
i 
 

Application of modern extraction methods for determining 

toxic phytochemical compounds contained in Solanum 

plants  

  

by 

 

Tebogo Mphatlalala Mokgehle 

 

18009725 

 

Thesis for Doctor of Philosophy Degree in  

Analytical Chemistry 

 

Faculty of Science, Engineering and Agriculture, Department of Chemistry 

University of Venda 

Thohoyandou, Limpopo, South Africa 

 

 

 

 

 

 

August 2021



ii 
 

Declaration 

 

I, Tebogo Mphatlalala Mokgehle (18009725) declare that this thesis entitled ‘Application of 

modern extraction methods for determining toxic phytochemical compounds contained in Solanum 

plants’ is my own original work. This work is being submitted for the Doctor of Philosophy degree 

in Chemistry at the University of Venda and has not been submitted for any degree at any other 

university or institution. The thesis does not contain other persons’ writing unless specifically 

acknowledged and referenced accordingly.  

 

Candidate’s signature:  

 

 

 

 

 

 

 

 

  



iii 
 

List of publications  

This thesis is based on the following papers:  

I. The effect of kosmotrope and chaotrope salts during aqueous two phase extraction (atpe) 

of polyphenolic compounds and glycoalkaloids from the leaves of a nutraceutical plant, 

Solanum retroflexum, with the Aid of UPLC-qTOF-MS 

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (Applied Biological Chemistry, 2021, 64 (1), 1-15) 

II. Hyphenation of aqueous two phase and microwave extraction of solasonine and 

solamargine from Solanum mauritianum via UHPLC-qTOF-MS 

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (Under review) 

III. The effect of microwave assisted aqueous two phase extraction of α-solanine from S. 

retroflexum and analysis on UHPLC-qTOF-MS 

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (submitted to journal) 

IV. Optimization in the aqueous two phase extraction of solasodine, ATPE of solasodine from 

Solanum mauritianum and analysis via UHPLC-qTOF- Tebogo Mphatlalala Mokgehle, 

Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda Tavengwa (submitted to journal) 

V. Evaluation of the effect of a chaotrope and kosmotrope in the multivariate optimization 

of PHWE-ATPE of solasodine from leaves of Solanum mauritianum, a UHPLC-qTOF-MS 

study 

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (submitted to journal)  



iv 
 

Appendix 

VI. Advances in the development of biopolymeric adsorbents for extraction of metabolites 

from nutraceuticals with emphasis on Solanaceae, and subsequent pharmacological 

applications  

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (Carbohydrate polymers, 2021, 264, 1-10) 

VII. Application of HPTLC and UHPLC-qTOF-MS for identification of aqueous two phase 

extracted UV-fluorescent metabolites from Solanum retroflexum 

Tebogo Mphatlalala Mokgehle, Ntakadzeni Madala, Wilson Mugera Gitari, Nikita Tawanda 

Tavengwa (Under review) 

 

  



v 
 

Contribution of the authors  

Paper I: Principal author, designed performed the ATPE experiments, evaluation, and analysis of 

extraction of polyphenols and glycoalkaloids from Solanum retroflexum, was also involved in 

writing of the article. Co-authors revised the draft manuscript and made suggestions for 

improvement.  

Paper II: Principal author, formulated and performed MAE, ATPE + MAE, MA-ATPE coupled 

experiments. Co-authors checked the draft manuscript and added their inputs for improvement.  

Paper III: Main author in the central composite design and execution of the MA-ATPE 

experiments on the extraction of solanine from S. retroflexum and subsequent analysis on UHPLC-

qTOF-MS 

Paper IV: Main author in the central composite design and execution of the ATPE experiments 

on the extraction of solasodine from S. retroflexum and subsequent analysis on UHPLC-qTOF-

MS 

Paper V: Principal author, initiated and conducted PHWE-ATPE adsorption studies. Co-authors 

edited the draft manuscript and added their inputs for improvement. 

Paper VI: Principal author participated in planning and writing of the manuscript. Co-authors 

revised the draft manuscript and made suggestions for improvement (Appendix).  

Paper VII: Principal author, involved in planning, performed ATPE and HP-TLC experiments, 

evaluation of the results and writing of the article. Co-authors revised the draft manuscript and 

made suggestions for improvement (Appendix) 

 

All papers are reproduced with kind permission from the respective copyright holders  

 

 

 

  



vi 
 

Preface 

In this work, modern extraction techniques, such as aqueous two phase extraction (ATPE), 

pressurized hot water extraction (PHWE), microwave assisted extraction (MAE) were used for the 

extraction of nutraceutical compounds from Solanum retroflexum and Solanum mauritianum. 

Analysis of the metabolites obtained was performed using ultra-performance liquid 

chromatography quadrupole time of flight mass spectroscopy (UPLC-qTOF-MS) and included 

amongst other flavonoids, polyphenols, and toxic compounds such as glycoalkaloids. The thesis 

contains seven papers, five are within the scope of the project, while two were performed during 

the PhD study period and are included in the appendix section.   

The effect of kosmotrope and chaotrope salts during ATPE of polyphenolic compounds and 

glycoalkaloids from the leaves of a nutraceutical plant, Solanum retroflexum was evaluated in 

Paper I. This work demonstrated that a comprehensive metabolome of S. retroflexum, more than 

what was previously reported on the same plant, can be achieved by application of kosmotropes 

(Na2CO3) and chaotropes (NaCl) as precipitating agents with the aid of the ATPE approach. The 

best-performing salts, for glycoalkaloids were the kosmotrope and chaotrope. The ATPE technique 

was found to be efficient in simultaneous extraction of multiple metabolites.  

In Paper II, optimization of microwave and aqueous two phase-based extraction techniques which 

involved MAE, ATPE + MAE and MA-ATPE for the extraction of solasonine and solamargine 

from leaves of S. mauritianum was evaluated. Application of NaCl with CaO-dried ethanol in MA-

ATPE yielded a two-fold increase in intensity observed for both solamargine and solasonine in 

comparison to MAE + ATPE. The synergy of microwaves and salting-out principle in the ‘one-

pot’ MA-ATPE technique was shown to be a contributing factor for enhanced extraction of 

solamargine and solasodine from leaves of S. mauritianum, with the Na2CO3 being a better 

extractor then NaCl. The MA-ATPE technique was a promising extraction method that could be 

applied on a large scale. 

In Paper III, a hyphenated microwave assisted aqueous two phase extraction (MA-ATPE) was 

applied in the extraction of a solanine from Solanum retroflexum. Fitting the central composite 

design response surface model to the data generated a quadratic model with a good fit (R2 = 0.920). 

The response surface methodology model indicated that the maximal extraction of α-solanine was 

82.21 mg kg-1 and 77.81 mg kg-1 for Na2CO3 and NaCl, respectively. The shorter optimal 
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extraction times of MA-ATPE makes it a potential technique that could meet market demand as a 

quick and green approach where no organic solvents are applied. 

In Paper IV, aqueous two phase extraction (ATPE) was applied in the extraction of a toxic 

metabolite, solasodine, from Solanum mauritianum. Central composite design (CCD) was 

performed which included numerical parameters such as time and mass of plant. The categorical 

factors included the type of salt used, chaotrope (NaCl) or kosmotrope (Na2CO3). Fitting the 

central composite design response surface model to the experimental data generated a quadratic 

model with a good fit (R2 = 0.925). Maximal extraction of solasodine was 233.65 mg kg-1 and 

413.50 mg kg-1 for NaCl and Na2CO3, respectively. The application of ATPE, under these 

conditions, in conjunction with the use of a kosmotrope was shown to enhance the extraction of 

pharmacologically relevant solasodine. 

Paper V focused on the effect of a pressurized hot water extraction (PHWE) and ATPE for 

enrichment of solasodine from Solanum mauritianum. Fitting the central composite design 

response surface model for PHWE-ATPE to the data generated a model with a good quadratic fit 

(R2 = 0.901). The statistically significant (p < 0.05) parameters such as the linear and quadratic 

effect of the concentration of salt (%) had a significant impact on the extraction of solasodine, in 

the presence of the kosmotrope. Furthermore, the kosmotrope was almost twice a more efficient 

extractor of solasodine than NaCl with maximal extractions of 300.79 mg kg-1 and 162.34 mg kg-

1 for Na2CO3 and NaCl, respectively. 

Paper VI highlighted new trends in the development of biopolymers such as polysaccharides and 

proteins as adsorbents of nutraceutical compounds, with emphasis on metabolites derived from 

Solanaceae, were discussed. The application of polysaccharides/protein containing the adsorbed 

Solanum derived nutraceutical compound for drug delivery was discussed. Additionally, the nature 

of molecular interactions between the biopolymer and the drug being adsorbed, were also reviewed 

(Appendix). 

Paper VII was directed at the use of UPLC-qTOF-MS for simultaneous extraction of HP-TLC 

fluorescent compounds obtained from a Solanum retroflexum. This work attempted to evaluate 

correlation between two independent chromatographic techniques such as HPTLC and ultra high 

performance liquid chromatography quadrupole time of flight mass spectroscopy (UHPLC-qTOF-
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MS). Paper VII also demonstrated that tomatidine galactoside and tomatine commonly associated 

with Solanum lycopersicum, could also be found in Solanum retroflexum (Appendix). 
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Abstract 

The Solanum genus is among the most diverse and valuable in terms of agricultural utility and 

vegetable crops. This study was directed at the characterization of toxic metabolites contained in 

Solanum retroflexum and Solanum mauritianum following extraction by aqueous two phase 

extraction (ATPE), microwave assisted extraction (MAE) and pressurized hot water extraction 

(PHWE) with the aid of UHPLC-qTOF-MS. The application of qTOF-MS offered unprecedented 

sensitivity for thorough identification of similar metabolites such as solanelagnin, solanine, 

solamargine, solasonine and solasodine following ATPE. Furthermore, the application of ATPE 

in the presence of precipitating agents in a form of kosmotropes and chaotropes enabled 

simultaneous extraction of multiple glycoalkaloids in a single step. The ATPE technique was also 

observed to be a versatile technique which saw it being compatible with PHWE and MAE. In 

particular, the application of microwave assisted aqueous two-phase extraction (MA-ATPE) was 

quantitatively shown to be a better extractant of solasonine and solamargine compared to MAE 

and MAE+ATPE. Additionally, the synergy of microwaves and salting-out in the ‘one-pot’ MA-

ATPE technique was a contributing factor for enhanced extraction of glycoalkaloids at shorter 

extraction periods. Multivariate chemometric studies were designed using Design Expert 11 for 

optimizing the extraction of solasodine (m/z 414 → 396) and solanine (m/z 868 → 722) based on 

MRM quantification in MA-ATPE, ATPE and PHWE-ATPE. Comparison of ATPE and PHWE-

ATPE for the extraction of solasodine from Solanum mauritianum indicated that ATPE was a 

better extractor of solasodine by a factor of approximately 1.5. The effect of temperature in PHWE-

ATPE was shown to be insignificant (p > 0.05) and could account for the lower extraction of 

solasodine compared to ATPE. Furthermore, the effect of mass of plant powder during ATPE was 

a statistically significant (P < 0.05) parameter behind the enhanced extraction of solasodine. 

Quantification studies based on MRM transition showed that the kosmotrope-Na2CO3 was a better 

extractant than the chaotrope-NaCl for solanine in MA-ATPE and solasodine in ATPE and PHWE-

ATPE. This observation, herein, was due to the greater negative charge density of the divalent 

carbonate ion from Na2CO3, which was pivotal in salting-out of the analyte (solanine or solasodine) 

through the formation of strong hydrogen bonds among water molecules surrounding the solute. 

As a prototype, ATPE and MA-ATPE could be quick, green purification and enrichment methods 

for phytochemicals with strong pharmaceutical relevance, which could meet the insatiable appetite 

for affordable medicines in the market.   
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Chapter 1 - Introduction and background 

This chapter introduces the reader and gives a background to the 

study as well as the problem statement. This section concludes by 

providing an outline on the work conducted in this thesis. 
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1.1 Background of study 

The lifestyles of human beings have drastically changed since the industrial revolution. Increased 

working hours and various socio-economic pressures have led to people opting for fast foods with 

depreciable amounts of essential nutrient necessary for healthy living. Additionally, the emergence 

of the industrial age has resulted in soil and food contamination due to the emission of toxic 

chemicals into the air and harmful electromagnetic radiation such as UV, gamma, or X rays. These 

man-made problems have resulted in increased cases of diseases such as diabetes, high blood 

pressure, neurodegenerative illnesses, and various types of cancers. These sicknesses are always 

associated with increased health care costs due to the demand for synthetic medicines. This has 

prompted researchers to turn to a much cheaper source of nutrition, plants. The use of plants as a 

source of nutrients has been an ancient practice, with Egyptians, Jews, Arabs, Chinese, Greeks, 

and Romans being at the forefront (Hussain, 2019; Sharma et al., 2019). Currently, there is an 

increase of skin care products, supplements and oral or injected drugs which are primarily derived 

from plants (Apone et al., 2018; Pérez-Sánchez et al., 2018; Rezaeiamiri, et al., 2020). 

Additionally, Rauf and Jehan (2015) reported that more than 80% of the world’s population is 

reliant on medicinal plants to maintain their health. 

The efficacy of medicinal plants in human health is derived from the bioactive phytochemicals 

produced from the plant’s primary or secondary metabolism which generally play a role in growth 

or defense against pathogens or predators (Latif et al., 2017; Hammerbacher et al., 2019). One 

such family with a wide range of bioactive compounds is Solanaceae (Sinani et al., 2017); these 

phytocompounds have been discussed to a greater extent in paper I. Solanaceae have been studied, 

to be one of the largest groups of angiosperms (Ramírez et al., 2018). The Solanaceae family is 

composed of approximately 100 genera and over 3500 species according to Samuels (2015) and 

Rasul et al. (2019). The diversity of Solanum genus has broadened its significance as it includes 

edible, medicinal and ornamental plant species. Economically, Solanaceae is the third most 

valuable taxon in essential nutrients found in food supplements and medicines (Rasul et al., 2019). 

Furthermore, it is regarded as the most diverse and valuable in terms of agricultural utility and 

vegetable crops (Samuels, 2015; Rasul et al., 2019). The Solanum genus is known for its toxic 

metabolites which varies in concentration. amongst different species; resulting in it still being 

edible by some communities or inedible by others (Ramírez et al., 2018). The Solanaceae family 
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is a rich source of nutrients derived from common vegetables such as Solanum lycopersicum 

(tomato), Solanum tuberosum (potato) and Solanum melongena (eggplant) as shown in Figure 1.1. 

 

Figure 1.1: Some common Solanum plants (a) Solanum tuberosum (b) Solanum melongena (c) 

Solanum lycopersicum  

Solanum species have been studied to synthesize secondary metabolites to protect themselves 

against phytopathogens (Sanchez-Maldonado et al., 2016; Al-Ashaala et al. 2018; Sinani et al., 

2019). Secondary metabolites have been renowned for their activity against herbivores, bacteria, 

viruses, insects, and fungi (Chen et al., 2020; Sucha et al., 2016). For example, phenolics 

metabolites commonly found in Solanaceae have gained interest from researchers due to their 

protective role through antioxidant potential (Verma et al., 2016). Additionally, phenolic 

compounds are essential for the growth and reproduction of plants and are produced as a response 

for defending injured plants against pathogens (Verma et al., 2016). Plant phenolics are 

characterized by hydroxylated aromatic rings such as flavanols (Dzailo et al., 2016). Some 

Solanum species have been studied for quantification and identification of phenolic compounds in 

Solanum scabrum and Solanum burbankii berries for antioxidant effects (Oszmainski, 2014). 

A variety of factors such as pH, light, temperature, water deficit, soil texture and moisture content 

influence the secretion of secondary metabolites from Solanum plants (Morillo et al., 2020). 

Another class of secondary metabolites primarily found in Solanaceae, are glycoalkaloids widely 

studied for their desirable effects. For instance, glycoalkaloids have been reported to show 

significant antidiabetic (Al-Ashaala et al. 2018), antifungal (Sanchez-Maldonado et al., 2016), 

antiparasitic (Anwar et al., 2020), antimicrobial (Kalimuthu et al., 2018), hepatoprotective 

(Chester et al., 2019) and anticancer (Arslan et al., 2018). Hence, glycoalkaloids have extensively 

been applied in the manufacture of contraceptives and steroidal anti-inflammatory drugs (Tiossi et 

(a) (b) (c)
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al., 2012; Morias et al., 2020). Further applications of glycoalkaloids are detailed in papers I and 

VI. 

Chemically, glycoalkaloids are naturally occurring N-containing secondary metabolites found in 

plants of Solanaceae. Glycoalkaloids consist of two structural components, an aglycone unit and a 

carbohydrate sugar side chain which are polar and non-polar, respectively. The aglycone unit 

consists of hydrophobic C27 steroid skeleton of cholestane with nitrogen incorporated into the F 

ring. The second unit is a hydrophilic carbohydrate side chain attached at the 3-OH position (Sinani 

et al., 2017; Patel et al., 2021). The aglycones are divided into five different categories depending 

on their structure: solanidanes (with fused indolizidine rings), spirosolanes (with an oxa-

azaspirodecane alkaloid portion) epiminocholestanes, epiminocyclohemiketals and 3-

aminospirostanes (Väänänen, 2007; Sinani et al., 2019; Hassan et al., 2020). For instance, 

structurally, similar glycoalkaloids, solasonine and solamargine, have the same aglycone, 

solasodine which are derived from spirosolanes, but differ in the type of the carbohydrate side 

chain as shown in Figure 1.2. Furthermore, solasodine due to its water-insoluble characteristic, is 

considered as a promising compound for synthesis of steroidal drugs, having exhibited impressive 

anticancer activity, insecticide property and an important anti-accelerator cardiac action (Fekry et 

al., 2019, Carvalho et al., 2019; Hassan et al., 2020). The carbohydrate side chain is attached to 

the 3-hydroxyl position of aglycones as shown in Figure 1.2 and consists of diverse arrangements 

of D-glucose, D-galactose, D-xylose and L-rhamnose generally reaching a maximum of tri or 

tetrasaccharides (Sinani et al., 2017).  
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Figure 1.2: Structures of Solanum potato glycoalkaloids (a) solasonine and (b) solamargine 

showing different sugar side chains in (c) chacotriose and (d) solatriose where x is β-D-glucose, y 

is α-L-rhamnose and z is β-D-galactose 

A variety of mechanisms on the mode of action of phytochemicals on pathogens have been 

suggested. These include interference with some metabolic processes or modulation of gene 

expression and signal transduction pathways (Friedman et al., 2015; Nepal et al., 2019; He et al., 

2020). Glycoalkaloids have also been studied to disrupt cell membranes by affecting ion transport 

across cell membranes through alteration of cell potentials (Sucha et al., 2016; Nepal et al., 2019). 

Other mechanisms of action include the disturbance of the cytoplasmic membrane, disrupting the 

proton motive force, electron flow, active transport, and coagulation of cell contents (Chowański 

et al., 2016; He et al., 2020). Shi (2013) reported that steroidal alkaloids such α-tomatine inhibited 

the phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK 1, 2) and the serine-

threonine kinase (Akt). These kinases (ERK 1, 2) were reported to be involved in metastasis and 

the progression of cancer in the human breast (Shi et al., 2013; Sucha et al., 2016). 

In as much as natural products have been an integral part of both ancient and modern civilization, 

so has the extraction methods for acquiring useful phytochemicals. Extraction of phytochemicals 
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from plants dates to the Sumerian and the Akkadian civilizations in about the third millennium BC 

(Doughari et al., 2012). Ancient methods often involved the use of boiling water as a solvent to 

extract phytochemicals; other methods included fermentation where a crude extract is soaked in 

water for a period to allow for break-down of large organic compounds into simpler substances 

such as carbohydrates and alcohols. To cope with an ever-increasing demand for therapeutic drugs 

with high potency and efficacy, more advanced and greener extraction methods are constantly 

being developed to achieve high phytoconstituent yield and maintain the structural integrity of the 

extracted phytochemicals. Modern techniques such as pressurized hot water extraction (PHWE) 

and aqueous two-phase extraction (ATPE) are derivations of traditional methods where hot water 

and fermentation is used for extraction, respectively. ATPE has been recognized as a versatile 

technique for the downstream processing of biomolecules (Xie et al., 2017; Chong et al., 2020). 

Additionally, ATPE has a potential to achieve the desired purification and concentration of the 

product in a single step. The major advantages of ATPE are its high capacity, biocompatible 

environment, low interfacial tension of phases, high yields, low process time and energy (Jiang et 

al., 2019; Mittal et al., 2019; Mokgehle et al., 2021). Additionally, ATPE has a potential to achieve 

the desired purification and concentration of the product in a single step (Hua et al., 2013). 

Another attractive and eco-friendly extraction technique is PHWE. This method is a simple, rapid 

“green extraction” alternative for recovery of analytes without the need for “clean-up”. Therefore, 

the extracted compounds can be safely and immediately consumed or further used in the 

manufactured foods (Ameer, et al., 2017). PHWE is performed at elevated temperatures and 

pressures, so the solvent is kept in the liquid state, thus enhancing the extraction by improved mass 

transfer and stability. The principle behind the extraction ability of water at its critical point is its 

lowered dielectric constant (from ε = 80 at 25ᵒC at 1 bar to ε = 27) which is comparable to many 

organic solvents, permitting it to dissolve a wide range of compounds with low to medium polarity 

(Gbashi et al., 2016; Kovačević et al., 2018). This technique has been extensively explored in the 

pharmaceutical (McQueen et al., 2019), food (Jiang et al., 2019) and environmental (Li et al., 

2020) industries. It has been successfully utilized for the extraction of nutritional constituents, 

pharmacoactive compounds and organic pollutants from vegetal tissues, food products, soil 

sediments and other ecological biomasses (Gbashi et al., 2016). Matshediso (2015) optimized the 

extraction of three flavanols i.e., kaempferol, quercetin and myricetin and investigated the total 

phenolic content in Moringa leaf powder using PHWE. Additionally, this technique was also 
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applied in the isolation of pharmacologically important metabolites from leaves (Nuapia et al., 

2020), flavonoids from Citrus unshiu peel (Kim et al., 2020) and polyphenols from Stevia 

rebaudiana Bertoni leaves (Kovačević et al., 2018).   

One technique that is dependent on electromagnetic waves for extraction of phytocompounds is 

microwave assisted extraction (MAE). This was first reported by Ganzler et al. (1986). This 

method is a relatively easy technique compared to tedious traditional methods. MAE is also 

renowned for its environment friendliness and is an economical technique for the extraction of 

biologically active compounds from different plant materials (Hemwimon et al., 2007; Vinatoru 

et al., 2017; Kaderides et al., 2019). Application of microwaves is quick, as it can heat the whole 

sample simultaneously (Horuz et al., 2017). Besides the application of heat during microwave 

radiation, there are non-thermal effects that play a role in the chemistry of phytochemicals (Liu et 

al., 2021; Bichot et al., 2020). This lies in the effect of the electric field brought about by the 

electromagnetic properties of microwaves to polarize the charge of the materials. Dielectric 

polarization occurs in the following manner as highlighted by Al-Harahsheh (2004); electron 

polarization due to the change of electron position around the nucleus; atomic polarization caused 

by positional shifts of the nucleus due to the non-uniform distribution of the charge within the 

molecule; orientation polarization caused by the reorientation of the permanent dipoles due to the 

influence of electric field and spatial charge polarization observed when material contains free 

electrons whose distribution is limited by the grain surface. This has advantages such as lowering 

the activation energy (Pourebrahimi and Kazemeini, 2018; Yu et al., 2018).  

