
  

Impacts of Land Management on Water Resources 

in the Crocodile River Catchment, Mpumalanga 

 

 

Mary Nkosi  

Student: 20021177 

 

 

A dissertation submitted to the Department of Earth Sciences in the Faculty of 

Science, Engineering and Agriculture, University of Venda in fulfilment of the 

requirements for Master of Earth Science in Hydrology and Water Resources 

 

Department of Earth Sciences  

 

Faculty of Science, Engineering and Agriculture 

 

University of Venda   

 

Supervisor: Dr F.I. Mathivha  

Co-Supervisor: Prof. J.O Odiyo 

 

 

 March 2022



i 
 

Declaration 

I, Mary Nkosi hereby declare that the dissertation titled “Impacts of Land 

Management on Water Resources in the Crocodile River Catchment, 

Mpumalanga” submitted to the University of Venda for the fulfilment of a Master of 

Earth Science in Hydrology and Water Resources degree has not previously been 

submitted for a degree at this or any other University, and that it is my own work in 

design and execution and that all reference materials contained therein have been 

duly acknowledged. 

 

Signature: ___ ____  Date: 02-03-2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Abstract 

Land use/land cover (LULC) have a “cause and effect” relationship with the hydrology 

of catchment areas. The Crocodile River Catchment (CRC) has been reported to be 

fully utilised and at its limit. Due to its ecological and socio-economic importance, it is 

therefore imperative to quantify the changes in the river’s water resources. Using 

remote sensing (RS), QSWAT and Quantum GIS (QGIS) this study analysed and 

evaluated the long-term effects of LULC changes on the hydrology of the CRC 

between 1981 and 2020. LULC was classified into 8 major classes (cultivation land, 

forest plantation, water, grassland, built-up areas, bush/savannah and natural forest) 

for 1980/81, 2000/01 and 2020 to demonstrate the changes in land-use for the past 

40 years. The study found that natural forests and grassland decreased by 12.8% and 

1%, respectively. There was an increase in cultivated lands, forest plantations and 

built-up by 2.5%, 3.1% and 2.3%, respectively. Built-up areas, cultivated lands and 

forest plantations were identified as the major land-use activities and the hotspots for 

these were further mapped and analysed per quaternary catchment. The overall NDVI 

value for all LULC ranged between -0.3 and 0.9. The LULC maps were used as input 

data to the QSWAT model to evaluate LULC impacts on water resources. The model 

performance evaluation showed an NSE value between 0.41 to 0.79, PBIAS -4.44 to 

44.7 and RSR 0.54 to 0.75 between simulated and the observed streamflow. For this 

study, these findings on model performance showed acceptable results. The results 

further showed a decreasing trend in streamflow from1981-2020. The decreasing 

trends were attributed to the increase in forest plantation and cultivation with built-up 

areas found to have minimum impacts on the catchment’s hydrological response 

because they occupied a small percentage of the catchment. The distribution of ET 

and surface runoff also varied with the LULC, however, climate was shown to have an 

influence on streamflow and the distribution of LULC in the catchment area, thus 

affecting the hydrological regime. 

Keywords: LULC, Land use Hotspot, NDVI, QSWAT, Water resources, 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The world’s population is growing at an unprecedented rate, and putting pressure on 

the earth’s resources (Boucher, 2018). As the population grows, virgin land is 

encroached, resulting in forest clearing, putting many species at risk of becoming 

extinct and natural resources such as water at risk of being degraded (Baus, 2017).  

Baker and Miller (2013) indicated that in some cases, the interaction between human 

activities, water use and the need to sustain ecosystem health can often lead to water 

resource degradation which can result in water scarcity. The availability and quality of 

natural resources depend on the way in which the land is utilised and managed, for 

example, an increase in built-up areas is expected to decrease infiltration and 

percolation which in turn increase surface run-off and evaporation (Kumar et al., 2017).  

In South Africa, urban expansion has led to an increase in water demand, therefore, 

leading to overexploitation of water resources. According to Donnenfield et al. (2018), 

more than 60% of the rivers in the country are overexploited due to the rise in water 

demand as a result of the increase in urbanisation. Many of the country’s catchments 

are failing to meet its water demand, among these is the Crocodile River catchment 

(CRC).  

Natural forests in the CRC have been converted for agriculture and forestry production 

(State of Rivers Report, 2001). There are also mining and industrial activities occurring 

within the catchment, and it was reported by Sauka (2016) that about 1.5% of the 

catchment is under urban development. Due to these economic activities and the rapid 

land-use expansion of the catchment area, DWA (2014) reported that the Crocodile 

River is at its limit and its water is fully utilised. The quality of the river was reported to 

have been compromised in the past due to sewage pollution, intensive agricultural use 

of fertilisers and pesticides as well as mining and industrial waste (Nel and Driver, 

2015). Remote Sensing (RS) and Geographical Information Systems (GIS) techniques 

have been frequently used to monitor changes in Land use/ Land Cover (LULC), 

especially in places where primary data-collection is a problem (Skidmore et al., 1997).  

Information generated from these tools are important as they assist with the 

management and future planning of natural resources, especially, with climate change 

increasing the vulnerability of water resources (Skidmore et al., 1997). Through 

integrating hydrological modelling with GIS and RS, this study focused on evaluating, 
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analysing and spatially presenting changes of the CRC that resulted from land 

alteration and modification.  

1.2 Problem statement 

Land use activities, development and management of water resources are 

interdependent. Catchments areas are very sensitive to any changes induced on the 

land, for example, land erosion results in sedimentation (Welde and Gebremariam, 

2017). Due to anthropogenic land-use changes, overpopulation, over-extraction of 

water, diversions of river systems and sedimentation load, freshwater ecosystems in 

Africa are at risk (Sauka, 2016).  The Lowveld region of South Africa has developed 

rapidly over the past years and agricultural activities have expanded. Managing 

catchment natural species and natural environment is a problem in most parts of the 

Crocodile River Catchment, especially near Nelspruit (Linstrom, 2016).  Soko and 

Gyedu-Ababio (2015) observed a decrease in species richness in the upper reaches 

of the catchment, due to the Kwena Dam.  

As outlined in Linstrom (2016), most riparian zones which also serve as buffer zones 

are at risk, if not already destroyed through developments manifested through 

vegetation clearing, in the study area. Large amounts of water resources have been 

abstracted from the Crocodile River Catchment, which has resulted in low flow during 

dry season (Kleynhans et al., 2013). Changes in vegetation cover lead to changes in 

the composition and structure of a catchment, thereby affecting water intake and 

runoff. Due to the intensity of these activities, together with the expanding industrial 

and urban land uses, the catchment is noted to be water stressed by Soko and Gyedu-

Ababio (2015). 

1.3 Motivation 

Development is expected to continue in the study area with an increase in water 

demand, therefore, better management of water has become important within this 

catchment over the recent years. It was indicated that water scarcity has been evident 

since the mid-80s and has been intensified by climate extremes, such as droughts and 

floods (Kleynhans et al., 2013). In addition, various studies, Bender and Gibson, 

(2010); Mutamba and Busari, (2011); DWA, (2014) have indicated that water quantity 

challenges are affecting water supply in the catchment area. An investigation done on 

water requirement in the Inkomati Water Management Area (IWMA) in 2009, showed 
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that there is a need to develop new water resource strategies (DWA, 2009). There are 

also challenges with ecosystem health of the CRC as reported by Mpumalanga SoE 

(2004) and Kleynhans et al., 2013). The river system’s health is reported to be 

threatened by challenges like sedimentation, eutrophication, and flow modification. 

The increase in demand will exert more changes to the environment of the CRC and 

this would aggravate the risk of the catchment being degraded.  

This study, therefore, focuses on land management and its impacts on the CRC water 

resources.  It evaluates changes observed in surface run-off, streamflow discharge 

while also quantifying the changes in vegetation. With the use of GIS, RS and SWAT 

model, this study will compare changes in LULC and record the hydrological impacts. 

The process will yield information on the modifications of the CRC through LULC 

changes, thus assist in the development of land management and water resource 

strategies that will promote the catchment health and improve water supply.  

Furthermore, findings will portray the usefulness of the SWAT model in simulating 

streamflow in catchments with characteristics such as the CRC. There is not much 

updated literature on the study area pertaining to the application of RS and GIS, 

therefore, this study will be able to generate current comprehensive data.  

1.4 Research questions 

i. How has the LULC changed on Crocodile River Catchment over the past 40 

years? 

ii. Which activities and areas pose a threat to the quality and quantity of the River? 

iii.  How has the hydrological response of the catchment changed? 

1.5  Objectives 

The main objective of this study is to apply GIS and RS techniques in integration with 

SWAT in evaluating the effects of land use and land-cover changes on water 

resources in the Crocodile River Catchment. The specific objectives are to:  

i. Evaluate LULC changes on CRC between 1980 - 2020,  

ii. Identify hot spot areas and land uses that are a threat to CRC and  

iii. Quantify and analyse changes in the catchment water resources over the study 

period. 
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1.6 Description of the study area 

The Crocodile River Catchment is located in the Mpumalanga Province of South Africa 

and is governed by the Inkomati-Usuthu Water Management Area (WMA) as part of 

the second National Water Resource Strategy (NWRS 2) (Figure 1.1). It forms one of 

the significant rivers in South Africa in terms of ecology as a result of the diversity of 

riverine habitats. According to Roux et al. (1999), it houses at least 49 fish species 

making it one of the most biologically diverse rivers in South Africa. The catchment is 

about 2 000 m above sea level in the Steenkampsberg Mountains near Dullstroom. It 

is a slow flowing river with a length of 320 km, and it drains an area of 10 450 km2 and 

the bedrock is mainly Dolerite intrusion, basaltic lava and sand pools (Kleynhans et 

al., 2013). Crocodile River has 4 major towns located along it, namely, - City of 

Mbombela, Barberton, White River and Malelane - (Inkomati Water Management 

Area, 2008).   

 

(Source: WR2012) 

Figure 1.1: The location of the study area. 
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1.6.1 Hydrology and Water resources 

The Crocodile River ranges from the cold mountain streams in the Drakensberg to the 

slow-moving temperate waters and it meanders through Lowveld (Kleynhans et al., 

2013). It originates in the Steenkampsberg and flows in an easterly direction down to 

the Kwena Dam Basin. It further winds along the valley of the Schoemanskloof to the 

Montrose falls and then joins with the Elands River ((Source: WR2012) 

Figure 1.2). As it flows in the easterly direction, it then converges with the Komati River 

in the Komatipoort to form the Inkomati River which borders South Africa and 

Mozambique (Sauki, 2016). Kleynhans et al. (2013) added that the upper catchment 

area is made of steep sided valleys and sharp cliff slopes on the edge of the 

Escarpment. The Elands River rises in Machadorp town and the other main tributaries 

for the river include the Kaap River, Komati River, Sabie River and White River. Each 

main river tributary contains one major dam. The Kwena Dam is the biggest and most 

important dam within the Crocodile River, supplying an area of 12.5 km2, it is found 

where several rivers converge, namely, the Crocodile River, Lunsklip, Alex-se-Loop, 

Elandspruit and Badfonteinloop Rivers. 

 

(Source: WR2012) 
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Figure 1.2: Rivers and dams of the catchment. 

The Crocodile River has a natural mean annual runoff of 1 136 million cubic metres 

per year (Basson and Rossow, 2003), and it varies from between 200 and 500 million 

m3/a in the western and northern parts of the catchment. According to van der Laan 

et al. (2012) and Sauka (2016), both the Kwena and Witklip Dams regulate the flow of 

this river. Water is released regularly for supply to farmers along the lower reaches 

and this helps flush away wastewater effluents. Approximately 859 million m3/a can 

be abstracted from the catchment; this includes usable surface water, existing 

groundwater, usable returns, storages, and natural runoff. The east part of the 

catchment together with Sabie River supplies water to one of the major municipalities 

in the Province, Mbombela Local Municipality (MLM) (DWA, 2014).  

1.6.2 Climate 

1.6.2.1 Rainfall 

The mean annual precipitation over the catchment is 880 mm. (Source: WR2012) 

Figure 1.3 shows the distribution of rainfall within the catchment. According to Riddell 

et al. (2013), the western upper plateau (highveld) receives approximately 730 

mm/year, while the mountainous/escarpment region received the highest rainfall of 

almost 1600 mm and the eastern sub-tropical region (lowveld) receives between 550–

850 mm/year. The dry lowveld part receives 600 mm of rainfall per year (van der Laan 

et al. 2012; Jackson 2014). Not only does rainfall varies with altitude, but it is also 

highly seasonal, more than 80% of the annual rainfall fall during summer (October - 

March) and the peak rainfall months are December and January (DWAF, 2004). 
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(Source: WR2012) 

Figure 1.3: Catchment distribution of the Mean Annual Precipitation.  

1.6.3 Temperature and Evaporation 

Similar to the rainfall patterns, temperatures also vary with altitude and relief. The 

catchment usually experiences hot summer temperatures with maximum 

temperatures being in January and mild winters with minimum temperatures being in 

June. The highveld regions experience temperatures between 10–18oC and the 

escarpment varies between 10–12oC and 20–22oC (Sauka, 2016). The lowveld area 

experiences more warmer temperatures with an annual average of 22oC. Evaporation 

is generally high, and it is highly influenced by the high and dry temperatures of the 

catchment. The potential evaporation decreases from low altitudes to the high altitudes 

with a mean of 1 600 mm south-west and 2 000 mm in the east. Just like the 

temperatures, the highest evaporation rates are in January with amounts 

approximating 203 mm and a 101 mm in June ((Source: WR2012) 

Figure1.4:). 
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(Source: WR2012) 

Figure1.4: Catchment evaporation distribution.  

1.6.4 Major Land use and Land cover 

There are three major recognised biomes in the Crocodile River Catchment - 

grassland, savanna (bushveld) and forest ((Source: WR2012) 

Figure 1.4). The study area is made up of mostly a Savannah-type vegetation with 

dense thickets and large trees found along the drainage line and wetlands. The 

dominating Bushveld vegetation cover at 200 m elevation is Acacia, Combretum, 

Sclerocarya and Termibalia trees (Kleynhans et al., 2013).  The grassland vegetation 

is found dominating at high altitude and the western part of the catchment is mostly 

made of exotic plantations while Afromontane Forests are found on the Drakensberg 

Escarpment. The Afromontane forests contain tree species, such as the Yellowwoods, 

Cape Beach, Lemon Wood and Forest Waterwood (Mbombela SoER, 2003), while the 

riverine forests are made of large Matumi and Sycamore fig trees; other noted 

vegetation cover includes reeds (Phragmites).  
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(Source: WR2012) 

Figure 1.4: Major vegetation cover.  

According to Sauka (2016), most of the catchment has been transformed from its 

natural vegetation to other land-uses, such as settlement, cultivation and commercial 

forest. Agriculture (pasture, dryland or irrigated) is the dominating land use and 

together with commercial forestry and settlements are major water-users, especially, 

in the upper and middle parts of the catchment. The lower part of the catchment 

consists of conservation sites, such as the Kruger National Park. 

1.6.5 Soil Cover 

(Source: WR2012) 

Figure 1.5 depicts the dominating soil textures in the catchment - sandy loam to loamy 

sand (LmSa – SaLm), sandy clay to clay (SaCl-Cl) and Sandy Clay loam (SaClLM). 

Saraiva-Okello et al. (2015) stated that the soil texture varies from clayey loam in the 

west to sandy loam in the middle area and moderately deep clayey soils. Sauka 

(2016), further indicated that the highveld grassland is on deep red to yellow sandy 

soils. 



 10 

 

(Source: WR2012) 

Figure 1.5: Catchment Soil texture. 

1.7 Structure of the Dissertation 

Chapter 1 provided the background of the study, the problem statement, research 

motivation, research questions, objectives of the study, and the structure of this study. 

This chapter also contains a detailed description of the characteristics of the study 

area. 

Chapter 2 details the state of water resources and land management in the country. 

It provides the literature review of similar studies that have been done around the topic 

at both local and international scale. It further explores the application of GIS and RS 

on water resources, land management and hydrological modelling.   

Chapter 3 presents the methodology of the study, the type of data requirements, 

types, and sources of the data. It also details the techniques and software used for 

data analysis. The steps followed in analysing the data are also presented in this 

chapter. 

Chapter 4 shows the LULC results as classifiedhotspots and the NDVI results. It 

presents the changes in land-use between 1980 and 2020 and the accuracy 

assessment results for the classified LULC. 
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Chapter 5 provides the QSWAT results (hydrological response). The hydrological 

response results were also correlated with changes in LULC. This chapter further 

discusses the results and provides evidence from literature to support the study 

findings. 

Chapter 6 presents the overall conclusion drawn from this study as well as 

recommendations based on the study findings. This chapter further summarises the 

research findings and study limitations. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1  Preamble 

This chapter presents an overview of similar studies that have been done on the 

subject; it presents both local and international coverage. It also presents what other 

studies have published with regards to the application of GIS, hydrological modelling 

and RS in land management and water resources, thereby, demonstrating the 

competency of these tools in water management and planning. It is also an overview 

of the interaction between LULC and catchment areas and to shed some light on that 

relationship, while taking into consideration the study area. This chapter also looked 

at how land management is linked with the hydrological cycle, thus, projects the 

essential aspects of the subject matter covered by this research. 

2.2  Status overview of water resources in South Africa 

Water is a natural resource that is both socially and economically valuable, and its 

quantity and quality affect the nature of its utilisation.  Water is very special such that 

if it is properly managed, it becomes a renewable resource. Water has been 

highlighted by Mkheibir and Sparks (2003) as the main limiting source for development 

in southern Africa because of the direct impact it has on sectors such as agriculture. 

