods are broadly used for the spatial variation of water quality (Nazari Zade et al. 2006). 

In GIS, there are three spatial interpolation methods (i) inverse distance weighting (IDW), (ii) 

ordinary kriging, and (iii) a universal kriging method that incorporate the output from the 

process–based water quality model that can be applied on surface water quality parameters 

such as temperature, salinity, chl–a, turbidity, pH, and total suspended solids to compare the 

analysis from different seasons (Zhou et al. 2014). 

 

2.10.1 Kriging 

Kriging is a stochastic technique like IDW and uses a linear combination of weights in the 

known locations to assess the data values of an unknown location. Variogram is an important 

input in kriging interpolation by measuring the spatial correlation between two points. Weights 

will vary depending on the spatial arrangement of the samples when using established 

variograms (Bekele et al. 2003). Kriging has the advantage of providing a measure of error or 

uncertainty of the estimated surface in addition to the estimated surface. The disadvantage 

requires a significantly and more processing time and user feedback when compared to IDW 

and spline (Longley et al. 2005). 

 

Bekele (2003) compared IDW and kriging spatial interpolation discovered that kriging 

outperformed IDW in most cases, and came into conclusion that a regression–based 

autocorrelated error model was a more versatile form of interpolation in general. These is 

relatively more stable because is less dependent on the spatial structure. Kriging is one of 

geostatistical interpolation techniques that has a several number of variations, including simple 

kriging, ordinary kriging, co–kriging, stratified kriging, and non–linear kriging, with ordinary 
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kriging used most frequently to map water quality variables and commonly applied in 

estimating spatial distribution of variables (Brus and Heuvelink, 2014). 

 

2.10.2 Spline 

Spline is a deterministic method that represents a two–dimensional curve on three–dimensional 

surfaces. This can be described as a mathematical function of fitting a flexible surface across a 

series of known points. Therefore, a major advantage of spline is being able to build reasonably 

consistent and visually pleasing surfaces with just a few sample points. The disadvantages are 

that the resultant surface that varies from the input data set in terms of minimum and maximum 

values are sensitive to outliers, and that there is no indication of errors (Longley et al. 2005). 

 

Lasllet et al. (1987) found that, though each method could outperform the others in some 

circumstances, spline, and kriging outperformed IDW on average. Robinson and Metternicht 

(2006) have compared spline, kriging and IDW interpolation methods on water quality and 

found that, there was no approach that could be used in all cases. However, Simpson and Wu 

(2014) reported that when interpolating reservoir depth, comparison of IDW, kriging, and 

spline, was found that spline obtained the most accurate results with less than the ideal number 

of sampled points. 

 

2.10.3 Inverse distance weighting (IDW) 

Inverse distance weighting is one of the least complex and promptly accessible strategies in 

geo–statistical interpolation. Therefore, IDW depend on the assumptions of the value at an 

unsampled point that can be approximated as a weighted average of values at a point within a 

certain cut off distance (Shukla et al. 2020). This is because Inverse Distance Weighted 

interpolation (IDW) assumes that the closer the sample point is to the cell with the value is to 
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be estimated, the more intently the cell’s value will resemble the sample point’s value (ESRI, 

2005).  

 

The principle underlying IDW is the Waldo Tobler’s first law of geography which states that 

“everything is related to everything else, but near things are more related than distant things” 

IDW uses linear combination of weights at known points to estimate unknown location values. 

The IDW is easier than Kriging, yet a few investigations showed that this outperformed the last 

mentioned, therefore, IDW can also handle parameters that are not normally distributed 

(Hodam et al. 2017). The advantage of IDW is intuitive and effective and this works best with 

uniformly distributed points and is sensitive to outliers. While the disadvantage of IDW is 

sensitive to outliners and that they are no indications of error. The unevenly distributed data 

brings out the results of introduced errors (Sapna et al. 2018). According to Schloeder et al. 

(2001), the IDW, kriging, and spline spatial interpolation methods has concluded that IDW and 

kriging performed similarly, and both are more precise than spline interpolation method. 

 

2.11 Land use and land cover implication on water quality using remote sensing 

Land use land cover (LULC) are two separate terms that are used interchangeably. Land cover 

is defined as a physical feature of earth`s surface including vegetation, water, soil, and other 

physical features created by human activities such as settlements, while land use refers to land 

used by human beings for residential and economic activities (Rawat and Kumar, 2015). Land 

use land cover pattern depend on human usage related to natural and socioeconomic 

development over space and time. Shifting into possibility of negative impact of Land Use for 

social activities affecting land cover changes, especially in relation to biodiversity and water 

(Khan et al. 2015; Olusola et al. 2018). 
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These changes are applied to only one main factor in terms of size and pattern, namely, 

population growth. Population growth contributes directly and indirectly to changes in LULC, 

especially from the point of view of demand for built-up area in agricultural activities, and 

water resources. Ecological experts are interested in how LULC changes affect biodiversity 

and aquatic ecosystems. Changes in land cover in the watershed will affect water quality, 

resulting to increased surface runoff, reduced groundwater discharge, and transfer of pollutants 

(Butt et al. 2015). Therefore, land use land cover information at the watershed level is important 

for the selection, planning, monitoring, and management of water resource so that changes in 

land use respond to the increasing demand of human needs and welfare without compromising 

water quality. Land use land cover changes in the watershed area due to urbanization and 

deforestation will continuously have a negative impact on water quality and indirectly affect 

the nature of the watershed ecosystem. Therefore, understanding of the spatial and temporal 

variations occurring in the watershed over time as well as explaining the interactions between 

hydrological components of the watershed which enable the development of good water 

conservation strategies (Matshakeni, 2016; Nabeela et al. 2014). 