This entire study was directed at the application of modern extraction techniques such as PHWE, 

ATPE and MAE on the extraction of a toxic class of metabolites, alkaloids and glycoalkaloids that 

are predominant within the Solanum genus. Though glycoalkaloids are allelopathic defenders, 

toxic to other species, these are bioactivities metabolites are renowned for their anti-cancer 

characteristics (Sinani et al., 2017; Fekry et al., 2019; Carvalho et al., 2019, Nguenang et al., 2020, 

Hassan et al., 2020). Considering the grim milestone of approximately 5.02 million deaths in 2020 

due to cancer related illnesses (WHO, 2021) and the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) being responsible for over 200 million cases and 4.2 million deaths 

worldwide from 2020 to the first half of 2021, as reported by the John Hopkins Coronavirus 

Resource Centre, extraction of glycoalkaloids from natural products using green extraction 

techniques is even more worthwhile. One of the extraction approaches that was investigated was 
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the application of various chaotropes and kosmotropes salts in an ethanol/salt ATPE setup for 

obtaining polyphenols and glycoalkaloids (Paper I). Hyphenation involving microwave assisted 

aqueous two-phase extraction (MA-ATPE) was developed for the enrichment of solamargine and 

solasonine from leaves of Solanum mauritianum and compared to ATPE and MAE+ATPE (Paper 

II). Quantifications studies were also done using a highly sensitive approach on the ultra-high 

performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-

qTOF-MS) based on multiple reactions monitoring (MRM) approach. The UHPLC-qTOF-MS 

technique is an attractive approach due to its ability to offer fast, high resolution chromatographic 

separation from samples containing complex mixtures of compounds. The qTOF offers refined 

chromatographic peak separation and is hence the most widely used tool in the profiling of 

metabolites in crude samples and can identify elemental composition for both parent and fragment 

ions (Jin et al., 2018; Velamuri et al., 2020). Furthermore, the integration of quantitative and 

qualitative analysis is one of the important applications of this technique. One such technique that 

couples both the qualitative and the quantitative aspect of UPLC-qTOF-MS includes multiple 

reaction monitoring (MRM) window of selected mass range, can be used for structural elucidation 

of metabolites. The qTOF-MS is helpful in the structure elucidation and identification of 

fragmentation patterns of the compounds. Other advantage of MRM includes reduced chemical 

noise and contaminants from ion source, thereby allowing thorough quantification of the analyte. 

The MRM technique was applied for MA-ATPE from leaves of Solanum retroflexum (Paper III) 

and ATPE on leaves of Solanum mauritianum (Paper IV). Furthermore, ATPE was applied with 

PHWE on leaves of Solanum mauritianum (Paper V). 
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1.2 Problem statement 

Sub-Saharan Africa with over 10% of the world’s population has the highest occurrence of under-

nutrition in the world (FAO, 2014), with over 70% of rural population who depend mainly on self-

produced foods. Incidences of diet-related diseases like various cancers and cardiovascular 

diseases are also increasing in these communities (Sirma et al, 2018; Naja et al., 2019). The modern 

system of medicine which comprise of drugs from synthetic origin suffers a drawback of adverse 

effects and exorbitant costs which propelled indigenous communities towards 

ethnopharmacognosy. A practical and sustainable option for addressing this burden of malnutrition 

in such communities is by exploiting the potential of local biodiversity especially regarding 

vegetables. Indigenous African leafy vegetables have been shown to possess anti-oxidative 

properties and thus have the potential as natural sources for reducing cellular oxidative damage, 

and suppression of various cancers and cardiovascular diseases (Neugart et al., 2017; Arslan et al., 

2018; Ezekwe et al., 2020). It is therefore common nowadays to find in restaurants, hotels and 

public canteens, vegetable dishes based on African nightshade (Solanum scabrum) and Solanum 

retroflexum (Neugart et al., 2017).  

The Solanaceae family contains a variety of nutraceutical species and have captured the attention 

of many researchers around the world primarily due to the bioactivity of its metabolites. Despite 

this, Solanum plants are notorious for their poisonous effects and a metabolic class responsible for 

this toxicity are glycoalkaloids (Sinani et al., 2019; Mokgehle et al., 2021). Glycoalkaloids derived 

from Solanum plants are highly diverse and are amphiphilic composed of an aglycone (solanidanes 

or spirosolanes or epiminocholestanes or epiminocyclohemiketals or 3-aminospirostanes) which 

is glycosylated to a carbohydrate side chain, of which the individual monosaccharides such as 

xylose, glucose, galactose and rhamnose differ by number, nature, and arrangement. Researchers, 

have, therefore, exploited the toxic profile of glycoalkaloids and applied them as anticancer, 

antibacterial, and antifungal agents (Morillo et al., 2020; Pelo et al., 2021). For instance, 

solamargine, solasonine and α-tomatine exhibited toxic effects by reducing larval growth of the 

red flour beetle Tribolium castaneum and α-tomatine also showed inhibitory activity on tobacco 

hornworm, Manduca sexta (Weissenberg et al., 1998; Ventrella et al., 2016). Moreover, potato 

derived glycoalkaloids exhibited ovicidal effect and repellent activity against Spodoptera exigua 

moths (Adamski et al., 2009; Ventrella et al., 2016) and decreased the frequency of the Zophobas 

atratus heart contractions causing irreversible or fast and reversible cardiac arrests (Ventrella et 
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al., 2015). Notably. α-Solanine was reported to disturb Galleria mellonella development, 

fecundity and fertility, and disturbed prooxidant-antioxidant balance (Büyükgüzel et al., 2013; 

Ventrella et al., 2016). According to Smith et al. (2008), a 52-year-old woman who consumed 

Solanum torvum berries experienced vomiting, diarrhoea, blurry vision, ataxia, slurred speech, and 

weakness. Clinical evaluation of the patient revealed ptosis, muscle fasciculations, diaphoresis, 

dyspnea and urinary incontinence. Another study by Glover et al. (2016) reported on a case of 

poisoning of a 54 year old woman after intake of a glycoalkaloid (solasonine). Furthermore, the 

Centre for Food Safety (2015) reported on poisoning of patients after consumption of cooked 

potatoes, subsequent investigations revealed that the poisoning was due to the glycoalkaloid 

solanine. 

Despite the toxicological effects of glycoalkaloids, these metabolites are also known for their 

pharmacological effectiveness towards human health such as antidiabetic (Al-Ashaala et al. 2018), 

antifungal (Sanchez-Maldonado et al., 2016), antiparacetic (Anwar et al., 2020), antimicrobial 

(Kalimuthu et al., 2018) and anticancer (Arsaln et al., 2018). Therefore, there is an ever-growing 

appetite for these compounds in nuetraceuticals. Acquiring biologically active compounds from 

plant resources is a multistep process and generally entails, extraction, isolation, analytical 

characterization, and clinical evaluation of bioactive compounds. The extraction stage is the most 

critical; however traditional extraction techniques are accompanied by many setbacks which 

include high costs associated with buying toxic organic solvents, large volumes of required organic 

solvents, long extraction times, low yields of bioactive phytoconstituents, poor reproducibility and 

requirement for high extraction temperatures (Azwanida et al., 2015; Verma, 2016; Zhang et al., 

2018). Another drawback is that traditional extraction techniques require tedious multiple steps 

often yielding a limited number of metabolites (Zhan et al., 2020). Hence, there is a dire need for 

effective, eco-friendly, single-step extraction techniques, that are efficient in the isolation of 

targeted bioactive compounds which is often embedded in a complex plant matrix system. 

Chromatographic applications involving silica gel, have therefore been applied for purification of 

plant metabolites. However, this technique is limited as it is dependent on the pH of the mobile 

phase, is time-consuming, requires large amounts of organic solvents, making it costly and 

demands careful consideration of solvent mixtures to enable the mobile phase to elute with the 

desired metabolites (Liu et al., 2020). A traditional practice following silica gel based column 

chromatography, would be to characterize the eluted samples using nuclear magnetic resonance 
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(NMR), which to some extent may elucidate the metabolic structure (Mediani et al., 2017). 

However, considering the diverse nature of plant secondary metabolites which can be in their tens 

of thousands in a single sample, NMR analysis is an inefficient technique for distinguishing each 

metabolite. More advanced technologies such as high-resolution chromatographic separation 

techniques such as ultra-performance liquid chromatography hyphenated to Quadrupole-Time-of-

Flight Mass Spectrometry (UPLC-qTOF-MS), allows for the physical separation of thousands of 

metabolites in a single run and improve the ability to isolate complex phytochemical structures, 

thereby facilitating opportunities for unambiguous identification of the unknown metabolites.  

Hence, this work was directed at applying environmentally friendly extraction methods (PHWE, 

ATPE and MAE), which use water or ethanol as extraction solvents, in optimizing extraction of 

toxic metabolites in Solanum mauritianum and Solanum retroflexum. This was achieved by 

applying MS/MS and metabolomics data to distinguish closely related isobaric and isomeric 

metabolites based on fragmentation patterns. This allowed for structural elucidation of metabolites 

of interest. Thereafter, targeted quantification of toxic metabolites (glycoalkaloids) using optimal 

multiple reaction monitoring (MRM) transitions and product ion scan (PIS) on the UPLC-qTOF-

MS was performed. Optimization of the extracted metabolites was done through chemometric 

techniques for each extraction method through factorial designs, and the output viewed through 

response surface models.  

1.3 Aim and objectives 

1.3.1 Aim 

To optimize extraction methods PHWE, ATPE and MAE for characterization toxic 

phytoconstituents such as glycoalkaloids in crude extracts obtained from Solanum retroflexum and 

Solanum mauritianum.  

1.3.2 Objectives 

• Sampling of Solanum retroflexum and Solanum mauritianum plant species located in the 

Vhembe district in South Africa. 

• Metabolic profiling of toxic metabolites in Solanum retroflexum, extracted using 

kosmotropes or chaotropes during ATPE (paper I) 
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• Application of optimized hyphenated modern extraction techniques (microwave assisted 

aqueous two phase extraction) for extraction of glycoalkaloids from Solanum mauritianum 

(paper II) 

• Optimization of modern extraction methods for targeted toxic metabolites based multivariate 

chemometric approaches involving central composite design (CCD) and quantification 

through optimal MRM transitions and MRM – product ion scan with the aid of UHPLC-

qTOF-MS: 

 Evaluation of the effect of mass of plant powder, microwave power and 

irradiation time during (MA-ATPE) of solanine from Solanum retroflexum 

(paper III) 

 Assess the influence of mass of plant powder and extraction time during ATPE 

of solasodine from Solanum mauritianum (paper IV) 

 Determine the effect of temperature and percentage concentration of a 

kosmotrope and chaotrope in the extraction of solasodine from during 

(pressurized hot water extraction and aqueous two phase extraction (PHWE-

ATPE) (paper V) 

 



 
 

 

 

 

 

 

______________________________________________________________________________ 

Chapter 2- Literature review 

This chapter gives a literature scan of the toxic metabolites reported 

in Solanum species. It also highlights factors contributing to the 

synthesis of these toxic metabolites as well as their mode of action 

in plant defence. The application of Solanum derived toxic 

compounds in medicine as well as the evolution of extraction 

methods (ATPE, MAE and PHWE) and its mechanisms in obtaining 

pharmacologically active phytocompounds, is summarized. 
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2.1 The general importance and variety of Solanum plants (Solanaceae) 

The Solanaceae family comprises 90 genera and about 2300 species (Sharma et al., 2017; Chirini 

et al., 2018). The genus Solanum is the largest and most diverse of the genera consisting of over 

1500 species (Alajmi et al., 2018; Zuluaga et al., 2020). The Solanum genus contains many food 

crops important to agriculture, food security, human nutrition, and health. For instance, edible 

plants such as potato (Solanum tuberosum L.), eggplant (Solanum melongena L.), naranjilla 

(Solanum quitoense Lam.) and tomato (Solanum lycopersicum) are common vegetables in 

supermarkets. Some of the plants derived from the genus Solanum have been applied as 

insecticides which include the winter cherry (Solanum pseudocapsicum L.) (Jeyasankar et al., 

2017). Pharmacologically important plants such as bittersweet (Solanum dulcamara L.) and 

Solanum viarum Dun., are rich sources of corticosteroids, among which includes dexamethasone, 

a drug reported to have reduced mortality among SARS-CoV-2 patients (Sterne et al., 2020). Other 

genera within Solanaceae include Lycianthes, Cestrum, Nolana, Physalis, Lycium, Nicotiana, 

Brunfelsia, Atropa with approximately 200, 150, 89, 85, 85, 76, 45 and 6 species, respectively. For 

instance, the Nicotiana genus (tobacco plants) contains a toxic alkaloid nicotine, which in small 

doses is an acetylcholine agonist resulting in muscle activation, however, excessive amounts may 

lead to heart attacks (Wang et al., 2015; Martinez et al., 2020). 
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2.2 Genera within solanacae 

2.2.1 Solanum L. and its nightshade species 

A vast majority of the plants within the Solanum genus consist of nightshade species. The edible 

nightshades consist of about 30 species of botanically and genetically related plants within the 

Solanum genus of the Solanaceae family (Yang et al., 2013). Some of the nightshade species of 

Solanum include vegetables such as Solanum nigrum, Solanum lycopersicum. Solanum melongena 

and Solanum retroflexum. Nightshade species within sub-Saharan Africa are consumed as vital 

nutrient-rich foods and applied for their medicinal qualities; hence most nightshade species are 

regarded as nutraceutical plants. The nutraceutical properties of Solanum species arise due to its 

metabolite composition. These metabolites include amongst others, polyphenols such as phenolic 

acids (Sánchez‐Maldonado et al., 2016; Kaushik, 2019) chlorogenic acids (Głosek-Sobieraj et al., 

2019; Joly et al., 2021) and flavonoids (Daji et al., 2018; Mokgehle et al., 2021) (Figure 2.1). 
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Figure 2.1: Examples of some common metabolites in species of the Solanum genus; phenolic 

acid (caffeic acid), chlorogenic acids and flavonoids (quercetin and kaempferol)  
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2.2.1.1 Toxic metabolites (glycoalkaloids) in Solanum plants and factors influencing their 

synthesis  

In addition to polyphenols, Solanum plants have been shown to produce a toxic class of metabolites 

known as steroidal glycoalkaloids (SGAs) (Fogelman et al., 2019; Mokgehle et al., 2020). SGAs 

are N-containing secondary metabolites found in plants of Solanaceae (Nightshade family), and 

have attracted immense attention from researchers, especially from a human health perspective 

(Fogelman et al., 2019; Henessesy et al., 2020). These toxic compounds are widely distributed 

across Solanum plants such as potato (Solanum tuberosum L.), sweet pepper (Capsicum annum), 

tomato (Solanum lycopersicum), eggplant (Solanum melongena), black nightshade (Solanum 

nigrum) and thorn apple (Solanum incanum). Solanum plants have evolved secondary biochemical 

pathways that allow them to synthesize SGAs, as a response mechanism to specific environmental 

stimuli, such as herbivore-induced damage (Silva et al., 2021) and pathogen attacks (Paudel et al., 

2017; Al-Maawali et al., 2021). These secondary metabolites can be characteristic to species or 

genera and do not play any role in the plants' primary metabolic requirements but enhance the 

plant’s ability to survive environmental difficulties. Some of the protective roles of SGAs against 

microorganism, bacteria or viruses involve antioxidant (Al-Ashaala et al., 2018), free radical-

scavenging (Al-Hay Al-Ashaal, 2017), UV-light absorbing (Yuan et al., 2019), and 

antiproliferative activity (Sinani et al., 2017; Ali et al., 2020; Zhao et al., 2021). Glycoalkaloids 

also manage inter-plant relationships, acting as allelopathic defenders against competitor plants 

(Sinani et al., 2017; Sołtys-Kalina et al., 2019). They provide feeding deterrence, as many 

phytochemicals are bitter and/or toxic to potential herbivores, with their toxicity often affecting 

the herbivore's central and peripheral nervous systems (Figure 2.2). Some of the steroidal 

glycoalkaloids obtained from the Solanum genus are listed in Table 2.1. 

 



17 
 

O
N

O
Chacotriose

Solasodine Solasodine

(a) (b)

O

O
OH OH

O

OH

CH2OH

OHO

OH

O

OH OH

x

y
y

O

OHOH

CH2OH

O

O
OH OH

O
O

CH2OH

OH

OH

OH

x

y

(c) (d)

x

O
N

O

Solastriose

 
 

Figure 2.2: Glycoalkaloids contained in species of the Solanum genus where (a) + (c) gives 

solasonine and (b) + (d) gives solamargine 
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Table 2.1: Breakdown of some common glycoalkaloids within the Solanum genus 

Glycoalkaloid Aglycone Carbohydrate unit  

α-solanine Solanidine Solatriose: galactose + glucose + rhamnose 

β-solanine Solanidine Solabiose: galactose + glucose 

ɣ-solanine Solanidine Galactose 

α-chocanine Solanidine Chacotriose: glucose + rhamnose + rhamnose 

β-chocanine Solanidine Chacobiose: glucose + rhamnose 

ɣ-chocanine Solanidine Glucose 

Solamargine Solasodine Chacotriose: glucose + rhamnose + rhamnose 

Solasonine Solasodine Solatriose: galactose + glucose + rhamnose 

α-solmarine Tomadidenol Solatriose: galactose + glucose + rhamnose 

β -solmarine Tomatidenol Glucose + rhamnose + rhamnose 

2.2.1.2 Biosynthesis and degradation of toxic compounds (glycoalkaloids) in Solanum plants  

The general pathway begins with steroid biosynthesis which involves the reaction of acetate with 

acetyl-coenzyme A and then follows through the intermediates of mevalonic acid, squalene, 

lanosterol, and cycloartenol to cholesterol. Two possible pathways for glycoalkaloid synthesis 

from cholesterol have been proposed by Milner et al. (2011) where solasodine and soladulcidine 

are formed from cholesterol, while tomatidenol, tomatidine, solanidine and demissidine from 

saturated cholesteranol. The next step in the biosynthesis after aglycone formation is glycosylation. 

Many studies have shown that, after their formation, aglycones are rapidly enzymatically 

glycosylated by sugar to the α-form of glycoalkaloids (Sinani et al., 2017; Lobo et al., 2018). 

The concentration of glycoalkaloids in Solanum plants is dependent on various factors which 

include seasonal variations, UV-light and maturity of the plant. Naturally occurring glycoalkaloids 

are called α-compounds. The sugar chains are subject to hydrolytic cleavage by chemical or 

enzymatic means (Milner et al., 2011). Stepwise cleavage of the glycoside side chain leads to β- 

and γ-compounds in trisaccharides and β-, γ-, and δ-compounds in the case of tetrasaccharides 

(Sinani et al., 2017). Degradative enzymes and substrates are in different compartments within 

cells; thus, enzymes are activated after tissues are disrupted. In tomato, enzymatic degradation of 

glycoalkaloids occurs when tomatoes ripen (Friedman et al., 1993; Dzakovich et al., 2021). 
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Most nightshade species are consumed for their nutritious leafy vegetables compared to the fruits 

as the leaves are relatively less toxic diet (Sivakumar et al., 2020). Collected or cultivated 

nightshade species due to their demand are consumed or sold in local markets, generating an 

economic opportunity for small-scale farmers, particularly in poverty-stricken areas (Weinberger 

et al., 2004; Frison, 2016; Yuan et al., 2018). Furthermore, these localized grown nightshade 

species provide a more sustainable option rather than dependence on expensive imported as 

European vegetables (Yuan et al., 2018). Besides being used as a vegetable in Africa, Solanum 

nigrum has been reported in treatment of gastric ulcers (Zaghloul et al., 2020; Mureithi et al., 

2020). Besides Solanum species being edible, these plants have a wide range of pharmacological 

applications due to the metabolites they produce which include glycoalkaloids and polyphenols 

(flavonoids) as listed in Table 2.1 and Table 2.2, respectively. A range of cinnamic acids have 

been reported by Singh et al. (2020) to have antidiabetic and hepatoprotective effects and include 

ferulic acid, chlorogenic acid caffeic acids. Flavonoids have been reported in Solanum 

macrocarpon (Ogunsuyi et al., 2020), Solanum nigrum (Ogunsuyi et al., 2020), Solanum incanum 

(Sbathu et al., 2020), Solanum terminale (Kingo et al., 2020) and Solanum sisymbriifolium (More 

et al., 2020). 
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Table 2.2: Some of the metabolites found within the Solanum genus and the respective biological activities 

Solanum species Metabolite Biological activity  Reference 

S. macrocarpon Phenols, flavonoids, alkaloids Inhibition of MAO, AChE Ogunsuyi et al. (2020) 

S. nigrum Phenols, flavonoids, alkaloids Inhibition of MAO, AChE Ogunsuyi et al. (2020) 

S. elaeagnifolium Cav. Quercetin, kaempferol Inhibition of perenial weeds Balah et al. (2020) 

S. nigrum Polyphenols Reduction of body fat Peng et al. (2020) 

S. gilo Raddi Polyphenols Antioxidant Maimoto et al. (2020) 

S. incanum Alkaloids, saponins, flavonoids Antimicrobial Sbhatu et al. (2020) 

S. lycopersicum Rutin  - Mokgehle et al. (2021) 

S. tuberosum peels Chlorogenic, caffeic and ferulic acids Antidiabetic, hepatoprotective Singh et al. (2020) 

S. torvum 4-O-CQA, 3-O-CQA, 3,5-diCQA,  Inhibition of breast cancer  Helilusiatiningsih et al. (2020) 

S. melongena Afidopyropen Insecticide Chawla et al. (2020) 

S. terminale Alkaloids, steroids, flavonoids Diabetes and hypertension Kingo et al. (2020) 

S. sisymbriifolium Alkaloids, phenols, and flavonoids Suppression of macrophage cells More et al. (2020) 

S. villosum - Antimicrobial Abdelgawwad et al. (2020) 
CQA-caffeouyl qunic acids, AChE- Acetylcholinesterase, MAO- Monoamine oxidase inhibitors 
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2.3 Protective mechanisms of Solanaceae alkaloids  

Solanaceae species have been studied to produce to predominantly produce tropane (nitrogenous 

bicyclic compounds) based alkaloids. Plant derived tropanes have for centuries been used as 

poisons. Furthermore, tropanes have proven to have invaluable pharmacological properties due to 

their toxicity. Examples of toxic tropane alkaloids include scopolamine (Atropa), atropine 

(Atropa), hyoscyamine (Atropa), nicotine (Nicotiana and Cestrum) and glycoalkaloids such 

solanine and solamargine which are mainly reported in Solanum species. Glycoalkaloids have been 

reported to exhibit its toxic effects in pathogens, viruses, bacteria, or herbivores by disrupting cell-

membrane function through complexation reactions with membrane 3 β-hydroxysterols, forming 

aggregates, eventually damaging the integrity of the cell membrane. The active components 

responsible for complexation of glycoalkaloids to cell membranes have been reported by Sinani et 

al. (2017) to be carbohydrate residues attached to the 3-OH position of the aglycone unit. 

Additionally, Rayburn et al. (1994) evaluated the toxic effects of modifying monosaccharides 

chains in glycoalkaloids on frog embryos, and it was observed that solasodine had significantly 

less biological activity when compared with its glycosidic form. The same researchers reported 

this trend across various cell lines including HT29 (colonic adenocarcinoma), HeLa (cervical 

carcinoma) and MCF-7 (breast adenocarcinoma) and agrees with what was reported by Friedman 

et al. (2018) and Beaulieu et al. (2018). The composition of the carbohydrate side chain is equally 

important in determining the extent and type of membrane – glycoalkaloid interaction within the 

cancerous cell. For instance, glycoalkaloids such as α-solamargine and α-solasonine share a 

common aglycone yet have different sugars; and α-solamargine consistently displayed higher 

activities in biological systems than α-solasonine for anticancer and membrane-disrupting 

properties in frog embryos (Nepal et al., 2019).  