Baker and Miller (2013) stated that the lack of access to water resources in Africa may 

not be due to water scarcity alone, but also lack of investments in water infrastructure 

and management. 

 Muller et al. (2009) classified South Africa as water-scarce and estimated it to be the 

29th driest country in the world with an estimated water availability of 1100 m3/ person 

per year. Steven and van Koppen (2015) indicated climate as the major influencer of 

the distribution of water resources throughout the country; it varies from desert to semi-

desert in the west and sub-humid in the eastern coastal area. South Africa’s rainfall is 

strongly seasonal, and it spatially varies across the country with the eastern part 

receiving more rainfall than the western part. It receives an average rainfall of 450 mm 

which is below the world’s average of 860 mm and almost 62% of this rainfall is used 

for agriculture, only 10% of the country receives more than 750 mm (Steven and 

Koppen, 2015; Worldwide Fund for Nature-South Africa (WWF-SA), 2016). Molobela 

and Sinha (2011) estimated that only 9% of the rainfall gets converted into runoff which 

is considered the lowest in the world.  
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Surface water resources in SA are highly developed with 350 major dams and many 

small dams (Steven and van Koppen, 2015). From the total of 12 871 km3/year, 

approximately 9 500 km3/year of the total is extracted from the surface water resources 

and the remaining is supplied by groundwater resources (Steven and van Koppen, 

2015). Steven and van Koppen (2015) added that the occurrence of groundwater is 

influenced by the geological structure, soil conditions, rainfall patterns and 

anthropogenic activities.  Out of the estimated groundwater use of 10 343 million 

m3/year and 7 500 million m3 in a drought year, South Africa is only using 2 000 million 

m3 – 4 000 million m3 (Masindi and Dunker, 2016). Much as there has been some 

efforts made to rectify unjust water supply to previously disadvantaged areas, WWF-

SA (2016) indicated that, the country has challenges with supplying water to remote 

rural areas and the fast-growing informal settlements.   

There is statistical evidence suggesting that South Africa has been getting hotter over 

the past four decades due to climate change, and there have been reported changes 

in rainfall patterns (Department of Environmental Affairs (DEA), 2017). The latter and 

temperature are inversely proportional, hence, the increase in temperatures has also 

resulted in high evaporation putting the country’s reservoirs at risk (Mukheibir and 

Sparks, 2009; DEA, 2017). Water resource management promotes proper planning of 

water resources and sustainable water use while taking into consideration the 

hydrological cycle and water availability (Berjak, 2003). It ensures the sustainable rate 

of resource withdrawal or consumption without exceeding the rate of replenishment. 

Some of the country’s catchments and management areas are water-stressed coupled 

with an uneven distribution of rainfall, population growth and urban or semi-urban 

development, thus, intensifying the already existing problem of water supply 

inadequacy. As stated by Jackson (2014), the CRC is considered as closing due to 

high demand, variability, and seasonality of water availability. A river catchment is 

considered ‘closing’ when “the supply of water falls short of commitments to fulfil 

demand in terms of water quality and quantity with the catchment and at the river 

mouth, for part or all of the year” (Jackson, 2014).  

South Africa’s water resources are governed by Water Service Act of 1997 and the 

National Water Act of 1998. Both these Acts work together to ensure that water is 

properly regulated; they provide equal right of access to basic water supply and 

sanitation while securing sufficient water for the ecosystem. The Integrated Water 
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Resource Management (IWRM) approach taken by the country ensures the holistic 

management of water resources as it is inclusive of the land, air and ecological 

resources, therefore it is in line with the mentioned Acts (Berjak, 2003). Muller et al. 

(2009) outlined pricing, limited terms of allocation, licensing and other administrative 

mechanisms, as other used methods to ensure that supply and requirements/demand 

are in balance. Masindi and Dunker (2016) pointed out that catchment management 

areas (CMA) are ways to ensure that water is used sustainably and efficiently at a 

catchment level.  

CRC is managed by the Inkomati-Usuthu Catchment Management Area (IUCMA); the 

main responsibility of the CMA is to develop catchment management strategies, 

advise on the protection, development, use and conservation of water in the 

catchment. The Crocodile River is dominated by runoff water, which is sometimes 

supplemented from the Kwena Dam. CRC is also a tributary to one of the 

transboundary catchments in South Africa, the Inkomati River Catchment, and by law, 

according to Jackson (2014), it is obligated to fulfil the international transboundary 

agreement with regards to water allocation and management. Mbombela Municipality 

was identified as one of the municipalities that needed comprehensive strategy for 

reconciliation of water availability for future water requirements (DWA, 2014). 

2.3 Land management in South Africa 

Land in simple terms is defined as the solid surface on earth that is not completely 

covered by water and this is where most development takes place. Land consists 

mainly of soil, water, and biological resources, together with their diversity and their 

connection with the atmosphere and geology. The Food and Agriculture Organisation 

(FAO) (2017) further explained that the benefits derived from the interaction of the 

above-mentioned elements and the atmosphere plays a crucial role in livelihoods, as 

well as social and economic wellbeing. Dabrowski et al., (2013) defined land cover as 

the biophysical or vesical cover such as vegetation that can be detected by remote 

sensing. Land use is defined as the maintenance or modification of land by human 

arrangement or activities and unlike land cover, it cannot be mapped but rather be 

determined through socio-economic market force (Pretorius, 2009).  It deals with 

modification of land surface and its biotic cover (Meyer and Turner II, 1992). The latter 

study continued that land-use changes add to global changes such as biodiversity 

loss, soil degradation and hydrological changes. The most recognised LULC classes 
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are cultivation land, forest, grassland, settlement, and waterbodies (Meyer and Turner, 

1992; Lidzhengu, 2012; Aghsaei et al., 2019; Tahiru et al., 2020).  

Land management is a broad concept that is inclusive of the policies and regulations 

that govern the access and use of the land. South Africa covers approximately an area 

of 121.9 million ha, and it was reported that 4.47% of the country’s natural land has 

been degraded, 80% turned to agriculture, 1.51% considered urban land use with only 

1.41% forestry (National Department of Agriculture (NDA), 2005). Access to land is 

one of the most sensitive issues in this country, both socially and politically; Nel (2009) 

reported that South Africa’s land use requires a holistic and integrated programme to 

achieve sustainable management of the land. Policies and laws currently active in 

guiding land use management include but not limited to the 1995 Development 

Facilitation Act 67, 2001 White Paper on Spatial Planning and Land use management, 

1998 National Environmental Management (NEMA) Act 107 and legislations such as 

IDPs and zoning schemes (Ovens et al. 2007; Charlton, 2008).  

2.4 Drivers of LULC changes  

2.4.1 Population and Development 

The LULC changes are the main effects of the increasing human pressures on natural 

resources directly affecting water resources (Boschet and Rambonilaza, 2015; Liu et 

al., 2017). Human activities (such as, agriculture, urbanisation, energy infrastructure 

development) are the primary sources of land use and land cover changes (Northeast 

Climate Science Centre (NECASC), 2021). Kaushal et al., (2017) and Liu et al. (2017) 

stated that LULC forms the link between human activities and ecological processes, 

and for a millennial, humans have affected over 75% of the earth’s surface land and 

leaving a trail on water resources. NECASC (2021) adds that these activities are 

reported to directly modify land cover through loss of habitat, degradation, and 

fragmentation. Changes induced on LULC include the conversion and clearance of 

forest to another cover. According to Lidzhegu (2012), population growth has led to an 

increase in the conversion of forest and woodlands to agriculture. Rimba et al., (2019) 

reported that built-up areas have increased by almost 52% from 2000 to 2016 because 

of rapid conversion of agriculture to non-agricultural land uses, such as tourism 

infrastructure in places, like Bali. Other land management activities affecting LULC 
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changes as mentioned by Azanga et al., (2016) are inappropriate farming without 

conservation measures, inadequate land tenure and changing forest cultivation. 

2.4.2 Climate change 

Climate influences the distribution and type of land cover, according to Skyles (2009), 

it generally controls a broad-scale distribution of plants and vegetation species. In this 

view, climate change might influence current and future vegetation patterns due to its 

influence on temperature, rainfall, and climate patterns, therefore, affecting land cover 

(Ali, 2013; Gao et al., 2016). For example, increased salinity due to increased 

temperatures can reduce vegetation cover or agriculture. Climate also controls other 

factors such as soil communities (Pugnaire et al., 2019). Willis and Bhagwat (2009) 

associated the loss of the southern African Miombo savanna woodland to climate 

change; these changes intensify the global hydrological cycle thus increasing the 

frequency and variability of climate extremes (Saraiva Okello et al., 2015). Climate 

extremes refers to floods and droughts events; and they are said to have increased 

due to climate change. Changes in LULC can intensify the impacts from these 

extremes. LULC can modify the climate system by changing the atmospheric state 

and its functions through the modification of the biophysical characteristic of land 

surface, for example, albedo, roughness, soil-moisture among others (Sy and 

Quesada, 2020), therefore, as much as climate affects the distribution of LULC, 

changes in LULC also affect climate dynamics. 

2.4.3 Land reform program 

A land reform program is also one of the drivers of LULC changes. According to 

Lidzhengu (2012), land reform refers to the process of giving the land back to those 

who were denied ownership of the land at some point by a government in power. It 

was also indicated that the land reform process takes place at a time of independency 

from a dictatorial rule (Bullard, 2001; Lidzhengu, 2012). In South Africa, some of the 

objectives of land redistribution are to increase access to agricultural land by 

previously-disadvantaged black people, however, due to the abandonment of some 

agricultural lands in South Africa, LULC has been modified in some of the areas 

(Fourie et al., 2014). For example, the latter for study noted that some croplands have 

been converted to grasslands with lower species richness than natural grasslands. 

Chemura et al. (2020) indicated that in Zimbabwe, the population growth, coupled with 

the land reform program are expected to lead to more urban and agricultural 
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development in the upper Buzi basin. In another case, the increase in new farmlands 

under the land reform programme resulted in deforestation in Zimbabwe (Lidzhengu, 

2012).  

2.5 Land management and water resources  

2.5.1 Hydrological cycle 

The hydrological cycle presents the movement of water in the atmosphere, on the 

surface and, in the sub-surface. Water in the atmosphere moves in the form of gas 

i.e., vapor (evaporation/evapotranspiration) and liquid/solid (rain and snow) (see 

Figure 2.1). On the earth surface, water moves in the form of runoff/streamflow and 

on the sub-surface water moves in the form of infiltration, percolation, and aquifer 

recharge (Easton and Bock, 2015). Basically, the hydrological cycle is a complex 

system driven by solar radiation and gravitation (Brannstrom, 2019). 

 

(Source: Ques10, 2020) 

Figure 2.1: The hydrological Cycle.  

The hydrological cycle, LULC and climate are interlinked (Brannstrom, 2019); for 

example, an increase in temperature will increase evaporation rates and it can modify 

vegetation, and changes in the vegetation can modify the components of the 

hydrological cycle and consequently, the climate. Uncertainties over water set into 

motion, uncertainties over biomass (Sheil, 2018), thus, it is vital to understand the 

components of the hydrological cycle and their interaction with the LULC. For this 
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study, only four processes of the hydrological cycle were focused upon - precipitation, 

evapotranspiration, surface runoff and infiltration - as these are relevant to the study.  

2.5.1.1 Precipitation 

Precipitation is condensed atmospheric water vapor that falls to the ground under the 

influence of gravity and can be in the form of hail, rain, snow, sleet, or fog (Shei, 2018).  

Precipitation is formed when water evaporates from the earth’s surface and plants; 

when water falls back onto the earth’s surface, some of it is intercepted by plants while 

some touch the ground - this is the water that is referred to as ‘rainfall’ (Easton and 

Bock, 2015). The availability of freshwater resources depends on precipitation and the 

intensity of the process is dependent on how the catchment areas have been modified. 

2.5.1.2 Evapotranspiration  

Evapotranspiration is a combination of evaporation and transpiration; water moves in 

a form of gas due to these two processes. Evaporation is the movement of water 

directly from the earth surface and waterbodies while transpiration refers to water from 

vegetation, such as trees and grass, (Chemura et al., 2020). Evaporation is greatly 

influenced by wind, solar radiation, heat and humidity, therefore, more water is likely 

to evaporates in very hot and windy conditions, while high humidity greatly decreases 

evaporation rate (Easton and Bock, 2015); usually, half of the solar energy that makes 

it to land is converted to evaporation, therefore, cooling the land surface (Sheil, 2018). 

Terrestrial precipitation has been reported to depend on the moisture from plants, 

however, LULC changes have reduced about 6% of the global moisture (Sterling et 

al., 2013). The reduction of global moisture could reduce precipitation, thus, affecting 

water resources’ availability (Konapala et al., 2020).  

2.5.1.3 Runoff 

Runoff is described as the portion of precipitation that flows on the earth surface 

through channels and is associated with excess stormwater (Luo et al., 2020). Runoff 

is greatly influenced by the soil conditions, vegetation cover as well as the intensity 

and amount of rainfall; for example, it is higher in previously saturated soils, in 

compacted soils and during intense rainfalls (Easton and Bock, 2015). Runoff is an 

essential part of the water cycle, thus, its modification affects the hydrological 

dynamics of a catchment (Luo et al., 2020). Land-use/land-cover changes can modify 

the way in which water moves through the environment, either enhance it or decrease 

it, depending on the changes imposed on the catchment (New Jersey Stormwater, 

2016).  
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2.5.1.4 Infiltration 

Some of the precipitation that reaches the ground moves downwards to the ground in 

a form of infiltration. The amount of water that can infiltrate the ground greatly depends 

on the soil properties, such as the moisture content, texture, bulk density, permeability, 

and porosity. Infiltration is much higher in porous soils and water retained in soil pores 

is referred to as ‘soil storage’; this water is mostly used by plants during transpiration. 

The water that manages to infiltrate the ground, past the root zone and make it to the 

water table, however, plays an important role in recharging groundwater resources 

(New Jersey Stormwater, 2016),  therefore, LULC changes may have major impacts 

on this component. The increase in deep-rooted vegetation, such as forests can, for 

example, increase the amount of water that transpires before reaching the water table 

(Gee et al., 1992), while activities that compact the soil may reduce infiltration, thereby 

decreasing groundwater recharge (Owuor et al., 2016). 

2.5.2 Land management impacts on water resources studies 

Land use management is one of the major drivers of catchment change as they affect 

ecology, sociology, geomorphology, hydrological processes, and soil properties on a 

local, regional, and global scale (Albhaisi et al., 2013; Singo, 2014; Namugizea et al., 

2018). LULC directly interacts with water resources through vegetation interception, 

evapotranspiration, surface runoff, infiltration, and soil moisture status, hence, it can 

modify the processes taking place in the catchment’s hydrology and water resource 

cycle (Liu et al., 2017); for example, Easton and Bock, (2015) mentioned that the 

presence of vegetation promotes infiltration by increasing permeability.  

Dabrowski et al., (2013) reported that due to a small dam construction, a decrease in 

flow volumes was observed at Mngeni River. From a study by Zhou et al., (2013), it 

was reported that urbanisation led to 11.3% increase in surface runoff and baseflow 

decreased by 11.2%. Baker and Miller (2013) reported a similar case with reduced 

groundwater recharge due to the conversion of dense natural forests to agricultural 

land in the Kenya’s rift valley. Changing forests to cattle grazing area has been linked 

with soil compaction and increased soil water storage, thus diminishing soil infiltration, 

and enhancing quick lateral flows and stream flow response to precipitation in the 

Amazon lowlands (Chaves et al., 2008). Another study revealed that an increase of 

shallow-rooted items, such as agricultural crops in previously dominated deep-rooted 

catchments increased groundwater recharge in southern high plains in US (Scanlon 
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et al., 2007). A decrease of 6.6 million m3 in annual pre-development runoff (48.5%) 

was observed due to agricultural abstraction at Duiwe River in southern Cape, South 

Africa (Petersen et al., 2017).  Van der Laan et al. (2012) recorded similar findings in 

the CRC and its tributaries due to irrigation abstraction and afforestation. Some 

mentioned impacts include an increase in urban heat islands and their roles in rising 

river temperatures, thus, affecting water quality and quantity (Kaushal et al., 2017).   

LULC changes coupled with hydrological turbulences are some of the common 

explanations for land degradation (Zacharias et al., 2009; Kumar et al., 2017; Wagner 

et al., 2013). Before 2000, human activities were reported to have extensively altered 

the Heihe River Basin resulting in the deterioration of the ecosystem (Jin et al., 2019).   

Large-scale deforestation due to rapid development of irrigation farming was observed 

in the Crocodile River rising from the Witwatersrand, Johannesburg (Hobbs et al., 

1985). Dabrowski et al. (2013) reported that Umngeni Catchment in KwaZulu-Natal 

has been converted to 19% cultivated land and 17% forestry, while 8% of the 

catchment has been transformed to urban area. Water resources (catchments, rivers, 

aquifers, and wetlands) are the building blocks of water supply, if these sources are 

overexploited, downstream investments and ecological infrastructure tend to collapse.  

Water sources generate about 50% of river flows, therefore it is important to ensure 

their maintenance and protection (WWF, 2016). In South Africa, from the total Mean 

Annual Runoff (MAR) of 49 040 m3/a, 6% is lost through land use (Muller et al., 2009).  