 

Remote sensing has been widely used to classify and map LULC changes with different 

techniques and data sets, such as Landsat images that provide better classification of different 

landscape components at a large scale (Hansen and Loveland 2012). Several changes of 

detection techniques have been developed in remote sensing images with debate over 

advantages and disadvantages of each technique. These includes unsupervised classification or 

clustering, supervised classification techniques applied on LULC changes. Various 

classification techniques have been proposed, and supervised classification methods were 
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considered as favorable for change detection analysis. In recent studies, researchers have 

applied supervised classification for several LULC change (Mahmud and Achide, 2012). 
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CHAPTER THREE: MATERIALS AND METHODS 
 

3.1 Study area  

Nandoni reservoir (22°59’20”S 30°36’27”E) is located on the Luvuvhu River approximately 

16 km southeast of Thohoyandou, Limpopo Province, South Africa (Fig. 1). The surface area 

of the reservoir is 1 650 ha and is located in a humid and hot region with summer rainfall. The 

mean annual rainfall in the catchment is 800 mm. The general absence of buffer vegetation 

along inlets, streams, and the reservoir intensify the threats to Nandoni reservoir's water quality 

(Dalu et al. 2019). The reservoir was established by the Department of water and Affairs and 

Forestry in 2005 to upgrade the former Mutoti reservoir. The reservoir was completed in 2009 

and the water carrying capacity is estimated at 164 million m3 (DWARF, 2004b) and catchment 

area is 1380 km2.  

 

The reservoir was designed to supply water to 1.3 million people in the Vhembe and Mopani 

Districts. Nandoni reservoir releases water downstream to supply water for wildlife in the 

Kruger National Park. Along the shorelines of Nandoni reservoir, there are four villages with 

poor service delivery and extreme poverty. The reservoir is extremely important to the 

surrounding communities in terms of ecology, culture, and economics. Three zones where 

randomly selected across the reservoir: river zone (sites 23–26), middle zone (sites 11–22) and 

dam zone (sites 1–10). Survey was conducted over hot–wet season (December 2020). 
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Fig. 1. The map showing the location of the study sites in Nandoni Reservoir, South Africa 

 

Samples were collected from the 3rd to 5th of December 2020 under clear skies between 9:00 

am and 12 PM, so that diurnal changes and water quality can be controlled. The collection of 

water samples on the first sampling day were conducted for sites 1–10, second day water 

samples were collected from sites 11–22, and the third sampling day for sites 23–26.  

 

3.2 In–situ physico–chemical measurement and water collection for chlorophyll–a 

concentration  

A boat was used to collect water samples for chlorophyll–a concentration determination and 

for in–situ measurement of physico–chemical parameters along the reservoir entire length 

across the 26 randomly selected sites. Temperature (°C), pH, electrical conductivity (µS/cm), 

total dissolved solids (TDS; ppm), resistance (Ω), oxidation–reduction potential (mV) and 
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salinity (ppm) were measured in situ at all sites using portable handheld PCTestr 35 multi–

parameter probe (Eutech / Oakton Instruments). 

 

Water samples for chlorophyll–a concentration analysis were collected using 1 litre Consol 

glass bottles. Integrated water samples (n = 2 per site) from the aquatic ecosystem were taken 

below the surface, by directly holding the bottle into the water at a depth of 30 cm below the 

surface. Extreme care with the water sample bottles were taken to ensure that no air bubble was 

left inside. All bottles were marked with the site number after the collection. The samples were 

stored in a cooler box on ice before being taken to the laboratory for further analysis.  

 

3.3 Chlorophyll–a concentration analysis 

The chl–a concentration can also be used to estimate phytoplankton biomass in aquatic 

ecosystems (Shen et al. 2008). Chlorophyll–a measurements in the laboratory were done to 

give a proxy of the phytoplankton biomass present in the water. In the laboratory, 250 mL of 

sampled water were filtered through 0.07 µm glass fibre filter (GF/F). Each filter paper was 

folded into quarters and wrapped in aluminium foil and place them in the dark, to protect the 

extracts from the light. To these, 10 mL of 90 % acetone was added to each filter paper removed 

from aluminium foil in centrifuge tubes to determine the total chl–a concentration as described 

in Dalu et al. (2013b) and incubated immediately for 24 hours at –20 °C in the freezer to wait 

for the analysis in the laboratory. After 24 hours, the extract was filtered to remove any 

materials in suspension. Chlorophyll–a concentration were determined by using 

spectrophotometry method which involves the use of spectrophotometer analysis, where the 

absorbance of the processed samples was recorded at selected wavelengths of 665 nm and 750 

nm following the protocol of Strickland and Parsons (1960) for calculating chl–a concentration 

(Almomani et al. 2018). The 1 mL of chl–a samples were filled in a disposable semi–micro 
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cuvette for the analysis of chl–a fluorescence in a SPECTROstar NANO (BMG Labtech 

GmbH, Ortenberg) to measure the spectrum absorbance of chl–a concentration in the water 

samples using the same selected wavelength of 665 nm and 750 nm to determine before and 

after of chl–a concentration in all water samples. 

 

3.4 Physico–chemical parameters trend analysis using GIS 

In this project, geo–statistical analysis was used to analyse water quality parameters in ArcGIS 

being employed to generate surface prediction maps for different values of the water quality 

parameters. The geostatistical analysis tool allows for the selection of different kriging 

methods, however in this project ordinary kriging was used. Ordinary kriging method was used 

to monitor the reservoir water quality. Therefore, this recommends the most reasonable focuses 

for finding the observing stations along the reservoir, considering the Kriging estimation errors 

(estimation variances) for the parts of the water quality variables (Murphy et al. 2010). The 

different values of the water quality parameters sum up to a unity, and by using a subset of 

neighbouring points to produce an interpolation. 

 

3.5 Remote sensing Imagery Acquisition and pre–processing 

Landsat–7 Enhanced Thematic Mapper Plus (ETM +) and 8 Operational Land Imager (OLI) 

datasets were used in this study. Images from 2008-2019 were acquired to compare the spatial 

distribution of chl-a with the year 2020 over Nandoni Reservoir. 