Glycoalkaloids have also been examined for their anti-acetylcholinesterase activity on the central 

nervous system. According to Sinani et al. (2017) and Kiełczewska et al. (2021), solasodine based 

metabolites such as α-solasonine and α-solamargine were observed to have limited 

acetylcholinesterase inhibition compared to solanidine-based glycoalkaloids. This highlighted that 

the structure of the aglycone unit determined the extent of inhibition of acetylcholinesterase 

(Sinani et al., 2017). In a separate study by Yelken et al. (2017), another glycoalkaloid, α-tomatine, 

was observed to inhibit cell proliferation of human breast cancer cells. The authors suggested that 
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α-tomatine−cholesterol interactions within the cell membrane of breast cancer cells, played a vital 

role in the anticarcinogenic effect of α-tomatine.  

Glycoalkaloids have also been reported to disrupt active transport of ions through membranes, 

proceeding to disorders in general body metabolism (Väänänen, 2007; Nielsen et al., 2020; 

Schmidt et al., 2020; Nguenang et al., 2020). As part of an effort to establish the mechanism of 

action of glycoalkaloids in cells, Blankemeyer et al. (1997) evaluated the effect in exposure of 

varying concentrations of α-tomatine and tomatidine (glycoalkaloids predominantly found in 

Solanum lycopersicum) to frog embryos and their skin. α-Tomatine increased the fluorescence-

measured membrane permeability of frog embryos by about 600% compared with control values; 

the corresponding value for tomatidine was about 150%. This indicated that the four carbohydrate 

residues attached to the 3-OH group in α-tomatine enhanced membrane permeability compared to 

the tomatidine aglycone which had no sugar chains attached. The increased membrane 

permeability of α-tomatine permitted for diminished sodium-active transport in frog skin by about 

16% compared with control values, as estimated from the change in the interstitial short-circuit 

current. Similarly, a key mechanism of glycoalkaloids in malignant cell apoptosis, involves the 

ease of permeability through the infected cell membrane and subsequent changes in ion flux and 

interstitial currents between neighboring cells. The carbohydrate side chain (L-rhamnopyranosyl-

(1 → 2) moiety) in another glycoalkaloid, solamargine, was reported by Kuo et al. (2000) and 

Fekry et al. (2019) to have anticarcinogenic activity in hepatoma cells. The main mechanism for 

solamargine involved upregulation of TNF receptor I and II in the hepatoma cells, which led to 

cell apoptosis.  

Generally, tumeric cells have been reported to have multidrug resistance, making cancer therapy 

almost impossible. Besides the complexation ability of α-tomatine with cholesterol in the cell 

membrane, its aglycone unit tomatidine was reported to be an efficient chemosensitizer for human 

adenocarcinoma cells, enabling chemotherapy to occur more efficiently and inhibiting multidrug 

resistance (Hsieh et al., 2020). Similarly, according to Chen et al. (2017), solamargine inhibited 

the growth of multiple lung cancer cell lines. Solamargine initiated down-regulation of P-

glycoprotein, a drug transport system responsible for excreting anticancer drugs out of cells 

(Burger et al., 2018). Moreover, solamargine inhibited the action of HER2, a gene involved in the 

development of human breast cancer, which is responsible for drug resistance (Xie et al., 2019; 
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Kalalinia et al., 2017). The presence of solamargine further in cell lines containing the HER2 gene 

triggered apoptosis and increased susceptibility of these cell lines to some common anticancer 

drugs which include methotrexate, 5-fluorouracil, cisplatin, and epirubicin (Xie et al., 2019; 

Kalalinia et al., 2017). 

Reddivari et al. (2010) observed that micro-range concentrations of α-chaconine (≈ 5 μg mL-1) 

obtained from Solanum tuberosum, exhibited potent antiproliferative properties in prostate cancer 

cells. The activity of α-chaconine was based on increased levels of cyclin-dependent kinase 

inhibitor p27 levels in two prostate cancer cell lines which included LNCaP and PC3. This resulted 

in cleavage of poly (adenosine diphosphate (ADP) ribose polymerase, a response that was essential 

in the induction of caspase-dependent apoptosis in LNCaP cells. The observations by Reddivari et 

al. (2010) indicated that apoptosis due to potato extracts in prostate.  

Glycoalkaloids have also been studied to exhibit other forms of human cancer cell cytoxicity and 

this includes its interaction with membrane-based receptors such as endogenous endocytic lectins 

(EELs). The carbohydrate moieties of the solasodine glycosides (such as solamargine and 

solasonine in Table 2.1) may interact with EELs as shown in Figure 2.3 (Cham et al., 2017; Sinani 

et al., 2017). Once the steroidal glycoalkaloids bind to the EELs, the complex is absorbed into the 

cytoplasm of the infected cell where it merges with endosomes containing cell organelles such as 

mitochondria (Figure 2.3), eventually localizing in the lysosomes. Thereafter, the solasodine 

glycosides contained in the lysosomes are then hydrolyzed by enzymes within the lysosomes into 

solasodine (Cham et al., 2017; Sinani et al., 2017). Thereafter, solasodine performs its turmorcidal 

activity by binding to mitochondrial enzymes that generate ATP, chemical energy needed for 

biochemical reactions within an infected cell, activating the process of apoptosis (Figure 2.3). 

Subsequently, the contents of lysosomes, made of many hydrolytic enzymes are spilled into the 

cytoplasm of the affected cell leading to sudden death of the cancer cells by apoptosis (Serrano-

Puebla et al., 2018). This indicates that the carbohydrate and the aglycone unit of the glycoalkaloid 

have distinct functions where the carbohydrates unlock the infected cell through interaction with 

receptors, while the aglycone unit is responsible for the exhibition of toxicity to the viruses the 

cell, resulting in apoptosis.  
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Figure 2.3: Interaction of glycoalkaloids through receptor-mediated endocytosis with endogenous 

endocytic lectins (EELs) located on the cell membrane of the infected cell, injestion into coated 

(Sinani et al., 2017)   
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2.4 Modern extraction methods for Solanum derived compounds 

2.4.1 Microwave assisted extraction 

2.4.1.1 Principle of microwave assisted extraction 

Microwave assisted extraction (MAE) involves the application of microwave energy resulting in 

heat transfer to the sample and subsequent increase in mass transfer rate of the solutes from the 

sample matrix into the solvent. Microwave based extraction is guided by thermal and non-thermal 

effects. Thermal effects are responsible for the heating of solvents, which result in the enrichment 

of targeted metabolites. However, the mechanism of thermal effects during microwave dielectric 

heating and conventional heating differs. Microwave heating uses the ability of some compounds 

(liquids or solids) to transform electromagnetic energy into heat. Energy transmission is produced 

by dielectric losses within the solvent, which contrasts with conduction and convection processes 

observed in conventional heating. The magnitude of heating depends on the dielectric properties 

of the molecules that make the extraction solvent, also in contrast to conventional heating (Diaz-

Ortiz et al., 2019; Grillo et al., 2021). These characteristics mean that absorption of the radiation 

and heating may be performed selectively. The dielectric properties of molecules with the sample 

dictate how rapid microwave irradiation can take place, often resulting in the whole material being 

heated simultaneously. In contrast, conventional heating is slow and is introduced into the sample 

from the surface (Grillo et al., 2021). The thermal effects observed under microwave irradiation 

conditions are a consequence of the inverted heat transfer, the inhomogeneities of the microwave 

field within the sample and the selective absorption of the radiation by polar compounds (Bichot 

et al., 2020). These effects can be used efficiently to improve processes (Bichot et al., 2020; 

Cavalcante et al., 2021). The thermal effect is manifested as a rise in temperature of the irradiated 

system and is accompanied by physiological responses such as cell rupture depending on the 

frequency and duration of the field (Bichot et al., 2020; Cavalcante et al., 2021). 
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Non-thermal effects 

The existence of non-thermal effects during microwave irradiation is a controversial matter. 

According to Guo et al. (2020), non thermal effects are described as the direct interaction of the 

alternating electromagnetic (EM) fields with specific (polar) molecules and ions in the reaction 

medium that is not related to a macroscopic temperature effect. Additionally, Arjmandi et al. 

(2017) reported that non-thermal effects of microwaves cannot only enhance the inactivation of 

bacteria and enzymes, but also affect the integrity of cell membrane and release of intracellular 

constituents. Besides this, there were several studies that opposed the existence of ‘non-thermal 

effects’ of microwaves and therefore controversial (Stratakos et al., 2016; Bahari et al., 2017). 

2.4.1.2 Mechanism of microwave assisted extraction  

The principle behind MAE is that the sample must be moisture containing. In microwave assisted 

extraction, the objective of heating in case of dried plant material is heating that minute amount of 

moisture present in a plant cell. The warming up of this moisture within the plant cell due to 

microwaves causes evaporation and creates a huge pressure on the cell wall and subsequent plant 

cell expansion. The cell wall weakens from inside due to this pressure and breaks. In this way, the 

exudation of potential constituents from the ruptured cell happens, consequently, it helps 

developing extraction yield of phytoconstituents (Mirzadeh et al., 2020). The schematic for cell 

rupture event is in case of MAE methodology at progressive level is depicted in Figure 2.4. The 

higher extraction yield can be achieved further by increasing the temperature, which leads to 

quicker penetration of solvent into the cell wall of plant matrix (Azmir et al., 2013; Pandey et al., 

2018). Microwave assisted extraction was also applies on Solanum species for the extraction of 

polyphenols (Salamutallah et al., 2018; Gu et al., 2019) and a glycoalkaloid (solasodine) (Lin et 

al., 2019). Microwave assisted extraction of metabolites from Solanum and other plant species are 

summarized in Table 2.3. 
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Figure 2.4: Progressive cell rupture event brought about by exposure to microwaves (Li et al., 

2013) 

Drying of the cell: Heating 

of water within plant cell 

during microwave exposure

Stretching of the cell: Rise in 

temperature and pressure of 

water vapour inside the plant 

cell

Cell breaking: Rupture of cell 

wall and subsequent release of 

metabolites from plant cell 

body to the exterior 
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Table 2.3: Some of the classes of metabolites obtained following microwave assisted extraction 

Microwave assisted extraction technique  Extracted metabolite  Extracted from Reference 

MAE Flavonoids, polyphenols Ziziphus spina-christi Keshavarz et al. (2020)  

MAE Flavonoids Rosa Zhou et al. (2010) 

MAE Flavonoids  Vernonia amygdalina Alara et al. (2018) 

Ionic liquid based assisted extraction Verbascoside Rehmanie root Fan et al. (2018) 

Vacuum microwave assisted extraction Myricetin, quercetin Capsicum annuum Xiao et al. (2009) 

Microwave hydrodiffusion and gravity Polyphenols Malus domestica Borkh. Fernandes et al. (2020) 

Microwave hydrodiffusion and gravity Polyphenols Rosmarinus officinalis L. Ferreira et al. (2020) 

MAE Polyphenols Solanum melongena L. Salamatullah et al. (2018) 

Microwave dry-diffusion and gravity method Quercetin Allium cepa Tehrani et al. (2019) 

Vacuum solvent-free microwave extraction Polyphenols Clinacanthus nutans Lindau Othman et al. (2020) 

MAE Glycoalkaloids Solanum tuberosum Kondamudi et al. (2017) 

Synergetic Microwave & Ultrasound Energy Phenols Rosa Patrascu et al. (2016) 

MAE Flavonoids Solanum lycopersicum Mahieddine et al. (2018) 

MAATPE Solasodine Solanum nigrum Lin et al. (2019) 

MAE Polyphenols Solanum melongena Gu et al. (2019) 

MAE Polyphenols Solanum melongena Sivanathan et al. (2018) 
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2.4.2 Pressurized hot water extraction 

2.4.2.1 Principle of pressurized hot water extraction 

Pressurized hot water extraction (PHWE) is an extraction technique that uses liquid water as 

extractant (extraction solvent) at temperatures above the atmospheric boiling point of water 

(100°C/273 K, 101 kPa), but below the critical point of water (374°C/647 K, 22000 kPa) as shown 

in Figure 2.5. This technique is classified as a green approach as extraction is carried out entirely 

by water (Jin et al., 2020). The principle of PHWE is guided by the physico-chemical properties 

of water. Water is highly polar with a high dielectric constant (ε) of 80 at room temperature and 

atmospheric pressure, due to its extensive hydrogen-bonded structure (Mao et al., 2020; Jin et al., 

2020). Traditionally, water is not known to dissolve non-polar compounds at room temperature. 

However, as the temperature of water is increased, there is a resultant decrease in its permittivity, 

viscosity, and surface tension but an increase in its diffusivity characteristics. Similarly, at elevated 

temperatures, the dielectric constant of water decreases from ε = 80 at 25˚C to ε = 27 at 250˚C and 

50 bar. Under these conditions water has a dielectric constant comparable to other organic solvents, 

such as methanol (ε = 33) and ethanol (ε = 24) at 25˚C. Additionally, water is then able to dissolve 

a wide range of medium and low polarity analytes. For instance, Liau et al. (2017) obtained 

kaempferol glycosides (flavonoids) by applying PHWE on seeds of Camellia oleifera. Similarly, 

Gil-Ramırez et al. (2018) obtained saponins from Chenopodium quinoa Wild.) while Salplachta 

and Hohnova´ (2017) obtained proteins from branches of Sambucus nigra L. More examples on 

the application of PHWE for the enrichment metabolites derived from plants and food is tabulated 

in Table 2.4. 
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Figure 2.5: Phase diagram of water indicating its critical point 
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Table 2.4: Application of PHWE for the extraction of metabolites from food and plants 

Metabolite  Source  Temperature (oC)  Pressure (MPa) Static/Dynamic Period (min)  Reference 

Phenols  Melissa officinalis 150 10.30 Static 10 Miron et al. (2013) 

Steviol glycosides  Stevia rebaudiana leaves 160 10.34 Static 10  Kovačević et al. (2018) 

Phenols  Tagetes 220 6.00 Static 45  Xu et al. (2015) 

Flavonols Malus domestica 125 10.30 Static 3  Plaza et al. (2015) 

Flavonols Moringa oleifera leaves 100  - Dynamic 20  Matshediso et al. (2015) 

Phenols. Hordeum vulgare 150 15.00 Static 15  Sarkar et al. (2014) 

Flavonols Stevia rebaudiana leaves 130 10.34 Static 10  Sandra et al. (2019) 

Flavones Stevia rebaudiana leaves 160 10.34 Static 10  Sandra et al. (2019) 

Flavonoid glycosides Camellia oleifera 140 4.13 Static 10 Liau et al. (2017) 

Phenols Bertoni leaves 160 10.34 Static 10 Kovačević et al. (2018) 

Chlorogenic acid  Sambucus nigra L. 100 15.00 Static 5  Hohnova et al. (2017) 

Rutin Sambucus nigra L. 100 15.00 Static 5  Hohnova et al. (2017) 
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2.4.2.2 Mechanism of PHWE 

The extraction mechanism in the extraction cell of a PHWE system is generally composed of three 

sequential steps. Firstly, desorption of solutes from active sites in the sample matrix under the 

pressurized and elevated temperature conditions occurs. This is followed by the diffusion of 

extraction fluid (water) into the matrix. And finally, depending on the sample matrix, the solutes 

partition themselves from the sample matrix into the extraction fluid before being 

chromatographically eluted out of the extraction cell (Jokić et al., 2018; Plaza et al., 2019). 

According to Ong et al. (2006), the enhancement on the extraction efficiency of PHWE can be due 

to an improvement in the solubility and mass transfer of the solute and an increased disruption of 

surface equilibria. As discussed in Section 2.4.2.1, the physicochemical properties of water at 

elevated temperatures, change drastically. The lowered viscosity and dielectric constant and 

improved diffusivity of water, allows for better penetration through the matrix particles. If fresh 

water is continuously introduced during a dynamic extraction in PHWE, it improves the mass 

transfer and hence, increases extraction rate. Both the high temperatures and pressures could 

disrupt the surface equilibria (Plaza et al., 2019). The same authors highlighted that increased 

temperature in PHWE plays an important role of overcoming the solute-matrix interaction caused 

by van der Waals forces, hydrogen bonding and dipole attraction. Therefore, the thermal energy 

supplied can disrupt cohesive (solute–solute) and adhesive (solute–matrix) interaction by 

decreasing the activation energy required for desorption process (Jokić et al., 2018). The transfer 

of the analytes from matrix to pressurized hot water is achieved by the diffusion and convection 

processes (Dias et al., 2020). Similar, to temperature, pressure plays an equally important role by 

providing the sufficient driving force to elute thermally labile compounds from the matrix (Dias 

et al., 2020). Pressure also facilitates extraction from samples where analytes are trapped in the 

matrix pores and drives the extraction fluid into ‘hard to reach’ matrices which are not normally 

covered if water at atmospheric pressure is used (Dias et al., 2020). 

 

 



33 
 

2.4.3 Aqueous two phase extraction 

2.4.3.1 Aqueous two phase extraction principle 

Aqueous two phase extraction is a liquid–liquid fractionation technique. The principle of this 

method is embedded on incompatibility of two aqueous solutions such as a polymer/ salt system, 

a polymer/polymer system (Kaplanow et al., 2018; Castro et al., 2020), an ionic liquid (IL) and a 

salt system, or a low molecular weight alcohol and a salt system (Li et al., 2020; Chong et al., 

2020). Figure 2.6 is an illustration of two immiscible systems resulting in the separation of 

hydrophobic and hydrophilic compounds in an ethanol/salt/polymer setting. 

 

Figure 2.6: Separation of hyrophophic and hydrophilic compounds in an ATPE system 

 

2.4.3.2 Ethanol/salt aqueous two phase extraction systems 

Aqueous two-phase extraction (ATPE) has attracted increasing attention due to biphasic extraction 

capacity and selectivity, resulting in the achievement of target constituents that could be extracted 

either in the top or bottom phase (Xie et al., 2017; Xie et al., 2021). More importantly, it is a green 

and efficient pre-treatment solution for separation and purification of compounds from natural 

products (Xie et al., 2017; Li et al., 2020). Over the past decades, polymer/salt and 

polymer/polymer aqueous two‐phase systems (ATPS) have been utilized in the purification of 

biomolecules (Wessner et al., 2020; Chikari et al., 2020). However, industrial upscaling of these 

systems remains a major setback due to the exorbitant cost of polymers and difficulties associated 
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with the separation of extracted molecules through back extraction processes (Zhang et al., 2020; 

Chong et al., 2021). This has resulted in the proliferation of studies around the alcohol/salt ATPE 

which have fast become key extracting systems for metabolite extraction and purification, due to 

their low viscosity, simple recovery mechanism, and cost‐effectiveness (Dumas et al., 2020). 

Introduction of salts in aqueous systems result in structural changes in water, because of entropic 

alterations (Zangi et al., 2010). Entropic changes in aqueous systems can be explained based on 

the arrangement of water molecules surrounding a solute (Timson et al., 2020). For instance, the 

presence of some salts in aqueous environments give rise to a more ordered (quasi-crystalline) 

arrangement of water molecules surrounding a solute relative to the water molecules in the bulk 

solution (Zangi et al., 2010). This led to the classification of salts as either kosmotropes, structure-

makers (Greek kosmos meaning order), or chaotropes, structure-breakers (in Greek chao means 

disorder) (Russo et al., 2008; Deary et al., 2014; Assaf et al., 2018 Mokgehle et al., 2021). This 

indicated that kosmotropic and chaotropic salts can promote and disturb hydrogen bond interaction 

between water molecules surrounding the solute, respectively. Similarly, Assaf et al. (2018) and 

Wang et al. (2021) reported that multivalent ions of high charge density (kosmotropes) bind water 

molecules strongly, however, large monovalent ions of low charge density (chaotropes) bind water 

molecules weakly relative to the strength of water-water interactions in bulk solution. 

Subsequently, this leads to the precipitation (salting-out) of the solute from the aqueous solution 

in the presence of kosmotropes and or salting-in as with chaotropes. Some salts with kosmotropic 

behaviour have been studied for extraction of metabolites. For instance, Chong et al. (2020) 

evaluated an Ethanol/NaH2PO4 system for the extraction of chlorogenic acids in Lonicera caerula 

with a yield of 96.8%. Similarly, Mokgehle et al. (2021) studied Na2CO3 for the extraction of 

glycoalkaloids in Solanum retroflexum. Additional examples of ethanol/salt ATPE systems are 

tabulated in Table 2.5. Furthermore, kosmotropes and chaotropes have been reported to be 

essential in maintaining osmotic balances in biological systems through ion-channels (Zajc et al., 

2014; Xia et al., 2020). 

. 
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Table 2.5: Application of ATPE for enrichment of metabolites from plant samples 

Type of ATPE  Recovery (%) Recovery (mg g-1) Metabolite (plant species) Reference 

Ethanol/Na and K salt - - Polysacharrides (G. scabra) Cheng et al. (2017)  

Ethanol/(NH4)2SO4 94-105 - Flavonoids (C. sessiliflora) Xie et al. (2017) 

Ethanol/Na2CO3 - - Glycoalkaloids (S. retrofexum) Mokgehle et al. (2021) 

Ultrasonication ATPE - 9.12  β-carotene (okra leaves) Li et al. (2021) 

Ethanol/Na salts 85.6 - Capsaicin (C. chinese var.) Cienfuegos et al. (2017) 

Ethanol/(NH4)2SO4 94 - Allicin (A. sativum L.) Li et al. (2017) 

Deep eutectic solvents 77 - Flavonoids (G. biloba) Cao et al. (2018) 

Ethanol/NaH2PO4 96.8 - Chlorogenic acid (L. caerula) Chong et al. (2020) 

Ethanol/Na-citrate 94 - Phenols (H. sabdariffa) Rodriguez-Salazar et al. (2019) 

EOPO/DES 86 - Polysaccharides (C. oleifera) Gao et al. (2020) 

Ethanol/K2CO3 - 7.39  Naringin (C. aurantium L.) Yan et al. (2020) 

UAE-ionic liquids - 10.4 Lignans (S. chinensis) Li et al. (2019) 



 
 

 

 

 

 

 

 

 

 

__________________________________________________________________________________ 

Chapter 3 – Materials and methods 

The chapter summarizes the experimental conditions applied during MAE, ATPE and PHWE 

for profiling and quantification of toxic metabolites (glycoalkaloids). 

___________________________________________________________________________ 
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3.1 Materials 

The salts, extraction solvent and the conductivity of the aqueous solvent used during ATPE 

based extraction are spelled out in papers I – V. The instruments used to aid MAE are 

described in papers II - III while for PHWE is included in paper V.  

3.2 Methods 

Sample collection and preparation, prior to ATPE, MAE and PHWE is outlined in papers I – 

V. Figure 3.1 is a summary of the extraction methods undertaken to obtained toxic metabolites 

from Solanum retroflexum and Solanum mauritianum. This involved using chaotropes and 

kosmotropes during ATPE for qualitative studies involving metabolic profiling of Solanum 

retroflexum (Paper I) through structural elucidation techniques. Quantitative studies were then 

done involving the chaotrope and kosmotrope which best extracted the glycoalkaloids from 

paper I. These quantitative studies which involved optimization are detailed in papers II - V. 