Some changes in land cover have positive impacts, as a study done in Lake Malawi 

depicted what could be a positive impact of LULC change on water resources.  Calder 

et al. (1995) reported an increase in streamflow and surface runoff, consequently 

raising the water level in lake Malawi due to conversion of forest cover to agricultural 

land. The latter study showed that, in turn, the lake sustained activities such as 

hydropower, water transport and livelihoods, during the 1992 drought. There is, hence, 

a need to optimise the use of land in South Africa to ensure livelihood support and 

improve environmental conditions. 

2.6 Remote sensing  

Remote Sensing (RS) has been one of the most used tools since the 1970s. It is 

defined as an art of retrieving information about an area without coming into physical 

contact with it (Masud and Bastiaanssen, 2017). It uses electromagnetic spectrum to 
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show images of land, ocean, and atmosphere by measuring their electromagnetic 

radiation (EMR) (Campbell and Wynne, 2011). RS first came into existence in 1800 

when Sir William Herschel discovered infrared, then in 1850–1860 photographs could 

be taken using balloons. In 1909, Wilbur Wright used an aeroplane to take 

photographs of the Italian landscape; these were considered the first aerial 

photographs (Campbell and Wynne, 2011). In 1999, the National Aeronautics and 

Space Administration (NASA) launched Terra-1, a satellite that can monitor changes 

in nature and the earth’s ecosystem at a global scale. The spatial, spectral, 

radiometric, and temporal data produced was said to make RS techniques preferable 

over traditional methods (Thankur et al., 2017). Recently, it has been indicated that 

satellite (and sensors) for earth observations have been used to monitor 

environmental changes at regional and global scales, through large dataset provided 

by remotely-sensed images and indices (Mancino et al., 2020). 

2.6.1 Common remote sensors for land covers 

2.6.1.1 Landsat 

The first Landsat satellite was launched under the name Earth Resources Technology 

Satellites (ERTS-1) in 1972. The name was changed to Landsat-1; this is a 

multispectral earth-orbiting satellite designed to observe the earth surface (Skidmore 

et al., 1997; Campbell and Wynne, 2011); before 1982, the spatial resolution was at 

79 m. More multi spectral scanner (MSS) Landsat satellites (Landsat-2 to Landsat-5) 

were launched in the 1970s and 1980s, followed by the Landsat-7 in 1999 with an 

Enhanced Thematic Mapper Plus (ETM+) sensor that provides an image with 30-m 

resolution (USGS, 2016). Data was collected in 6 spectral bands with different 

wavelength, and it was reported to be more comparable with Landsat 4-5 Thematic 

Mapper (TM) due to the similarities in bandwidth (Mancino et al., 2020). Landsat-8 

was launched in 2013 containing two new sensors - the operational Land Imager (OLI) 

and the Thermal Infrared Sensor (TIRS) - to make it operate with TM and ETM+. 

Landsat-8 contains new enhanced bands and collect images in more push-broom 

scanner mode, unlike the previous sensors which used a whiskbroom scanner-based 

sensor (Mancino et al., 2020). It can also highlight an earth surface variability while 

reducing saturation of high reflective surfaces. Landsat 9 was expected to be launched 

in 2021; Landsat 7 data was made free to the public in October 2008 and in 2009, all 

Landsat data was free to download. 
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2.6.1.2 Sentinel-2 

The Sentinel-2 multispectral instrument (MSI) contains 13 spectral bands ranging from 

Visible and Near-Infrared (VNIR) to Shortwave Infrared (SWIR) wavelengths (USGS, 

2021). The Sentinel-2A satellite was launched in 2015 and the second Sentinal-2B 

was launched in 2017, with no historical data. According to the Satellite Imaging 

Corporation (2021), Sentinel-2A supports generic land cover, land use and change 

detection maps and it has a spatial resolution of 10 m to 60 m. Sentinel-2A has been 

applied in the LULC classification by several researchers Cavur et al., (2019); 

Baamonde et al., (2019) and Isbaex and Coelho, 2021).  

2.6.1.3 ASTER 

The Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

was recently developed to provide accurate satellite images with high spatial and 

spectral resolution (Yuksel et al., 2008); it was launched in December 1999. In 

addition, the sensor operates in 3 different spectral regions, - VNIR, SWIR and thermal 

infrared (TIR); it has a 15 m spatial resolution, and can retrieve vegetation information 

(Yuksel et al., 2008). ASTER has been regularly applied in the classification of LULC 

(Franklin et al., 2009; Wilson, 2005; Aynekulu et al., 2008). 

2.6.2 Land use hotspots 

In simple dictionary explanation, a ‘hotspot’ refers to a place of significant activities 

(Oxford Dictionary, 2020) and in this context, it describes the intensity and pattern 

changes of land use (Kuemmerle et al., 2016). In other words, it can be concluded that 

hotspots are areas of high concentration of LULC activities. It is crucial to demarcate 

such areas when developing relevant mitigating and management strategies and 

policies (Kuemmerle et al., 2016). According to Guay et al., (2014), LULC hotspots 

can be determined from analysing significant trends in the greenness and brownness 

of vegetation. The intensity of the impact of land-cover changes on hydrological 

processes or response, depends on the vegetation type (Singo, 2014). 

2.6.3  Vegetation indices (VI) 

Vegetation index is the spectral measurement parameter in remote sensing used to 

indicate the amount of earth surface vegetation covers and growth status (Gandi et 

al., 2015). Most VIs are developed according to different spectral bands and different 

satellite sensors (Yeom et al., 2019). Some of these satellites’ sensors are Sentinel-
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2, MODIS, Landsat 4-5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIR, AVHRR/GIMMS 

and SPOT/PROBA-V (Sheffield et al., 2018). Vegetation cover plays an important role 

in the hydrological cycle and partitioning of surface energy through albedo, while RS 

plays an important role in differentiating between managed and unmanaged 

vegetation (Sheffield et al., 2018). Using characteristic reflectance pattern of green 

vegetation, VIs can delineate the disruption of vegetation and soils. Different plants 

have different emissivity rates and different reflectance of light. According to Xue and 

Sue (2017), the application of remote sensing on vegetation is done through the 

ultraviolet region (UV) spectra, the visible spectra (red, green, and blue wavelength 

regions) and the near and mid-infrared bands,  however, UV spectra are not commonly 

used. Most VIs are based on the Visible Red and near-infrared spectral range (Yue et 

al., 2007). As much as VIs are sensitive to the greenness and amount of leaf material, 

known as the green leaf area index (LAI), canopy chlorophyll density (CCD) and 

biomass, they are also sensitive to other factors such as the spectral quality of the soil, 

atmospheric composition, and view illumination geometry among other things (Broge 

et al., 2003). VIs, therefore, come in different forms and can be used for different 

functions, and have different limitations. Presented below are the potential VIs 

considered for this study. 

2.6.3.1 Difference vegetation Index (DVI) 

It is considered the simplest vegetation index (Equation 1). Susantoro et al. (2018), 

explained that the index was designed to optimise vegetation in the regions of LAI and 

more sensitive to the amount of vegetation and changes in the underlying soil (Xue 

and Su, 2017). It can differentiate between soil and vegetation, but it does not depict 

the difference between reflectance and radiance caused by the atmosphere or 

shadows. It is also shown to be sensitive to photosynthetically active vegetation 

(Tucker, 1979) It is used to monitor vegetation ecological environment, hence, it is 

sometimes called, Environmental Vegetation Index (Xue and Su, 2017). Studies that 

have used this index includes Tucker (1979). 

DVI = NIR –  RED                                                                         (1) 

where, NIR is near-infrared and RED is red band reflectance.  

2.6.3.2 Normalised Difference Vegetation Index (NDVI) 
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It is considered a good index and widely used; it calculates the ratio difference between 

reflectance of the measured canopy in the visible red and NIR (Equation 2) (Ghanghi 

et al., 2015). NDVI was developed in the 1970s, and is used to quantify vegetation 

greenness and assess changes in vegetation density and health because it correlates 

with the photosynthetic activities of vegetation (Xue and Sue, 2017). According to Lo 

et al. (1997), NDVI serves as a good indicator of surface radiant temperatures. The 

index values vary between -1.0 and 1.0; the lowest values (0.1 and below) present 

barren areas of rock, sand or snow, moderate values (0.2 to 0.3) present shrubs and 

grassland and (0.6 to 0.8) values indicate rainforests. The index is sensitive towards 

soil colour, soil brightness, atmospheric effects, cloud cover, cloud shadow and leaf 

canopy shadow (Xue and Su, 2017); many researchers prefer it due to its simplicity 

(Livelethu, 2013; Wagner et al., 2013; Kumar et al., 2017). 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                                                                       (2) 

where, NIR is near-infrared and RED is red band reflectance. 

2.6.3.3 Ratio-based Vegetation Indices (RVI) 

The ratio-based index was developed in 1969, and is sometimes referred to as, Simple 

Ratio (SR) (Equation 3). It is one of the first proposed indices and is based on the 

principle that leaves absorb more red than infrared light. The index is used mostly to 

estimate and monitor green biomass and on the usefulness of the index in estimating 

biomass (Colwell, 1973), however, when vegetation cover is below 50% (sparse), it 

tends to give poor representation of the biomass (Xue and Sue, 2017). In addition, 

bushy plants were reported to have low reflectance on the red band (Quan et al., 

2011); it has been used, extensively, to assess crop growth and development during 

the past decade (Broge et al. (2003). This latter study indicated that while the 

vegetation index has been noted to depend on the position of the sun and the structure 

of the canopy, however, some studies have questioned its ability to estimate both LAI 

and CCD in the absence of atmospheric noise, as the index is sensitive to atmospheric 

effects (Broge et al., 2003). The highest value represents vegetation, while its lowest 

is for soil, ice and water.  Studies that have successfully applied this model include, 

Tucker 1979); Broge and Mortensen (2002); Broge et al., (2003) and Din et al., (2017). 

The process is represented as: 
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𝑅𝑉𝐼 =
𝑁𝐼𝑅

𝑅𝐸𝐷
                                                                (3) 

where, NIR is near-infrared and RED is red band reflectance. Table 2.1 summarises 

the advantages and disadvantages of the selected VIs reviewed in this study.  

Table 2.1: Advantages and disadvantages of the selected VIs. 

Vegetation 
Index 

Advantages Disadvantages 
References 

DVI 
• Can differentiate 

between the soil 
and vegetation 

• Cannot depicts 
the radiance 
from the 
shadow and 
atmospheric 
effects 

Richardson and 
Weigand, 1977 

NDVI 

• Can explain the 
density of 
vegetation 

• Sensitive towards 
soil and Clouds 

• Simplicity 

• It can offer 
information on 
vegetation 
species 

• Saturate high 
levels of LAI 

Rouse Jr. et al., 
1974 

RVI 

• Can reduce 
atmospheric 
effects and 
topography 

• Simplicity 

• Low for soil, 
ice, water 

Jordan, 1969 

 

2.6.4 Application of remote sensing in land management and water resources 

The spectral radiation being emitted at all wavelengths can be interpreted to give out 

quantitative information on hydrological processes, making RS an ideal technique to 

use in areas with lack of data (Skidmore et al., 1997; Thankur et al., 2017). Monitoring 

of large atmospheric-oceanic anomalies, deforestation, climate and weather 

prediction, vegetation and soil mapping, natural disaster and LULC maps are some of 

the capabilities of RS (Skidmore et al., 1997; Marwa et al., 2011).  Landsat Thematic 

Mapper (TM) images of 1987 and 1999 were used to analyse LULC changes in the 

city of Addis Ababa and surrounding areas (Tadasse et al., 2001); results showed the 

loss of forests from urban and residential sprawls. High resolution satellite data 



 26 

enables interpretation of finer scale variations in energy balance of human-dominated 

watersheds and changes in regional water balance; for example, RS was used to 

evaluate the relationship between land surface temperatures due to urban growth and 

NDVI in the city of Shanghai (Yue et al., 2007). NDVI was also applied in the 

identification of hotspots in LULC changes in India; the study used data from 1982-

2015 to map hotspots with significant positive and negative changes (Duraisamy et 

al., 2018).  

In water resources, satellite sensor can directly and indirectly measure most of the 

components of the hydrological cycle such as evaporation, precipitation, soil moisture 

and total water storage (Sheffield et al., 2018). RS is suggested for exploring, 

evaluating, analysing, monitoring, and managing groundwater because of its efficiency 

(Thankur et al., 2017). It can easily uncover unknown information about water 

resources, LULC changes and climate changes and the consequences of those 

changes on the hydrologic cycle (Kaushal et al., 2017). RS techniques can monitor 

water colour and temperature, thereby providing information about the presence of 

nutrients in the water; for example, it was used to assess water quality at Dikgathong 

Dam in Botswana (Mosimanegape, 2016). It can also be used to analyse water quality 

and the situation of a dam, considering aspects, such as land cover dynamics and 

evolution at catchment scale (Giardino et al., 2010). Different plants reflect light at 

different spectra, thus, RS can be applied in the analysis and measure of vegetation 

cover (Xue and Su, 2017). 

2.7 GIS 

GIS is a computer application that can store, manipulate and analyse spatial data 

(Tsihrintzis et al., 1996). It is formally defined as “a system of hardware, software and 

procedures to facilitate the management, manipulation, analysis, modelling, 

representation and display of georeferenced data to solve complex problems 

regarding planning and management of resources” (Escobar et al., 2008). GIS was 

historically developed to capture and store map contents and produce statistics on the 

size of the area mapped and specific themes, although it has limited functionalities 

(Goodchild, 2011). Currently, it has so many applications, such as, land use planning, 

market analysis, ecosystems modelling, tax assessments, utilities management and 

visual impact analysis (Escobar et al., 2008). The major GIS functions include data 

entry, data display, data management, information retrieval and analysis.  Data can 
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either be in a vector format (points, polygons, or lines) or raster format (in the form of 

grid or pixels). Data sources for this tool can be field surveys or remote sensing, 

digitised and scanned data, GPS field sampling co-ordinates (X, Y), GIS brings 

together this remotely sensed data into one frame. Currently, there are many GIS 

software products with advance functions, all capable of doing any operation on any 

type of recognised type of geographic information, particularly, Esri ArcGIS, QGIS and 

Grass GIS. 

2.7.1 QGIS 

Quantum GIS (QGIS) is the most well-known and mostly used open-source GIS 

programming framework (Khan and Mohiuddin, 2018). It is made of 4 components - 

QGIS Desktop, QGIS Browser/Mobile, QGIS Web Client and QGIS Server. GIS 

supports vector, tabular and Raster data. LULC classification is done via a plug-in 

called ‘Semi-Classification automatic plug-in’ (SCP). 

2.7.2 ArcGIS 

ArcGIS is a software produced by the Environmental Systems Research Institute 

(ESRI). It is accessible as ArcGIS online, ArcGIS for Desktop, either to create maps, 

or “it can further perform spatial investigation on vector and raster information, alter 

and geocode information” (Khan and Mohiuddin, 2018). The disadvantage of the 

software includes the cost of the licenses (Sipe and Dale, 2003). Land use 

classification is done through the ArcGIS Spatial Analyst extension through the Image 

Classification toolbar (Ismail et al., 2020). A study was conducted to investigate Land 

use/ Land cover analysis using QGIS and ArcGIS and results showed that ArcGIS has 

an overall high accuracy compared to QGIS, however the study further indicated that 

QGIS showed a better producer’s accuracy when it comes to classifying water and 

built-up areas (Ismail et al., 2020).  

2.7.3 GIS application in water resources 

GIS is a powerful tool that has been applied locally, regionally, nationally, and globally 

to address a wide range of water-resources problems, namely, water quality, 

groundwater movement and contamination, river restoration and flood prediction 

(Khathami and Khazaei, 2014). GIS can be used to overlay different maps to better 

analyse land use changes and to plan resources optimally (Trung et al., 2006). Not 
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only can it overlay maps, but this tool can also be used in integration with other tools 

such as RS and hydrological models, making it a flexible tool.   

Tsihrintzis et al. (1996) used GIS tools to predict and monitor non-point sources of 

water pollution and flow of pollutants in storm sewer networks. It was also applied in 

groundwater quality studies in Khartoum State of Sudan (Shakak, 2015). Studies such 

as those of He(2003); Sing et al., (2014) and Singo (2014) have applied GIS in 

conjunction with different tools in water resources assessment studies; For example, 

it was used in conjunction with Agricultural Nonpoint Source Pollution (AGNSP) model 

to analyse the effects of land use changes on non-point pollution at a watershed (He, 

2003). It was also applied with groundwater flow model (Ashraf and Ahmad, 2012). It 

has also been used in combination with RS to investigate the sensitivity of 

hydrogeological factors to infiltration patterns and to further map potential zones of 

semi-arid watershed in Karnataka (Sing et al., 2014). Furthermore, it was used to 

evaluate the impacts of land cover changes on hydrology and water resources in 

Luvuvhu River Catchment (Singo, 2014).  

2.8 Hydrological modelling in water resource management 

Hydrological models can be used in integration with RS and GIS or as a stand-alone. 

Thankur et al. (2017) maintains that RS provides the most reliable spatially-distributed 

data for calibration and model inputs. Hydrological models can enhance the 

understanding of the environment system behaviour and give solutions to long-term 

water resources management problems (Cuceloglu and Ozturk, 2019). In addition, it 

enables the user to manipulate a system’s variables and parameters to promote an 

understanding of the interaction between variables that make up a complex system 

(Mengistu et al., 2019).  