3.5.1 Landsat 7 ETM+ 

Landsat 7 ETM+ has the potential to estimate water quality variables in water ecosystems 

(Torbick, 2008). Six medium spatial resolution (30 m) images were acquired from Landsat 

ETM+ over Nandoni Reservoir for the year 2008–2012 (see Table 1 for acquisition dates) to 

derive chlorophyll–a from the selected sites. Images were acquired under clear sky condition. 
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In addition, Landsat ETM+ includes seven multi–spectral bands with 30 m spatial resolution 

for all bands except band 6 with a thermal infrared band (TIR) of 60 spatial resolution and 15 

m panchromatic band which covers 0.52–0.90 µm. All acquired images for different years for 

scenes: row 074 and path 169 were freely obtained from the United State Geological Survey 

(https://earthexplorer.usgs.gov). Images with cloud cover of approximately 75 % were 

excluded over the reservoir to ensure the accurate retrieval of chlorophyll–a concentration 

(Ndungu et al. 2013). Images acquired from ETM+ were atmospherically corrected. All images 

acquired from Landsat ETM+ were used to represent chl–a distribution within the reservoir. 

 

3.5.2 Landsat 8 OLI 

Eight cloud free images were downloaded for wet and dry season and were used for analysis 

in the current study. The image characteristics include the acquisition time, cloud coverage, 

path/row, and spatial resolution (Table 1). All standard Landsat 8 surface reflectance products 

were acquired from USGS Earth Explorer data portal (https://earthexplorer.usgs.gov). Data 

was retrieved at 30 m spatial resolution through using Landsat surface reflectance where the 

satellite overpasses the reservoir. Landsat OLI data were acquired as a source to estimate chl–

a concentration within Nandoni reservoir. Eight images for hot–dry and cool–dry season were 

used to detect chl–a which covers Nandoni reservoir. These images were chosen based on the 

availability of data on in situ water quality, and cloud–free conditions. The parameter used in 

this study was chl–a that was obtained from the reflectance data of Landsat 8 OLI images. The 

acquired images were used to represent the distribution of chl–a variables. Images provided by 

the USGS for Landsat OLI were in digital number format (DN) for chl–a to be derived to 

calibrate the acquired images of top–of–atmosphere spectral radiance units that were based on 

the algorithm (Finn et al. 2012). 

Table 1: Landsat specification of the satellite data used in the current study 

https://earthexplorer.usgs.gov/
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Sensor Band names Ground 
sampling 
distance 
(km) 

Acquisition 
date 

Spectral 
resolution 

Atmospheri
c condition 

Landsat 7 

ETM+ 

Red, blue, green, NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2008–07–27 30m Clear 

condition 

Landsat 7 

ETM+ 

Red, blue, green NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2008–08–28 30m Clear 

condition 

Landsat 7 

ETM+ 

Blue, green, Red, NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2010–08–08 30m Clear 

condition 

Landsat 7 

ETM+ 

Blue, Green, Red, NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2010–12–24 30m Clear 

condition 

Landsat 7 

ETM+ 

Blue, Green, Red, NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2012–05–19 30m Clear 

condition 

Landsat 7 

ETM+ 

Blue, green, Red, NIR, 

SWIR1,Thermal,SWIR2, 

Panchromatic 

15 2012–09–24 30m Clear 

condition 

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2014–06–18 30m Clear 

condition 

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2014–11–09 30m Clear 

condition  

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2016–07–09 30m Clear 

condition 

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2016–11–30 30m Clear 

condition  
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Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2018–05–12 30m Clear 

condition 

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2018–11–04 30m Clear 

condition  

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2020–06–02 30m Clear 

condition 

Landsat 8 OLI Coastal, Blue, Green, 

Red, NIR, SWIR 1, SWIR 

2, Pan 

30 2020–12–11 30m Clear 

condition 

 

3.6 Estimation of chlorophyll–a concentration from Landsat data 

The processing of Landsat 8 OLI and 7 ETM+ was done using ENVI 5.1 and ARCGIS 10.7 

software for cropping and algorithm input of images. Cropping was used to reduce image 

coverage in accordance with the study area. The algorithm was used on the coefficient provided 

with the dataset in a GIS environment to convert the reflectance value of images into chl–a 

concentration values based on ITTVIS (2009). Landsat 7 ETM+ and 8 OLI visible (VIS) and 

near infrared (NIR) spectral bands were used to retrieve chl–a over Nandoni reservoir. The 

ENVI 5.1 software was used to process radiometric correction and calibration, cropping and 

algorithm input on the chl–a raster image. To convert image pixels into reflectance values, 

radiometric calibration was used. Sun angle corrections are performed to correct error 

reflectance values caused by sun positioning. However, surface reflectance data were obtained 

by applying atmospheric correction with fast line-of-sight atmospheric analysis of hypercubes 

(FLAASH) algorithm (ENVI, 2009). 

 

 The ArcGIS 10.7 was used to perform the data image validation and classification after the 

raster data was created (Roy et al. 2014). The data processing using ArcGIS software was used 
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to produce the distribution of chl–a map. All ETM+ images acquired for this study, from 2008 

to 2012 with Scan Line Corrector (SLC) due to instrument problems and resulted to stripping 

(no data) across the imagery were de–stripped using QGIS 3.16 version software as a corrector 

tool (Wang et al. 2006). All images were corrected and calibrated and later converted according 

to chl–a concentration values. The reason to used gap–filling or de–stripping on Landsat ETM+ 

archives was to analyse the trend of chl–a in the reservoir. The spectral bands at 663 and 885 

nm were used for extracting chl–a concentration from remotely observed reflectance 

measurements since this is where chl–a absorption was maximum.  

 

3.7 Land use and land cover analysis using GIS 

Supervised and unsupervised classification methods were adopted. Therefore, unsupervised 

classification algorithm was used to have an idea on land use and land cover cluster pixels. 

Supervised classification was used with the maximum classification approach. These 

algorithms they consider spectral variation within each category and covering different classes 

of land use and land cover (Rawat et al. 2015).  

Land use land cover classified files used, were downloaded from the Department of 

Environmental Affairs (http://egis.environment.gov.za/gis_data_downloads), and then 

imported to ArcGIS 10.7 where composite maps were produced and show land use and land 

cover of Nandoni reservoir. Student t–test of Land use and Land cover was carried out using 

EXLSTAT to test hypothesis from normally distributed population.   

 

3.8 Data analysis  

3.8.1 Physiochemical variables 

The assessment of water physico–chemical composition was based on the set of data consisting 

of 7 water quality variables measured in Nandoni reservoir. The analysis of the physico–
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chemical variables among sampling sites and zones was carried out using One–way ANOVA 

to determine the significance results of physico–chemical variable in reservoir zones, using 

SPSS 21.0 software (SPSS Inc. 2017). Prior to data analysis, a non–parametric test, Kruskal–

Wallis test was conducted to test the spatial distribution of in–situ chl–a concentration between 

sampling zones.  