In papers III - V experimental design was conducted using central composite design (CCD) 

software which included 2 and 3 factorial inputs. Thereafter, quantification of the targeted toxic 

metabolites was done based on multiple reaction monitoring (MRM). Response surface models 

(RSM), which is a resultant fit of the predicted and experimental values, were generated. The 

chaotropes and kosmotropes were compared based on RSM for extraction of glycoalkaloids 

during the various extraction methods studied (papers III – V). 
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Figure 3.1: Summary of the methods used for obtaining toxic metabolites from selected 

Solanum species and subsequent quantification via statistical optimization softwares  
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3.3 Operation of UHPLC-qTOF-MS  

The qTOF-MS is a hyphenated instrument consisting of an LC (Figure 3.2 (a)) and a time of 

flight mass spectrometer (Figure 3.2 (b). The qTOF-MS is almost a replica of the QQQ-MS 

with the only difference being the replacement of the third quadrupole with a time-of-flight 

tube. Introduction of the sample occurs through electron spray ionization (ESI), where the 

sample was sprayed into the ionization chamber with the aid of a nebulizing gas (N2), resulting 

in droplets (Figure 3.2 (c-d)). At ESI (+), the analyte is sprayed at a low pH while at ESI (-), 

the analyte is at a pH above the molecule’s isoelectric point. The droplets are then ionized in 

the presence of a high voltage power supply and desolvated due to the heat of the desolvation 

gas. Following ionization, the charged species to the first quadrupole (Q1) which is responsible 

for the selection of specific ions based on their mass-to-charge ratio (m/z), resulting in a 

precursor ion (Figure 3.2 (d)) (Allen and Whitney, 2019). The precursor ion is then introduced 

to a second quadrupole (Q2) which is collision cell where ions are bombarded by neutral gas 

molecules such as nitrogen or argon, resulting in fragmentation of the ions also described as 

collision induced dissociation (CID) (Allen and Whitney, 2019). After leaving the quadrupole 

(Q2) the fragmented ions (product ions) are reaccelerated into the ion modulator region of the 

time-of-flight analyser where they are pulsed by an electric field and accelerated 

perpendicularly to their original direction (Figure 3.2 (c)). All ions with the same kinetic energy 

enter the flight tube which is a field free drift region where mass separation occurs based on 

the velocity of the product ion. Ions exhibiting a lighter mass will have a shorter time of flight, 

whereas heavier ions will take longer to traverse the flight path towards the detector 

(Ingvarsson, 2020). 
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Figure 3.2: (a) The LC compartment (b) the mass ionizer (c) TOF ionization chamber (d) 

process of ionization from a precursor ion to a product ion 

 

(a) (b)

(c) (d)



 
 

 

 

 

 

 

 

 

 

__________________________________________________________________________________ 

Chapter 4 – List of publications 

This chapter gives the publications that were done during the 

duration of the PhD programme. 
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Paper 1 

This work assessed the application of a range of chaotropes and kosmotropes to aid the ATPE 

extraction of metabolites from Solanum retroflexum, and analysed via UHPLC-qTOF-MS. 

 



43 
 

 

 



44 
 

 



45 
 

 

 

 



46 
 

 

 

 



47 
 

 

 



48 
 

 

 

 



49 
 

 

 

 



50 
 

 

 

 



51 
 

 

 



52 
 

 

 

 



53 
 

 

 



54 
 

 

 



55 
 

 



56 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

Paper 2 

The optimization of microwave and aqueous two phase-based extraction techniques which 

involved MAE, ATPE + MAE and MA-ATPE for the extraction of solasonine and solamargine 

from leaves of Solanum mauritianum was evaluated. 
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Abstract 

The biomass Solanum mauritianum (S. mauritianum) is an invasive weed specie, however, it is 

a source of medicinally metabolites, as reported in literature, such as solasonine and solamargine. 

The study was directed at the optimization of microwave and aqueous two phase based extraction 

techniques which involved microwave assisted extraction (MAE), (aqueous two phase extraction 

followed by microwave assisted extraction) ATPE + MAE and the ‘one - pot’ (microwave assisted 

aqueous two phase extraction) MA-ATPE for extraction of solasonine and solamargine from 
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leaves of Solanum mauritianum (S. mauritianum) was evaluated. The microwave-assisted 

extraction of solasonine and solamargine yielded optimums at 5.00 min, microwave power of 270 

W, solid/liquid of 0.1 g L-1 at an ethanol concentration of 60%. Application of a two-stage 

extraction (MAE + ATPE) in CaO dried alcohol resulted in decreased amounts of solasonine and 

solamargine extracted. The best yields of solasonine and solamargine were achieved in the MA-

ATPE method. Extraction of solamargine and solasonine using Na2CO3 in CaO dried ethanol 

during MA-ATPE was approximately three-fold and two-fold greater than that of MAE + ATPE, 

respectively. Furthermore, extraction of solamargine and solasonine using NaCl in CaO dried 

ethanol during MA-ATPE was approximately two-fold greater than that of MAE + ATPE. The 

synergy of microwaves and salting-out in the ‘one-pot’ MA-ATPE technique was shown to be a 

contributing factor for enhanced extraction of solamargine and solasonine from leaves of S. 

mauritianum. Application of this time and energy efficient extraction method could potentially be 

expanded for enrichment of nutraceutical compounds from biomass of other medicinal plants. 

Keywords: Microwave-assisted extraction; toxic phytochemicals; Solanum mauritianum; 

aqueous two phase extraction   
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1 Introduction 

Plant reaction to damage is an inherent character and occurs through exhibition of defence 

mechanisms against herbivores and piercing-sucking insects such as whiteflies and bacterial 

pathogens [1-3]. One of the modes of operation of bacterial pathogens involves the release of 

reactive oxygen species such as singlet oxygen and peroxide radicals which result in oxidative 

stress leading to cellular damage in the host plants [1]. Other anti-pathogenic modes of plant 

include inhibition of glioma growth [4] and apoptosis of human chordoma cells [5]. Defence 

mechanisms against biotic stressors also involve the accumulation of toxic secondary metabolites, 

such as alkaloids which directly reduce the fitness of the invader [3,6-7]. One special class of 

alkaloids are steroidal glycoalkaloids found in numerous members of the Solanaceae family. They 

are composed of nitrogen containing alkaloid groups and carbohydrate sugar side chains [3]. 

Extraction of toxic phytochemicals from nutraceutical plant sources, in this case Solanum plants, 

is essential as they are the richest bio‐resource of drugs for medicinal applications [6]. 

Glycoalkaloids have been known for their pharmacological effectiveness towards human health 

such as being antidiabetic [8], antifungal [9], antiparacetic [10] and anticancer [11]. Hence, 

extraction of these invaluable natural derived compounds (glycoalkaloids) is worthwhile. 

Microwave-assisted extraction (MAE) is a simple environmentally friendly and economical 

technique for the extraction of biologically active compounds from different plant materials [12-

13]. The advantage of this technique includes shorter extraction time, lesser solvent requirement, 

improved purity of the extract, low cost, and better extraction yield in comparison to Soxhlet 

extraction. This extraction method is a quick and highly effective technique for obtaining extracts 

under mild conditions, therefore it has been considered as a potential alternative to traditional 

methods [14-16]. Aqueous two phase extraction (ATPE) is desired for its environmental 
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compatibility, low interfacial tension of phases, high yields and low process time [17-18]. 

Recently, researchers have turned their attention to an improved version of ATPE, salting-out 

assisted liquid-liquid extraction (SALLE) technique, which facilitates extraction of metabolites 

from complex matrices [19-21]. 

Species within the Solanum genus are generally known to contain toxic metabolites 

(glycoalkaloids); hence this work was directed at optimization involving microwaves in a binary 

solvent system by means of an aqueous two phase extraction for enrichment of solasonine and 

solamargine from a medicinal plant, S. mauritianum. This work also aimed to explore conventional 

extraction methods such as MAE, aqueous two phase extraction followed by microwave assisted 

extraction (MAE + ATPE) and microwave assisted aqueous two phase extraction (MA-ATPE) for 

enrichment of glycoalkaloids from S. mauritianum. To the best of our knowledge, S. mauritianum 

has been underexplored with regards to its metabolites. Though known to be an invasive weed 

species from the Solanaceae family, the plant has been studied to be an essential ingredient for 

South African traditional medicine for treatment of menorrhagia [22] dysentery, diarrhea [23] and 

infertility [24] due to its metabolite composition, which is comprised of a bioactive class of 

compounds, glycoalkaloids. Hence, the need arises to obtain these medicinally important 

glycoalkaloid metabolites such as solasonine and solamargine from S. mauritianum using 

environmentally friendly extraction methods. The application of microwaves or aqueous two phase 

systems in conjunction with a green extraction solvent (ethanol), could potentially pave the way 

for more reliable means of obtaining these compounds and its sustained use in metabolomics. 

Furthermore, application of plant based phytocompounds in medicine could likely eliminate the 

need for metabolic compounds synthesized in the lab, of which are often laborious and expensive.  
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2 Materials and methods 

2.1 Sample collection 

The leaves of S. mauritianum were obtained from Phiphidi, Limpopo in October 2019, South 

Africa. The plants were air dried until a constant weight was obtained, and the leaves were ground 

with a rotating blade blender into a fine powder with particle sizes ranging from 100 – 300 µm. 

Thereafter, this powder was stored in glass containers and covered to prevent light penetration.  

2.2 Chemicals and materials 

Absolute ethanol (99.9% CP), which was used as an extraction solvent, was purchased from 

Associated Chemical Enterprises (Johannesburg, South Africa). A modified microwave oven (DM 

350, Defy, Polokwane, South Africa) of 28 L capacity, working at a frequency of 2450 MHz was 

used for microwave-assisted extraction. The salts for ATPE NaCl (anhydrous > 99% purity) and 

Na2CO3 (anhydrous > 99% purity) and the drying agent CaO (reagent grade > 99% purity), were 

all purchased from Associated Chemical Enterprises (Johannesburg, South Africa). Ultra-pure 

water (0.005 µS, 18 mΩ) was applied for the dissolution of salts studied. Whatman Grade 1 filter 

papers were purchased from Sigma Aldrich (Johannesburg, South Africa). 

2.3 Extraction procedure 

2.3.1 MAE 

Ground leaves of S. mauritianum plant powder (mass: 0.6 – 1.4 g) was immersed in 

hydroalcoholic solutions with various concentrations (20-60%) contained in a 1-necked 250 mL 

round-bottomed flask at irradiation time (1 - 13 min) with power varied from 90 to 900 W. The 

method is illustrated in the appendix (A1: (a)) 
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2.3.2 MAE + ATPE 

The optimized parameters following chromatographic analysis (details are included in section 

2.4) for extraction of solasonine and solamargine during MAE was a 60% ethanol extraction 

solvent, irradiation time of 5 min at a power of 270 W. A ground S. retroflexum biomass powder 

with a mass of 1.0 g was immersed in 30% (w/v) of NaCl (chaotrope) or Na2CO3 (kosmotrope). 

Thereafter, the extract (5 mL) obtained from the optimized conditions during MAE was mixed 

with either 30% (w/v) of NaCl (5 mL) or 30% (w/v) of Na2CO3 (5 mL) followed by the addition 

of the extraction solvents-CaO dried ethanol or 99% ethanol (10 mL), resulted in an aqueous two 

phase system. The spontaneous formation of ATPE under the conditions stated above was also 

reported by Mokgehle et al. [3]. CaO dried ethanol was prepared by adding 25 g of CaO drying 

agent to 100 mL of 99% ethanol. The mixture was stirred for 10 minutes before filtration with a 

Whatman Grade 1 filter paper. The method is illustrated in the appendix (A1: (b)) 

2.3.3 MA-ATPE 

In this ‘one pot’ extraction the optimized results from MAE was applied on the ATPE solution 

which consisted of ground plant powder mass: 1 g, saturated salt concentrations of 30% (w/v) of 

NaCl (chaotrope) or Na2CO3 (kosmotrope) which formed the bottom phase while the upper phase 

extraction solvent consisted of CaO dried or 99% ethanol (10 mL). In MA-ATPE, both the 

saturated salt solution 30% (w/v), consisting of either NaCl or Na2CO3 and the ethanol extraction 

solvent were contained in the round-bottomed flask, all in the microwave oven. The spontaneous 

formation of ATPE under the conditions stated above was also reported by Mokgehle et al. [3]. In 

all the three extraction methods conducted, there was no agitation of the sample solution prior to 

or following extraction. Furthermore, the volumes of the solvents after the extraction period 

remained unaltered. The set-up of the MA-ATPE systems is shown in the appendix (A1: (c)).   
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2.4 Analysis on the UPLC-QTOF-MS 

Chromatographic separation was conducted on a LC-Q-TOF/MS 9030 mass spectrometer 

(Shimadzu, Japan) containing a Shimpack C18, 2.1 x 100 mm, 2.7 µm column from Shimadzu 

(Honeydew, South Africa) where the mobile phase consisted of formic acid (0.1%) in deionized 

water (solvent A) and methanol with 0.1% formic acid (solvent B). Chromatographic separation 

was achieved using a 30 min gradient elution method consisting of the following settings: the 

initial conditions were 5% solvent B at a flow rate of 0.4 mL min-1 and held constant for 3 min. 

Conditions were then changed to 45% solvent B at 9 min, increased slightly to 50% solvent A at 

21 min and then quickly ramped up to 90% solvent B at 22 min and kept constant for 3 min. 

Conditions were changed to 5% solvent B at 27 min and kept for 3 min to allow re-equilibration 

before the next run.  

For mass spectrometry, the acquisition parameters as discussed by Ramabulana et al. [25] were 

used. Briefly, MS data were acquired using positive electron spray ionization (ESI) modes. The 

MS was configured to scan the range of 100–1000 Da with a scan time of 0.2 s. After a series of 

optimization, the following settings were found to be optimal: capillary voltage of 4.5 eV, sample 

cone potential of 30 V, source temperature of 120°C, desolvation temperature of 450°C, 

desolvation gas flow of 550 L h-1, and multichannel plate detector potential of 1600 V. In order to 

achieve efficient fragmentation to aid during identification, the mass spectrometry data were 

collected using a collision energy ramp of 10–30 eV and, when necessary, a higher collision energy 

ramp of 60-165 eV was also used. Structural elucidation was done using KNapSAck online 

metabolite database. Chemical identification was done using KNapSAck Core System online 

metabolite database (Version 1.200.03) [26]. 



65 
 

3 Results and discussion 

3.1  Chromatographic profile of solasonine and solamargine 

In Figure 1 is shown the mass spectrometry and elution profile of two glycoalkaloid isomers, 

where Figure 1 (a) indicates solasonine m/z 884 and (b) solamargine m/z 868. Both contain the 

same aglycone unit solasodine, yet only differ in monosaccharides glycosylated to the aglycone 

unit. For instance, solamargine contains two rhamnose monosaccharides and glucose while 

solasonine is composed of glucose, rhamnose and galactose, which account for the 16 mass unit 

difference between the two compounds (Figure 1 (a) and 1 (b)). Figure 1 (c) shows a 30 min base 

peak chromatogram of a 60% ethanolic MAE extract from S. mauritianum, which also shows the 

elution order of two glycoalkaloids with the relatively more polar solasonine eluting at 19.56 min 

and solamargine at 19.76 min from the reversed phase column. Furthermore, Munari et al. [27] 

observed a similar trend in the extracts of Solanum lycopersicum on as Zorbax SB-C18 column 

where solasonine eluted before solamargine which indicated the relatively higher polarity of the 

former. In another study, Chester et al. [28] quantified solasonine and solamargine obtained from 

extracts of Solanum nigrum L. based on retention factors (Rf) on the HPTLC chromatogram on the 

UPLC-ESI-MS/MS. In the same work, solasonine had a lower Rf than solamargine due to its 

relatively higher polarity. Hence, the presence of galactose is a major contributor to the polarity of 

solasonine and its relatively higher affinity for the CaO dried ethanol extraction solvent. 
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Fig. 1 Elution and mass spectrometry profile two closely related glycoalkaloid isomers (a) solasonine (tR (min) -19.56) and (b) solamargine ((tR 

(min) -19.76) (c) 30 min base peak chromatogram (BPC) of a crude (60% ethanolic extract) of S. mauritianum 
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3.1.1. Effect of concentration of ethanol on MAE 

A study investigating the effect of ethanol percentage on the extraction of solasonine and 

solamargine was conducted as shown in Figure 2. As the concentration of ethanol was 

increased, the intensities of both solasonine and solamargine also increased. The higher 

intensities which correlated with the higher yield can be attributed to the higher proportion of 

ethanol and the lower level of water in the extraction solvent. The ethanol percentage in water 

was one of the driving factors influencing the MAE of compounds as it affected the solubility 

of metabolites, penetration of solvent into the cells of plants, interaction of solvent with matrix, 

and the absorption of microwave energy [29]. Increasing the water concentration in the solvent 

as highlighted by Veggi et al. [30] and Zhang et al. [31] has been reported to influence 

selectivity during extraction, which resulted in a greater affinity towards proteins and 

carbohydrates rather than bioactive plant metabolites. It was also observed that the relative 

intensities of solamargine:solasonine occurred on a general ratio of 2:1, which probably 

indicated the greater relative abundance of solamargine compared to solasonine in the leaves 

of S. mauritianum. Hence, the optimum extraction solvent was 60% ethanol and was then used 

in the following study. 

 

Fig. 2 Effect of (%) ethanol for MAE of solasonine and solamargine. Conditions: Irradiation 

time: 5 min, power: 270 W, mass of plant: 1.00 g (n = 3, RSD).  

0

100000

200000

300000

400000

500000

600000

20 40 60

In
te

n
si

ty

Ethanol (%)

Solamargine

Solasonine



69 
 
 

3.1.2. Effect of solid/ liquid ratio on MAE 

The effect of solid/ liquid ratio was evaluated where 0.6 g, 1 g, 1.4 g were evaluated in 10 

mL 60% ethanol and corresponded to solid/liquid ratios of 0.06 g L-1, 0.1 g L-1, 0.14 g L-1 

respectively (Figure 3). The optimal extraction of solasonine and solamargine was observed at 

0.1 g L-1. The lower intensities of extracted solamargine and solasonine at 0.06 g L-1 could be 

due to the relatively lower amount of plant material used. Increased solvent volumes have also 

been reported to reduce the heating efficiency, limit the breakage of solid cell walls, and inhibit 

the driving force for the mass transfer of compounds [29]. Similarly, Alara et al. [32] reported 

that larger volumes of solvent required more energy and time to maximize extraction of 

analytes from the plant matrix. It was also noted that with larger solid/liquid ratios, reduced 

extraction of solasonine and solamargine was observed. This could be as a result of lumping 

of the powdered plant material, limiting access for the extraction solvent to penetrate through 

the cell walls. Similarly, Sajid et al. [33] reported on clogging during solid phase micro-

extraction. The optimum mass for extraction of solasonine and solamargine was 1 g, 

solid/liquid ratio 0.1 g L-1. 

 

Fig. 3 Effect of solid/liquid ratio for MAE of solasonine and solamargine. Conditions: 

Irradiation time: 5 min, power: 270 W, solvent: 60% ethanol (n = 3, RSD).  
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3.1.3. Effect of irradiation time on MAE 

A study evaluating the effect of irradiation time on extraction of solasonine and solamargine 

was performed as shown in Figure 4. As time was increased from 1 to 5 min, a gradual increase 

in the extraction of solasonine and solamargine was noted. In general, higher extraction time 

tends to increase the yield of extraction. In addition, the dielectric properties of solvents used 

in MAE may have significant impacts on the extraction time [30,34]. For instance, at room 

temperature, water has a dielectric constant of 80 however, the addition of ethanol in the 

aqueous mixture reduces this constant greatly allowing it to easily dissolve a wide range of less 

polar metabolites, hence in this instance it only took 5 mins to achieve optimal extraction of 

both solasonine and solamargine, whereas if only water was used as an extractant optimal 

extraction of both glycoalkaloids would have most likely taken longer than 5 mins [30,34]. 

Furthermore, extraction of metabolites from the plant matrix is not an instantaneous process, 

there are multiple phases occurring which involve removal of compounds from the outer 

surface of plant matrix, a transition state consisting of intermolecular forces between the 

metabolites and the plant matrix inhibiting mass transfer brought about by the extraction 

solvent. After the 5 min irradiation time, a steady decrease in the intensities of both 

glycoalkaloids was observed (Figure 4). This steady decrease at longer times was increased 

could be associated with the increased degradation of thermolabile metabolites, solasonine and 

solamargine, during this period. This is in agreement with what was reported by Doulabi et al. 

[29] and Veggi et al. [30]. The optimal extraction time to be used in the following studies was 

5 min. 
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Fig. 4 The influence of irradiation time on the MAE of solasonine and solamargine. 

Conditions:  Mass of plant: 1.00 g, power: 270 W, solvent: 60% ethanol (n = 3; RSD).  
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3.1.4. Effect of power (W) on MAE 

Power studies were conducted to examine its effect on the extraction of solasonine and 

solamargine as shown in Figure 5. From 90 to 270 W an increase in extraction of both 

glycoalkaloids was observed (Figure 5). Generally, an increase in microwave power can 

improve the penetration of solvent into plant matrix, resulting in rapid delivery of microwave 

energy to both solvent and plant matrix [29]. Accordingly, from 90 to 270 W microwave power, 

dissolution of solasonine and solamargine occurred due to the increased temperature of the 

extraction solvent. However, from 270 - 900 W, a steady decrease was observed (Figure 5). 

This could be because of excessive microwave irradiation energy degrading both solasonine 

and solamargine [34-35]. Therefore, the optimal extraction power was observed at 270 W. 

 

Fig. 5 Evaluation of the effect of microwave power on the MAE of solamargine and solasonine. 

Conditions: Mass of plant: 1.00 g, solvent: 60% ethanol, time: 5 min (n =3, RSD).  
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3.2 MAE +ATPE 

Following the optimized result obtained for MAE (section 3.1) which included: 60% ethanol 

extraction solvent, solid/liquid ratio of 0.1 g L-1, irradiation time of 5 min and power of 270 W, 

the obtained conditions were applied for MAE +ATPE to improve the extraction of solasonine 

and solamargine. Besides the inclusion of ATPE, the 99% ethanol extraction solvent was dried 

with CaO drying agent with the aim of enhancing the extraction of solasonine and solamargine. 

Figure 6 shows the extraction profile for solasonine and solamargine using an extraction 

solvent of 99% ethanol and CaO dried ethanol when the chaotrope and kosmotrope NaCl and 

Na2CO3 was used, respectively. In general, no differences were observed in intensities of 

solasonine and solamargine when CaO dried ethanol was used as an extraction solvent 

compared to 99% ethanol for both Na2CO3 and NaCl (Figure 6). Though, CaO was reported as 

an efficient drying agent by Danish et al. [36] and Jia et al. [37] in sewage sludge and mortar, 

respectively, its application in drying extraction solvents for the improving extraction of 

solasonine and solamargine, was limited. 
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Fig. 6 Comparison on MAE + ATPE of solasonine and solamargine when 99% absolute ethanol 

and absolute ethanol dried with CaO was used in the presence of the chaotrope NaCl and 

kosmotrope Na2CO3 (n = 3, RSD). 

3.3 MA-ATPE 
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that the extraction method influenced the salting-out efficiency of solamargine and solasonine 

from the aqueous solution in the presence of NaCl or Na2CO3. The effect of extractions 

conditions on salting-out was also reported by Tajeda-Casado et al. [20] and Sazali et al. [21]. 

The doubly charged carbonate ions from Na2CO3 interacted with the hydration sphere 

surrounding the solute (solamargine and solasonine) to a greater extent than singly charged 

chloride ions from NaCl, forming carbonic acid. Thereafter, this led to the precipitation 

(salting-out) of the solute in the aqueous phase and resultant extraction by ethanol. Salting-out 
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effect has been reported to aid the extraction of Vitamin D3 from milk samples [21] and in the 

determination of 5-nitroimidazolesin in fish [19]. 

 

Fig. 7 Comparative MA-ATPE of solasonine and solamargine when 99% ethanol and ethanol 

dried with CaO was used in the presence of the chaotrope NaCl and kosmotrope Na2CO3 (n = 

3, RSD). 

3.4 Comparison of the extraction efficiency of MAE, MAE + ATPE, MA-ATPE 
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of solamargine and solasonine using NaCl in CaO dried ethanol during MA-ATPE (Figure 7) 
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rapture and subsequent mass transfer of solasonine and solamargine into the aqueous solution. 

In addition to microwaves the salting-out effect prompted the precipitation of solasonine and 

solamargine from the hydration sphere into the ethanol extraction phase during MA-ATPE. 