Hydrological models are divided into three categories: Statistical models, Conceptual 

hydrological models and distributed hydrological models (Liu et al., 2017). Statistical 

models are based on the relationship between runoff, rainfall and air temperature but 

cannot project future resources, while conceptual models are based on hydrological 

scenarios, but the challenge is that a river basin is assumed to be an integral 

component. These group of models do not account for spatial heterogeneity resulting 

from the difference in topography and vegetation. Distributed models are described as 

those that need spatial and temporal data to simulate the hydrologic behaviour of a 
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watershed (Cuceloglu and Ozturk, 2019). With distributed models, input variable can 

be obtained easily; they are large scale basin models with high computational 

efficiency (Liu et al., 2017). Physical-based models play a significant role in predicting 

the effects of LULC changes on the hydrology of a river system (Jin et al. 2019). A 

hydrological model should be able to accurately depict the interaction between 

hydrological processes, sensitivity to land use and give a satisfactory representation 

of climate change (Warburton et al., 2010).   Some commonly-used hydrological 

models outlined by Rowe  (2015); Warbuton et al. (2010); Yamagata et al., (2012; 

Graham and Butts (2005) and Herpertz, (1994) are discussed below.  

2.8.1 Soil and Water Assessment Tool (SWAT) 

Soil and Water Assessment tool (SWAT) is classified as a semi-distributed model (Liu 

et al., 2017; Cuceloglu and Ozturk, 2019 and Gabiri et al., 2019) and a continuous-

time model (Mengistu et al., 2019). Physically-based semi-distributed hydrological 

models can give a detailed presentation of the hydrologic process’ fundamentals 

(Gabiri et al., 2019); it uses a daily time-step and can produce long-term simulations 

(Ang and Oerng, 2018). The model subdivides the watershed into multiple sub-

watersheds which are further subdivided into hydrologic response units (HRUs) 

(Dechmi et al., 2012). Each unit is made of a specific soil/land-use characteristic and 

the water balance for each unit is presented by four storage volumes - snow, soil 

profile, shallow aquifer, and deep aquifer (Dechmi et al., 2012). The soil profile is also 

subdivided into multiple layers that take into consideration soil water processes such 

as infiltration, evaporation, plant uptake, lateral flow, and percolation. Due to this 

ability, the model can be applied in even big catchment sizes, such as the Yellow River 

in China with a catchment size of 121 972 km2 (Wu et al., 2019). Calibration and 

validation of the model can either be done manually or can be done automatically 

using SWAT-CUP. Thavhana (2018) explains that auto-calibration can minimise 

labour, frustration and the uncertainties that come with manual calibration, however, 

a study by Mengistu et al., (2019) found that manual calibration improved a simulated 

annual runoff volume by 23% and annual evapotranspiration by16%. SWAT can also 

be linked with other models such as MODFLOW and MODSIM (Brannstrom, 2019). 

The model is driven by the water balance, and it assumes that all processes in the 

catchment are driven by the water balance (Equation 4) (Thavhani, 2018). The 

equation is as follows (Ang and Oeurng, 2018): 
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𝑆𝑊𝑡 = 𝑆𝑊0 +∑ (𝑅𝑑𝑎𝑦 −𝑄𝑠𝑢𝑟𝑓
𝑡
𝑖=1 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤                               (4) 

where, 𝑆𝑊𝑡  is the final soil water content (mm H2O),  𝑆𝑊0 is the initial water content 

on day i (mm H2O), 𝑅𝑑𝑎𝑦 is the amount of rainfall on day i (mm H2O),  𝑄𝑠𝑢𝑟𝑓  is the 

surface runoff on day i (mm H2O), 𝑤𝑠𝑒𝑒𝑝 is the amount of water entering the vadose 

zone from soil profile on day i (mm H2O) and 𝑄𝑔𝑤 is the amount groundwater flow on 

day i (mm H2O). SWAT is one of the widely-used model to assess or analyse the 

impact of land management and climate on hydrology and water resources (Sead 

2009; Liu et al., 2017); it also allows the simulation of conservation and land-use 

management. SWAT was used to analyse the response between hydrological cycle 

and land use (Utamahadi, 2018).  Some studies have successfully applied it in 

simulating streamflow due to LULC changes ((Zhou et al., 2013; Baker and Miller, 

2013; Shafiei et al., 2018). In addition, it was used to determine sediments and 

nutrients hotspots in Lake Tanganyika (Azanga et al., 2016).  

2.8.2  MIKE-SHE 

MIKE-SHE is a physically-based and integrated model that simulates surface and 

groundwater flow (Singo, 2014); it is also classified as a deterministic and fully-

distributed model. The model uses extensive physical parameters, and it accounts for 

the variability in the hydrological cycle processes such as precipitation, runoff, 

evapotranspiration (Devi et al., 2015). Not only does it simulate surface and 

groundwater movement, but it also simulates the interconnection, sediments and 

nutrients and various water quality problems, and it can be applied to large catchments 

(Devi et al. (2015).  It can capture processes at various temporal and spatial scales, 

and can be applied with any catchment size including those with complex 

hydrogeology (Refsgaard and Abbott, 1996; Ma et al., 2016; Thavhana, 2018). Mike-

SHE divides the catchment into a large number of discrete grids in three dimensions’ 

order to account and reflect the spatial variation of catchment properties (Ma et al., 

2016). These grids are divided according to land-use, soil type and precipitation and 

rely on finite difference equations to solve equations at each cell (Golmohammadi et 

al., 2014 and Brannstrom, 2019).  

Mike-SHE is data intensive and requires data involving factors affecting hydrological 

data, which can be obtained through field investigations (Feyen et al., 2000; Ma et al., 

2016). According to Golmohammadi et al., (2014), it is rare to find a watershed with 
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all the measured input data required for the model, therefore, conducting such field 

investigations can be costly (Feyen et al., 2000). It was also indicated that the model 

for integrated catchment modelling requires an experience in modelling and skills in 

disciplines, such as hydrology because of the complexity of the task (Ma et al., 2016). 

Due to the numerous parameters and complex structure, the process often leads to 

over-paramaterisation. Mike-SHE is not freely available online as its usage requires a 

licence, making it not easily accessible. Mike-SHE has been successfully applied in a 

simulation of streamflow, overland flow and groundwater flow under the influence of 

climate and LULC (Zhang et al., 2008, Zhang et al., 2019, Tian et al., 2016, McMichael 

et al., 2007, Golmohammadi et al., 2014).  

2.8.3 HEC-HMS 

Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS) was 

developed by the United State (US) Army Corps of Engineering; it simulates runoff 

from rainfall over a dendritic watershed and used to analyse urban flooding, flood 

frequency and flood warning (Halwatura and Najim, 2013). It is an open-source, 

physically based, rainfall-runoff model. The model can also analyse hydrological 

events, such as event infiltration, unit hydrographs and hydrological routing; the 

simulated results can be stored in HEC-DSS (data storage systems) (Hameed, 2018). 

Furthermore, it has components that can process rainfall loss, direct runoffs, and 

routing (Hamdan et al., 2021). The latter can be used in integration with other software 

that deal with water availability, urban drainage, flow forecasting and reservoir. The 

model is much favoured for its simplicity and use of common methods, and can also 

be used with ArcGIS through the Geospatial Hydrological modelling extension (Hec-

GeoHMS) (Tassew et al., 2019). Data preparation for the model includes the 

preparation of curve numbers for the related LULC. Studies have successfully applied 

HEC-HMS in the simulation of rainfall-runoff processes and flooding (Oleyiblo et al., 

2010; Saeedrashed et al. 2021; Hamdan et al., 2021; Tassew et al., 2019).  

2.8.4 Agricultural Catchments Research Unit (ACRU) 

ACRU is a physical-conceptual, daily time-step, multi-level, multi-purpose model that 

was developed around the 1970s (Warburton et al., 2010).  The model’s sensitivity to 

hydrological processes, land use and climate change drivers makes it one of the most 

recommended models to use in such studies (Schulze, 2010; Choi and Deal, 2008 

and Chang, 2003). ACRU is an agrohydrological model that can simulate a wide range 
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of climatic settings and land use using complex methods of configuration. It was 

originally designed for the application of design hydrology, crop yield modelling and 

reservoir yield simulations. In places where there is lack of data, the model uses 

national data set and previous experience-based default parameters. In addition, the 

model can simulate the main processes of the hydrological cycle that are linked to the 

soil-water budget, such as streamflow volume, peak discharge, and hydrograph 

(Smithers et al., 1997). It can divide the catchment into sub-catchment of less than 30 

km2 in catchments where physical characteristics and processes are more complex, 

thus it can also be referred to as a ‘distributed model’ (Smithers et al., 1997). The 

model does not require calibration because it not a parameter-fitting model; optimised 

parameters are derived from the physically-based characteristics of the catchment 

(Schulze and Smithers, 2004). One of the major limitations of the model is that it is not 

user-friendly, hence, it requires an expert to run it (Thavhana, 2018). The model has 

been successfully applied a lot in flood estimation studies and climate change, due to 

its sensitivity to climate, LULC and soil (Smither et al., 1997; Smithers et al., 2013; 

Aduah et al., 2017, Kusangaya et al., 2017). Table 2.2 summarises the advantages 

and disadvantages of the above-mentioned models. 

Table 2.2: advantages and disadvantages of SWAT, MIKE-SHE, HEC-HMS and 
ACRU. 

Model Advantages Disadvantages 

SWAT 

• It can simulate missing weather 
information 

• It provides auto-calibration 
option 

• It can be used in QGIS 
interfaces 

• It accounts for soil, land-use 
and climate change 

• Open source 

• It assumes the catchment 
dimensions remains static 

MIKE-SHE 

• It is applicable in any 
catchment size 

• It can produce a water budget 
for the hydrological cycle 

 

• High computational demand 

• Large input data  

• Needs a licence 

• Overparamaterisation  

HEC-HMS 

• Simplicity 

• Use of common methods 

• Open source 

• HEC-GeoHMS requires the 
Spatial Analyst Extension 
from ArcGIS  

• It can only be applied in 
Dendritic catchments 

• Requires terrain pre-
processing 
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ACRU 

• It accounts for climate, land use 
and soil changes 

• It does not require calibration 
and validation  

• Open source 
 

• Least user friendly 

 

2.9  Model performance  

Model performance is measured by comparing calculated values with observed data. 

It ensures and validates the simulated results, thus, showing the importance of 

evaluating model performance. It was reported that for the model to successfully 

simulate environmental variables and reduce uncertainty, an objective model 

calibration and verification is required (Ritter and Munoz-Carpenza, 2013); it is also 

recommended to combine the absolute value error statistics and a normalised 

goodness-of-fit instead of using a single indicator.  

2.9.1 The Nash-sutcliffe coefficient (NSE)  

NSE is a normalised statistic, it compares the variance of a simulated data with the 

observed data variance (Equation 5) and it is dimensionless. It shows how well a plot 

of observed versus simulated value fits the 1:1 line. NSE values range from -1 to 1, 

where the value of 1 means a perfect model performance, observed streamflow 

corresponds with simulated streamflow (Sead, 2009; Ridwansya, 2010; Zang and 

Mao, 2019; Cuceloglu and Ozturk, 2019).   NSE is sensitive to flow peaks and timing 

of flows, therefore it is not recommended when it comes to evaluating a model’s fit to 

low flows because it could lead to errors in the high flow.  In cases where low flow 

performance is important, the NSE log (equation 6) is the preferred option because it 

decreases the sensitivity of the metric high flows and increases sensitivity towards 

low-mid range flow (Parra et al., 2019). Both NSE and NSE log values range between 

-1 to 1. The recommended values for good model performance are between 0.65 and 

0.75, for a very good model performance, they should be above 0.75 (Morán-Tejeda 

et al., 2015). NSE values that are equal to or less than 0 indicate that the prediction is 

not acceptable (Zhu and Li, 2014).  NSE is calculated as follows:  

𝑁𝑆𝐸 = 1 − [
∑ (𝑆𝑖 −𝑂𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖
𝑛
𝑖=1 − Ō)2

]                                                                                               (5)  
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where, 𝑂𝑖  is the observed data, Ō is the mean of the observed data, 𝑆𝑖   is the simulated 

data and n is the number of observations 

𝑁𝑆𝐸𝑙𝑜𝑔 = 1 − [
∑ (𝑙𝑛(𝑆𝑖 + 𝜀) − 𝑙𝑛(𝑂𝑖+𝜀))

2𝑛
𝑖=1

∑ ( 𝑙𝑛(𝑂𝑖 + 𝜀)
𝑛
𝑖=1 − 𝑙𝑛(Ō + 𝜀))2

]                                                          (6) 

where,  𝜀 is a small value to avoid problems caused bu observed and simulated 

streamflows equalling zero; it must be chosen as small fraction of the mean 

interannual discharge (Parra et al., 2019). 

2.9.2 RMSE-observation standard deviation ratio (RSR)  

RSR is the ratio of the RMSE to the standard deviation of the simulated data (Equation 

7). It incorporates the benefits of error index statistics and scaling/normalisation factor 

(Moriasi et al., 2007); it further standardises the root mean square error using the 

standard deviation of the observation (Ang and Oeurng, 2018). The ideal values range 

between 0 and +1;  lower values indicate good model performance while zero indicates 

a perfect model simulation (Gyamfi et al., 2015; Ang and Oeurng, 2018), however, 

RSR larger positive RSR values, indicate a poor model performance. RSR is given by:  

𝑅𝑆𝑅 = 
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=
√∑ (𝑂𝑖 − 𝑆𝑖

𝑛
𝑖=1 )2

√∑ (𝑂𝑖
𝑛
𝑖=1 − Ō)2

                                                                                     (7) 

where, 𝑂𝑖 is the observed data, Ō is the mean observation, 𝑆𝑖 is the simulated data, n 

is the number of observations. 

2.9.3 Percent bias (PBIAS)  

PBIAS is known as an error index and it measures the average tendency of the 

simulated data to be bigger or smaller than the observed data (Equation 8) (Ang and 

Oeurng, 2018). The optimal value is 0, and it depicts the exact simulation of the 

observed values. If the values are negative, it means that the model is overestimating 

while positive values is for an underestimation (Dechmi et al. 2012; Jin et al. 2019), 

although, a lower value of PBIAS generally shows accurate model simulation. The 

values are computed as follows:  

𝑃𝐵𝐼𝐴𝑆 = 
∑ (𝑂𝑖 − 𝑆𝑖) × 100
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                                                                                                    (8)  
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where, 𝑂𝑖  is Observed variable, 𝑆𝑖  is Simulated variable, Ō is Mean observed variable 

and n = Number of observations under consideration.   

2.9.4 Mean Absolute Error (MAE) 

This is another widely and longest used dimensioned error index model evaluation 

measure (Chai and Draxler, 2014) and it expresses average prediction error in units 

of the variance (Equation 9). MAE can describe uniformly-distributed error; it was 

reported by Morias et al., (2007) that the value zero indicates a perfect fit and values 

below half of the calculated standard deviation may be considered low and 

recommended for model evaluation. 

MAE = 1
𝑛
∑ |𝑒𝑖|
𝑛
𝑖=1                                                             (9) 

where, n is sample size and 𝑒𝑖 is the error index  

2.9.5 Coefficient of determination 

The coefficient of determination (R2) shows the fraction of data that is close to the line 

of best fit and it can measure the certainty of the prediction (Thavhana, 2018). 

According to Krause et al., (2005), it is the squared value of the correlation (Equation 

10). R2 ranges between 0 to 1 and values less than 0.5 are considered unsatisfactory, 

values; those between 0.5 to 0.75 mean that the results are acceptable, and values 

greater than 0.75 indicates a good model simulation. R2 values indicate the 

percentage of variability of the observed data explained by the model; for example, if 

R2 is equal to 0.5, it means that 50% of the variance in the observed data is explained 

by the model (Krause et al., 2005; Rahbeh et al., 2011).  Both NSE and R2 can be 

used as probability measures because of the comparison between observed and 

predicted streamflow (Thavhana, 2018).  NSE has the tendency to overestimate large 

values and underestimate or neglect lower values, although, the coefficient of 

determination was said to be limited and it can provide the correlation measure for the 

linear relationship between simulated and observed data (Rahbeh et al., 2015).  It was 

also noted that through the manipulation of the intercept and the slope, the results of 

the R2 can be manipulated (Krause et al., 2005), however, for this study those two 

variables were not manipulated.  
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𝑅2 =

(

 
 ∑ (𝑂𝑖 − 𝑂̅)(𝑆𝑖 − 𝑆̅)
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𝑛
𝑖=1  √∑ (𝑆𝑖 − 𝑆̅)

𝑛
𝑖=1

2

)

 
 

2

                                                         (10) 

where, 𝑂𝑖 is the observed data, Ō is the mean observation, 𝑆𝑖 is the simulated data, 𝑆̅ 

is the mean of the simulated and n is the number of observations 

2.10 Chapter summary 

LULC changes are inevitable, while some changes are due to natural occurring 

events, some are induced by the growing population which is one of the main drivers 

as indicated in section 2.4.1. South Africa is a water-scarce country with high seasonal 

and variable rainfall (Nkosi et al., 2021). The latter study reported a decrease in water 

availability per annum from 1100 m3/person/annum in 2005 to 905 m3/person/annum 

in 2017, thus, both the growing pressure from the increased population and the change 

in climate will exert more strain on this already scarce resource. The interaction 

between land management and water resources is a delicate one, whatever is done 

on the land has an impact on the processes taking place on the hydrological cycle and 

this also affects the functions of the catchments. To support this, Kaushal et al. (2017) 

highlighted some of the hydrologic processes that have been strongly influenced by 

human interaction with the land, such as altered rainfall regimes through climate 

change, enhanced runoff and overland flow, less infiltration due to the compaction of 

land and modifications in the evapotranspiration. In response to those changes 

induced on the land, water systems tend to evolve overtime; this includes changes in 

river flow pattern and tributaries distribution.  