Pearson correlation was conducted to test the relationship that existed between chl–a and 

physico–chemical variables. The unsupervised analysis of in situ chl–a concentration was 

conducted to test similarities and dissimilarities of the chl–a concentration among sampling 

sites using cluster analysis with the Euclidean distance as a measure to determine spatial trends 

of the variables across the reservoir. Sampling sites with similar characteristics were grouped 

together to form homogeneous clusters (Kazi et al. 2009). 

 

3.8.3 Remote sensing data analysis of chlorophyll–a concentration 

In estimating chl–a concentration from reflectance value, spectral bands 445 and 665nm are 

very crucial, because that is where chl–a absorption is at peak, while the lowest chl–a 

absorption is found at 520 and 550nm (Dube, 2012; Dube et al. 2014). Based on this 

knowledge, this study employed the most popular chlorophyll–a estimation method (Buditama 

et al. 2017) to derive chl–a estimates over Nandoni reservoir from Landsat 7 ETM+ and 

Landsat 8 OLI images.            



The following equation was used to extract chlorophyll–a concentration from both satellite 

images. 

 

Log Chl–a = (2.41*NIR/RED) + 0.187………………………………………………Equation 1 

 



38 

Log Chl–a = (2.41*NIR/RED) + 0.187      Equation2  

Where log = logarithm, chl-a = chlorophyll-a, B4=RED, B5=NIR and B3=RED, B4=NIR 

 

After employing the above algorithm an output was created on ArcGIS with Logarithm spectral 

reflectance values. However, an anti- logarithm has to be introduced in order to remove the 

logarithm on the processed images to derive accurate chl-a concentration values instead of 

Logarithmic chl-a estimate 

 

The following equation was used to calculate chlorophyll–a concentration in water samples. 

 

Chlorophyll–a = 11.4×2,43(𝐸𝐸665−𝐸𝐸𝐸𝐸750)−(𝐸𝐸665−𝐸𝐸750)×𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝐿𝐿×𝑉𝑉𝑉𝑉

    Equation 3 

Where 𝐸𝐸wavelength = absorbance at wavelength, 𝑉𝑉acetone = volume of acetone used for 

extraction (mL), 𝑉𝑉𝑓𝑓 = volume of water filtered (L), and 𝐿𝐿 =path length of the 

spectrophotometer (cm), Concentrations are in unit µg/L. 

 

3.8.4 Evaluation of remotely sensed derived chl–a estimates 

Chlorophyll–a field measured data was transformed using the log10 (x+1) to meet the 

assumptions of normality and homogenous. Distance based Permutational Analysis of 

Variance (PERMANOVA) was conducted using PRIMER v6 add on package analyse spatial 

and temporal variation of chl–a concentration among the years, months, and zones on 

Euclidean distance. PERMANOVA uses permutation methods to assess the simultaneous 

response of several variables to several factors. Each term was using 9999 random 

permutations. The average dissimilarities of chl–a concentrations were checked for 

homogeneity using the permutation test of multivariate dispersion. (Bowling et al. 2016). 
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Landsat images that have be derived for chl–a concentration was validated using field chl–a 

measurements. The validation was carried out to determine the accuracy of remotely sensed 

chl–a estimates. The relationship between in situ and Landsat imagery were validated by 

counting the Root Mean Square Error (RMSE) between specified sampled data of the image 

processing with in–situ measurement obtained from the field survey. The RMSE uses the 

equation below: 

 

RMSE= �∑(Ζ𝔦𝔦−Ζ𝑗𝑗)
 𝑛𝑛

  ……………………………………………………………Equation 4 

 

Where Zi is Landsat imagery data, Zj is the measured chl–a in situ data and n is the number of 

sampling sites. 
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CHAPTER 4: RESULTS 

 

4.1 Physico–chemical variables 

The distribution of physico–chemical variables measured in Nandoni reservoir during the 

ground–truthing in December 2020 is highlighted in Figure 2. In the river zone, conductivity 

ranged between 273 and 276.7 µS cm–1 (mean 8.09 ± 0.34 µS cm–1), with levels increasing 

towards the middle zone. In the middle zone, conductivity decreased towards the dam zone. 

The mean conductivity values in the middle and dam zones were 8.65 ± 0.06 µS cm–1 and 8.62 

± 0.22 µS cm–1 (Figure 2a; Table 2). The oxygen reduction potential (ORP) was high in a small 

bay in the dam zone, with values in this zone ranging from –96.2 to –101.4 mV. In general, the 

ORP values were relatively low in the river zone, with mean of –71.5 mV (range –59.6 to –

77.8 mV; Figure 2b, Table 2). The salinity was generally high in the river zones (mean 274.9 

± 1.29 ppm) towards the centre of the middle zone, before declining towards the dam zone 

(mean 124.6 ± 3.37 ppm; range 118.0 – 129.3 ppm; Figure 2c). The total dissolved solids (TDS) 

were relatively high from the river zone with values ranging from 137.2 to 141.2 mg L–1 (mean 

139.7 ± 1.4 mg L–1) and decrease towards the small bay in the dam zone with values ranging 

from 41.0 to 50.6 mg L–1 (mean 43.8 ± 2.4 mg L–1; Figure 2d). The pH was relatively high in 

middle zone with values ranging from 8.4 to 8.7 (mean 8.7 ± 0.06) and decline in the river zone 

with values ranging from 7.3 to 9.3 (mean 8.1 ± 0.34) and dam zone (mean 8.62 ± 0.2; Figure 

2e, Table 2). Temperature was high in the middle zone with values ranging from 26.5 to 27.9 

°C (mean 27.1± 0.39 °C). The temperature values in the dam and river zone declined with 

values ranging from 26.7 to 27.9 °C (mean 27.19 ± 0.4 °C) and 24.8 to 25.7 °C (mean 25.2 ± 

0.29 °C; Figure 2f). Resistivity was relatively high in a small bay in the dam zone with values 

ranging from 3.0 to 3.4 Ω (3.3 ± 0.1 Ω) and in the river zone ranging from 3.5 to 3.1 Ω (mean 
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3.6 ± 0.02 Ω). In general, resistivity values declined in the middle zone with (mean 3.3 ± 0.1; 

Figure 2g, Table 2).  