The two-step extraction method MAE + ATPE, was observed to have the lowest extraction of 

metabolites (Figure 6). This could be attributed to the inter-step loss of metabolites during 

MAE-ATPE. Furthermore, Gardernar et al. [36] highlighted some disadvantages associated 

with two step extractions which involved the requirement for a substantial amount of specimen 

to prevent analyte loses. It was also observed that MA-ATPE improved extraction of solasonine 

and solamargine compared to MAE (Table 1). This suggested that the chaotrope and 

kosmotrope were influential in aiding extraction of solasonine and solamargine in MA-ATPE 

compared to MAE, from which the extraction did not include salts. Hence, the simultaneous 

application of microwaves assisted the extraction of solasonine and solamargine in the aqueous 

two phase system based on salting-out, as seen with MA-ATPE, and was influential in 

enhancing the extraction of solasonine and solamargine in comparison to MAE and MAE + 

ATPE. 

Table 1 Intensities of solasonine and solamargine under MAE, MAE+ATPE and MA-

ATPE 

  salt Intensity (arbitrary units) 

    Solasonine   Solamargine   

    CaO dried EtOH EtOH 99.9% CaO dried EtOH EtOH 99.9% 

MAE     279507   531704 

MAE+ATPE NaCl 279507 274890 356772 316784 

  Na2CO3 106899 105495 285572 287307 

MA-ATPE NaCl 623912 459642 618115 602356 

  Na2CO3 617550 525691 763974 746758 
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4 Conclusions 

In this study, the optimization of microwave and aqueous two phase based extraction 

techniques which involved MAE, ATPE + MAE and MA-ATPE for extraction of solasonine 

and solamargine from leaves of S. mauritianum, was evaluated. The first technique which only 

involved microwaves, MAE, maximal extraction of solasonine and solamargine was achieved 

when extraction was conducted for 5 min, microwave power of 270 W, solid/liquid of 0.1 g L-

1 and an ethanol concentration of 60%. Efforts were then made to improve extraction of both 

solasonine and solamargine by applying drying agents such as CaO in the ethanol extraction 

solvent. Dried ethanol was applied in two-stage extraction (MAE + ATPE). However, the 

yields of solasonine and solamargine were observed to decrease due to possible analyte loss of 

metabolites during inter-step transfer between MAE and ATPE. Application of CaO dried 

ethanol in conjunction with the ‘one-pot’ MA-ATPE was shown to considerably enhance 

extraction of both glycoalkaloids relative to MAE and MAE-ATPE. For instance, extraction of 

solamargine and solasonine using Na2CO3 in CaO dried ethanol during MA-ATPE was 

approximately three-fold and two-fold greater than that of MAE + ATPE, respectively. 

Furthermore, extraction of solamargine and solasonine using NaCl in CaO dried ethanol during 

MA-ATPE was approximately two-fold greater than that of MAE + ATPE. Hence, the 

kosmotrope (Na2CO3) was shown to be a relatively better extractor of solamargine and 

solasonine in comparison to the chaotrope (NaCl) due to its superior salting-out capacity in 

MA-ATPE. The results suggested that MA-ATPE, a technique propelled by the synergy of 

microwaves and salting-out, is a promising time and energy efficient method for enrichment of 

solamargine and solasonine from leaves of S. mauritianum. 
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Appendix 

 

A1: Experimental set-up of (a) MAE, (b) MAE-ATPE and (c) MA-ATPE 

 

 

 



 
 
 

 

 

 

 

 

 

 

 

 

 

Paper 3 

A multivariate analysis examining the effect of mass of plant powder, extraction time and 

microwave power for optimization of MA-ATPE of α-solanine from Solanum retroflexum, 

aided by the kosmotrope (Na2CO3) or chaotrope (NaCl), was evaluated.  
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Abstract 

A hyphenated microwave assisted aqueous two phase extraction (MA-ATPE) was applied in 

the extraction of α-solanine from Solanum retroflexum. Central composite design (CCD) was 

performed which included numerical parameters such as time, mass of plant powder and 

microwave power. The categorical factors included the chaotrope - NaCl or the kosmotrope - 

Na2CO3. Fitting the central composite design response surface model to the data generated a 

quadratic model with a good fit (R2 = 0.920). The statistically significant (p < 0.05) parameters 

such as time and mass of plant powder were influential in the extraction of α-solanine. 

Quantification of α-solanine was achieved using a robust and sensitive feature of ultra high 

performance quadrupole time of flight mass spectrometer (UHPLC-qTOF-MS), multiple 

reaction monitoring (MRM). The optimized condition for the extraction of α-solanine in the 

presence of NaCl and Na2CO3 was a period of 1 min at a mass of 1.2 g using a microwave 

power of 40%. Maximal extraction of α-solanine was 93.50 mg kg-1 and 72.16 mg kg-1 for 

Na2CO3 and NaCl respectively. The synergistic effect of salting-out and microwave extraction 

was influential in extraction of α-solanine. Furthermore, the higher negative charge density of 

the kosmotrope (Na2CO3) was responsible for its greater extraction of α-solanine than 

chaotrope (NaCl). The shorter optimal extraction times of MA-ATPE make it a potential 

technique that could meet market demand as it is a quick, green, and efficient method for 

removal of toxic metabolites in nutraceuticals. 
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Introduction 

Solanum retroflexum is one of many species within the Solanaceae family widely distributed 

and boasting over 3000 species of trees, shrubs, and herbs. The consumption of Solanum 

retroflexum remains controversial in different cultural practices (Averbeke et al., 2007; Managa 

et al., 2020). In South Africa, Solanum retroflexum is an exclusively produced and consumed 

vegetable by African people, and due to its high nutrient composition in its leaves, its affordable 

means to alleviate malnutrition among poor rural based South Africans (Averbeke et al., 2007). 

On the contrary, Solanum retroflexum is an inedible plant and persistent weed in Europe and 

America, as it is perceived to be toxic (Karabegović et al., 2018). 

The edibility or inedibility of Solanum retroflexum is due to its metabolic composition. Some 

of the classes of secondary metabolites derived from Solanum plants include polyphenols such 

as flavonoids, widely renowned for its antioxidant activities (Uchida et al., 2017; Mahieddine 

et al., 2018; Fratianni et al., 2020) and steroidal alkaloids widely reported for its toxic effects. 

The surge in concentration levels of steriodal alkaloids (glycoalkaloids) is triggered by the 

exposure of Solanum plants to the sun’s uv-light or because of mechanical injury including 

peeling and slicing (Dao and Friedman, 1994; Kasnak et al., 2018). Some of the toxic effects 

of glycoalkaloids are due to anticholinesterase effects on the central nervous system (Caprioli 

et al., 2014; Lelario et al., 2019) and disruption of cell membranes (Blankemeyer et al., 1998; 

Nepal et al., 2019). Symptoms of glycoalkaloid poisoning in humans include colic pain in the 

abdomen and stomach, diarrhea, vomiting, burning sensation about the lips and mouth, fever, 

rapid pulse, and headache (Uluwaduge et al., 2018; Deng et al., 2021). Other destructive effects 

of glycoalkaloids include craniofacial malformations in hamsters (Garfield and Keeler, 1996; 

Ni et al., 2018; Kumar et al., 2019) and a variety of organ malformations in frog embryos and 

mealworms (Friedman et al., 1991, Chen et al., 2021). Furthermore, the Centre for Food Safety 

(2015) reported on poisoning of patients after consumption of cooked potatoes, subsequent 

investigations revealed that the poisoning was due to the glycoalkaloid α-solanine. As a result, 

regulatory bodies such as the Commission for Food and Agricultural Organization (FAO) and 

the World Health Organization (WHO) have established regulations for maximum permissible 

concentrations of glycoalkaloids, which currently stands at 200 mg kg-1 for fresh potatoes 

(Solanum lycopersicum) sold in supermarkets. 
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In view of the toxic potential of glycoalkaloids contained in Solanum vegetables, food 

toxicology regulating bodies have come-up with maximum allowable limits of these 

metabolites. Besides these policy frameworks, more still need to be done to improve the 

nutritional value and safety of some plant foods, especially those consumed by humans. This 

could come in the form of environmentally friendly extraction techniques that target these 

poisonous glycoalkaloids in food.  

In this study, the one-pot extraction (MA-ATPE) of a toxic metabolite, α-solanine, from 

Solanum retroflexum was investigated and optimization was based on the application of central 

composite design (CCD) and response surface methodology (RSM). The CCD and RSM 

approach are useful as it reduces the number of experiments, making it less laborious and time 

efficient (Silva et al., 2019). Application of MA-ATPE could be a fast, environmentally 

friendly, and efficient method for extraction of α-solanine that could be vital by reducing 

toxicity of a popular vegetable, Solanum retroflexum, making it safe for consumption. 

Furthermore, this hyphenated environmentally friendly extraction technique could potentially 

be utilized on a commercial scale.  

Materials and methods 

Chemicals and reagents 

The salts NaCl (anhydrous > 99% purity), Na2CO3 (anhydrous > 99% purity) and ethanol 

(99% CP) were purchased from Associated Chemical Enterprises (Johannesburg, South Africa) 

and Sigma-Aldrich (Johannesburg, South Africa). Ultra-pure water (0.005 µS, 18 mΩ) using a 

Direct-Q 5UV distiller (Massachusetts, United States of America) was applied for the 

preparation of the salt solutions. A modified microwave oven (DM 350, Defy, Polokwane, 

South Africa) of 28 L capacity, working at a frequency of 2450 MHz was used for microwave 

assisted extraction. Chromatographic separation of the metabolites in the extracts was done 

using a reverse phase Shim-pack Velox C18, 2.1 x 100 mm, 2.7 µm with a serial number 227-

32009-03 (Columbia, USA). The UPLC was connected to a Shimadzu 9030 LC, qTOF-MS 

detector (Shimadzu, Kyoto). The solvents used for the chromatographic runs were methanol 

and formic acid, which were purchased from Romil Pure Chemistry (Cambridge, UK).  
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Sample collection and preparation  

The leaves of Solanum retroflexum were obtained from a street vendor within the Thulamela 

District in Thohoyandou, South Africa. The plants were air dried until a constant weight was 

obtained, and the leaves were ground into a fine powder with a blender at 2000 rpm and stored 

in glass containers. The containers were covered in paper bags to prevent light penetration. The 

MA-ATPE method consisted of powdered leaves placed in a 250 mL round bottomed flask 

(Fig.1). Thereafter, saturated salt concentrations (5 mL) of 30% (w/v) involving Na2CO3 

(kosmotrope) and NaCl (chaotrope) were prepared by weighing 15 g of salt in 50 mL of water, 

were added to the powdered leaves in the round bottomed flask. The 99% ethanol extraction 

solvent (5 mL) as a top layer and the saturated salt solution containing the powdered leaves 

resulted in an ATPE system (Fig. 1). The ethanol extraction solvent was dried in CaO 25% 

(w/v) prior to it being used for extraction. The ATPE solutions were then exposed to 

microwaves for different periods (1-10 min) at different microwave power (30-100%). 

Thereafter, the extracts obtained were then analysed on the UPLC-qTOF-MS for α-solanine. 

 

Fig.1 MA-ATPE setup containing the powdered Solanum mauritianum plant from which α-

solanine was extracted.  

Chromatographic and mass spectrometry conditions 

α-Solanine was separated using the column stated in section 2.1. The column was maintained 

at 40 ºC at a flow rate of 0.4 mL min-1 and the injection volume was 5 µL. Mobile phase A was 

0.1% formic acid in ultrahigh purity water (v/v) and mobile phase B was 0.1% (v/v) formic 

acid in methanol. 
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The UHPLC-qTOF-MS 9030 mass spectrometer was equipped with an electrospray interface 

(ESI) operating in positive mode. The ESI parameters were optimized for α-solanine by direct 

infusion of standard solutions into the mass spectrometer. The mass spectrometer was operated 

in the multi reaction monitoring (MRM) mode to confirm the identity of α-solanine. High-

purity nitrogen (N2) was used as the nebulizing and drying gas. The optimum parameters were 

as follows: drying gas temperature, 250°C; drying gas flow, 10 L min-1 and collision energy, 

50 - 80V. Lab solutions software was used to run the LC-MS/MS instrument for data 

acquisition and the mass range used was m/z 100-1000.  

Preparation of standards and quantification of samples 

The stock α-solanine standard solution was prepared in methanol at a concentration of 1000 µg 

L-1. The stock standard solution was stored at 4°C in amber volumetric flasks. A series of nine 

working standard solutions at the concentration values of 15 to 1000 µg L-1 were prepared from 

the stock standard solution by diluting with HPLC grade methanol. The α-solanine standards 

were quantified based on scheduled multiple reaction monitoring (MRM) where one m/z 

transition, from the precursor ion to the product ion, for α-solanine (868 → 722) was explored. 

The regression equation was y = 52.1677x + 624.135, the limit of detection (LOD) and limit 

of quantification (LOQ) were 0.3169 and 0.9509, respectively. The above mentioned transition 

was then applied for quantification of α-solanine from the ground leaves of Solanum 

retroflexum following MA-ATPE extraction. The parameters evaluated for optimization of 

MA-ATPE of α-solanine were time, mass of plant powder, microwave power and the salt type 

(kosmotrope or chaotrope) 

Statistical analysis 

The central composite design response surface model (CCD RSM) was fitted to experimental 

data in order to obtain the relationship between factors and optimize the response of Z (α-

solanine yield) in relation to A (time), B (plant mass) using Design Expert 11 (Minneapolis, 

USA). By using CCD, a total of 36 experimental runs, done in duplicate, were designed which 

included 3 numerical factor levels for time (1 min, 5 min 30 sec and 10 min) 3 factor numerical 

levels for mass of plant powder (0.2, 0.7, 1.2 g), 3 numerical factor levels for power (40, 70, 

100%) and 2 categorical factor levels for salts which included the chaotrope (NaCl) and 

kosmotrope (Na2CO3).  
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The interaction between the various parameters studied and its resultant effected on the 

extraction of α-solanine (mg kg-1) was fitted to experimental data by using a statistical multiple 

regression approach method of least square (MLS) and resulted in the lowest possible residual 

(Bas et al., 2007). Model parameters and model significance were determined at p < 0.05. The 

fitness of the model was determined by evaluating the coefficient of regression (R2) obtained 

from the analysis of variance (ANOVA). The model fit generated the response surface that 

defined the behaviour of the response variable. By means of these plots, the optimized ranges 

for each factor that led to the highest response (i.e concentration of α-solanine) that can be 

extracted (Bas et al., 2007; Arteaga-Crespo et al., 2020). 

 

Results and discussion 

MRM quantification of α-solanine based on the 868→722 transition 

In this study, the extraction of α-solanine was performed of which was reported to be contained 

in Solanum retroflexum, using a hyphenated MA-ATPE approach (Daji et al., 2018; Mokgehle 

et al., 2021). The MA-ATPE was modified using different factors as shown in Table 1, on the 

recovery of target metabolite α-solanine. The presence of α-solanine has been reported in 

Solanum retroflexum and other species within the Solanum genus (Daji et al., 2018; Mokgehle 

et al., 2021). Using a sensitive and robust tandem MS approach (UHPLC-qTOF-MS) with 

settings presented elsewhere (Gbashi et al., 2016; Mokgehle 2021) it was possible to efficiently 

fingerprint these α-solanine as shown in Fig. 2 based on m/z 722 product ion. Thereafter, based 

on the 868→722 transition within the MRM method, α-solanine was quantified as a function 

of the various factors shown in Table 1. 
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Fig. 2 Molecular transition of α-solanine (m/z = 868) to ß-solanine (m/z = 722)  
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Table 1 Design layout from input variables in the central composite design and responses  

  Factor 1: Factor 2: Factor 3: Factor 4: Responses       

Run 
 Time 

(min) 

mass of plant 

powder(g) 
Power (%) Salt Run 1 Run 2 Mean ± SD     Predicted 

1 1 0.2 100 NaCl 32.07 36.19 34.13±2.9 35.79 

2 1 0.2 40 Na2CO3 27.34 71.32 49.33±31 45.89 

3 1 1.2 40 Na2CO3 72.00 115.0 93.00±30 88.57 

4 1 0.2 100 Na2CO3 30.21 46.73 38.47±11 34.3 

5 1 0.2 40 NaCl 20.22 24.01 22.12±2.7 23.27 

6 1 1.2 40 NaCl 64.32 80.00 72.16±11 73.36 

7 1 1.2 100 NaCl 51.10 84.00 67.55±23 67.39 

8 1 0.7 70 NaCl 42.03 65.39 53.71±16 58.46 

9 1 1.2 100 Na2CO3 45.28 71.37 58.32±25 58.46 

10 1 0.7 70 Na2CO3 51.42 72.00 61.71±15 65.31 

11 5.5 0.7 70 Na2CO3 15.16 100.0 57.58±59 41.66 

12 5.5 0.7 70 Na2CO3 15.41 40.07 27.74±17 41.66 

13 5.5 0.7 40 Na2CO3 32.55 62.03 47.29±21 56.86 

14 5.5 0.7 100 Na2CO3 20.78 29.14 24.96±6 28.72 

15 5.5 0.7 70 NaCl 53.41 69.01 61.21±11 57.23 

16 5.5 0.7 100 NaCl 50.67 67.18 58.93±12 56.35 

17 5.5 1.2 70 Na2CO3 34.28 53.55 43.92±14 47.18 

18 5.5 0.2 70 NaCl 22.69 32.57 27.63±6.9 28.69 

19 5.5 0.7 70 NaCl 62.90 65.14 64.02±1.5 57.23 

20 5.5 0.7 40 NaCl 50.73 73.00 61.86±16 60.38 

21 5.5 1.2 70 NaCl 59.35 73.00 66.17±9.6 66.48 

22 5.5 0.7 70 Na2CO3 36.47 48.10 42.28±8.2 - 

23 5.5 0.2 70 Na2CO3 10.82 13.63 12.22±1.9 16.84 

24 5.5 0.7 70 NaCl 51.12 70.92 61.02±14 57.23 

25 5.5 0.7 70 Na2CO3 57.35 30.16 43.75±19 41.66 

26 5.5 0.7 70 NaCl 48.55 65.14 56.85±12 - 

27 10 1.2 40 Na2CO3 34.45 42.71 38.58±5.8 37.01 

28 10 0.7 70 NaCl 30.09 49.86 39.97±13 47.53 

29 10 0.2 40 Na2CO3 13.65 67.28 40.46±37 - 

30 10 0.2 100 Na2CO3 - - - - 

31 10 0.2 100 NaCl 12.95 25.47 19.21±8.8 20.61 

32 10 1.2 40 NaCl 48.38 81.00 64.69±23 66.66 

33 10 0.7 70 Na2CO3 - 33.25 33.24 9.54 

34 10 1.2 100 NaCl 4.739 44.78 24.76±28 - 

35 10 1.2 100 Na2CO3 16.65 40.01 28.33±16 - 

36 10 0.2 40 NaCl 23.26 26.59 24.93±2.3 22.69 
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Fit statistics of experimental and predicted data 

The model fitted to the data was observed to have a quadratic fit P-values less than 0.001 

indicate model terms are significant. The following terms: mass of plant powder, time, and 

power, were found to be significant (P < 0.05) while power2 was found to be insignificant when 

both the chaotrope and kosmotrope salts were applied during extraction (Fig 3. (a) and Fig 3. 

(b)). This indicated that the linear terms were adequate predictors of the experimental values 

obtained. The quadratic effect of the terms studied was found to be insignificant for Na2CO3 in 

particular, Fig. 3 (b). The linear effect of a variable indicates that the variable correlates in a 

directly proportional manner to the response variable (α-solanine), whereas the quadratic effect 

of a variable implies that the response variable is correlated with the square of that variable 

(Gbashi et al., 2016). In the same work, the authors highlighted that a significant linear effect 

of a variable (p < 0.05) means that the optimal level of the response falls out of the range of 

the experimental values for that variable, similarly, this was observed for Na2CO3 (Fig. 3 (b)). 

The F-value was observed to be 0.37 which indicated that it was not significant relative to the 

absolute error. The non-significant lack of fit was desirable. The goodness of fit between the 

experimental and the predicted values was R2 = 0.920. Furthermore, the predicted R² of 0.7936 

was in reasonable agreement with the adjusted R² of 0.8594; i.e., the difference was less than 

0.2. 
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(a) 

 

(b) 

 

 

 

Fig.3 Pareto chart of standardized effects of time, mass of plant powder and power on the 

extraction α-solanine at 868→722 (a) NaCl and (b) Na2CO3  
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Box plots evaluating the effect of time, mass of plant powder and power on α-solanine 

extraction 

In Fig. 4 and 5 are the box-and-whiskers plots of the effect of time, mass, and power on the 

MA-ATPE extractability of α-solanine from leaves of Solanum retroflexum. From these plots 

a proportional increase in α-solanine was observed with an increase in the mass of plant powder 

when NaCl and Na2CO3 were applied during extraction (Fig.4 (a) and 5 (a)). This indicated 

that the mass of the plant powder played a key role in the recovery α-solanine. The increased 

enrichment of α-solanine was more notable when Na2CO3 was used compared to NaCl. For 

instance, the concentration of α-solanine extracted increased from approximately 14.286 mg 

kg-1 (0.2 g) to 72.16 mg kg-1 (1.2 g) which equated to a five fold increase (Fig. 5 (a)). The 

observed enhancement in the yield of α-solanine with an increase in mass can be attributed to 

the increased mass transfer of metabolites from the plant matrix to the solvent when larger 

weights of the plant material were used (Doulabi et al., 2020). Additionally, the high α-solanine 

extractions was most likely due to the low solvent to mass ratio, i.e., 0.12 (m/v) when 1.2 g 

was used compared to 0.02 (m/v) with 0.2 g in a 10 mL mixture, which generally contributed 

to high microwave energy absorption of the plant material as the solvent absorbed most of the 

microwave energy (Doulabi et al., 2020). Conversely, increased solvent volumes have been 

reported to reduce the heating efficiency in microwave extraction, limit the breakage of solid 

cell walls, and inhibit the driving force for the mass transfer of compounds (Doulabi et al., 

2020). Similarly, Alara et al. (2019) reported that larger volumes of solvent required more 

energy and time to maximize extraction of analytes from the plant matrix. 

It was also observed from Fig. 4 (b) and 4 (c), 5 (b) and 5 (c) that an increase time and power 

led to a general decrease in the extraction of α-solanine. This highest extraction of α-solanine 

was observed at 40% microwave power, indicating that power had an influence on extraction. 

Microwave power was reported by Kuhnert (2002) and Khan et al. (2018) to cause superheated 

solvents. Additionally, an increase in microwave power resulted in the superheated extraction 

by water, resulting in quicker and easier penetration of solvent into the plant matrix. 

Furthermore, the thermal energy supplied by varying microwave power can overcome cohesive 

(solute – solute) and adhesive (solute–matrix) forces by reducing the activation energy needed 

for the desorption process, as seen at 40% power (Vergara-Salinas et al., 2013; Gbashi et al., 

2016). However, at microwave powers greater than 40%, a steady decrease was observed due 

to excessive microwave irradiation energy degrading the α-solanine analyte (Routray and 

Orsat, 2012; Valdés et al. 2015). Therefore, the optimal extraction power was observed at 40%. 
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Moreover, according to the box-and-whiskers plots, the best extraction was generally observed 

at shorter times, this could probably be due to the synergistic effect of extraction time and 

microwave energy. A similar observation was reported by Martino et al. (2006) and Kaderides 

et al. (2019). 
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Fig. 4 Box-and-whiskers plots evaluating (a) time (b) mass (c) power on the enrichment of α-solanine when NaCl was used to aid extraction 
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Fig. 5 Box-and-whiskers plots evaluating (a) time (b) mass (c) power on the enrichment of α-solanine when Na2CO3 was used to aid extraction. 
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Chromatographic profile of MRM based quantification of α-solanine 

Chromatograms depicting the highest and lowest concentrations of α-solanine (mg kg-1) 

obtained when NaCl and Na2CO3 was applied, is included in Fig. 6 (a) - (d). As seen in the 

chromatogram, the MRM transition of α-solanine 868 → 722 is observed at a retention time of 

3.80 min (Fig. 6 (a), (b), (c) and (d)). The fragmentation profiles showing the product ions of 

α-solanine are also included in Fig. 6 (f). As seen in Fig. 2, α-solanine is composed of the 

solanidine aglycone unit glycosylated to solatriose. Solatriose is a trisaccharide composed of 

glucose, rhamnose and galactose monosaccharides. Of interest in this study was the 868→722 

transition which was due to the loss of rhamnose at collision energy of 65 eV (Fig. 2 and Fig. 