Studies conducted on South African catchments (Dabrowski et al., 2013; Hobbs et al., 

1985, Petersen et al., 2017, van der Laan et al., 2012) have confirmed an increase in 

human-driven LULC activities, such as forest plantations, urban areas and cultivated 

areas among others and such activities have been proven to alter the hydrological 

response regimes of a catchment, such as runoff, evapotranspiration and infiltration. 

South Africa loses about 6% of its MAR through land-use (Muller et al., 2009). The 

Crocodile River Catchment in Mpumalanga is one of the important rivers in terms of 

biodiversity, however, it is also one of the most stressed rivers, experiencing spatial 

variability in rainfall. Given the current status of water resources in the country and the 
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threats posed by climate change, it is important that such studies be done in order to 

promote the sustainable use, protection and management of water resources (Nkosi 

et al., 2021).  

With the advancement in Remote Sensors, Masud and Bastiaanssen (2017) described 

how RS and GIS can be applied in water resource management. RS can be used as 

an alternate, to obtain “spatially and temporally consistent information that would be 

used in water resource analysis and management”. In addition, hydrological models 

can simulate a phenomenon, or a physical process of the hydrological cycle (Khatami 

and Khazaei, 2014). GIS and RS are tools that have been applied to water and land 

management, successfully for over a decade. QGIS is chosen as the GIS interface for 

the study because it does not require a licence and the LULC classification plug-in, 

SCP, furthermore, Landsat data are selected for all LULC classification related 

activities.  This study chose the NDVI due to its ability to depict vegetation density and 

is one of the widely used vegetation index in the world. The SWAT model is adopted 

because it can be used with QGIS, it can simulate missing weather information and 

has been used in over 100 countries, including semi-arid regions like the CRC. 

Furthermore, it has been applied in bigger catchments than the CRC and gave 

satisfactory results; the model was manually calibrated. Due to its integration with 

QGIS, it will be referred to as QSWAT henceforth.  
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CHAPTER 3: METHODOLOGY 

3.1  Preamble 

To achieve the objective of the study, certain steps had to be followed and that is the 

purpose of this chapter. The chapter details the data requirement of this study and the 

respective data sources and the reasons for the data choices. This section provides 

the details of the methodology followed to obtain the result, the techniques (QSWAT 

and SCP) for data analysis and other forms of analysis employed.  

3.2  Data requirement, sources, and collection 

This study made use of streamflow data, climate data and geospatial data - Satellite, 

soil data, LULC maps and DEM. LULC maps, DEM, soil data and climate data were 

used as input data for the QSWAT model while the Landsat data was used for LULC 

classification and NDVI mapping. The study period covers a period of 40 years (1980–

2020), which was further divided into 3 periods taking into account data availability. 

The period from 1980–1990 represent the base period, 1995–2005 is the transitioning 

period while the period from 2010–2020 represents the post-change period. Table 3.1 

summarises the data, their sources and the period covered by each dataset. 

Table 3.1: Data type and the respective data sources. 

 

Data type Source Period covered Online repository  

Streamflow DWS 1981–2020 
https://www.dws.gov.za/Hydrology/V

erified/hymain.aspx 

Landsat data 
STRM DEM 

USGS 
1980, 2000 and 

2020 
www.earthexplorer.usgs.gov 

Climate data: 
Temperature, wind 

speed, solar radiation, 
and humidity 

ARC 2010–020 - 

Climate data: Rainfall SAWS 2010–2020 - 

Classified national 
land cover images 

(NLC) 
DEA 1980 – 2018  - 

Soil data FAO  
https://data.isric.org/geonetwork/srv/
eng/catalog.search#/metadata/c3f7c
fd5-1f25-4da1-bce9-cdcdd8c1a9a9 
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3.2.1 LULC changes 

LULC was classified for every 20 years (1980, 2000 and 2020) due to the slow rate of 

change in some of the LULC in the study area. The data required to assess LULC 

changes were obtained from USGS in the form of Landsat images. Landsat 1-3 MSS 

was used to classify 1980, Landsat 4-5 TM was used to classify 2000 and Landsat 8 

OLI was used to classify 2020 (see Table 3.2). Due to factors, such as differences in 

sensor technologies, orbital parameters, and atmospheric correction schemes, the 

process required cross-validation (Verstraete, 2015). For the scope of this study, the 

NDVI values were calculated from the acquired Landsat images for only the post 

transition period, 2020. Landsat imageries with low to no cloud coverages images 

were chosen for this study, mostly during the winter months (May, June, and July); in 

cases where images were not available, images, preceding or prior to the target year 

and  in winter months were used.  

Table 3.2: Landsat data details. 

Period Satellite Sensor ID Path/row 
Date of 

acquisition 
Grid Cell 
size (m) 

1980 Landsat 1-3 MSS 

180/078 7 July 1979 

72 181/077 16 June 1978 

181/078 14 November 1980 

2000 Landsat 4-5 TM 

169/078 
29 July 2000 

30 
169/077 

168/078 
6 May 2001 

168/077 

2020 Landsat 8 OLI_TIRS 

169/078 
2 June 2020 

30 169/077 

168/078 29 July 2020 

 

3.2.2  QSWAT data 

Table 3.2 shows the QSWAT model data used in this data. These included classified 

LULC, soil data, DEM, climate (temperatures, rainfall, humidity, wind speed and solar 

radiation) and the streamflow data and Table 3.3 gives a thorough description of the 

data. For the 1980 classified LULC, the climate data from 1980–1990 used was 

obtained from ARC and SAWS; for the 2000 classified LULC map, climate data for 

1995–2005 was obtained from SAWS, data from 2010–2020 was obtained from 

SAWS and ARC while streamflow data from 1980–2020 was obtained from DWS. Due 

to the lack of continuous climate data, different sources had to be used. Weather data 
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was used for the simulation of the model and streamflow data was used for calibrating 

and validating the simulations. 

Table 3.3: Details of the climate and streamflow station data. 

ARC 

Station ID Latitude Longitude Elevation Period Data type 

Krokodilbrug -25.3566 31.89542 170 2007–2020 

Temperature (Max, 
Min), Humidity, 
Solar Radiation, 

Wind speed 

Mhlati -25.4843 31.51994 313 2007–2020 

Temperature (Max, 
Min), Humidity, 
Solar Radiation, 

Wind speed 

Nelspruit -25.4546 30.97157 673 2007–2020 

Temperature (Max, 
Min), Humidity, 
Solar Radiation, 

Wind speed 

SAWS 

Station ID Latitude Longitude Elevation Period Data type 

Malelane -25.471 31.507 346 2007–2020 Rainfall 

Alkmaar -25.444 30.819 776 1993–2005 Rainfall 

Mayfern -25.468 31.043 610 
1978–1990 

2009–2020 
Rainfall 

Nelspruit-B -25.503 30.911 883 1993–2005 
Temperature, 
Humidity, wind 

speed 

Friedenheim -25.433 30.983 671 1978–1990 
Temperature, 
Humidity, wind 

speed 

Krokodilbrug -25.356 31.895 172 2007–2020 Rainfall 

Streamflow station 

    Period Data type 

Station ID Latitude Longitude Elevation 
1980–2020 Streamflow 

X2H032 -25.514 31.2245 - 

 

3.2.2.1 Climate data  

Figure 3.1 presents all the weather stations obtained from ARC and SAWS. As shown 

in Table 3.3, a single station does not have all the five weather parameters - rainfall, 

temperature, solar radiation, wind speed and humidity. For example, the Mhlati 

weather station lacks rainfall data, therefore, the missing weather parameters were 
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then supplemented using the nearest station within the same quaternary catchment - 

Malelane station (Table 3.4). This was applied in all the stations with incomplete data. 

 

Figure 3.1: Location of the weather stations. 

Table 3.4: The paired weather stations. 

Rainfall stations 
Temperature, solar radiation, 

wind, humidity stations 

Krokodilburg  Krokodilburg 

Malelane Mhlati 

Mayfern Nelspruit and Friedenheim 

Alkmaar Nelspruit-B 

 

3.2.2.2 Streamflow data 

Figure 3.2 shows the active streamflow stations used for calibrating and validating the 

simulation from 1980 to 2020. Given the size of the catchment, four streamflow 

stations were chosen, X2H014, X2H032, X2H046 and X2H036. However, X2H046 

and X2H036 had missing data. X2H036 had data from 1982 until recent with most 

gaps observed in the year 2000 while X2H046 had data from 1985 until recent.  
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Figure 3.2: Location of streamflow stations. 

3.2.2.3 Spatial Data 

Spatial data is another form of input data required for the QSWAT model, these include 

DEM, LULC maps and soil maps. Table 3.5 shows the LULC classes used in QSWAT 

and Figure 3.3 shows the soil data that was used as input in the form of Geotiff.  

Table 3.5: Land-use classes and SWAT codes. 

LULC Description SWAT Code 

1. Cultivation 
Crop lands, irrigated, dry crops, 

rotational crops, pastures 
AGRR 

2. Forest plantation 
Alpines, evergreen, deciduous 

forests 
FRSE 

3. Waterbodies Dams, ponds, rivers WATR 

4. Grassland All grass range GRAS 

5. Built-up 
All urban areas and settlements, 
commercial, mines, manmade 

structures 
URBN 

6. Bushland/Savanah Bush, thickets, shrubs, SAVA 

7. Bare 
No or little vegetation and exposed 

areas in cultivation areas, rocks, 
burnt areas, quarries areas 

BSVR 

8. Natural forest 
Mixed indigenous forest and 

woodland 
FRST 
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(source: FAO) 

Figure 3.3: Soil map used in QSWAT. 

3.3  Data analysis 

3.3.1 LULC classification 

QGIS interface was used for LULC classification and analysis and to calculate the 

NDVI value. The GIS software comes with a plug-in called ‘semi-automatic 

classification’ (SCP). The SCP plug-in within QGIS has been widely used for the 

classification of land-use and other remote-sensing analysis. For this study, SCP was 

used for pre-processing, band processing and post-processing of the Landsat data. 

Figure 3.4 shows the steps involved in land classification using SCP.  
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(Cogendo, 2014) 

Figure 3.4: Schematic representation of the semi-automatic classification workflow. 

i. Images Pre-Processing 

Pre-processing of the satellite band involves conversion of the bands from digital 

number (DN) to reflectance, atmospheric correction, projections and clipping. For this 

study, the images were pre-processed using the SCP plug-in. The bands were loaded 

into SCP, first stacked and mosaicked, then clipped to mask the study area.  

ii. Band Processing  

After pre-processing, the correct band combination (RGB) was then selected. For this 

study the RGB combination values used for Landsat 1-3 MSS were 1-3-4, for Landsat 

4-5 TM were 1-7-4 and for Landsat 8 OLI/TIR were 2-3-4. In addition, the  regions of 

interest (ROI)s were created by drawing a polygon instead of using the ROI pointer. 

Land use classification can either be unsupervised or supervised; supervised 

classification is when the user develops spectral signatures of the known category 
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(built-up, forest, and others) and unsupervised classification is when the software 

assigns the pixel corresponding to that signature (Rwanga and Ndambuki, 2017). For 

this study, classification was done under supervision; LULC was classified into 8 major 

classes - built-up, grassland, savannah/bushlands, bareland, waterbodies, cultivation 

land, forest plantation and natural forest - as shown in Table 3.5. 

 

Figure 3.5: Training input on SCP. 

iii. Post Processing: Accuracy Assessment 

Accuracy assessment is one of the important steps in LULC classification and is used 

to validate the classified LULC, as well as quantitatively assess that the sampled pixels 

are assigned to the correct LULC class. For this study, the accuracy assessment was 

done using Landsat images with high resolution, Google Earth and NLC images. The 

NLC images used in this study, that is, 1980, 2000 and 2018 as the closest to 2020 

the time of this study, were classified from Landsat 1-3, Landsat 4-5, Landsat 7 and 

Landsat 8 images. The error matrix (Table 3.6), Kappa coefficient, standard error (SE), 

user accuracy (UA), producer accuracy (PA) and overall accuracy were used to 

measure the accuracy of the classified land-use.  After accuracy assessment, a LULC 

report, the statistics of land cover, was then generated for each period of classification. 

The kappa coefficient was calculated using Equation 11. 

x =
Observed accuracy−change agreement

Sum of product of row and column totals for each class
                         (11) 
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UA =
Correctly classified

Total classified
𝑥 100      (12) 

PA =
Correctly classified

Total number of reference sites
𝑥 100    (13) 

 

The Kappa Coefficient ranges from -1 to 1. Values that are less than a zero are 

considered poor or the agreement is not perfect, fair accuracy is between 0.2 and 0.4, 

moderate accuracy is between 0.4 and 0.6, good accuracy is between 0.6 and 0.8, 

while values closer to 1 are considered substantial to almost perfect (Lekha and 

Kumar, 2018). The columns of the error matrix table show the class validation pixels, 

while the rows of the table show the classes in which the validation pixels have been 

assigned to during classification (Table 3.6). According to Rwanga and Ndabuki 

(2017), the diagonal shows the pixels that have been classified correctly. Furthermore, 

the User accuracy accounts for when a pixel belonging to one class is included in a 

class being evaluated (Lekha and Kumar, 2018).  

Table 3.6: An example of an error matrix table 

Land-use 
class 

Class 1 Class 2 Class 3 Total 

Class 1 3 0 2 5 

Class 2 1 2 4 7 

Class 3 0 8 2 10 

Total 4 10 8 22 

 

3.3.2 Determination of hotspot Areas 

Using LULC classification, the land-use activities with major impacts on the catchment 

cover were identified. The hotspots of those identified land-uses were then mapped 

based on the CRC quaternary catchments; an NDVI map was also generated based 

on those mapped hotspots. The NDVI values were used to account for the hotspot 

land-use activities. NDVI was generated on QGIS using Equation 2 in section 2.6.3.2 

and the band combination are shown in Table 3.7. To compare the long-term changes 

in the hotspots activities as identified in this study, Landsat 1-3 MSS images were 

closely compared with those of Landsat 8 OLI/TIR. 
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3.3.3 Hydrological Modelling 

QSWAT was used to simulate the changes in the streamflow before and after LULC 

changes. Figure 3.6 shows the set-up of SWAT as used in this study and the steps 

involved. SWAT is made up of 3 steps - step 1 is the delineation of catchment, HRUs 

were created in step 2 (Figure 3.6). After the creation of the HRUs, step 3 was enabled, 

and the SWAT2012 editor was activated.  

 

(Source: Phukoetphin et al., 2015) 

Figure 3. 6 : Schematic representation of the SWAT model. 

The SWAT2012 editor also had several steps to complete before the simulation of the 

model. This includes the creation of a weather generation station and batch files and 

importing the databases into the editor.  The weather generation csv file contained 

statistics of the climate data, station names, elevation, and the location; it was 

imported to the QSWAT2012 reference database. The simulation step was involved 

in the selection of years to be simulated and selecting the warm-up period. A warm-
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up period is the number of years to be skipped by the model; for this study, a warm-

up period of 2 to 3 years was used depending on the availability of data and the results 

were printed per month. The results from the model can be read in the project 

databases through importing the results to the project database or it can be viewed on 

QSWAT through the visualise option. For this study, the output files chosen were 

output.rch (for streamflow) and output.sub (for the water balance components - 

surface runoff and evapotranspiration). 

i) Streamflow 

Streamflow consists of the total flows from all HRUs to the subwater level and can be 

re-routed via the variable-rate storage method or the Muskingum method; both 

methods were indicated as variations of kinetic wave approach (Gassman et al., 

2007). For this study, the Muskingum routing method was used because it calculates 

the outflow hydrograph downstream based on the inflow hydrograph upstream 

(Tassew et al., 2019). 

ii) Surface runoff 

Surface runoff is estimated from daily or sub-hourly rainfall, and it can be estimated 

through the modified soil conservation service (SCS) curve number (CN) or Green and 

Ampt infiltration method (Gassman et al., 2007; Jamil, 2020). The SCS-CN is modified 

based on the antecedent soil moisture content and LULC; the SWAT equation is given 

as shown by Equation 14 (Jamil, 2020). 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦−0.2𝑆)

2

(𝑅𝑑𝑎𝑦−0.8𝑆)
                                                         (14) 

Runoff will occur when 𝑅𝑑𝑎𝑦 > 𝐼𝑎 

where 𝑄𝑠𝑢𝑟𝑓 is the collected runoff (mm H2O), 𝑅𝑑𝑎𝑦 is the rainfall depth for the day (mm 

H2O), 𝐼𝑎 is the initial abstractions (including surface storage, interception) prior to 

runoff (mm H2O) and 𝑆 is the retention parameter (mm H2O). 

iii) Evapotranspiration 

SWAT has three methods for the estimation of evapotranspiration and these are: 

Penman-Monteith, Priestly-Taylor and Hargreaves (Gassman, et al., 2007). For the 

period of 1980–2005, ET was simulated using Hargreaves because there was no solar 
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radiation data for this period, and the method only requires Temperature (Maximum 

and Minimum) data (Jung et al., 2016). For the 2010–2020 period, ET was simulated 

using the Penman-Monteith evapotranspiration method because there was solar 

radiation for this period.  