 

Table 2. Mean (± standard deviation) and range of physico–chemical variables in Nandoni 

reservoir for the different zones. Abbreviations: ORP – oxygen reduction potential, TDS – total 

dissolved solids 

Variable Units Dam Zone Middle Zone River Zone 
Mean ± SE Range Mean ± SE Range Mean ± SE Range 

pH 
 

8.62 ± 0.2 7.9 – 8.9 8.7 ± 0.06  8.4 – 8.7 8.1 ± 0.34 7.3 – 9.3 
Temperature °C 27.19 ± 0.4 26.7 – 27.9 27.1 ± 0.39   26.5 – 27.9 25.2 ± 0.29 24.8 – 25.7 
Salinity ppm 124.6 ± 3.4 118.0 – 129.3 133.6 ± 0.9 131.4 – 134.5 134.1 ± 0.8 133.0 – 135.0  
Conductivity µS cm–1 273.4 ± 57.7 28.5 – 292.4 268.1 ± 26.3 144.8 – 276.1 274.9 ± 1.3 273.0 – 276.7 
TDS  mg L–1 43.8 ± 2.4 41.0 – 50.6 149.5 ± 2.5 144.2 – 153.1 139.7 ± 1.4 137.2 – 141.2  
Resistivity Ω 3.3 ± 0.1 3.3 – 3.4 3.3 ± 0.1 3.3 – 3.4 3.6 ± 0.02 3.5 – 3 .1 
ORP mV –99.5 ± 1.4 –101.4 to –96.2 –99.4 ± 1.4 –101.4 to –96.2 –71.5 ± 7.1 –77.8 to –59.6 

 

Using a one–way ANOVA analysis, significant differences were observed for salinity (F = 

104.60, p < 0.001), TDS (F = 1.22, p < 0.001), resistivity (F = 90.44, p < 0.001), and ORP (F 

= 296.47, p < 0.001) among the different reservoir zones, whereas conductivity (F = 0.132, p 

= 0.877) was found to be non–significant. Based on Tukey’s post hoc analysis, non–significant 

differences (p > 0.05) were observed on dam vs middle zones for pH, temperature, and 

resistivity, and middle vs river zones for salinity, and for all zones for conductivity. 
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Figure 2. The distribution of physio–chemical parameters: (a) conductivity, (b) oxygen 

reduction potential (ORP), (c) salinity, (d) total dissolved solids (TDS), (e) pH, (f) temperature 

(temp) and (g) resistivity (res) measured in–situ in December 2020 in Nandoni reservoir 

 

4.2 Land use and land cover variation around Nandoni reservoir environs 

In this study, settlement, agriculture, open and closed savanna, and bare ground were revealed 

as the main land use and land cover type around the Nandoni reservoir. The reservoir 

intermediate catchment area is dominantly occupied by open savanna (37.8 %), with 

settlements constituting 36.0 % of the land use and land cover type (Figure 3). Agriculture 
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occupies (14.1 %) and close savanna (10.0 %) and bare ground (1.5 %) occupies smallest 

portion of the catchment (Figure 3). Student t–statistic has highlighted a non–significant 

difference (t = 2.606, p > 0.05) among the land use and land cover types. 

 

 

 

Figure 3. Land use and land cover variation of Nandoni reservoir. 

 

 

4.3 Chlorophyll–a concentration maps 

4.3.1 Field measured chlorophyll–a concentration 

The distribution of chl–a concentration measured in Nandoni reservoir in December 2020 is 

highlighted in Figure 4. In the dam zone, chl–a concentration was high near the dam wall and 

in a small bay with values ranging from 0.3 to 1.46 µg L–1 and decreased towards the middle 

zone with concentrations ranging from 0.2 to 0.8 µg L–1. Chlorophyll–a concentration was low 



44 

in the river zone with values ranging from 0.2 to 0.6 µg L–1 and also sections of the middle 

zone. Kruskal–Wallis highlighted significant differences (H = 2.978, df = 2, p = 0.014) among 

the reservoir zones. 

 

 

Figure 4. Spatial distribution of in–situ measured chlorophyll–a concentrations from 

Nandoni reservoir, South Africa. 

4.3.2 Relationship between chlorophyll-a concentration and physico-chemical variables. 

Cluster analysis (CA) grouped chl–a concentration from 26 sites sampled in December 2020 

into four clusters. Cluster 1 had site 6, cluster 2 had four sites (sites 23 – 26), cluster 3 had 12 

sites (sites 11 – 22), and cluster 4 included 9 sites (7 – 10, 1 – 5) (Figure 5). Clusters 1 and 4 

consisted of the dam zone sites, cluster 2 consisted of river zone sites and cluster 3 consisted 

of sites from the middle zone of the reservoir.  
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Figure 5. Cluster analysis results for the chlorophyll–a concentration for the field recorded 

values in Nandoni reservoir, South Africa 

 

The relationship that existed between chl–a concentration and physico–chemical variables was 

assessed using the Pearson correlation, with non–significant negative (resistivity: r2 = –0.17, p 

= 0.242; ORP: r2 = –0.14, p = 0.321) and positive (pH: r2 = 0.01, p = 0.941; conductivity: r2 = 

0.17, p = 0.222) relationships being observed for selected physico–chemical and chl–a 

concentrations. Significant positive relationships were observed for water temperature (r2 = –

0.28, p = 0.048) with chl–a concentration, with strong significant negative relationships being 

observed for salinity (r2 = –0.41, p = 0.003) and TDS (r2 = –0.44, p = 0.001) with chl–a 

concentration. 