6 (f)). Other product ions of α-solanine were also observed which included m/z 576, 445 and 

414 which were due to losses of glucose, loss of the [Glu + H − H2O − CO]+  adduct (m/z 131) 

and galactose, respectively (Kuuranne et al., 2000; Yuan et al., 2018). 

 

 

. 
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Fig. 6 Chromatogram of the lowest (a) Na2CO3, (b) NaCl and highest (c) Na2CO3, (d) NaCl 

concentration of α-solanine (mg kg-1) and (f) mass spec of α-solanine  

Response surface equations and corresponding for NaCl and Na2CO3 and the resultant 

optima 

Response equations, Eqs 1 and 2, corresponding to NaCl and Na2CO3, respectively, and the 

resultant response surfaces evaluating the multivariate interaction between the mass of plant 

powder, power and time are shown in Fig. 7 and Fig. 8. Equations 1 – 3 and 4 - 6 represent the 

response surface equations for NaCl (Fig. 7 (a)- (c)) and Na2CO3 (Fig. 8 (a)-(c)), respectively, 

where A = time; B = mass of plant powder, C = power and Z = extraction yield (mg kg-1)  

Z = -10.5 + 197.7 B + 0.31 C - 77.9 B2– 0.00063 C2- 0.596 BC………………………...….(1) 

Z = 47.7 + 13.27 A + 0.24 C – 0.981 A2– 0.0004 C2 – 0.0689 AC………………….…..….(2) 

Z = 7.4 + 6.67 A + 131.3 B– 0.631 A2- 48.6 B2 – 2.96 AB…………………….……….…..(3) 

Z = 52.1 – 7.26 A + 75.3 B + 0.571 A2– 14.9 B2 – 5.17 AB………………………………..(4) 

Z = 145.2 – 10.03 A– 1.00 C + 0.331 A2 + 0.0030 C2 + 0.0223 AC……………….……… (5) 

Z = 98.4 + 57.3 B – 1.64 C– 8.9 B2+ 0.0101 C2 – 0.269 BC………………………………. (6) 
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As the mass of plant powder was increased, in the presence of NaCl and Na2CO3 a proportional 

increase in the yield of α-solanine was obtained (Fig.7 (a) and Fig. 8 (a)). The observed 

increment in the concentration of α-solanine with an increase in mass can be attributed to the 

increased mass transfer of metabolites from the plant matrix to the extraction solvent (Doulabi 

et al., 2020). This concurs with observations from the pareto chart, Fig. 3 (a) and (b), which 

indicates the significant linear effect (P < 0.05) of mass of plant powder on the extraction of α-

solanine. In Fig. 9 (a) and (b) the predicted optimal extraction of α-solanine in the presence of 

Na2CO3 and NaCl was 88.57 mg kg-1 and 73.36 mg kg-1, with a desirability score of 0.804 and 

0.868 respectively.  The high (> 0.8) desirability score of Na2CO3 and NaCl indicated its 

closeness to the target requirement of 1, and hence the greater reliability of this optimum for 

maximal enrichment of α-solanine. Additionally, comparisons of the concentrations of α-

solanine obtained in Table 1 and (Fig. 7 (a) – (c)) and (Fig. 8 (a) - (c)), indicated that more of 

α-solanine was extracted for Na2CO3 compared to NaCl. This suggested that, generally, α-

solanine extraction was probably favoured by the presence of multiply charged ions 

(kosmotropes), Na2CO3 in this case, rather than NaCl. The doubly charged carbonate ions from 

Na2CO3, probably formed stronger hydrogen bonds with the solvation sphere surrounding α-

solanine than singly charged chloride ions, enhancing the extent of its precipitation (salting-

out) from the hydration sphere and its subsequent extraction by ethanol. This observation is 

correlated with the Hoffmeister series as narrated by Kang et al. (2020), Dogra et al. (2020) 

and Wang et al. (2021). Similarly, the salting-out effect was also reported by Sazali et al. (2019) 

and Mokgehle et al. (2021). Hence, α-solanine extraction is better achieved with the divalent 

Na2CO3 rather than monovalent NaCl.  
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Fig. 7 Surface plots showing the interaction between the parameters studied during extraction of α-solanine in the presence of NaCl 
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 Fig. 8 Surface plots showing the AB, AC and BC on the extraction concentration of α-solanine with Na2CO3
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Fig. 9 Optimal conditions for extraction of α-solanine in the presence of (a) NaCl and (b) 

Na2CO3  

Comparison of MA-ATPE to MAE and ATPE 

Studies evaluating the extraction of glycoalkaloids involving either MAE or ATPE have been 

reported. For instance, Kondamaudi et al. (2017) examined MAE for obtaining glycoalkaloids 

from Solanum tuberosum. In that study, the concentrations of α-solanine extracted ranged from 

15.40 – 28.12 mg kg-1 at an optimal extraction time of 10 minutes. In another study, Maldonado 

et al. (2014) examined ATPE systems for extraction of α-solanine from Solanum tubersosum 

peels and obtained concentrations of 71 mg kg -1. However, this study has shown that 

hyphenation of microwave extraction and salting out through MA-ATPE, in the presence of 

kosmotrope-Na2CO3, can significantly reduce the extraction period (1 min) for α-solanine 

SaltPower  = 40%Time = 1 min Mass of plant
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while simultaneously obtaining greater concentrations (93.50 mg kg-1) than what was reported 

by Kondamaudi et al. (2017) and Maldonado et al. (2014). In this view, MA-ATPE is an 

economical and efficient extraction method for α-solanine. 

Conclusions 

The application of MA-ATPE, a synergy of microwaves and salting-out, has demonstrated to 

be an energy efficient and time-saving method for enrichment of α-solanine from Solanum 

retroflexum. This is evident in the lower times (1 min) and microwave power (40%) required 

by MA-ATPE for maximal extraction of α-solanine. The maximal amount of α-solanine 

extracted was 93.50 mg kg-1 and 72.16 mg kg-1 for Na2CO3 and NaCl, respectively. Fitting the 

central composite design response surface model to the data generated a quadratic model with 

a good fit (R2 = 0.92). It was statistically deduced that time and mass of plant powder had a 

significant effect (p < 0.05) on the extraction of α-solanine in MA-ATPE. The effect of 

microwave power was determined to be insignificant. The application of multiply charged salts 

such as the kosmotrope-Na2CO3 was shown to be a comparably better extractant of α-solanine 

than the chaotrope-NaCl and agrees with the Hoffmeister effect. Therefore, this cost-cutting 

technique, MA-ATPE, can potentially be escalated to be applied as a reliable means to 

minimize the concentrations of toxic compounds in other food sources.  
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Abstract 

Aqueous two phase extraction (ATPE) was applied in the extraction of an allelochemical, 

solasodine, from an invasive plant, Solanum mauritianum. Central composite design was 

performed which included numerical parameters such as time and mass of plant powder. The 

categorical factors included the type of salt used in aiding extraction such as the chaotrope 

(NaCl) and kosmotrope (Na2CO3). Fitting the central composite design response surface model 

to the experimental data generated a quadratic model with a good fit (R2 = 0.925). The linear 

effect of mass of plant powder was a statistically significant (p < 0.05) parameter for solasodine 

extraction. The optimized conditions for the extraction of solasodine in the presence of NaCl 

or Na2CO3 were time: 10 min and mass of plant powder: 1.2 g. Corresponding to these 

conditions, the maximal mean extraction based on multiple reaction monitoring (MRM) 

transition of solasodine (m/z 414 → 396) on the UHPLC-qTOF-MS was 233.65 mg kg-1 and 

413.50 mg kg-1 for NaCl and Na2CO3, respectively. The greater extraction ability of the 

kosmotrope was due to the higher negative charge density of the carbonate ion during salting-

out. Furthermore, the synergistic effect of mass of plant powder and salting-out was shown to 

enhance extraction of solasodine compared to the chaotrope. The kosmotrope assisted 

solasodine ATPE extracts from Solanum mauritianum, can potentially be applied as 
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antipathogenic agents in medicine while simultaneously limiting the allelopathic impact of 

Solanum mauritianum. 

Keywords: Response surface methodology, solasodine, optimization, central composite 

design, multiple reaction monitoring 

Solanum mauritianum Scopoli (Solanaceae), also known as the Bugweed, Tobacco tree or 

Woolly Nightshade, is an invasive tree of global significance. As an invasive alien plant species 

in South Africa, for more than a century, it has shown to have harmful impacts on organic 

matter content and on ecosystem services, thus degrading the lands productive potential 

(Lottering et al. 2020). The source of the devastating impact of Solanum mauritianum to its 

surroundings is its toxic metabolic composition. Solanum mauritianum produces toxic alkaloid 

allelochemicals that alter biogeochemical cycles, which constrain the growth rates of 

surrounding forest vegetation (Chornesky et al. 2005; Lottering et al. 2020) Despite the 

poisonous metabolic composition of Solanum mauritianum, tribes however, have used the 

plant to cure skin borne disorders (Jayakumar et al. 2017). A variety of Solanum mauritianum 

alkaloid secondary metabolites were isolated from herbals and were reported to exhibit 

antiproliferation and antimetastasis effects on diverse types of cancers both under in vitro and 

in vivo conditions (Jayakumar et al. 2017). 

One class of alkaloid secondary metabolites are steroidal alkaloids (SA), which are nitrogen 

containing compounds prevalent in potatoes (Solanum tuberosum), tomatoes (Solanum 

lycopersicum) and eggplants (Solanum melongena). These metabolites include glycoalkaloids 

(containing mono/polysacharrides) and its hydrolysis products aglycones (without sugar 

moieties) (Mokgehle et al. 2021). In solanaceous plants, solasonine and solamargine are the 

most important glycoalkaloids of which the principal aglycone is solasodine (Neves et al. 

2012). As a result, solasodine has been employed as a steroidal precursor within the steroid 

drug trade for the manufacturing of corticosteroids and antifertility drugs (Kumar et al. 2019. 

Solasodine which is an aglycone unit of glycoalkaloids such as solasonine and solamargine has 

been reported to play an important role in the apoptosis of cancer cells (Kumar et al. 2019; 

Bhattacharya et al. 2013; Jayakumar et al. 2016; Jayakumar et al. 2017). Solasodine has been 

reported to rupture lysosomes, resulting in lysosomal contents (mainly hydrolytic enzymes) 

being released into the cytosol causing apoptosis of cancer cells. Solasodine based rhamnosyl 

glycosides in combination with cisplatin proved more effective against cisplatin-resistant 

tumour cells, including lung and breast cancer cells (Cham et al. 2008; Jayakumar et al. 2017).  
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Despite the useful properties of solasodine, it remains a highly toxic compound. For instance, 

glycoalkaloids containing the solasodine backbone were reported for reducing larval growth of 

the red flour beetle Tribolium castaneum (Weissenberg et al., 1998; Ventrella et al., 2016). 

Furthermore, according to Smith et al. (2008) a 52-year-old woman who consumed Solanum 

torvum berries experienced vomiting, diarrhoea, blurry vision, ataxia, slurred speech, ptosis, 

muscle fasciculations, diaphoresis, dyspnea and urinary incontinence. Another study by Glover 

et al. (2016) reported on a case of poisoning of a 54-year-old woman after intake of a Solanum 

torvum. In both cases glycoalkaloids containing solasodine were responsible for poisoning.   

Considering the toxic nature of solasodine, this project was directed at optimizing the aqueous 

two phase extraction (ATPE) of solasodine from the weed, Solanum mauritianum. A 

multivariate optimization approach based on central composite design (CCD) was performed 

and the responses viewed via response surface methodology (RSM). The CCD and RSM 

approach are useful as it reduces the number of optimization experiments, making it less 

laborious and time efficient (Silva et al. 2019). Two variables were investigated which included 

extraction time and mass of plant powder. Quantification was based on scheduled multiple 

reaction monitoring (MRM) on the ultra high performance liquid chromatography time of flight 

mass spectrometer (UHPLC-qTOF-MS), where an m/z transition, from the precursor ion to the 

product ion, for solasodine (414→396) was explored. Pareto charts were also examined to 

determine which of the parameters had the greatest influence on extraction of solasodine.  

.  
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Experimental 

Chemicals and reagents 

The salts NaCl (anhydrous > 99% purity), Na2CO3 (anhydrous > 99% purity) and ethanol 

(99% CP) were purchased from Associated Chemical Enterprises (Johannesburg, South Africa) 

and Sigma-Aldrich (Johannesburg, South Africa). Ultra-pure water (0.005 µS, 18 mΩ) using a 

Direct-Q 5UV distiller (Massachusetts, United States of America) was applied for the 

preparation of the salt solutions. The extraction was performed on a DIAB MX-RL-Pro dragon 

shaker. Chromatographic separation of the metabolites in the extracts was done using a reverse 

phase Shim-pack Velox C18, 2.1 x 100 mm, 2.7 µm with a serial number 227-32009-03 

(Columbia, USA). The UPLC was connected to a Shimadzu 9030 LC, qTOF-MS detector 

(Shimadzu, Kyoto). The solvents used for the chromatographic runs were methanol and formic 

acid, which were purchased from Romil Pure Chemistry (Cambridge, UK). 

Sample collection, preparation and ATPE 

The leaves of S. mauritianum were obtained from a street vendor within the Thulamela District 

in Thohoyandou, South Africa. The plants were air dried until a constant weight was obtained, 

and the leaves were ground into a fine powder with a blender at 2000 rpm and stored in glass 

containers. The containers were covered in paper bags to prevent light penetration. The 

powdered leaves were placed in a 250 mL in a centrifuge tube (50 mL). Thereafter, saturated 

salt concentrations (20 mL) of 30% (w/v) involving Na2CO3 (kosmotrope) and NaCl 

(chaotrope) which were prepared by weighing 15 g of salt in 50 mL of water, were added to 

the powdered leaves contained in the centrifuge tube (50 mL). The aqueous solution was placed 

over the dragon shaker for (1 - 10 min) and the range of the mass of plant powder studied 

included (0.2 - 1.2 g). Thereafter, 99.9% ethanol extraction solvent (20 mL) was added and 

resulted in an ATPE system. Following this, the extracts obtained were then analysed on a 

UPLC-QTOF-MS for detection of solasodine extracted. 

Chromatographic and mass spectrometry conditions 

Solasodine were separated using a Shimpack C18, 2.1 x 100 mm, 2.7 µm column from 

Shimadzu (Honeydew, South Africa). The column was maintained at 40 ºC at a flow rate of 

0.4 mL min-1 and the injection volume was 5 µL. Mobile phase A was 0.1% formic acid in 

ultrahigh purity water (v/v) and mobile phase B was 0.1% (v/v) formic acid in methanol. 
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An UPLC-QTOF-MS 9030 mass spectrometer (Shimadzu, Japan) was used for all mass 

spectral measurements. The mass spectrometer was equipped with an electrospray interface 

(ESI) operating in positive mode. ESI parameters were optimized for solasodine by direct 

infusion of standard solutions into the mass spectrometer. The mass spectrometer was operated 

in the multi reaction monitoring (MRM) mode to confirm the identity of solasodine. This was 

achieved by selecting specific precursor to product ion transitions for each solasodine based on 

MRM transitions. High-purity nitrogen (N2) was used as the nebulizing and drying gas. The 

optimum parameters were as follows: drying gas temperature, 250 °C; drying gas flow, 10 L 

min-1 and collision energy, 30 - 60V. For chromatographic separation, a Shimadzu 9030 LC 

instrument (Shimadzu, Japan) was used. The instrument consisted of an autosampler, 

thermostated column compartment and a binary pump. Lab solutions software was used to 

control the LC-MS/MS instrument and for data acquisition and the mass range was m/z 100-

1000.  
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Preparation of standards  

The stock standard solution was prepared in methanol at a concentration of 1000 µg L-1. The 

stock standard solution was stored at 4°C in amber volumetric flasks. A series of nine working 

standard solutions at the concentration values of 15 to 1000 µg L-1 were prepared from the stock 

standard solution by diluting with HPLC grade methanol. The solanine standards were 

quantified based on scheduled multiple reaction monitoring (MRM) where one m/z transition, 

from the precursor ion to the product ion, for solanine (414 → 396) was explored. The 

regression equation was y = 537.484x + 41.893, limit of detection (LOD) and limit of 

quantification (LOQ) were 0.078 and 0.236, respectively. The above mentioned transition was 

then applied for quantification of solasodine from the ground leaves of Solanum mauritianum 

following ATPE extraction. The parameters evaluated for optimization of solasodine from 

ATPE were time, mass of plant powder and the salt type (kosmotrope or chaotrope). 

Statistical analysis 

The central composite design response surface model (CCD RSM) was fitted to experimental 

data to obtain the relationship between factors and optimize the response of Z (solasodine yield) 

in relation to A (time), B (mass of plant powder) using Minitab 17 (UK). A Two-level full 

factorial CCD was designed, a total of 26 experimental runs (including 2 repetitions) were 

designed. This included numerical factors such as time (1 min, 5 min 30 sec and 10 min), mass 

of plant powder (0.2, 0.7, 1.2 g) and 2 categorical factor levels for salts which included the 

chaotrope (NaCl) and kosmotrope (Na2CO3).  

Model parameters and model significance were determined at p < 0.05. The fitness of the model 

was determined by evaluating the coefficient of regression (R2) obtained from the analysis of 

variance (ANOVA). The model fit generated the response surface that defined the behaviour 

of the response variable. By means of these plots, the optimized ranges for each factor that led 

to the highest response (i.e concentration of solasodine) that can be extracted.  

The interaction between the various parameters studied and its resultant effected on the 

extraction of solanine (mg kg-1) was fitted to experimental data by using a statistical multiple 

regression approach method of least square (MLS), and resulted in the lowest possible residual 

(Bas et al. 2007). Model parameters and model significance were determined at p < 0.05. The 

fitness of the model was determined by evaluating the coefficient of regression (R2) obtained 

from the analysis of variance (ANOVA). The model fit generated the response surface that 
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defined the behaviour of the response variable. By means of these plots, the optimized ranges 

for each factor that led to the highest response (i.e concentration of solanine) that can be 

extracted (Bas et al. 2007; Arteaga-Crespo et al. 2020). 

Results and discussion 

MRM quantification of solasodine based on the 414→396 transition 

Solanum mauritianum, an invasive species, is an abundant source of anti-cancer and antifungal 

metabolites such as solasodine glycosides (Jayakumar et al. 2016; Jayakumar et al. 2017). In 

this study, we demonstrated the extraction of an aglycone unit of solasodine glycosides, 

solasodine. from Solanum mauritianum, using ATPE. The ATPE technique was performed by 

evaluating the different factors shown in Table 1 on the recovery of solasodine. The presence 

of solasodine was reported in Solanum mauritianum and other species within the Solanum 

genus (Bhattacharya et al. 2013; Jayakumar et al. 2016; Jayakumar et al. 2017). Using a 

sensitive and robust tandem MS approach (UHPLC-qTOF-MS) with settings presented 

(Mokgehle et al. 2021) it was possible to efficiently fingerprint these solasodine based on m/z 

396 product ion (Fig. 1). Thereafter, based on the 414 → 396 transition within the MRM 

method, solasodine was quantified as shown in Table 1. 
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Fig. 1 Molecular transition of solasodine (m/z = 414) to [solasodine – H2O] (m/z = 396) after 

the loss of water 
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Table 1 List of experiments using CCD for ATPE optimization, the response and predicted 

values. 

  Factor 1: Factor 2: Factor 3 Solasodine (mg kg-1)      

Run  Time (min) 

mass of plant 

powder (g) Salt type Run 1 Run 2 Mean ± SD Predicted 

1 1 0.2 Na2CO3 142.17 109.16 125.66+23 143.14 

2 1 0.7 NaCl 287.55 286.09 286.82+1 242.66 

3 1 1.2 Na2CO3 308.69 309.69 309.19+1 309.60 

4 1 0.7 Na2CO3 232.21 300.07 266.14+48 248.24 

5 1 1.2 NaCl 217.81 198.46 208.14+14 236.85 

6 1 0.2 NaCl 137.62 158.38 148.00+15 163.42 

7 5.5 0.7 NaCl 226.82 196.81 211.82+18 225.47 

8 5.5 0.7 Na2CO3 173.56 221.42 197.49+34 215.87 

9 5.5 0.7 Na2CO3 206.84 172.81 189.83+24 215.87 

10 5.5 0.7 NaCl 222.62 208.09 215.35+10 225.47 

11 5.5 0.7 Na2CO3 196.11 261.55 228.83+46 215.87 

12 5.5 1.2 Na2CO3 277.18 297.24 287.21+14 308.14 

13 5.5 0.7 Na2CO3 273.98 251.05 262.52+16 215.87 

14 5.5 0.7 NaCl 238.13 223.28 230.71+11 225.47 

15 5.5 1.2 NaCl 265.45 288.52 276.99+16 240.13 

16 5.5 0.7 Na2CO3 188.79 228.15 208.47+28 215.87 

17 5.5 0.7 NaCl 209.45 193.59 201.52+11 225.47 

18 5.5 0.2 NaCl 137.55 135.20 136.38+2 125.75 

19 5.5 0.2 Na2CO3 106.62 79.50 93.06+19 79.875 

20 5.5 0.7 NaCl 217.94 222.31 220.13+3 225.47 

21 10 0.2 Na2CO3 104.28 60.35 82.32+31 78.02 

22 10 1.2 Na2CO3 402.78 424.22 413.50+15 368.10 

23 10 0.2 NaCl 88.87 94.34 91.60+4 86.79 

24 10 0.7 Na2CO3 226.53 212.07 219.30+10 244.93 

25 10 0.7 NaCl 221.03 200.30 210.66+15 206.99 

26 10 1.2 NaCl 275.69 191.62 233.65+59 242.13 

 

Fit statistics of experimental and predicted data 

The model fitted to the data was observed to have a quadratic fit P-values less than 0.001 

indicate model terms are significant. In this case mass of plant powder, mass of plant powder2 

(when NaCl was applied) were significant (p < 0.05) model terms and were adequate predictors 

of the experimental values obtained. The other terms such as time × mass of plant powder, 

time2 and time were insignificant (p > 0.05). The lack of fit of F-value was observed to be 1.70 

which indicated that the lack of fit was not significant relative to the pure error. The non-
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significant lack of fit was desirable. The goodness of fit between the experimental and the 

predicted values was R2 = 0.925  

The Pareto chart of parameter main effects and their interactions 

produced from ANOVA and resultant box plots 

In Fig. 2 (a) and (b) are the pareto charts showing the influences of the parameters time, mass 

of plant powder, the square of each model and the product of the two parameters. The model 

term mass of plant powder was shown to be statistically significant (p < 0.05) when both NaCl 

and Na2CO3 were applied, showing a linear effect on the yield of solasodine (Fig. 2 (a) and (b). 

In Fig. 3 are the box-and-whiskers plots of the effect of time and mass of plant powder on the 

ATPE extraction of solasodine from leaves of Solanum mauritianum. From these plots a 

proportional increase in solasodine was observed with an increase in the mass of plant powder 

when NaCl and Na2CO3 were applied during extraction (Fig. 3 (a) and (b)). This indicated that 

the mass of the plant powder played a key role in the recovery solasodine. The increased 

enrichment of solasodine was more notable when Na2CO3 was used compared to NaCl. For 

instance, the extracted solasodine increased from approximately 85 mg kg-1 (0.2 g) to 383 mg 

kg-1 (1.2 g) which equated to almost a five fold increase for Na2CO3. The observed increment 

in the yield of solasodine with increase in mass can be attributed to the increased mass transfer 

of metabolites from the plant matrix to the solvent when larger weights of the plant material 

were used. This observation agrees with what was reported by Doulabi et al (2020).  