3.3.3.1 Calibration and Validation 

Model calibration is achieved by modifying parameter values and further comparing 

the model outputs with the observed data (Ang and Oeurng, 2018). The latter study 

further explained that model validation is done in order to ascertain whether the 

calibrated model can predict streamflow based on the adjusted parameters. Model 

validation is usually done using later time periods. Calibration and Validation were 

done manually on the SWAT2012 editor window. The calibration and validation 

periods for this study were chosen as follows (Table 3.8). 

Table 3.7: Calibration and validation period. 

Period Calibration Validation 

Base period: 1981–1990 1980–1985 1986–1990 

Transitioning: 1995–2005 1995–2000 2001–2005 

Post transition: 2010–
2020 

2010–2015 2016–2020 

 

SWAT2012 editor contains 39 parameters; sensitivity analysis was done to determine 

the parameters to be adjusted. The NSE, RSR, PBIAS and R2 were used for model 

performance and the trendline was used to indicate the corelation between the 

observed and simulated data for the calibration and validation periods. 

3.4 Chapter Summary 

The study is assessing the impact of LULC on water resources over a 40-year period 

(1980–2020), however, due to the lack of weather parameters in some weather 

stations, multiple weather databases had to be used. Most data obtained from SAWS 

did not have solar radiation, humidity, wind speed and temperature, while the data 

obtained from ARC did not have rainfall, therefore, to account for the missing data 

parameters either from ARC or SAWS, stations were paired with those found within 

the same quaternary catchment. Landsat images were used for LULC classification, 

Landsat-1-3 MSS was used to classify the year 1980 (the base period), Landsat 4-5 

TM was used to classify the year 2000 (transition period) and Landsat 8 OLI/TIR was 
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used to classify the year 2020 (the post-change). All LULC classification analysis 

(including Landsat processing and accuracy assessments) were done using the SCP 

plug-in in QGIS. The NDVI was used to account for the hotspot areas. QSWAT was 

simulated 3 times, based on the LULC maps; for LULC 1980, the simulation was 

between 1980–1990; for LULC 2000, the simulation was between 1995–2005 and for 

LULC 2020, the simulation was between 2010–2020. Streamflow station X2H032 was 

used for calibration and validation of the model and the measures of performances 

were NSE, PBIAS, RSR and R2. All data analysis for this study were carried out on 

QGIS.  
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CHAPTER 4: RESULTS AND DISCUSSION 

LAND USE/LAND COVER CHANGES 

4.1 Preamble  

This chapter presents and discusses the results of the land use / land cover 

classification as analysed with the SCP plug-in in QGIS. It also discusses the accuracy 

results for 1980, 2000 and 2020 followed by the changes in LULC for these same time 

periods. In addition, the hotspots and NDVI results for the identified main land uses 

(cultivation land, urban areas, and forestry) for 1980 and 2020 periods (the pre- and 

post-change periods only) were outlined.  

4.2  Land use/Land cover classification 

4.2.1 Land-use classification 

igure 4.1 shows the land use/land cover classification between 1980 and 2020 while 

Table 4.1 presents the LULC classification report, which details the percentage of 

change in LULC between 1980 and 2020.  

 

Figure 4.1 :Classified land-use from 1980–2020. 
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Table 4.1: Land-use report. 

Land-use 1980 2000 2020 
% of change from 

1980–2020 

1- Cultivation 2.59 5.05 5.06 2.47 

2- Forest plantation  12.29 14.43 15.38 3.09 

3- Water 0.04 0.26 0.13 0.09 

4- Grassland 27.01 27.04 26.01 -1.00 

5- Built-up 0.47 1.31 2.81 2.34 

6- Bushland/Savana 23.78 23.02 25.87 2.09 

7- Bareland 1.29 5.55 4.99 3.70 

8- Natural Forest 32.54 23.33 19.74 -12.80 

 

4.2.1.1 Cultivation 

Cultivation increased by 2.5% between 1980 and 2020, from 2.6% to 5.1%, however, 

there was no change in cultivation land-use between the years 2000 and 2020. The 

increase in cultivation land could be due to increased population and the economic 

sector of Mpumalanga. The agricultural sector plays an important role in food security 

in the Province, and MPCOGTA (2018) reported that it is responsible for providing 

food security through subsistence farming and employment to unskilled workers. The 

main crops in the study area are sugarcane and citrus which are estimated to be 

occupying about 44.32% and 20% of the total irrigated area, respectively, especially 

in the lower catchment (Mussa et al., 2015). The latter study indicated that maize 

occupies about 5% and is mostly cultivated in the upper catchment.  

4.2.1.2 Forest plantation 

Forest plantation increased by 3.1% from 1980–2020; it was occupying an area of 

12.3% in 1980 and this increased to 15.4% in 2020. Afforestation was reported to have 

occupied about 40% of Sabie/Graskop and 76% of the area east of Barberton (MMDC, 

1998). The forestry industry is a major contributor to the South Africa’s economy, thus 

the increase in this land-use cover. About 39 of the 148 primary processing plants are 

found in the Mpumalanga Province, and the biggest paper mill in the Southern 

hemisphere, the Ngodwana Sappi Kraft pulp and paper mill are located within the 

Crocodile River Catchment and the other driver of the commercial forest is wood 

demand. The most dominating forest trees are pines and Eucalyptus (Bate et al., 

1999); these were also classified as alien vegetation in a report by the Mbombela 

SoER (2003). 
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4.2.1.3 Water  

The results also showed major changes in waterbodies from 1980 to 2000 with an 

increase of approximately 0.3%, however this decreased by 0.2% in 2020. The 

increase between 1980 and 2000 can be attributed to construction of the Kwena Dam 

in 1984 and the Ngodwana Dam, as well as seven more medium dams on the 

catchment and over 200 small farm dams (Deksissa et al. (2003). The construction of 

dams was driven by the need to meet the water demand from different sectors; for 

example, the Ngodwana Dam was constructed to supply water to the Sappi Kraft (pty) 

Ltd pulp and paper mill and for domestic supply to the village of the Ngodwana (DWA, 

2013). The latter report stated that the Kwena Dam was constructed for irrigation 

purposes. The decrease in waterbodies between 2000 and 2020 can be due to the 

difficulty that came with separating waterbodies from the surrounding land-cover. High 

spectral and spatial diversity of the waterbodies and inhomogeneity of the surrounding 

surfaces were shown to affect the extraction or classification of waterbodies (Wei et 

al., 2020). The latter study added that the urban surfaces, building and mountain 

shadows can obstruct the accuracy of waterbody classification. Furthermore, most 

waterbodies, including some of the major rivers were more visible in 2000 and this can 

be attributed to the Intense Tropical Cyclone Leon–Eline that occurred in 2000 over 

southern Africa.  In 2020, however, water levels were low in some dams and not as 

visible in some rivers which may have led to the misclassification of some waterbodies, 

thus, Wei et al. (2020), suggest that climate is also another aspect to consider when 

classifying waterbodies. 

4.2.1.4 Grassland 

There has been an overall decrease of grassland between the year 1980 and 2020, it 

has decreased by 1% since 1980, it covered 27% of the area in 1980 and in 2020 it 

only covered about 26% of the area. Grassland covers most of the Mpumalanga 

Province. The latter has been transformed by 44% and 45% nationally (South Africa) 

and provincially (Mpumalanga) respectively, if not transformed, they are reported to 

have been degraded or severely invaded by alien plants (Fourie et al., 2014). This 

latter study concluded that grasslands are mostly affected by grazing and crop 

production, urban development, and forest plantation. This could explain the decrease 

in grassland from 1980 with the increase of the mentioned activities, as shown in this 
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study.  In addition, in Mpumalanga, most grasslands are found in fertile soils which are 

used for crop production (Ferrar and Lotter, 2007; MPCOGTA, 2018).  

4.2.1.5 Built-up 

Built-up areas account for anthropogenic impervious surface such as settlement 

areas, towns, roads, commercial areas and railways. Figure 4.1 and Table 4.1 show 

an increase of 2.3% in built-up areas from the year 1980 to the year 2020. One of the 

major drivers of built-up areas is population growth and development (Kumar et al, 

2017). The biggest settlement area within the catchment is the Nsikazi South, made 

up of Daantjie, Kanyamazane, Kabokweni and Thekwane (DWA, 2013). The 

population for Nsikazi South was estimated to be about 219 118 in 2009 and was 

estimated to be about 229 417 for low growth scenario and 231 981 for high growth 

scenario in the year 2020. In addition, it is estimated to reach 237 660 in 2030 for low 

growth scenario and 255 605 for high growth scenario (DWA, 2013). The city of 

Mbombela is the economic hub of Mpumalanga and is fast growing, therefore, the 

increase in built-up areas, since 1980, may be due to the growing population. It was 

estimated to be about 49 907 in 2009 and it is estimated to be about 62 777 in 2020 

for low growth scenario and 66 239 for a high case scenario (DWA, 2013). Other major 

recognised fast-growing settlements include Plaston/Karino located 15 km from the 

city, White River located 20 km from the city, Matsulu located 40 km from the city and 

the Nsikazi/Daantjie located about 25 km from the city (MEGDP, 2011).  

4.2.1.6 Bushland/Savannah  

Savannah/Bushland are made of a mixture of trees, shrubs, and grass, and it further 

varies between tall dense woodland, open woodland, and dense thickets. Figure (4.1) 

and Table (4.1) indicate an increase of about 2.1% in 2020 from 1980; it covered an 

area of 23.8% in 1980 and this increased to about 25.9% in 2020. Based on igure 4.1, 

there is more bushland cover in the lower catchment, especially in the Kruger National 

Park, which MPCOGTA (2018) stated as providing the ideal landscape for wildlife.  

4.2.1.7 Bareland  

The results indicate a high number of bare areas between 2000 and 2020, as there 

was an increase of about 3.7% from 1980 to 2020. Burnt areas, exposed cultivation 

land, and cleared forest plantation land account for most of the bare area classes in 

this study. It was noted that veld fires are natural events and they are used as 
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management tools (Mucina and Rutherford, 2006), however, the frequency of fires 

within the catchment is “far greater than natural burning regimes” (Mbombela SoER, 

2003). Wildfire results in landscape degradation, thus affecting the vegetation and soil 

properties (Moran-Tejeda et al., 2015).  

4.2.1.8 Natural Forest 

Natural forests only refer to indigenous forests, and the results indicated a decrease 

of about 12.8% since 1980 (from 32.7% in 1998 to 19.5% in 2020). Natural forests 

have a significant cultural value as they are a source of many traditional medicinal 

herbs. Other factors affecting natural forests include land-uses such as cultivation, 

forest plantation and urban sprawl, thus an increase in those land-use activities could 

have been one of the reasons for the reduced natural forests.  About 25% of South 

Africa’s natural forest are conserved within timber plantations and provide shade and 

moisture-conserving leaf litter that affects the growth of ground-layer vegetation such 

as grass and shrubs (MPCOGTA, 2018). This could explain the increase in bushland 

with the decrease in forest cover on the lower Crocodile catchment, thus, the overall 

increase of bushland in the year 2020.   

Mbombela SoER (2003) indicated that due to land use activities in Mbombela, only a 

few habitats remain in their natural state and have become “islands” or patches. These 

includes natural forests, wetland, riparian zones and natural grasslands, the latter are 

also considered ecologically sensitive. Agricultural expansion, housing development, 

urban sprawling, poor fire management and bush encroachment are some of the major 

drivers of natural vegetation changes (Mbombela SoER, 2003), however, changes in 

natural vegetation can also be attributed to climate (Sheil, 2018). There was less 

rainfall observed in 2020 than 2000 and this could also explain the decrease in natural 

forests downstream. 

4.2.2 Accuracy Assessment  

Table 4.2a presents the error matrix results; for the year 1980, UA ranged between 

46.7% to 93.3% while PA ranged between 61.9% to 100%. The confusion was mostly 

due to the built-up areas and barelands, especially exposed rocks. For the year 2002, 

UA ranged between 40 % and 100% while PA ranged between 61.5% to 100%; like in 

1980, confusion was mostly between built-up areas and bareland (see Table 4.2b). In 

2020, from Table 4.2c, UA ranged between 70% and 100% and PA ranged between 



 56 

66.8% and 100%. PA indicates the accuracy of a prediction while the UA indicates the 

reliability of the classification (Rwanga and Ndambuki, 2017), therefore, UA was 

indicated to be a more relevant measure of classification. The matrix error table (Table 

4c) also showed the standard error, for the year 1980; the SE ranged between 0-0.039, 

between 0-0.0406 for the year 2000 and 0-0.0407 for the year 2020. 
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Table 4.2: Error Matrix table for the years (a) 1980, (b) 2000 and (c) 2020. 

a. 1980  

Classified Land 
use 

Cultivation 
Forest 

plantation 
Waterbodies Grasslands Bareland Savanah 

Built-
up 

Natural 
Forest 

Total 

Cultivation 12 3 0 1 2 0 0 2 20 

Forest Plantation 0 14 0 0 0 0 0 1 15 

Waterbodies 0 0 13 0 0 0 0 2 15 

Grassland 3 0 0 9 0 1 0 2 15 

Bareland 2 0 0 1 9 1 2 0 15 

Savanah 0 0 0 0 3 12 0 0 15 

Built-up 1 2 0 0 0 4 7 1 15 

Natural Forest 0 0 0 0 0 1 1 13 15 

Total 18 19 13 11 14 19 10 21 125 

 

SE 0.029 0.0085 0 0.0354 0.0255 0.038 0.0218 0.0393 

 PA (%) 66.7 73.7 100 81.8 64.3 63.2 70.0 61.9 

UA (%) 60 93.3 86.7 60 60 80 46.7 86.7 

 

a. 2000 

Classified Land 
use 

Cultivation Forest 
plantation 

Waterbodies Grasslands Bareland Savanah Built-up Natural 
Forest 

Total 

Cultivation 9 1 0 1 4 0 0 0 15 

Forest Plantation 0 15 0 0 0 0 0 0 15 

Waterbodies 0 0 10 0 0 0 0 0 10 

Grassland 1 1 0 12 0 0 0 1 15 

Bareland 1 0 0 0 7 0 0 2 10 

Savanah 0 0 0 0 0 9 0 1 10 

Built-up 1 2 0 2 0 0 4 1 10 
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Natural Forest 0 1 0 1 0 0 0 8 10 

Total 12 20 10 16 11 9 4 13 95 

 

SE 0.0206 0.029 0 0.0373 0.0066 0.0221 0.0086 0.0405  

PA (%) 75.0 75 100 75.0 63.6 100 100 61.5 

UA (%) 60 100 100 80 70 90 40 80 

 

a. 2020 

Classified 
Land use 

Cultivation 
Forest 

Plantation 
Waterbodies Grassland Bareland Savanah 

Built-
up 

Natural 
Forest 

Total 

Cultivation 14 1 0 2 0 1 1 1 20 

Forest 
Plantation 

0 13 0 1 0 0 0 1 15 

Waterbodies 0 0 15 0 0 0 0 0 15 

Grassland 0 0 0 14 1 0 0 5 20 

Bareland 0 0 0 1 13 0 1 0 15 

Savanah 0 0 0 1 2 16 1 0 20 

Built-up 3 0 0 0 0 0 12 0 15 

Natural 
Forest 

1 4 0 0 0 0 0 15 20 

Total 18 18 15 19 16 17 15 22 140 

 

SE 0.0121 0.0236 0 0.0321 0.0221 0.0232 0.0136 0.0347 

 PA (%) 77.8 73.6 100 75.0 81.3 94.1 80 66.8 

UA (%) 70 86.7 100 70 86.7 80 80 75 
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The overall accuracy for land use classification ranged between 77.2 % and 82.3% 

and the kappa statistics ranged between 0.71 – 0.78 (Table 4.3).  According to the 

criteria presented by Lekha and Kumar (2018), the results depict good accuracy and 

are within the acceptable range, thus the classification is acceptable. 

Table 4.3: The overall performance and Kappa statistics for the  
classified land-use. 

 

 

 

4.3 NDVI analysis for hotspots area for major land-uses 

From the classified land use maps, the recognised land-uses were commercial forest 

plantation, built-up areas and cultivation lands; these were recognised as the major 

drivers to the changes on natural land cover in the catchment. These results are 

consisted with findings by Saraiva-Okello et al. (2015), which indicated an increase of 

over 4 times in areas under commercial forest and agriculture.  From this view, the 

hotspot areas of interest were demarcated based on quaternary catchments as shown 

in  Figure 4.2. From the Figure, the lower and upper parts of the catchments seem to 

be the major hotspots for agriculture, while the middle reach of the catchment is shared 

between built-up and forest plantation. Based on the land use classification (igure 4.1), 

forest plantation further extends toward the upper reaches.  

Period Overall accuracy Kappa statistics 

1980 71.2 0,71 

2000 77.9 0.78 

2020 80.0 0.72 
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Figure 4.2: Land-use hotspots. 

4.3.1 Built- up Areas 

Ten quaternary catchments were recognised as the major hotspots for built-up 

changes - X22C, X22F, X22H, X22J, X22K, X23B, X23F, X24B, X24A and X24C as 

shown in Figure 4.2. The NDVI value for the extracted quaternary catchment where 

built-up areas are dominant was 0.1 (see Figure 4.3). This is supported by a study by 

Akbar et al. (2019), where the values presenting built-up areas were found to be 

between 0.015–0.14.   
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Figure 4.3: The NDVI for built-up hotspots 

The increase in built-up areas not only affect natural vegetation - natural forests, 

grasslands, and bushland - but also existing land-use classes being converted to built-

up areas. An example is provided in the X22F and X22H the areas marked A in Figure 

4.4. As depicted, point A was an agricultural area in 1980 and was converted to a 

settlement in 2020. It should be noted that most of the Karino area was previously a 

cultivation area. Zubair et al. (2019) mentioned that urban expansion presents a 

problem to agricultural land use within the vicinities of large urban areas. Point B 

indicates the City of Mbombela (X22J; X22C), the capital city of the Mpumalanga 

Province and the major economic hub within the catchment as previously indicated. 