 

4.3.3 Remotely sensed chlorophyll–a concentration values across seasons and years 

During dry season in the year 2008, chl–a concentration values ranged from 7.0 – 0.5 µg L–1 

in the river zone and low towards the middle and dam zone (Figure 6). In 2010, chl–a 

concentration was high in the river zone with values ranging from 3.8 – 1.3 µg L–1 (Figure 6).  
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In the year 2012, chl–a concentration was high in the river zone with values ranging from 3.5 

to 0.9 µg L–1 and low in the middle and dam zone (Figure 6).  In 2014, concentration values 

were high in the shorelines and river zone ranging from 4.4 – 2.1 µg L–1 and low towards the 

middle zone and dam zone (Figure 6). In 2016, the reservoir was at low capacity during the 

prevailing drought conditions and chl–a concentration declined towards the middle and dam 

zones with values ranging from 4.8 – 2.0 µg L–1 (Figure 6). Concentration values in the year 

2018 was high in a small bay in the river zone with values ranging from 5.9 – 2.1 µg L–1 in and 

concentration declined towards the middle and dam zone (Figure 6). In 2020 the concentration 

values were ranging from 5.1 – 2.2 µg L–1 in the river zone and low in the middle and dam 

zone (Figure 6).  

 

During the wet season in year 2008, chl–a concentration in the reservoir were high ranging 

from 7.0 – 0.5 µg L–1 in the river zone and low in the middle zone moving towards the dam 

zone (Figure 6). In year 2010, chl–a concentration values were high in a small bay in the river 

zone of the reservoir with values ranging from 5.0 to 0.9 µg L–1 and low in the middle zone 

towards the dam zone (Figure 6). In year 2012, chl–a concentration ranged from 4.6 to 0.8 µg 

L–1 in the river zone and low concentrations were recorded in the middle zone and dam zone 

(Figure 6). In the year 2014, chl–a concentration was high in a small bay in the river zone and 

shorelines ranging from 2.3 to 5.3 µg L–1 (Figure 6).  In year 2016, chl–a concentrations were 

low ranging from 2.1 to 4.7 µg L–1 in the river zone increasing towards the middle and dam 

zones (Figure 6). In year 2018, chl–a concentration values were detected in the river zone 

ranging from 2.3 to 6.0 µg L–1 and declined towards the middle zone, concentration also 

increased in the dam zone (Figure 6). In the year 2020, chl–a concentration values were high 

in a small bay in the river zone ranging from 2.2 to 7.0 µg L–1 and low concentrations were 

recorded in the middle and dam zones (Figure 6). 
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Chlorophyll–a concentration significantly varied between the years (F6,364 = 10.57, p < 0.0001), 

seasons (F1,364 = 5.767, p = 0.0170) and zones (F2,364 = 6.843, p = 0.0010). Furthermore, 

significant interaction variation was observed for seasons × year (F6,364 = 94.096, p < 0.0001), 

and year × zones (F12,364 = 5.468, p < 0.0001), with no significant differences being observed 

for seasons × zones (F2,364 = 0.113, p = 0.8930) and seasons × year × zones (F12,364 = 1.118, p 

= 0.3450).  
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Figure 6. Distribution of chlorophyll–a concentration in Nandoni reservoir in Vhembe District, Limpopo province of South Africa
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4.5 Relationship between in–situ and remotely sensed chlorophyll–a concentration 

The estimated results of observed and predicted chl–a concentration of Nandoni reservoir were 

determined in terms of the coefficient of determination (R2), root mean square error (RMSE) and 

RMSE% (Figure 7). The linear regression result showed a strong and positive association between 

the observed and predicted variables with the R2 value of 0.91. The RMSE results showed a 

positive correlation between in–situ data and Landsat derived data with RMSE value of 0.13.  

 

 

Figure 7. Landsat derived and in situ measured chl–a in Nandoni reservoir measured in December 

2020. 
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CHAPTER FIVE: DISCUSSION AND CONCLUSIONS 

 

5. Discussion 

5.1 Temporal variation in physicochemical variables 

The pH range of 7.3– to 9.3 indicated an acceptable range for most aquatic life. However, the 

suggested pH range for phytoplankton optimum growth condition is 7.4– to 8.0 (Rai and 

Rajashekar, 2014). The pH range in the middle reservoir zone had a higher than the suggested 

range suggesting an impact of anthropogenic activities on phytoplankton productivity. The 

temperature ranges from the study area ranged from 24.8 to 27.9 °C, within the acceptable 

temperature range for phytoplankton productivity ranging between 26.5 °C and 27.9 °C was 

recorded in the middle zone towards the dam zone, while the river zone recorded lower values of 

less than 26 °C.  At a temperature of between 26 °C and 35 °C phytoplankton productivity tends 

to be successful (Robarts and Zohary 1987). 

 

5.2 In–situ chlorophyll–a concentration relationship with physicochemical variables 

Chl–a concentration values were recorded in the dam zone with values ranging from 0.10 to 1.46 

µg L–1. This was indicative of the effect of temperature and pH on chl–a concentration. 

Furthermore, it was evident that a positive relationship existed between temperature and pH with 

chl–a concentration. The high salinity values greater than 129.3 ppt at the middle and river zones 

corresponded with high TDS values from the two zones. This suggested an impact of agricultural 

practices along the reservoir catchment and runoff from nearby settlements lead to increased 

salinization of the Nandoni reservoir. Anthropogenic activities such as pesticides that are applied 

in agricultural fields and urban runoff account for excessive nutrients and toxicants in waterbodies 
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(Stensel 2004). However, TDS values from the three zones support the growth of phytoplankton 

and they could have had a negative impact if they were more than 1000 mg L–1 (Pal et al. 2015). 

The same is true about conductivity values for the middle and river zones despite the dam zone 

having recorded a high value of 292.4 µS cm–1.  

 

Conductivity seemed not to have affected the chl–a concentrations since the river and dam zones 

recorded a high average of 273.0 and 273.4 µS cm–1, respectively but chl–a concentrations in the 

two sites differed significantly with the dam zone recording the highest conductivity values. The 

middle zone recorded a mean conductivity value of 268.1 µS cm–1 recorded higher –than the river 

zone. Therefore, high conductivity values seemed not to have had an impact on chl–a 

concentrations and the same can be concluded for resistivity. Therefore, it can also be argued that 

the decreasing chl–a concentrations from the dam to the river zones were positively correlated 

with ORP. This suggested that the chl–a concentration –was at acceptable values and did not affect 

dissolved oxygen content, hence the ORP. The ORP seemed to correspond with an increase in chl–

a concentration suggesting that an increase in phytoplankton densities was correlated to increases 

in redox potential. Kunlasak et al. (2013) similarly noted that phytoplankton is a major source of 

oxygen in fishponds, but uncontrolled phytoplankton growth can become problematic to 

waterbodies. It can therefore be concluded that the chl–a concentrations –in the reservoir were of 

acceptable densities.  