It was also observed from Fig. 3 (c) and (d) that an increase time generally had no impact on 

the extraction of solasodine. For instance, the median for extraction of solasodine settled at 

approximately 223 mg kg-1 as time was increased from 1 to 10 min, when NaCl was applied as 

to aid extraction, Fig. 3 (c). This correlates with the level of significance values for the linear 

effect of time when both NaCl and Na2CO3 were applied which indicated that time was 

statistically insignificant (p > 0.05) on the extraction of solasodine, as shown in Fig. 2 (a) and 

(b). Factors involving the quadratic effect of time as well as the product of time and mass of 

plant powder were also insignificant on the extraction of solasodine from Solanum 

mauritianum. Similar observations of the insignificance of time for extraction of metabolites 

based on a response surface methodology were reported by Pandey et al. (2018). 
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Fig. 2 Pareto chart of standardized effects of time, mass of plant powder and power on the 

extraction solasodine at 414 → 396 (a) NaCl and (b) Na2CO3 
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Fig. 3 Box-and-whiskers plots evaluating the effect of mass of plant powder on (a) NaCl (b) Na2CO3 and the effect of time on (c) NaCl and (d) 

Na2CO3 on the extraction of solasodine from leaves of Solanum mauritianum 
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Chromatographic profile of MRM based quantification of solasodine 

Chromatograms depicting the highest and lowest concentrations of solasodine (mg kg-1) 

obtained when NaCl and Na2CO3 was applied are shown in Fig. 4 (a), (b), (c) and (d). The 

chromatogram indicates an MRM transition of solasodine m/z 414 → 396 and is observed at a 

retention time of 3.825 min. The fragmentation profile showing the product ions of solasodine 

are also included in Fig. 4 (f). As seen in Fig. 1, solasodine underwent a dehydration reaction 

from the precursor ion m/z 414 to the product ion m/z 396. From the experimental results 

dehydration of solasodine seems to be more prominent at extraction parameters involving 

longer times in combination with larger masses of plant powder. Under such conditions, 

solasodine concentrations of 402.78 and 275.69 mg kg-1 for Na2CO3 and NaCl were obtained, 

respectively, as shown in Fig. 4 (c) and (d). This is also in agreement with the significant effect 

of mass of plant powder, as seen in the pareto charts in Fig. 2 (a) and 2(b), and the box plots in 

Fig. 3. 
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Fig. 4 Chromatogram of the lowest (a) Na2CO3 and (b) NaCl, and highest (c) Na2CO3 and (d) 

extraction yields of solasodine for run 1. (f) mass spec of solasodine  

Response surface equations and corresponding for NaCl and Na2CO3 and 

the resultant optima 

Response equations, Eqs 1 and 2, corresponding to NaCl and Na2CO3, respectively, and the 

resultant response surfaces evaluating the bivariate interaction between the time and mass of 

plant are shown in Fig. 5. In this case, Z was the dependent variable (solasodine concentration) 

and x (time) and y (mass of plant powder) the independent variables. From the quadratic fit of 

r2 = 0.925, as reported earlier, Eqs 1 and 2 were obtained  

z (x,y) = 132.09 – 11.18 x +338.74 y – 0.035 x2 – 190.50 y2  + 10.19 xy ………………….(1) 

z (x,y) = 127.68 – 29.86 x + 308.22 y + 1.69 x2 – 97.97 y2 + 15.38 xy……………..………(2) 

As the mass of plant powder was increased, in the presence of NaCl and Na2CO3 a proportional 

increase in the yield of solasodine was obtained (Fig. 5 (a) and (b)). This concurs with 

observations from pareto chart, Fig. 3 (a) and (b), which indicates the significant linear effect 

(P < 0.05) of mass of plant powder. In Fig. 6 (a) and (b) the predicted optimal extraction of 

solasodine in the presence of NaCl and Na2CO3 was 261.75 mg kg-1 and 347.32 mg kg-1, with 

a desirability score of 0.58 and 0.86 respectively. The higher desirability score of Na2CO3 

compared to NaCl indicated its closeness to the target requirement of 1, and hence the greater 
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reliability of this optimum for maximal enrichment of solasodine. Additionally, comparisons 

of the concentrations of solasodine obtained in Table 1 and Fig. 6, indicated that more of 

solasodine was extracted for Na2CO3 compared to NaCl. This suggested that solasodine 

extraction during ATPE was probably favored by the presence of the multiply charged 

carbonate ion from Na2CO3 compared to the singly charged chloride ion in NaCl. The doubly 

charged carbonate ions from Na2CO3, probably formed strong hydrogen bonds with the water 

molecules surrounding the solasodine, weakening the solasodine-water interaction, and 

enhancing the extent of solasodine precipitation (salting-out) from the hydration sphere. The 

salted-out solasodine was subsequently extracted by ethanol into the organic phase. Hence, 

extraction of solasodine during ATPE occurred through the process of salting out. Furthermore, 

the extent of salting out was further driven by the increase in mass of plant powder due to mass 

transfer under the conditions studied. The salting-out effect in ATPE was also reported by 

Sazali et al. (2019) and Mokgehle et al. (2021). Additionally, the higher extraction of 

solasodine via Na2CO3 compared to NaCl can correlates with the Hoffmeister series. Larger 

multivalent anions have a propensity for salting out proteins than smaller monovalent anions 

(Kang et al., 2020; Dogra et al., 2020; Wang et al., 2021). Similarly, the Hoffmeister principle 

was evident in this study as the multivalent carbonate ion precipitated greater concentrations 

of solasodine under the optimized ATPE conditions of time: 10 min and mass of plant powder: 

1.2 g.  
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Fig. 5 Response surfaces plots evaluating the effect of time and mass of plant powder in the presence of (a) Na2CO3 and (b) NaCl on the extraction 

of solasodine  
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Fig 6 Optimal conditions for extraction of solasodine in the presence of (a) NaCl and (b) 

Na2CO3 

Conclusions 

The application of ATPE in the presence of a chaotrope and kosmotrope was shown to be a 

viable technique for extraction of an allelochemical, solasodine, from the weed, Solanum 

mauritianum. On average the maximal MRM transition based extraction of solasodine was 

233.65 mg kg-1 and 413.50 mg kg-1 for NaCl and Na2CO3, respectively. This indicated that the 

higher charge density of the carbonate ion relative to the chloride ion was responsible for the 

greater extent of salting-out of solasodine. Furthermore, the application of ATPE using the 

kosmotrope was shown to enhance the extraction of solasodine compared to the chaotrope due 

to the synergistic effect of mass of plant powder, which was shown to be significant effect (p 

< 0.05), and salting-out. The effect of time and the paired factors were shown to have an 

insignificant effect (p > 0.05) on the enrichment of solasodine. In view of the better extraction 

performance of the kosmotrope in ATPE, this could possibly be extended to extraction of other 

toxic allelochemicals from other invasive plants which could better preserve the natural 

environment. Furthermore, the enriched solasodine ATPE extracts could potentially be a 

reliable source of antipathogenic agents in medicine.  
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Paper 5 

This multivariate optimization study evaluated the effect of salt concentration (%) and 

temperature for the PHWE-ATPE of solasodine from leaves of Solanum mauritianum.   
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Abstract 

A hyphenated microwave assisted pressurized hot water - aqueous two phase extraction 

(PHWE-ATPE) was applied in the extraction of solasodine from Solanum mauritianum. 

Central composite design (CCD) was performed which included numerical parameters such as 

percentage concentration of salt (NaCl or Na2CO3) and temperature. Fitting the central 

composite design response surface model for PHWE-ATPE to the data generated a model with 

a good quadratic fit (R2 = 0.901). The statistically significant (p < 0.05) parameters such as the 

linear and quadratic effect of the concentration of salt (%) powder had a significant impact on 

the extraction of solasodine. The application of multiply charged salts such as the kosmotrope-

Na2CO3 was shown to be a comparably better extractant of solasodine than the chaotrope-NaCl 

due to salting-out effect. The optimized condition for the extraction of solasodine in the 

presence of NaCl and Na2CO3 was a temperature of 80˚C at a salt concentration of 20%. 

Maximal experimental extraction of solasodine was 300.79 mg kg-1 and 162.34 mg kg-1 for 

Na2CO3 and NaCl respectively.  

Keywords: solanine, S. mauritianum, response surface methodology, MA-ATPE, UHPL-

qTOF-MS  
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1. Introduction 

Over the past several decades, application of chemistry in industry has been directed at the use 

of environmentally friendly approaches (Shang et al., 2019; Dall’Acqua et al., 2020; Kuhn et 

al., 2021; Luo et al., 2020). The current adoption of environmentally friendly methods has been 

inspired by the 12 Principles of green Chemistry as initiated by Anastas and Warner (1991). 

This concept was aimed at revolutionizing chemistry into employing innovative scientific 

solutions to solve environmental dilemmas. Two of the principles dwelt on the use of safer 

solvents that are degradable.  This is fundamental as the extent of environmental impact is 

affected by the type of solvent used. Furthermore, application of green solvents affects the way 

natural resources are harvested, energy usage, and emissions to air and water from the 

production and use of solvents, transportation, and disposal or recycling (Turner & Iba´n˜ez, 

2011, Musarurwa and Tavengwa, 2020; Cederholm et al., 2020). Hence, the use of water as a 

potentially green extraction solvent, fits this category will as it is nontoxic to health and the 

environment and is the safest, abundant, and least expensive solvent. 

PHWE (also called subcritical water extraction and superheated water extraction) is based on 

the use of water subjected to high enough temperatures (usually above its boiling point) and 

pressures to keep the water in the liquid state. Therefore, water in liquid state as a solvent at 

temperatures above its boiling point (100C, 0.1 MPa) and below its critical point (374˚C, 22.1 

MPa) is employed in PHWE (Plaza & Turner, 2015; Gbashi et al., 2020; Nuapia et al., 2020). 

The principle of PHWE is guided by the physiochemical properties of water. Water is highly 

polar with a high dielectric constant (ε) of 80 at room temperature and atmospheric pressure 

because of its extensive hydrogen-bonded structure (Teo et al., 2010; Jin et al., 2020). 

Traditionally, water is not known to dissolve non-polar compounds at room temperature. 

However, as the temperature of water is increased, there is a resultant decrease in its 

permittivity, viscosity, and surface tension but an increase in its diffusivity characteristics. 

Similarly, at elevated temperatures, the dielectric constant of water decreases from ε = 80 at 25 

◦C to ε = 27 at 250 ◦C and 50 bar.  Under these conditions water has a dielectric constant 

comparable to other organic solvents, such as methanol (ε = 33) and ethanol (ε = 24) at 25 ◦C. 

additionally, water is then able to dissolve a wide range of medium and low polarity analytes.  

Lately, miniaturization for separation processes has become a crucial technique in various 

disciplines which includes biological engineering, pharmacy, environmental detection, and 

laboratory analysis (Cunha et al., 2020; Lendor et al., 2019). Some of the many advantages 
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miniaturized extraction offers, is improved heat and mass transfer which has been reported to 

result in enhanced separation efficiencies and (Ciceri et al., 2014; Fusari et al., 2019; Burato et 

al., 2020). 

In view of the potential water has as an extraction solvent, this work was directed at the use 

PHWE for obtaining solasodine. This metabolite has attracted attention due to its impressive 

anticancer activity and insecticide property (Jacob and Malpathak, 2005; Marzouk et al., 2005, 

Fekry et al., 2019; Cham et al., 2020; Maddala et al., 2020). Moreover, this work was focused 

on the optimization of solasodine via PHWE-ATPE from Solanum mauritianum in the presence 

of doubly charged (Na2CO3-kosmotrope) and singly charged (NaCl-chaotrope) using central 

composite design (CCD) and response surface methodology (RSM). This statistical approach 

is beneficial as it reduces the number of experiments, making it less laborious and time efficient 

(Silva et al., 2019; Shokoohi et al., 2020). Furthermore, the work was also directed at the 

evaluation of the possible synergistic effect of salting-out due to varying salt concentration and 

temperature. 

2 Experimental 

Chemicals and reagents 

The salts NaCl (anhydrous > 99% purity), Na2CO3 (anhydrous > 99% purity) and ethanol (99% 

CP) were purchased from Associated Chemical Enterprises (Johannesburg, South Africa) and 

Sigma-Aldrich (Johannesburg, South Africa). Ultra-pure water (0.005 µS, 18 mΩ) using a 

Direct-Q 5UV distiller (Massachusetts, United States of America) was applied for the 

preparation of the salt solutions. The extraction was performed on a DIAB MX-RL-Pro dragon 

shaker. Extraction of phytochemicals was achieved by a makeshift laboratory scale PHWE unit 

(Figure 1 (a)- (b)). The system consisted of a HPLC pump (Waters 6000 fluid controller, 

Waters Corporation, Manchester, UK), stainless steel extraction cell (70 × 30 mm and 

approximately 20 mL) fitted with a metal frit i.e. filter (3/8 in. diameter, 1/32 in. thickness and 

2.0 μm pore size), refurbished GC 600 Vega Series 2 oven (Carlo Erba Instruments, Italy) with 

an automatic temperature controllable unit, stainless tubing (1.58 mm in outer dimension (OD) 

and 0.18 mm inner dimension (ID), back-pressure valve (Swagelok, Johannesburg, South 

Africa), and a collection flask. Chromatographic separation of the metabolites in the extracts 

was done using a reverse phase Shim-pack Velox C18, 2.1 x 100 mm, 2.7 µm with a serial 

number 227-32009-03 (Columbia, USA). The UPLC was connected to a Shimadzu 9030 LC, 

qTOF-MS detector (Shimadzu, Kyoto). The solvents used for the chromatographic runs were 
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methanol and formic acid, which were purchased from Romil Pure Chemistry (Cambridge, 

UK) 

 

Figure 1: (a) A PHWE extraction system (Gbashi et al., 2016) consisting of the inflowing water 

propelled by a pump into the extraction cell. The metabolite containing water is then cooled 

within the condenser before being collected in the Erlenmeyer flask. (b) A PHWE-ATPE set-

up  
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Sample collection, preparation and ATPE 

The leaves of S. mauritianum were obtained from a street vendor within the Thulamela District 

in Thohoyandou, South Africa. The plants were air dried until a constant weight was obtained, 

and the leaves were ground into a fine powder with a blender at 2000 rpm and stored in glass 

containers. The containers were covered in paper bags to prevent light penetration. For the 

extraction, 3 g of ground leaves powder was mixed with 1.5 g of diatomaceous earth (Sigma, 

Munich, Germany), a dispersing agent and placed inside the extraction cell maintained at 

different oven temperatures of 80, 120 and 200 ± 1°C. The solvent was delivered at a constant 

flow rate of 10 mL min-1 and a pressure of 2500 ± 300 pa was maintained using the back-

pressure valve. Extracts were collected in a falcon tube up to the 150 mL mark through an 

outlet coil immersed in a cooling water bath. The PHWE extracts (10 mL) were added to salt 

solutions containing 20, 35 and 50% (w/v) of NaCl (kosmotrope) or Na2CO3 (chaotrope). This 

solution was placed on the dragon shaker for 24 hours, rotating at 70 revolutions per minute 

(rpm). Thereafter, absolute ethanol (20 mL) was added, resulting in a PHWE-ATPE system 

(Figure 1 (b)). The extracts were filtered using a 0.22 μm nylon syringe filter into a 2 mL HPLC 

capped vial and preserved at -20 °C prior to analysis on the UPLC-QTOF-MS for detection of 

solasodine. 

Chromatographic and mass spectrometry conditions 

Solasodine were separated using a Shimpack C18, 2.1 x 100 mm, 2.7 µm column from 

Shimadzu (Honeydew, South Africa). The column was maintained at 40 ºC at a flow rate of 

0.4 mL min-1 and the injection volume was 5 µL. Mobile phase A was 0.1% formic acid in 

ultrahigh purity water (v/v) and mobile phase B was 0.1% (v/v) formic acid in methanol. 

A UHPLC-qTOF-MS 9030 mass spectrometer (Shimadzu, Japan) was used for all mass 

spectral measurements. The mass spectrometer was equipped with an electrospray interface 

(ESI) operating in positive mode. ESI parameters were optimized for solasodine by direct 

infusion of standard solutions into the mass spectrometer. The mass spectrometer was operated 

in the multi reaction monitoring (MRM) mode to confirm the identity of solasodine. This was 

achieved by selecting specific precursor to product ion transitions for each solasodine based on 

the transitions shown in Figure 2. High-purity nitrogen (N2) was used as the nebulizing and 

drying gas. The optimum parameters were as follows: drying gas temperature, 250 °C; drying 

gas flow, 10 L min-1 and collision energy, 30 - 60V. For the chromatographic separation and 

Shimadzu 9030 LC instrument (Shimadzu, Japan) was used. The instrument consisted of an 
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autosampler, thermostated column compartment and a binary pump. Lab solutions software 

was used to control the LC-MS/MS instrument and for data acquisition and the mass range was 

m/z 100-1000.  

Preparation of standards  

The stock standard solution was prepared in methanol at a concentration of 1000 µg L-1. The 

stock standard solution was stored at 4°C in amber volumetric flasks. A series of nine working 

standard solutions at the concentration values of 15 to 1000 µg L-1 were prepared from the stock 

standard solution by diluting with HPLC grade methanol. The solanine standards were 

quantified based on scheduled multiple reaction monitoring (MRM) where one m/z transition, 

from the precursor ion to the product ion, for solanine (414 → 396) was explored. The 

regression equation was y = 537.484x + 41.893, limit of detection (LOD) and limit of 

quantification (LOQ) were 0.078 and 0.236, respectively. The above mentioned transition was 

then applied for quantification of solasodine from the ground leaves of Solanum mauritianum 

following ATPE extraction. The parameters evaluated for optimization of solasodine from 

ATPE were time, mass of plant powder and the salt type (kosmotrope or chaotrope). 

Statistical analysis 

The central composite design response surface model (CCD RSM) was fitted to experimental 

data to obtain the relationship between factors and optimize the response of Z (solasodine yield) 

in relation to A (time), B (mass of plant powder) using Minitab 17 (UK). A Two-level full 

factorial CCD was designed, a total of 36 experimental runs (including 2 repetitions) were 

designed, 3 factor numerical levels for concentration of salt (20, 35 and 50%), temperature (80, 

140, 200˚C) and 2 categorical factor levels for salts which included the chaotrope (NaCl) and 

kosmotrope (Na2CO3).  

Model parameters and model significance were determined at p < 0.05. The fitness of the model 

was determined by evaluating the coefficient of regression (R2) obtained from the analysis of 

variance (ANOVA). The model fit generated the response surface that defined the behaviour 

of the response variable. By means of these plots, the optimized ranges for each factor that led 

to the highest response (i.e concentration of solasodine) that can be extracted  

The interaction between the various parameters studied and its resultant effected on the 

extraction of solanine (mg kg-1) was fitted to experimental data by using a statistical multiple 

regression approach method of least square (MLS), and resulted in the lowest possible residual 
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(Bas et al., 2007). Model parameters and model significance were determined at p < 0.05. The 

fitness of the model was determined by evaluating the coefficient of regression (R2) obtained 

from the analysis of variance (ANOVA). The model fit generated the response surface that 

defined the behaviour of the response variable. By means of these plots, the optimized ranges 

for each factor that led to the highest response (i.e concentration of solanine) that can be 

extracted (Bas et al., 2007; Arteaga-Crespo et al., 2020). 

3 Results and discussion 

3.1 MRM quantification of solasodine based on the 414→396 transition 

Solanum mauritianum, an invasive species, is an abundant source of anti-cancer and antifungal 

metabolites such as solasodine and solasodine glycosides (Jayakumar et al., 2017 (a); 

Jayakumar et al., 2017 (b)). In this study, we demonstrated the extraction of an aglycone unit 

of solasodine glycosides, solasodine. from Solanum mauritianum, using ATPE. The ATPE 

technique was performed by evaluating the different factors shown in Table 1 on the recovery 

of solasodine. The presence of solasodine was reported in Solanum mauritianum and other 

species within the Solanum genus have been reported in the literature (Bhattacharya et al., 

2013; Jayakumar et al., 2017; Jayakumar et al., 2017). Using a sensitive and robust tandem MS 

approach (UHPLC-qTOF-MS) with settings presented (Mokgehle et al., 2021) it was possible 

to efficiently fingerprint these solasodine based on m/z 396 product ion (Figure 2). Thereafter, 

based on the 414 → 396 transition within the MRM method, solasodine was quantified as 

shown in Table 1. 

+ H+
+ H+
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(a)

O

OH

NH
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Figure 2: Molecular transition of solasodine (m/z = 414) to [solasodine – H2O] (m/z = 396) 

after the loss of water.  
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Table 1: List of experiments using CCD for ATPE optimization, the response, and predicted 

values. 