Increase in built-up areas, therefore, can also be attributed to the increase in rural-

urban migration and new developments such as the construction of malls in the 

settlement area for the growing population. 
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Figure 4.4: Changes in land-use between 1980 and 2020. 

4.3.2 Cultivated Lands  

Eight quaternary catchments were recognised as the cultivation hotspots and these 

are: X21B, X21C, X21E, X23H, X24D, X24E, X24H and X24H (Figure 4.2). These 

were found in the upper and lower reaches of the catchment (Figure 4.5). It has been 

reported that most irrigated crops are found on the lower catchment while dry crops 

are found on the upper catchment (Mussa et al., 2015; MEGDP, 2011). The NDVI 

value for the irrigated crops varies between 0.6 and 0.7 while the NDVI value for dry 

crops vary between 0.0 and 0.4, especially, closer to the Kwena Dam. On average, 

the NDVI values for the croplands in the lower catchment were higher than that of the 

upper reaches, thus, it indicates that the crop vegetation in this part of the catchment 

is greener (X24H) than upstream, especially in X21B and X21C (Figure 4.5). It should 

be noted that the croplands were located within other major LULC classes, for 

example, the upper reaches crop is found within commercial forest plantation. 
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Figure 4.5: NDVI for cultivated lands. 

Cultivated lands have also been indicated to have increased since 1980 in LULC 

classification results. Figure 4.6 shows the changes that have occurred from 1980 to 

2020, there were more cultivation plots in 2020 than 1980.  Due to the competition 

between agricultural land (that is, grazing land and cultivation land) and other land-

uses such as mining and urban expansion, MEGDP (2011) highlighted the need for 

protecting high potential and productive agricultural land. In addition, it was reported 

that agriculture is the economic backbone of the Mpumalanga Province (MEGDP, 

2011)   

4.3.3 Commercial plantation Forest 

Eleven quaternary catchments were identified as being the hotspots areas for 

commercial forest land-use - X21H, X21J, X21K, X22A, X22B, X22D, X22E, X22G, 

X23A, X23C and X23E (see Figure 4.2). The NDVI value for forest plantation varied 

between 0.8 and 0.9 as shown in Figure 4.7 and these were highest in the quaternary 

catchments containing only forest plantation such as X22D. These findings are 

comparable with those obtained by Hadebe (2001).  
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Figure 4.6: Cultivated land changes between 1980 and 2020. 

 

 

Figure 4.7: NDVI for Forest plantation hotspots. 
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As can be seen from the LULC results analysis, forest plantation is the major land-use 

activity in the Crocodile Catchment and in Mpumalanga; it accounts for 22.8% of the 

country’s forestry Gross Value Added (GVA) (MEGDP, 2011). The land-use results 

analysis marked an increase of 3.1% in forest plantation from 1980 – 2021, examples 

of these changes are presented in Figure 4.8 (quaternary catchment X21J). Moreover, 

Mkhondo, parts of Msukaligwa local municipalities and Mbombela were noted as areas 

of high forest plantation capabilities within the catchment, thus, suggesting the 

potential for more forest plantations within the catchment (MPCOGTA, 2018). 

 

Figure 4.8: Changes between 1980 and 2020. 

4.4 Chapter Summary 

The chapter aimed at presenting the changes in LULC from 1980–2020 and to map 

the land-uses (hotspots) with major impacts on natural cover. The classification 

results’ analysis indicated a positive change in most LULC classes from 1980 to the 

year 2020, however, a negative change was marked in grassland and natural forest 

cover vegetation. The negative changes were attributed to the increase in other LULC 

classes; for example, the decrease in grassland was attributed to the increase in 

cultivated areas, built-up areas, and forest plantation. Increase in cultivated areas, 

built-up areas and forest plantation were driven by population demand and the areas 
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economic contribution, thus, making them the hotspot activities with major impacts on 

the catchment land cover. The upper and lower catchments were found to be the 

hotspots for irrigated crops and dry crops, respectively, with NDVI values ranging 

between 0.0–0.7. The middle-catchment was found to be the hotspot for built-up areas 

and forest plantation, with an NDVI value of 0.1 for built-up areas and NDVI values 

ranging between 0.8 to 0.9 for forest plantation. The closer the NDVI value is to 1, the 

more densely the vegetated area is (USGS, 2021). It should be noted that the land-

use activities are not limited to the mapped areas, however, this is where they are 

mostly concentrated. The increase in these land-use activities - cultivation, built-up 

area and forest plantation - resulted in an increase for water demand which in turn led 

to the construction of dams - Kwena Dam and Ngodwana Dam - for water supply. 

Other recognised major dams are Primkop Dam, Da Gama Dam, Witklip Dam and 

Klipkopjes Dam augmented with more than 200 farm dams (DWA, 2013). The study 

also observed a trend in the distribution of some LULC (that is, forest plantation) and 

the distribution of the rainfall ((Source: WR2012) 

Figure 1.3).  As indicated, the highest amount of precipitation (1071–1614 mm) is 

received in the western mountainous area; this is the area in which most afforestation 

activities were concentrated. It was also noted that the bushland/savannah is 

distributed in areas with rainfall ranging between 527 and 708 mm/year, thus, showing 

that climate also plays a role in the distribution of LULC.  
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CHAPTER 5: RESULTS 

HYDROLOGICAL RESPONSE 

5.1 Preamble  

This chapter presents the hydrological simulation-analysis findings from the SWAT 

model. It provides the calibration and validating of the simulations with model 

performance measures (NSE, PBIAS, RSR and R2). It further presents the streamflow 

trends from 1980–2020 and details impacts of LULC on the catchment hydrological 

response - surface runoff and evapotranspiration – thus, the effects on water 

resources.  

5.2 SWAT results 

5.2.1 Watershed results 

There were 27 sub-basins and 377 HRUs created from the 1980 simulation, 2000 and 

2020 had 29 sub-basins with 380 HRUs for the year 2000 and 373 HRUs for the year 

2020 as shown in Figure 5.1. The sub-basins and HRUs were created based on soil, 

land-use, and slope data, thus giving rise to difference in the number of sub-basins 

created as shown in Figure 5.1. The choice of the sub-basins was based on their 

correspondence with the observed station.  

 

Figure 5.1: Simulated QSWAT Sub-basins. 
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5.2.2 Model Calibration and Validation 

The SWAT model has 14 flow parameters (El-Sadek and Irvem, 2014), and the listed 

parameters in Table 5.1 were found to have more influence on the model during 

sensitivity analysis, in this study. The most sensitive parameters for this study were 

ALPHA-BF, CN2 and SOL_K. Error! Reference source not found. shows the fitted 

values for each period.  

Table 5.1: SWAT model calibrated parameters for the CRC. 

Parameters Description 

Calibration 
range 

Fitted value 

Max min 1980- 
1990 

1995- 
2005 

2010- 
2020 

1. SOL_K 
Saturated hydraulic 

conductivity 
100 0 

0.05 
 
5 

0.95 

2. CN2 
The initial SCS 

Curve Number II 
value (%) 

98 35 
0.5 0.05 1.2 

3. SOL_AWC 
Available water 

capacity 
1 0 

  0.9 

4. SOL_Z Soil depth 
3000 0 

0.01 0.3  

5. GW_DELAY 
Groundwater delay 

time 
50 0 

5 8 0.5 

6. GWQMN 

Threshold depth of 
water in the 

shallow aquifer 
required for return 
flow to occur (mm) 

5000 0 

2 0.95 2 

7. ALPHA_BF 
Baseflow alpha 

factor (days) 
1 0 

0 0.03 0 

8. GW_REVAP 
Groundwater revap 

coefficient 
0.2 0.02 

0.15  0.15 

9. REVAPMN 

Threshold depth of 
water in the 

shallow aquifer 
required 

for revap to occur 
(mm) 

500 0 

  50 

 

For the 1980 LULC, the period between 1980–1985 was used as the calibration and 

the period between 1986–1990 was used for validation. For 2000 LULC, the period 

between 1995 –2000 was used for calibration and the period between 2001–2005 was 

used for validation. Then, the period between 2010–2015 was used for calibration 

while 2016–2020 was used for validation for 2020 LULC.  
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5.2.2.1 Base period: 1980–1990 

Figure 5.2 shows the calibration and validation runs for the period between 1980 and 

1990 for stations X2H014, X2H032, X2H046 and X2H036. For the calibration period, 

the hydrograph for simulated and observed streamflow followed the same trend, 

especially, while simulating low flows. The hydrographs for both the simulated and 

observed streamflow for the validation period depict the same trend, especially for 

X2H032 (Figure 5.2c). The model however, underestimated most of the peak flows, 

especially the 1989 peak flow. The simulation was more pronounced for the X2H014 

station (Figure 5.2a). 

The highest simulated peak flow was in February 1985 equalling 86.7 m3/s and an 

observed streamflow of 79 m3/s; this high streamflow was also shown to have been a 

flood (Masereka et al., 2018). The lowest streamflow was observed between March 

1982 and October 1983. It should be noted that between October to March is naturally 

a high-flow period, in correspondence with the high rainfall season over the study area 

(Riddell et al., 2014).  The low flow is between April – September, however, the low 

flow simulated between March 1982 and October 1983 was during a high flow period, 

but coincided with an ENSO event (Riddell et al., 2014; Roualt et al., 2019).  
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Figure 5.2: Simulated and observation hydrographs for 1980 (a) calibration and (b) 

validation for station X2H014, (c) calibration and (d) validation for X2H032, (e) 

calibration and (f) validation for station X2H046 and (g) calibration and (h) validation 

for station X2H036 

5.2.2.2 Transitioning: 1995–2005   

For calibration, the simulated and observed hydrographs showed an almost perfect 

similar trend as can be seen in Figure 5.3 for all the stations. The model was able to 

simulate the high peaks, however, it slightly underestimated the peak flow in February 

1999, especially, for stations X2H014 and X2H036 (Figure 5.3a and Figure 5.3g), and 

slightly underestimated the January and December 2000 peak flows. The simulated 

hydrograph for the validation period depicted by Figure 5.3 underestimated the 
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December 2001 peak flow in all the stations, however, the underestimation of 

streamflow was most evident at station X2H014 (Figure 5.3g). The model, however, 

overestimated the streamflow in January 2005 and December 2005 for stations 

X2H032, X2H046 and X2H036 (Figure 5.3d, f, and h).  

The peak discharges observed in February 1996 and February 2000 amounted to a 

simulated value of 170 m3/s and an observed value of 135 m3/s for February 1996.  

For February 2000, the flow varied between an observed value of 193 m3/s and 163 

m3/s for simulated. Both the mentioned peak flows were due to floods that took place 

in those periods (Smither et al., 2001; Masera et al., 2018). The February 2000 flood 

can be attributed to tropical cyclone Eline that resulted in heavy rainfall over the study 

area, which resulted in a flood that exceeded the 100-year return period (Van Bladeren 

and Van der Spuy, 2000). The lowest flows recorded for the 1995–2005 period was in 

1995, 1997–1998 and between 2002–2003. The catchment had a low flow below 20 

m3/s during those periods which is below the normal for the catchment. The identified 

low flows were attributed to a drought event (Mathieu and Yves, 2005); the drought for 

1997–1998 was also associated to an ENSO event (Thomson et al., 2003). 
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Figure 5.3: Simulated and observation hydrographs for 2000 (a) calibration and (b) 

validation for station X2H014, (c) calibration and (d) validation for X2H032, (e) 

calibration and (f) validation for X2H046 and (g) calibration and (h) validation for 

X2H036 

5.2.2.3 Post transition: 2010–2020 

For calibration, the simulation and observed hydrographs showed a very similar trend, 

the model was basically successful at simulating both the low flows and some of the 

high peaks. The model however overestimated the low flows for station X2H014 

(Figure 5.4a). From Figure 5.4g, the model slightly overestimated the peak flow for 

January 2012 and February 2014 for X2H036. The model further underestimated the 

January 2011, 2012, 2013 and 2014 peak flows for stations X2H014, X2H032 and 

X2H046 (Figure 5.4a, c and e). The simulation for the validation hydrograph also 

shows the same trend as the observed and the model showed better simulation for 

station X2H032 and underestimated the streamflow for X2H014 (see Figure 5.4b and 

d). The model also underestimated the February 2019 peak flow for station X2H036 

in Figure 5.4(h). 

A fairly high streamflow was observed between 2010 and March 2014 with the highest 

recorded in January 2012 and March 2014, which was estimated to have been about 

84.5 m3/s and 51 m3/s, respectively, from the simulated timeseries. The observed 
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streamflow ranged between 68 m3/s for January 2012 and 93 m3/s for March 2014. 

The high streamflow for January 2012 can be attributed to a flood event that occurred 

in that month (Sauka, 2016). From December 2014 to July 2020, streamflow started 

showing a decreasing trend.  Based on the observed streamflow hydrograph, the 

catchment had a flow below 25 m3/s between 2014–2016, and according to Nhamo et 

al., (2019), between 2014–2015, South Africa was experiencing drought, and this was 

evident in the reduced streamflow.  After the peak flow recorded in 2017, the low 

streamflow streak trend (below 25 m3/s) continued until 2020. 
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Figure 5.4: Simulated and observation hydrographs for 2020 (a) calibration and (b) 

validation for station X2H014, (c) calibration and (d) validation for station X2H032, 

(e) calibration and (f) validation for station X2H046 and (g) calibration and (h) 

validation for station X2H036 

5.2.3 Test for model performance 

Error! Reference source not found. shows the model performance for both 

calibration and validation periods. Station X2H014 had an acceptable NSE value for 

the 1980 and 2000 calibration periods with acceptable RSR values. The model gave 

a good performance for station X2H032 for the 2010–2020 period with an NSE value 

of 0.63 and 0.73, a PBIAS value of 22.3 and 5.7 as well as an RSR value of 0.60 and 

0.52 for the calibration period and validation period, respectively. The model also 

performed well for the 1980-1990 validation period and calibration period of 1995–

2005 for X2H032. Table 5.2 further shows that station X2H046 only performed well for 

the calibration period of 2000 with an NSE value of 0.83, PBIAS value of -23.7 and an 

RSR value of 0.41. Station X2H036 showed a better performance for 2020 calibration 

and validation periods with an NSE value above 0.5, however, the 1980 and 2000 

validation periods were below 0.5.  

Table 5.2: Model performance results for calibration and validation. 

X2H014 Model performance 1980 2000 2020 

NSE 
1980 -1985 Calibration 0.59 0.68 0.2 

1986 - 1990 Validation -0.1 0.31 0.5 

PBIAS 
1995 - 2000 Calibration -2.6 32 38.07 

2000- 2005 Validation 53 37.9 33 

RSR 
2010 - 2015 Calibration 0.47 0.57 0.9 

2015 - 2020 Validation 1 0.8 0.7 

 

X2H032 Model performance 1980 2000 2020 

NSE 
1980 -1985 Calibration 0.78 0.76 0.63 

1986 - 1990 Validation 0.57 0.41 0.73 
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PBIAS 
1995 - 2000 Calibration -2.6 27.9 22.3 

2000- 2005 Validation 12 -5.9 5.7 

RSR 
2010 - 2015 Calibration 0.47 0.49 0.60 

2015 - 2020 Validation 0.66 0.76 0.52 

 

X2H046 Model performance 1980 2000 2020 

NSE 
1980 -1985 Calibration -1.4 0.83 0.4 

1986 - 1990 Validation 0.56 -1.3 0.3 

PBIAS 
1995 - 2000 Calibration -49 -23.7 29 

2000- 2005 Validation 3.4 -90 -2.8 

RSR 
2010 - 2015 Calibration 1.6 0.41 0.76 

2015 - 2020 Validation 0.66 1.5 0.83 

 

X2H036 Model performance 1980 2000 2020 

NSE 
1980 -1985 Calibration 0.80 0.51 0.5 

1986 - 1990 Validation 0.4 0.10 0.5 

PBIAS 
1995 - 2000 Calibration 23.6 40.6 -22.3 

2000- 2005 Validation 36 -24 20.3 

RSR 
2010 - 2015 Calibration 0.43 0.7 0.72 

2015 - 2020 Validation 0.75 0.9 0.70 

According to Nugroho et al., (2013), NSE values ranging between 0.75 – 1 indicate a 

very good model performance, while values between 0.5 – 0.65 shows a satisfactory 

model performance and values less than 0.5 represents an unsatisfactory model 

performance. The PBIAS value for the calibration period varied between -2.3, -.2.6 

and 27.9 for the year 2020, 1980 and 2000, ranging between -2.3 and 27.9, while for 

validation it varied between -5.9 and 41.9. Ang and Oeurn (2018) noted that a PBIAS 

value ≥ ±25 means the model gave an unsatisfactory performance while a PBIAS 

value between ±15 or less and ˂ ±25 means the contrary. A good performance is 

achieved when the PBIAS is between ±10 and ±15 and very good performance is 

achieved when the PBIAS is below ±10. Generally, the models gave an unsatisfactory 

performance for station X2H014, a satisfactory performance for X2H032, an 

unsatisfactory performance for X2H046. Furthermore, according to Ang and Oeurn 

(2018), RSR values above 0.7 indicate poor performance. The model further gave a 

satisfactory performance for the 2020 period while giving an unsatisfactory 

performance for the other periods which indicates good model performance, especially 

for the calibration period. 