 

5.3 Water quality assessment based on pollutant source 

Land use was studied to determine the impact of water quality in Nandoni reservoir. The present 

study revealed that agriculture and settlements were the main land use and land cover types closer 
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to the reservoir. Settlements play a significant role in determining the water quality of a reservoir. 

Based on literature, land use within the watershed has a significant impact on the reservoir water 

quality and quantity (Khan et al. 2015; Olusola et al. 2018). The shoreline distance from the 

reservoir to the settlement that is at greater than >100 m contributes to microplastics can lead to 

deterioration of water quality, and it was observed that plastic pollution was more associated with 

domestic solids waste. Solid and liquid waste generated from the settlements along the reservoir 

shorelines were deposited into the reservoir, and this slowly affects water quality due to an increase 

in population, as the reservoir slowly purifies itself. Zhao et al. (2018) highlighted that all these 

activities can lead to increased eutrophication of the reservoir.  

 

Recreational and construction activities closer to the reservoir contribute to the structuring of 

species diversity by increasing the surface runoff and soil erosion after flooding which decrease 

the water quality and quantity. Some community members also use the reservoir water for washing 

laundry and cleaning vehicles which could increase water phosphorus levels, which may result 

into accelerated phytoplankton growth and poor water quality that may lead into death of aquatic 

species and impacting the water body. These activities can affect and cause changes to 

physicochemical parameters such as TDS, conductivity, pH and salinity which could be due to the 

presence of community closer to the reservoir. Therefore, these changes may reduce water quality 

by encouraging rapid phytoplankton growth in the reservoir. Tollefson (2018) highlighted that 

high phytoplankton growth in water bodies may pose serious health risk to human and livestock.  

 

The increased human population relies on agricultural land for their livelihood. Agriculture in the 

proximity of the water body contributes to high salinity and pH concentrations, due to the fertiliser 
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transport from erosion by rainfall to the waterbody. The unsustainable agriculture methods near 

the reservoir also cause soil erosion and, as a result, reservoir water quality deterioration due to 

sedimentation. Therefore, excessive use of organic and inorganic fertilisers and veld fires may 

result in high nutrients and eutrophication of reservoirs. Areas used for animal grazing near the 

shoreline might lead to increased faecal matter finding its way into the water body through surface 

run off. Awtwi et al. (2015) highlighted that high density of grazing animals closer to a water body 

could also be an important source of nutrients in the system. During this study, it was observed 

that excessive nutrients disposal in the water body resulted into high chl–a concentration in a small 

bay of the reservoir dam zone. Gildea (2000) reported a similar trend from his study, where the 

watershed with high agricultural land tends to be associated with increased deposition of 

phosphorus and nitrogen due fertilizer application in the agricultural fields. 

 

5.4 Remotely sensed and in situ measurements in Nandoni reservoir 

The chl–a concentration distribution maps were estimated based on an algorithm by Wibowo et 

al. (1993), were the Red and NIR band ratio were used to retrieve chl–a concentration from the 

reservoir, showing the real potential of applying remote sensing in monitoring chl–a concentration 

in water bodies. The algorithm applied to this study showed the potential for estimating chl–a 

concentration in the water ecosystems. Classes represented on the images were retrieved from the 

empirical model used by Buditama et al. (2017). No filtering was applied on the data, therefore, 

Landsat 8 OLI showed higher dynamic range than Landsat ETM+ imagery. This could be 

attributed to the improvement of radiometric resolution and changes related to spectral response 

of Landsat OLI sensors (Lymburner et al. 2016). 
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Maps generated in December 2020, showed a complex spatial structure of chl–a with high values 

mainly observed in the reservoir dam zone. This could be related to the anthropogenic activities 

linked to Madzivhandila Agricultural College, Budeli, recreational and construction activities, 

animal grazing, and excessive nutrients disposal from the farms closer to the dam zone. Slight 

eutrophication or algal blooms was observed in the dam zone during sampling. Therefore, high 

chl–a concentration in the dam zone could be as result of improper disposal of domestic waste. 

Different authors (e.g., Giardino et al. 2010) have suggested that most algal growth are in areas 

affected by excessive nutrient runoff to the reservoir zones where nutrients are more concentrated. 

The catchment of Nandoni reservoir had settlements and agricultural activities which were closer 

to the dam zone which resulted in excessive nutrient load. Banansea et al. (2016) highlighted 

similar results that continuous reduction of bushland will in turn lead to an increase of human 

induced activities such as agriculture and residential development. In the current study, these 

activities have resulted into deterioration of water quality in the reservoir. 

 

Matthews (2016) suggested that there are a large number of investigations that used Landsat 

sensors to assess water quality characteristics. Most of the water quality investigations employ a 

combination of bands and ratios, and this algorithm of chl–a estimates, varies from one reservoir 

to another. In the present study, the algorithm used to estimate chl–a concentration in the reservoir 

was applied using a combination of different bands (red, NIR) of Landsat 7 ETM+ and Landsat 8 

OLI sensors. Similar results were highlighted by Tebbs et al. (2013) that combination bands of red 

and NIR of Landsat 7 ETM+ sensor were used to estimate chl–a in Lake Bogoria, Kenya. There 

was a considerable wet and dry season difference in chl–a concentration and primary production 

within Nandoni reservoir. Landsat 8 OLI showed high chl–a concentrations were observed in the 
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river zone, while getting lower in the middle and dam zones. The distribution of chl–a varied 

spatially and temporally within the reservoir. It can simply be observed that during dry season in 

the year 2008, chl–a concentration was high in the river zone while low in the middle and dam 

zone. In the year 2010 to 2014, chl–a concentration was high in a small bay of the river zone and 

low in the middle and dam zone. Therefore, anthropogenic activities such as washing laundries, 

grazing animals, subsistence farming and mud brick manufacturing may account to excessive 

nutrients which led to phytoplankton growth in the river zone. Low chl–a concentration could be 

assigned to the dilution due to the freshwater inflow from the Luvuvhu River and the increased 

sediments loads which would limit primary production in the reservoir. 

 

In year 2016, satellite sensors detected highest chl–a concentration was observedin wet and dry 

season along the shorelines of the reservoir, while getting lower in the middle and dam zone, this 

was due to low water capacity. Dalu et al. (2013) highlighted that, as water level drops, the 

reservoir undergoes a self–purifying process where it allows oxygen to recharge the bottom water 

and increase surface nutrients. During the detection of phytoplankton biomass in the reservoir, the 

optical classification method of water bodies revealed that, plants found in the shoreline had been 

detected as algae because plants also contain chlorophyll pigments. Therefore, in the year 2018 

and 2020, chl–a concentration observed in wet and dry season was very high in a small bay in the 

river zone because of agricultural pesticides and population increase closer to the reservoir, where 

nutrients runoff was deposited in a small bay in the reservoir river zone. The observations were 

similar to Dalu et al. (2013b) who suggested that the supply of nutrients contribute to an increase 

in chl–a concentration leading to phytoplankton growth. Spatial distribution of low chl–a 

concentration persisted in the middle and dam zones in all years especially during dry season.  
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The chl–a concentration increased in the wet season compared with results obtained in dry season. 

In year 2008 to 2014, high chl–a concentration were estimated in the river zone, getting lower in 

the middle and dam zone. Sufficient light, temperature and nutrient availability in the surface water 

promotes phytoplankton growth in the reservoir resulting in high chl–a concentration in the water 

body (Dupuis and Hann 2009; Dalu et al. 2013b). Dalu et al. (2013) suggested that the availability 

of nutrients in lakes and reservoir are influenced by various factors including atmospheric dust 

particle deposition, river input, decomposition of organic matter and bottom sediment 

resuspension. 

 

In year 2018, the high chl–a concentration were recorded in a small bay of the river zone and 

becoming low in a small section of the middle and dam zone. This resulted in excessive nutrients 

which accumulate in the shorelines from human activities, agricultural pesticides, urban runoff, 

and municipal sewage deposited in the water body through water runoff. These observations were 

similar to Ndungu et al. (2013) who also suggested that high reflectance of turbidity constituents 

such as suspended matter can affect chl–a concentration in water bodies as observed in year 2018.  

 

In year 2020, chl–a concentration was high in a small bay in the river zone, as a result of excessive 

nutrients from agricultural pesticides, population increase as they play a significant role in the 

disposal of nutrients from the water runoff. Important factors attributed to affecting the distribution 

of phytoplankton biomass in deeper water of the reservoir are wind activity and river inflow. Wind 

activity could have contributed to high chl–a concentration within the littoral zone of the reservoir 

due to the availability of nutrients accumulated in the water column. Additionally, excessive 
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nutrients disposal in the reservoir are responsible for phytoplankton growth. The differences in 

chl–a concentration in the same month for the different years suggests that phytoplankton 

development is influenced by environmental conditions as well as changes in time and space. 

Buttencourt et al. (2019) highlighted that surface water temperatures in the reservoir have the most 

impact on the year–to–year changes. Water temperature and suspended solids were responsible for 

the spatiotemporal changes of phytoplankton distribution in Nandoni reservoir. Therefore, 

suspended solids were detected in the river zone during the study months and years where they are 

most likely linked to increasing phytoplankton production. This shows there is fluctuation of chl–

a concentration due to seasonal changes. According to Makhera et al. (2010), suggested that high 

nutrients concentration from domestic waste from Thohoyandou wastewater treatment works and 

agriculture may lead to phytoplankton growth which degrade the quality of surface water, and this 

resulted to decreased dissolve oxygen level in the water and affected aquatic plants and animals 

(Nas and Berktay 2006).  

 

6. Conclusions 

Based on the predicted and observed chl–a concentration, Nandoni reservoir was considered to 

have low chl–a concentration. The algorithm employed on satellite images to derive chl–a 

concentration worked successfully on Landsat 7 ETM+ and 8 OLI images. The resolution of 

Landsat 7 and 8 allowed us to successfully determine and estimate the spatio–temporal distribution 

of chl–a in Nandoni reservoir. It can also be concluded the Landsat 7 ETM+ and 8 OLI are suitable 

for monitoring of phytoplankton biomass in freshwater ecosystem and map where chl–a is 

abundant. It was also attested by linear regression analysis which showed high level of agreement 

of correlation values (R2 = 0.91, RMSE = 0.13) between the field chl–a and predicted chl–a.   
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From the findings of this study, Nandoni reservoir was considered as oligotrophic system. 

Therefore, our findings on the relationship between chl–a and physicochemical variables within 

the reservoir have significantly improved our understanding on the influence of hydrological state 

of Nandoni reservoir. The results also showed that settlement and agricultural practices closer to 

the reservoir played a significant role on the reservoir water quality. Therefore, all physio–

chemical parameters measured in this study, temperature, pH, salinity, TDS, ORP, conductivity 

and resistivity were suitable for domestic use and aquatic life. Based on Pearson correlation 

analysis, the results showed water temperature, pH, and conductivity had a positive relationship 

with chl–a concentration in Nandoni reservoir. 

 
7. Recommendation 
 

• There is a need to study the relationship between phytoplankton productivity and the size, 

structure and age of the reservoir, as this is important in determining whether reservoir 

characteristics have significant impact on phytoplankton production. There is less 

published data on this.Operational characteristics of reservoirs should be considered when 

measurering phytoplankton productivity. Reservoirs that are being overutilized for 

recreational and economic purposes need frequent observations of phytoplankton 

production as the changes might be significant within shorter periods. 

• The use of modern technological approach such as remote sensing should be supplemented 

by frequent phytoplankton productivity observations since these technologies record 

momentary events but might miss to record those happening continuously for shorter 

periods. 
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• There is need to frequently study the correlation between plankton productivity and aquatic 

composition in order to explain the relationship between them and the reservoir 

characteristics. 
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