Figure 5.5 presents the relationship between observed and the simulated flow for the 

study period with R2 for X2H014 and the R2 results for the other stations are presented 

in Appendix 1. The correlation showed a positive relationship between the simulated 

and observed flow for both the calibration and validation periods for all the stations. 
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The R2 for the calibration period varies between 0.5 – 0.8 and 0.5 – 0.6 for the 

validation period for the X2H014 station. The R2 value for X2H032 varied between 0.6 

– 0.8 for the calibration period and it further varied between 0.4 to 0.8 for the validation 

period, for station X2H046; the R2 value ranged between 0.5-0.9 for the calibration 

period and 0.4 to 0.7 for the validation period. The R2 value varied between 0.5-0.9 

for the calibration period and 0.2 to 0.7 for the validation period. Based on the R2 

results, the model’s performances were satisfactory.   
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Figure 5.5: Figure 5.5: The correlation between simulated and observed streamflow. 
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Overall, the model performed very well in simulating the streamflow for stations 

X2H032 and X2H036 for the calibration period of 1980–1990 and further simulated 

streamflow for the calibration period in all the stations except for X2H014. For the 

validation period, the model was able to simulate the streamflow for the 2010–2020 

period in all the stations, but it underestimated high peak for stations X2H014 and 

X2H036. The model also did not perform well in simulating the streamflow for the 

1980–1990 and the 1995–2005 periods for all the stations. In some cases, this can be 

attributed to the heterogeneity of rainfall input data and its lack of accuracy (Rostamian 

et al., 2008; El-Sadek and Irvem 2014; Thavhana, 2018), the input data plays a major 

role in the accuracy of the model simulation. The rainfall distribution tends to vary with 

the size of the catchment, thus the gaging station used in the study may not be 

representative of the entire catchment (Yuan et al., 2015). Another explanation can lie 

in the high simulated streamflow during calibration period as noted in other studies 

(Stehr et al., 2008; Rahbeh et al. 2011); for example, the maximum simulated 

streamflow recorded for the 1980 period was 76 m3/s, while for validation it was 38 

m3/s. Similar trends can be seen in both the 2000 and 2020 periods, where the 

calibration period recorded high discharge rates compared to validation. According to 

Rahbeh et al., (2011), SWAT can better simulate hydrological processes during wet 

conditions than dry conditions. This is proven in this study as the overall rainfall 

received during validation was much lower than that received during calibration. 
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Impacts of Land use on water resourcesError! Reference source not found.The change in 

the water balance of the catchment for the year 1980 is shown in Figure 5.6 and 

Appendix B contains the catchment water balance for the years 2000 and 2020. 

Percolation from the surface and precipitation decreased from 1980 to 2020 while 

evapotranspiration increased. Based on Figure 5.7, evapotranspiration, and surface 

waterflow show an inverse relationship; and in areas with high evapotranspiration, 

surface waterflow seems low. The distribution pattern of evapotranspiration shows 

similar pattern for 1980 and 2000, there is more evapotranspiration in middle reaches 

and upper reaches of the catchment. The year 2020 show an increase in the rates of 

evapotranspiration in the middle reaches and decreased rates in the downstream parts 

of the catchment.  

 

Figure 5.6: Water balance diagram for the CRC in the year 1980. 

The evapotranspiration rates were higher in the upper catchment compared to 1980 

and 2000. Evapotranspiration is higher in densely-vegetated areas and surface water 

flow is high in less-vegetated areas, thus, the increased evapotranspiration in the 

middle reaches can be attributed to forest plantations, as this part of the catchment 

was noted as a hotspot for forest plantation. Figure 5.7 also shows low surface runoff 

in areas with forest plantation cover than in areas with a different LULC. Vegetation 

cover is naturally known to reduce runoff, however, the extent of the reduction varies 
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with the vegetation type (Hosseini et al., 2017; Luo et al., 2020). Forests were noted 

to produce less runoff and high evapotranspiration rates when compared to grassland 

(Madani et al., 2018; Wang et al., 2019). The results of the study showed a similar 

pattern; the upper reaches where the dominating cover is grassland, less 

evapotranspiration was observed while, there was high surface runoff compared to the 

forested areas in the middle reaches of the catchment. Furthermore, studies have 

reported a decrease in runoff, especially during low flow period in the CRC. Hadebe 

(2001) reported that forest plantations have reduced the MAR of the primary 

catchment by 14.8% during high flows and by 24% during low flows, while Kleynhans 

et al.  (2013) indicated that the flows have been reduced by 18% during the dry period. 

 

Figure 5.7: Evapotranspiration and Surface runoff from 1980 to 2020 

Given the increase in forest plantation from 1980 to 2020, this could also be one of 

the reasons for the declining streamflow over the study period as observed in Error! 

Reference source not found.8 (a-c). The simulated and observed streamflow trends 

of the catchment from 1980 to 2020 is for the X2H032 station because it showed better 

performance than all the other stations. Based on Figure 5.7, both simulated and 

observed flows indicate a decreasing trend from 1980 to 2020, with an R² of 0.0002 

and 8E-09 for simulated flow and observed flow, respectively, for the year 1980. For 
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the year 2000, an R2 of 0.0046 for the simulated and R2 of 0.0195 were for the 

observed flow and for the year 2020. The R2 varies between 0.1503 for simulated 

streamflow and 0.1585 for observed streamflow.   

a)  

b)  
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c)  

Figure 5.8: Streamflow trend (a) 1981-1990, (b) 2000 – 2005 and (c) 2010-2020. 

Eucalyptus tree species were reported to show more effects on streamflow from their 

third year while pines start to respond from the 5th year onwards (Hadebe, 2001). The 

catchment is also host to other vegetations, such as guava, lantana, black mattle and 

syringa, and these were also classified as alien vegetation by Versveld (1998). 

Versveld (1998) added that these alien species reduce about 19% of MAR in the upper 

catchment, 10% in the middle catchment and the least affected were in the lower 

Crocodile River because these plants only reduced 2% of the MAR.  

The middle catchment was not only noted as a hotspot for forest plantation, but also 

a hotspot for built-up areas. In 1987, Bate et, al., (1999) reported that water use for 

domestic, municipal, industrial, and mining purposes amounted to 20 million m3 per 

year for the entire catchment and this was estimated to increase to 78 million m3 in 

2015. Approximately 14.6 million m3/a has been allocated to the City of Mbombela 

from the CRC (Mbombela SoER, 2003). Due to built-up areas occupying a small 

portion of the catchment (2.8%), evapotranspiration rates in this part of the catchment 

may also be influenced by other LULC classes such as savannah, forest plantation, 

grassland, and cultivated area. In addition, the impacts on evapotranspiration, surface 

runoff and consequently, streamflow, are not as pronounce as the impacts from forest 

plantation and cultivation or any large land-use class. Built-up areas are known to 

increase runoff (Kumar et al., 2017), however, in highly-vegetated areas, changes in 

the streamflow by built-up areas are not as evident. It has been further highlighted that 

water allocated to this class is lower compared to irrigation and afforestation 
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requirements.  Similar findings were noted in Little River found in Tennessee, where 

urban areas were occupying less than 12% of the catchment (Zhu and Li, 2014). This 

latter study demonstrated a reduction in the impact of the urban area on streamflow 

after a slight increase in forest resulted in low streamflow within the national park. 

In the lower reaches, evapotranspiration showed a decreasing trend from 1980 to 

2020; this can be attributed to the decrease of natural forest cover. The lower 

catchment was identified as a hotspot for irrigated crops and is mostly covered by 

savannah vegetation. It should also be noted that the distribution of vegetation is also 

influenced by the climate (Sheil, 2018). Dry regions usually do not have dense 

vegetation covers; low rainfall areas promote less plant growth (MPCOGTA, 2018). 

The decrease in the natural forest results in increased savannah/bushland cover, thus 

resulting in increased surface runoff (MOCOGTA, 2018), therefore, there was more 

surface water flow in 2020 compared to 1980. Mussa et al., (2015) reported that the 

lower Crocodile River is the driest part of the catchment, however it has the highest 

water demand. The high demand can be due to the high amounts of irrigation 

requirements resulting from the increasing crops production in the lower catchment 

since the 1980s. In addition, MEGDP (2011) indicated that most water from this 

catchment is used for irrigation with about 46% supplying irrigation requirements 

followed by afforestation. Water demand in the agriculture sector is higher between 

December and January and this was estimated to be about 570 million m3 per year. 

Compared with the middle Crocodile River, the lower catchment was estimated to be 

the most stressed sub-catchment (Mussa et al., 2015). According to Deksissa et al., 

(2003), irrigation abstraction and the decreased inflows by afforestation have resulted 

in low flows during winter within the Crocodile River Catchment. 

Burning was also noted as a problem in the catchment and most burning activities 

affect natural vegetation and forest plantation. Moran-Tejeda et al. (2015) stated that 

wildfires can modify hydrological dynamics because they affect vegetation and soil 

properties. Other major land-use changes in catchment include the construction of the 

Kwena Dam in 1984. As stated, Kwena Dam was constructed to regulate the flow of 

the Crocodile River and for irrigation purposes (van der Laan et al., 2012). It is used 

to maintain a minimum flow of 7 m3/s for irrigation in the lower reaches of the 

catchment during dry month and to also assist in flushing out wastewater effluent 

discharges from towns such as Mbombela (van der Laan et al., 2012).  The Kwena 
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Dam was reported to have negatively impacted streamflow immediately after its 

construction, such as dampening the peak flows and increasing low flow, however, the 

effects are reduced further downstream due to the joining tributaries (Saraiva-Okello 

et al., 2015). 

5.3  Chapter Summary 

The model performed well in simulating the streamflow, especially the calibration 

period, the low performance indicators for the validation period can be attributed to the 

input data and the high discharge rates during calibration. However, due to the positive 

correlation between simulated and observed flow and the R2 results, the model 

performance was accepted for this study. Based on the simulated streamflow and the 

observed streamflow trend, the catchment streamflow showed a decreasing trend for 

the period of study. The distribution of evapotranspiration and surface waterflow were 

highly influenced by forest plantation, grassland, and savannah/bushland. 

Evapotranspiration was higher in the middle reaches and surface runoff was low, but 

runoff was high in the areas covered by the bushland. The fact that cultivated areas 

and forest plantation are the biggest water users, the increase in LULC, such as forest 

plantation and cultivation might have accounted for the decrease in streamflow; this is 

also supported by Saraiva-Okelllo et al., (2015). Furthermore, an increase in 

evapotranspiration was observed from 1980 to 2020 as 36.3 mm to 533.1 mm, 

respectively, while surface runoff decreased from 32.79 in 1980 to 2.56 mm in 2020. 

Based on the decrease in surface runoff and streamflow, built-up areas, therefore, do 

not have much felt impacts on the hydrological response of the catchment, however, 

it was also shown that the streamflow dynamics in this catchment are highly affected 

by climate extremes - floods and droughts. Sheil (2018) indicated that climate and 

vegetation are interlinked, thus a decrease in streamflow could have led to the 

decrease in vegetation. 
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CHAPTER 6: CONCLUSION AND RECOMMENDATION 

6.1  Conclusion 

The aim of the study was to evaluate the impact of LULC on water resources of 

Crocodile River Catchment from 1981 to 2020 using remote sensing, QSWAT and 

QGIS. The catchment was reported to have been over-stressed and to have reached 

its limit. The CRC plays an important role in irrigation and as source of water supply 

to numerous communities in the areas of Kanyamazane, Mbombela, Matsulu. The 

QGIS platform was chosen as the GIS interface due to it being an open-source 

software and QSWAT was chosen due to its ability to integrate land-use management 

in simulating the hydrology of a catchment. The study used the SCP plug-in from QGIS 

to classify and the accuracy results from the classification were satisfactory. 

 There were changes in LULC observed between 1980 and 2020, with the aid of the 

classified maps; hotspot areas were mapped based on quaternary catchments and 

the NDVI value for each hotspot area was calculated. NSE, RSR, PBIAS and 

correlation were used to evaluate the SWAT model performance and it was concluded 

that the model gave an acceptable performance. The validation results, however, did 

not perform as well as the calibration simulation; this was attributed to the input data 

and the fact that there were more high flow discharges during calibration than 

validation. 

The streamflow showed a negative trend over the study period, however, the 

streamflow of the catchment is not only affected by the changes in LULC, but it also 

varies with the climate, for example, the impacts of the 2000 flood and drought of 

1982/83. The impacts on evapotranspiration and surface runoff were the focus 

components of the hydrological cycle. Surface runoff and evapotranspiration are also 

essential components of the water balance (Kumar et al., 2012). These were used to 

indicate the changes in vegetation since 1980 because the modification of the nature 

and density of vegetation alter the hydrological cycle by affecting the 

evapotranspiration rates, therefore, modifying precipitation.  

The study found that there was an increase in forest plantation, built-up areas, and 

cultivated lands between 1980 and 2020 and these have modified the catchment in 

LULC setting due to the decrease in natural vegetation cover, such as natural forests 

and grassland. Surface water flow was low in areas with high evapotranspiration rate 
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especially, middle catchment. Furthermore, the increase in forest plantation from 1980 

to 2020 was consistent with the increase in evapotranspiration, and the decrease in 

runoff, consequently the decrease in streamflow.  The decrease in streamflow could 

also be attributed to the increase in cultivation, thus, increasing irrigation requirements, 

however, the study concluded that the changes induced on the quantity of water 

resources - surface runoff and evapotranspiration - by built-up areas cannot be easily 

quantified at a catchment level. This is due to the fact that built-up areas only occupy 

a small area of the catchment (2.8%), hence, any changes are cancelled out by the 

changes induced by bigger LULC and bigger water users such as forest plantation 

and cultivation. The competition between cultivation and forest plantation was also 

indicated in a report by Bate et al. (1999) where it was reported that forest plantation 

reduce run-off and consequently, water flow in the upper and middle catchment, thus 

affecting water availability downstream for irrigation. Based on the results, forestry and 

cultivation lands seem to have more impact on the hydrological response of the 

catchment, thus on the streamflow and water resources, as indicated by several 

reports (Mpumalanga SoE, 2003); these effects, however are also coupled with the 

variation of weather patterns.  

6.2  Recommendations 

6.2.1. Development  

The demand and competition for land is to be expected hence measures to regulate 

and balance economic growth, population and preservation should be put in place 

(MEGDP, 2011). It is imperative to understand the water resources risks associated 

with a specific land/water use activity prior to its implementation to ensure that proper 

measures are taken. As indicated in a number of the Mpumalanga SoE reports (2003, 

“Over-utilisation of water resources is not a function of the number of people within the 

catchment but is due to the over-use of water for agricultural and industrial purposes”. 

Nkosi et al. (2021) emphasised the importance of measures focusing on water 

demand instead of water supply being at the centre of water management planning. 

The latter study reiterated the importance of planning all land development around 

existing water resources.  
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6.2.1.1. Climate Change 

This study proved the vulnerability of CRC to climate extremes, drought and floods, 

therefore, given the projected increase in temperatures of 2% by 2035, measures that 

regulate the balance between LULC management, economic growth and water 

resources, should be strictly adhered to for sustainability (MPCOGTA, 2018). This 

includes measures such as adapting a holistic approach towards water management 

and planning and this can be achieved by integrating land reform policies and water 

management legislations (Nkosi et al., 2021). Furthermore, technologies that reduce 

the loss of water during drought seasons can be implemented in large water bodies, 

and other strategies, such as regulating flow, should be strictly adhered to, as it has 

already been done on the catchment.  

6.2.2. Model performance 

For the accuracy of the model simulation, it is recommended that the input data be 

complete and be up to date; this can be ensured by improving monitoring of 

hydrometeorological variables throughout the CRC.  

6.3 Limitations of the study 

6.3.1 Model Input Data 

The quality and accuracy of input data plays a crucial role in the successful simulation 

of a model (Thavhana, 2018). Due to the lack or incomplete meteorological data, a 

single weather station had to be used for all the simulated periods; this could have 

resulted in the over and/or underestimation of the rainfall distribution in the catchment. 

The current soil database is old, hence for the accuracy of the model, it is 

recommended that the soil databases used be updated, since the soil data used for 

this study was from 2001.   

6.3.2 Land-use classification 

Since some land-use occur in very small units and cannot be differentiated easily from 

others, they must be classified differently (Meyer and Turner, 1992). In this study, for 

example, there was some confusion between forest plantation and other irrigation 

crops like citruses, therefore, these were classified as “forest”, which could have led 

to an underestimation of the cultivation areas. The same goes for the natural forest 

and forest plantation classes.  
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Despite these mentioned challenges, this study showed the effectiveness of QSWAT, 

RS and QGIS in simulating and presenting the impacts of LULC changes in a 

catchment. The use of this model is, therefore, recommended for future monitoring of 

changes in the catchment, especially given that the catchment will continue to 

embrace development and built-up areas will continue to increase due to expanding 

settlements and urban areas. To quantify the changes induced on the hydrological 

response and water resources by the increase in built-up areas, a similar study, but at 

sub-catchment or quaternary catchment level is recommended. 
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Appendix A: Correlation results 
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Appendix B: Simulated hydrological cycle/Water balance  
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