  Factor 1 Factor 2 Factor 3 Solasodine (mg kg-1) 

Run 1 % Salt 

Temperature 

(˚C) Salt type Run 1 Run 2  Mean ± SD Predicted 

1 20 80 NaCl 149.421 175.273 162.34+18 144.95 

2 35 80 NaCl 164.782 152.101 158.44+9 141.47 

3 50 80 NaCl 167.337 173.475 170.40+4 152.15 

4 20 80 Na2CO3 276.235 325.356 300.79+34 268.57 

5 35 80 Na2CO3 137.631 242.474 190.05+74 169.69 

6 50 80 Na2CO3 90.256 121.386 105.82+22 94.48 

7 20 140 NaCl 145.755 147.766 146.76+1 131.04 

8 35 140 NaCl 133.142 145.833 139.48+9 124.54 

9 35 140 NaCl 141.55 185.129 163.33+31 145.84 

10 35 140 NaCl 143.837 193.206 168.52+35 150.47 

11 35 140 NaCl 153.087 193.257 173.17+28 154.62 

12 35 140 NaCl 160.403 181.400 170.90+15 152.59 

13 35 140 NaCl 147.844 189.184 168.51+29 150.46 

14 35 140 NaCl 133.210 189.690 161.45+40 144.15 

15 35 140 NaCl 146.783 199.122 172.95+37 154.42 

16 35 140 NaCl 144.264 145.378 144.82+1 129.30 

17 35 140 NaCl 135.107 156.155 145.63+15 130.03 

18 50 140 NaCl 144.261 150.600 147.43+5 131.63 

19 20 140 Na2CO3 231.064 288.117 259.59+40 231.78 

20 35 140 Na2CO3 132.953 148.042 140.49+11 125.44 

21 35 140 Na2CO3 143.273 174.470 158.87+22 141.85 

22 35 140 Na2CO3 140.993 178.487 159.74+27 142.63 

23 35 140 Na2CO3 144.551 183.655 164.10+28 146.52 

24 35 140 Na2CO3 160.268 135.875 148.07+17 132.21 

25 35 140 Na2CO3 175.495 187.357 181.42+8 161.99 

26 35 140 Na2CO3 182.617 177.587 180.10+4 160.81 

27 35 140 Na2CO3 138.686 209.858 174.27+50. 155.60 

28 35 140 Na2CO3 157.500 173.412 165.45+11 147.73 

29 35 140 Na2CO3 161.165 191.737 176.45+21 157.55 

30 50 140 Na2CO3 139.682 152.258 145.97+9 130.33 

31 20 200 NaCl 183.968 110.836 147.40+52 131.61 

32 35 200 NaCl 176.443 159.208 167.82+12 149.84 

33 50 200 NaCl 178.835 157.696 168.26+15 150.24 

34 20 200 Na2CO3 295.727 289.355 292.54+5 261.20 

35 35 200 Na2CO3 175.636 200.448 188.04+18 167.89 

36 50 200 Na2CO3 142.454 138.034 140.24+3 125.22 
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3.2 Fit statistics and Pareto chart of parameter main effects and their interactions 

produced from ANOVA and resultant box plots 

The model fitted to the data was observed to have a quadratic fit P-values less than 0.0001 

indicate model terms are significant. The probabilities for concentration of salt and temperature 

for NaCl and Na2CO3 were P = 0.269 and P = 0.799 and P = 0.000 and P = 0.55, respectively, 

as shown in the pareto charts in Figure 3 (a) and (b). This indicated that the linear effect of 

concentration of Na2CO3 was a significant (P < 0.05) model terms and was an adequate 

predictor of the experimental values obtained (Figure 3 (b)). Similarly, the quadratic effect of 

concentration of Na2CO3 was significant (P = 0.005) (Figure 3 (b)). The rest of the model terms 

for Na2CO3 and NaCl were insignificant (P > 0.05), which also included the linear and 

quadratic effect of temperature (Figure 3 (a) and (b)). Similar observations were reported by 

Gbashi et al. (2016) on the insignificance of temperature (P > 0.05) during PHWE of dicaffeoyl 

quinic acids from Bidens Pilosa. The lack of fit of F-value was observed to be 1.71 which 

indicated that the lack of fit was not significant relative to the pure error. The non-significant 

lack of fit was desirable. The goodness of fit between the experimental and the predicted values 

was R2 = 0.901  
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Figure 3: Pareto chart of standardized effects of time, mass of plant powder and power on the 

extraction solasodine at 414 → 396 (a) NaCl and (b) Na2CO3 

Similarly, in Figure 4 (a) – (d), the box-and-whiskers plots of the effect of concentration and 

temperature on the PHWE-ATPE extraction of solasodine from leaves of Solanum 

mauritianum. From Figure 4 (a) –(d) as the % concentration of salt was increased for Na2CO3, 

a decrease in solasodine extracted was observed while there were no notable changes in 

solasodine (≈ 160 mg kg-1) concentration as salt concentration was varied for NaCl (Figure 4 

(a) and (b)). The highest extraction of solasodine with the variation of salt concentration was 

approximately 300 mg kg-1, which indicated that a doubly charged anion, CO3
2-, was more 

efficient than a singly charged ion, Cl-
, salting-out of solasodine at low % concentration (Figure 
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4 (b)) as most of the salt was dissolved in the solution. However, higher concentrations of salt 

led to a super-saturated solution which led to its precipitation from solution, reducing the 

salting-out efficiency at 50% salt concentration for Na2CO3 in particular. The relatively higher 

solasodine extraction capability of Na2CO3 in comparison to NaCl, can be explained using the 

Hoffmeister series where, CO3
2- > Cl, and indicated that the divalent carbonate ion has a greater 

solute precipitation ability, due to its higher charge density, than the monovalent chloride ion 

(Figure 5) (Hyde et al., 2017; Tejada-Casado et al., 2018; Hernández-Mesa et al., 2018; Sazali 

et al., 2019). Similarly, Neves et al. (2018) reported on the better salting out capacity of SO4
2- 

than Cl,  

Generally, a variation in temperature did not have a significant effect on the solasodine 

obtained in the presence of NaCl. The kosmotrope Na2CO3 was more responsive to temperature 

changes with the highest extraction achieved at 80˚C. The probably implies that Na2CO3 does 

not require highest temperatures for efficient extraction of solasodine, but can be done at lower 

temperatures, which is recommended in green chemistry. Furthermore, the application of 

Na2CO3 in PHWE-ATPE demonstrated that extraction of solasodine was mainly driven by the 

salting-out process rather the temperature (Figure 3 (b)) while it was both factors seemed to be 

insignificant in the presence of NaCl.  



149 
 

 

 

Figure 4: Box-and-whiskers plots evaluating the effect of ‘Concentration of salt on (a) NaCl, (b) Na2CO3 and the effect of ‘Temperature’ on (c) 

NaCl and (d) Na2CO3 on the extraction of solasodine from leaves of Solanum mauritianum 
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Figure 5: Role of intermolecular forces and charge density of anions involved in the salting 

out of organic solutes from the aqueous phase to the organic phase (Hyde et al., 2017) 

3.3 Chromatographic profile of MRM based quantification of solasodine 

Chromatograms depicting the highest and lowest concentrations of solasodine (mg kg-1) 

obtained when NaCl and Na2CO3 was applied are shown in Figure 6 (a), (b), (c) and (d). The 

chromatogram indicates an MRM transition of solasodine m/z 414 → 396 and is observed at a 

retention time of 3.825 min. The fragmentation profiles showing the product ions of solasodine 

are also included in Figure 6 (f). As seen in Figure 2, solasodine underwent a dehydration 

reaction from the precursor ion m/z 414 to the product ion m/z 396. From the experimental 

results dehydration of solasodine generally seems to be favoured at extraction parameters 

involving lower concentrations of salt in combination with lower temperatures of salt which 

correspond to solasodine concentrations of 149.42 mg kg-1 and 276.23 mg kg-1 when both NaCl 

and Na2CO3 were applied to aid extraction as shown in Figure 6 (c) and (d), respectively. This 

is also in agreement with the significant effect of concentration of salt, in particular, Na2CO3, 

as seen in the pareto chart in Figure 3 (b), and the box plots in Figure 4. 
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Figure 6: Chromatogram of the lowest extracted concentration of solasodine in (a) NaCl and 

(b) Na2CO3, and highest extracted concentration of solasodine (c) NaCl and (d) Na2CO3 for 

run 1. (f) mass spec of solasodine 

3.4 Response surface equations and corresponding for NaCl and Na2CO3 and the 

resultant optima 

Response equations, Eqs 1 and 2, corresponding to NaCl and Na2CO3, respectively, and the 

resultant response surfaces evaluating the bivariate interaction between the time and mass of 

plant are shown in Figure 7. In this case Z, concentration of solasodine, was the dependent 

variable (solasodine concentration) and x (concentration of salt (%)) and y (temperature (˚C)) 

the independent variables. From the quadratic fit of r2 = 0.901, as reported in section 3.2, Eqs 

1 and 2 were obtained  

z (x,y) = 167.79 +2.35 x -0.76 y – 0.036 x2 + 0.0021 y2  + 0.0035 xy …………………….(1) 

z (x,y) = 649.18 – 16.205 x -1.63 y + 0.1346 x2 + 0.0046 y2 + 0.0118 xy……………..…..(2) 

The response surface plots in Figure 7 demonstrated that as the concentration of salt was 

increased, the yield of solasodine decreased in the presence of Na2CO3. This is consistent with 

the observations from the Box plots in (Figure 4 (b)). This also concurs with observations from 

pareto chart, Figure 3 (b), which indicates the significant linear effect of concentration of salt 

on extraction of solasodine. In Figure 8 (a) and (b) the predicted optimal extraction of 
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solasodine in the presence of NaCl and Na2CO3 was 178.69 mg kg-1 and 277.05 mg kg-1, with 

a desirability score of 0.37 and 0.87, respectively. The higher desirability score of Na2CO3 

compared to NaCl indicated its closeness to the target requirement of 1, and hence the greater 

reliability of this optimum for maximal enrichment of solasodine. Additionally, comparisons 

of the maximal concentrations of solasodine obtained in Table 1 and Figure 8, indicated that 

more of solasodine was extracted for Na2CO3 compared to NaCl. This suggested that 

solasodine extraction was influenced by the presence of multiply charged ions (kosmotropes), 

Na2CO3 in this case, rather than NaCl. The doubly charged carbonate ions from Na2CO3, 

probably formed strong hydrogen bonds with the water molecules surrounding the solasodine, 

enhancing the extent of its precipitation (salting-out) from the hydration sphere and its 

subsequent extraction by ethanol. (Sazali et al., 2019; Mokgehle et al., 2019). 
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Figure 7: Response surfaces evaluating the effect of time and mass of plant powder in the presence of (a) Na2CO3 and (b) NaCl on the extraction 

of solasodine  
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Figure 8: Optimal conditions for extraction of solasodine in the presence of (a) NaCl and (b) 

Na2CO3 

4. Conclusions 

The application of pressurized hot water assisted aqueous two phase extraction in the presence of 

a chaotrope and kosmotrope has proved to be a viable technique for extraction of a 

pharmaceutically important metabolite, solasodine, Solanum mauritianum. The optimized 

conditions for the extraction of solasodine in the presence of NaCl and Na2CO3 were a temperature 

of 80˚C at a salt concentration of 20%. Maximal experimental extraction of solasodine was 300.79 

mg kg-1 and 162.34 mg kg-1 for Na2CO3 and NaCl respectively. It was statistically deduced that 

linear and quadratic effect of the concentration of salt (%), particularly for Na2CO3, had a 

significant effect (p < 0.05) on the extraction of solasodine during PHWE-ATPE. Temperature on 

the other hand and other paired factors were shown to have an insignificant effect (p > 0.05) on 

the enrichment of solasodine. The charge density on the CO3
2- ion was responsible for the greater 

salting out ability of solasodine in comparison to the Cl-, making the kosmotrope-Na2CO3 a better 
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extractor. Extraction of solasodine from Solanum mauritianum could potentially improve through 

the application of miniaturized even greener solvents such as deep eutectic solvents (DES). 
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Chapter 5 – Conclusions, recommendations, challenges, and future work 

The chapter highlights the conclusions obtained from the experimental work conducted during 

the project. The prospects for this work are also included in this chapter. 
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5.1 Conclusions 

Characterization of toxic compounds extracted via ATPE, MAE and PHWE contained in Solanum 

retroflexum and Solanum mauritianum was performed with the aid of UHPLC-qTOF-MS. The 

work involved the application of kosmotropes and chaotropes as precipitating agents in obtaining 

toxic metabolites such as alkaloids and glycoalkaloids. The kosmotrope (Na2CO3) and chaotrope 

(NaCl) was shown to extract glycoalkloids some of which included solanelagnin, solarmargine, 

solasonine, solasodine and solanine.  

The application of ATPE was an efficient technique for obtaining multiple toxic metabolites from 

Solanum plants. This was observed in the ability of Na2CO3 and NaCl to simultaneously extract 

multiple glycoalkaloids in a single step. The ATPE method was also shown to be versatile as it 

could be hyphenated with MAE and PHWE. For instance, microwave assisted aqueous two-phase 

extraction (MA-ATPE) was quantitatively shown to be a better extractant of solasonine and 

solarmargine compared to MAE and MAE+ATPE. The synergy of microwaves and salting-out in 

the ‘one-pot’ MA-ATPE technique was a contributing factor for enhanced extraction of 

glycoalkaloids at shorter extraction periods. 

This work also involved the application of central composite design during multivariate 

chemometric studies. MA-ATPE, ATPE and PHWE-ATPE methods were optimized for MRM 

quantification of solanine or solasodine. Comparison of ATPE and PHWE-ATPE for the extraction 

of solasodine from Solanum mauritianum indicated that ATPE was better extractor of solasodine 

by a factor of approximately 1.5. The effect of temperature in PHWE-ATPE was shown to be 

insignificant (p > 0.05) and could account for the lower extraction of solasodine compared to 

ATPE. Generally, the effect of mass of plant powder and % concentration salt during ATPE was 

a statistically significant parameter behind the enhanced extraction of solasodine.  

In all the MRM based quantification studies conducted, the kosmotrope-Na2CO3 was a better 

extractant than the chaotrope-NaCl. This highlighted that the greater negative charge density of 

the carbonate ion played a crucial role during salting-out of the analyte (solanine or solasodine) by 

the formation of strong hydrogen bonds among water molecules surrounding the solute. This 

subsequently permitted for the precipitation of the solute from the aqueous phase into the 

extraction solvent.  
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The results of the current study demonstrated that the application of UHPLC-qTOF-MS was an 

efficient and feasible technique for putative characterization of toxic metabolites in Solanum 

plants. The implementation of a robust feature of qTOF-MS, MRM, was useful in the isolation 

and quantification of toxic metabolites such as solanine and solasodine from complex matrices of 

Solanum plants. The application of ATPE in conjunction with UHPLC-qTOF-MS was pivotal in 

room-temperature extraction of multiple alkaloids using a green extraction solvent (ethanol). This 

green and highly compatible technique (ATPE) in the presence of a kosmotropic salt (Na2CO3), 

makes it an attractive approach for enhanced enrichment and separation of pharmaceutically 

relevant phytocompounds which could potentially be applied as food supplements and 

pharmacology. 

5.2 Challenges and Future work 

Future endeavours need to be directed at further reduction in the number of organic solvents used 

in pre-concentration techniques involving, PHWE, ATPE and PHWE as it is quite expensive to 

run and is environmentally taxing. As a result, researchers need to invest efforts into upgrading 

the aspect of “greenness” of pre-concentrations techniques which could include deep eutectic 

solvent (DES) or ionic liquids.  

To further improve the extraction of plant derived metabolites, hypenation of ATPE with 

miniaturized extraction methods such as membrane assisted extraction (MASE). Additionally, the 

MA-ATPE is currently non-specific to toxic compounds. To improve this, a combination of MA-

ATPE and (molecularly imprinted polymers) MIPs may be explored to fish out toxic compounds. 

The more advanced preconcentration methods could potentially result in excellent yields of the 

targeted metabolites.  

Chaotropes and kosmotropes were observed to simultaneously extract many metabolites from 

Solanum retroflexum and Solanum mauritianum during ATPE, MA-ATPE and PHWE-ATPE. The 

salts, especially kosmotropes can potentially be applied on a commercial scale, to meet the ever-

growing demand of the bioactive compounds in metabolomics. 
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Paper 6 

This review highlighted new trends in the development of biopolymers such as polysaccharides 

and proteins as adsorbents of nutraceutical compounds, with emphasis on metabolites derived 

from plants within the Solanaceae family. 
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Paper 7 

The study was directed at the use of UPLC-qTOF-MS for simultaneous extraction of HP-TLC 

fluorescent compounds obtained from Solanum retroflexum. 
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Abstract 

This work aimed to identify UV-flourescent metabolites obtained via aqueous two phase 

extraction from Solanum retroflexum (S. retroflexum). Of the compounds simultaneously 

extracted via aqueous two phase extraction, nine UV-fluorescent compounds were identified. 

Using HPTLC and UPLC-qTOF-MS, two of the nine metabolites were identified as 

glycoalkaloids, ie., alpha-tomatine and gamma-solanine. To date, the glycoalkaloid alpha-

tomatine has generally been limited to S. lycopersicum. However, this study revealed that 

alpha-tomatine can also be found in S. retroflexum. Though tomatine and gamma-solanine are 

known for host-plant resistance, these metabolites also exhibit beneficial health effects as food 

supplements and have been an essential diet in rural South African communities as an abundant 

and inexpensive source of nutracecutical compounds. The use of ATPE could possibly strike a 

balance in both maintaining bioactivities after extraction while simultaneously reducing 

toxicity in S. retroflexum. Furthermore, small scale extraction using ATPE could possibly be 

escalated to a competitive trade business. 

Keywords ATPE •·metabolites • S. retroflexum • TLC • Flourescence 
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1 Introduction 

Solanum species are renowned for their rich diversity of metabolites. Some of the many 

metabolites include flavonoids and glycoalkaloids which have been reported to exhibit 

antioxidant and protective roles, respectively [1]. Daji et al. [2] investigated the phytochemical 

profile of Solanum retroflexum leaves using methanolic extracts and found a range of cinnamic 

acids, polyphenols and alkaloids. Though methanolic extraction has been applied quite 

extensively [2‒6], this approach is accompanied by setbacks such as the use of toxic organic 

solvent which often requires large volumes for extraction solvents, making it a costly exercise. 

Hence, there is a dire need for effective, eco-friendly, single-step extraction techniques.  

Aqueous two-phase extraction (ATPE) is one such method that offers efficient, eco-friendly 

quick metabolite extraction. ATPE uses salts that allow for partitioning of a green extraction 

solvent, usually ethanol, from water, resulting in the extraction solvent being simultaneously 

enriched in the desired metabolites [7]. ATPE extracted phytocompounds were reported by 

Mokgehle et al. [8] with a range of cinnamic acids, polyphenols and alkaloids being obtained 

from S. retroflexum. Some of the ATPE extracted alkaloids include solanelagnin, solamargine, 

solasonine, β-solanine. The same authors also reported ATPE as being essential for the 

simultaneous extraction of multiple metabolites. Some studies have been directed at the use of 

thin-layer chromatography (TLC) methods for the isolation of potentially bioactive compounds 

from Solanum species. For instance, Shamsaldin et al. [9] applied TLC for the isolation of 

flavonoids from Solanum villosum Mill., Patel et al. [10] reported on the separation of alkaloids 

from Solanum trilobatum using TLC. In another study, Jadesha et al. [11] examined TLC for 

the isolation of phenolic compounds from Solanum torvum. Therefore, this work attempts to 

answer the question why a locally grown vegetable, S. retroflexum, in the Vhembe district 

(South Africa) has been a sought-after commodity for the health and well-being of communities 

in the area. The current work is the first attempt to separate and identify ATPE extracted 

ultraviolet (UV)‒fluorescent metabolites present in S. retroflexum based on two independent 

chromatographic techniques, i.e., as TLC and ultra-high performance liquid chromatography‒

quadrupole time-of-flight hyphenated to mass spectrometry (UHPLC‒QTOF‒MS).  

2 Experimental 

The leaves of S. retroflexum were air-dried and ground into a fine powder with a rotating blade 

blender and stored in covered glass containers. The powdered leaves (2.00 g) were placed in 

50 mL polypropylene tubes. To each tube, a saturated salt solution of 25 mL was added. The 

saturated salt concentrations used were 30% (w/V) of BaCl2, MgSO4∙7H2O, Na2HPO4, 

MgCl2∙6H2O, AgNO3, KBr and KNO3. Thereafter, 25 mL of absolute ethanol (99.9%) extract 
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and 25 mL of each salt solution containing the powdered leaves were mixed, resulting in ATPE. 

The spontaneous formation of ATPE under the conditions stated above was also reported by 

Mokgehle et al. [8]. Portions of 3 × 20 µL absolute ethanolic (99.9%) top-layer extractant 

solution were spotted on the TLC plate and developed using a mobile phase of chloroform‒

ethyl acetate‒methanol (45:40:15, V/V). The separated phytocompounds were observed on the 

TLC plate using a UV lamp (365 nm), scraped (Figs. 1a and 1b), dissolved in ethanol and 

analyzed on a UHPLC‒QTOF‒MS. The metabolites were separated on an Acquity HSS T3 

C18 column (150 mm × 2.1 mm with particle size of 1.7 µm; Waters Corporation, Milford, 

MA, USA) at an oven temperature of 40 °C. The UPLC was connected to a Synapt G1 QTOF–

MS detector (Waters). An injection volume of 3 µL was used with solvent A: 0.1% formic acid 

in Milli-Q water and solvent B: acetonitrile with 0.1% formic acid. Chromatographic 

separation was achieved using a 10 min gradient elution: 2% B over 0.0–1.0 min, 2%–95% B 

over 1.0–6.0 min, from 6.0–7.0 min the conditions were maintained at 95% B, the column was 

washed with 95%–2% B over 7.0–8.0 min, re-equilibration with 2% B over a 2 min isocratic 

wash. The MS was configured to scan the range of 100–1000 Da with a scan time of 0.2 s. The 

MS data were acquired using positive electrospray ionization (ESI) mode. Chemical 

identification was done using KNapSAck Core System online metabolite database (Version 

1.200.03) [12]. 

3 Results and discussion 

Generally, an average of 6 bands (B1–B6) potentially corresponding to 6 compounds or more 

were observed on the TLC plate (Figs. 1a and 1b) when salts such as MgCl2∙6H2O, BaCl2, 

MgSO4∙7H2O, Na2HPO4, KNO3 and KBr were used during ATPE to aid the extraction of 

metabolites. Additionally, while the majority of the red fluorescent compounds were observed 

further up the TLC plate, blue fluorescent compounds were also observed at the top of the plate. 

Nazir et al. [13] also reported on fluorescent compounds in S. lycopersicum separated via TLC.  

The UV–fluorescent TLC extracted bands (B1–B6), after dissolution in ethanol, were run on 

the UPLC–QTOF–MS. A chromatographic base peak at m/z 435 and retention time (tR) of 5.4 

min were observed for B2 (Fig. 2 and Table 1) and another at m/z 457 (Fig. 2 and Table 1) with 

a retention time (tR) of 7.31 min for B1. The base peak at m/z 457 was identified as oleanolic 

acid (OA) or its isomers such as ursolic acid (UA) or betulinic acid (BA) (Table 1) (pentacyclic 

triterpenoid) and was also reported to have been extracted from Scutellaria barbata D. [14]. 

The chromatographic base peak at m/z 435 detected for B2 had fragments at m/z 149, 277 and 

303, and was identified as quercetin 3-O-β-D-xylofuranoside (Fig. 2 and Table 1). Quercetin-

3-O-β-D-xylofuranoside was also extracted from potato (Solanum spp.) [15] and Vernonia 
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Schreb. [16]. A chromatographic appearance at retention time of 3.27 min with a base peak at 

m/z 415 was observed for B3 and B4 (Fig. 2 and Table 1). The fragments of the base peak at 

m/z 415 were at m/z 142 and 224, and hence identified as solanocapsine (Fig. 2 [B3] and Table 

1). Solananocapsine was also extracted from S. pseudocapsicum (Jerusalem cherry) as reported 

by Garcia et al. [17].  

Two chromatographic base peaks at m/z 413 were observed at B5 and indicated the presence 

of isomeric compounds (Fig. 2 and Table 1). The isomers had nominal masses of 413.2645 and 

413.3223 and eluted at 7.46 and 7.83 min, each with fragments at m/z 133, 149, 301, 326 and 

at m/z 133, 327, 301, 369, and were identified as stigmasterol I and stigmasterol II, respectively 

(Fig. 3a and Table 1). The types (I or II) indicated isomers of stigmasterol. Kaminski [18] also 

reported on the presence of stigmasterol in S. tuberosum. The chromatographic appearance at 

3.83 min with a base peak at m/z 1034 was observed in B4, furthermore the fragment of m/z 

1034, m/z 578 was also observed as a chromatographic peak at the same retention time in B2 

(Fig. 2 and Table 1).  

The chromatographic base peak at m/z 1034 had fragments at m/z 263, 416, 528, 578 (Table 

1). Similarly, the chromatographic base peak at m/z 578 (B2) also produced the same fragments 

as those of m/z 1034 (B4), and suggests that the two compounds are identical due to the same 

motif. In addition, the chromatograms in Fig. 2 show a richness in peaks which indicated that 

the richness peaks from the various zones on the TLC plate could be due to a common structural 

backbone present in multiple compounds with similar polarities. Additionally, the richness in 

peaks may be a result of the presence of isomeric metabolites. From the KNapSAcK metabolite 

database, the fragment at m/z 578 and the base peak ion at m/z 1034 were identified as 

tomatidine galactoside (C33H56NO7) and alpha-tomatine (C50H83NO21) (Fig. 3b and Table 1), 

respectively [21]. Alpha-tomatidine was composed of a tomatidine algycone unit glycosylated 

by four monosaccharides which included D-galactose, 2 × D-glucose and D-xylose, whereas 

tomatidine galactoside contained D-galactose as a saccharide [22]. Therefore, this indicated 

that the transition from m/z 1034 to m/z 578, which is alpha-tomatine to tomatidine galactoside, 

occurred with the loss of 3 monosaccharaides which consisted of 2 × D-glucose and D-xylose. 

A chromatographic appearance at 7.42 min with a base peak at m/z 560 that produced daughter 

ions at m/z 376 and 443 was observed as a blue-fluorescent band at B6. From Fig. 1a, the red 

fluorescent metabolites were dominant in zones B1–B5 while the blue fluorescent compounds 

were present at B6. Through KNapSAcK, the base peak at m/z 560 was identified as gamma-

solanine. The diverse fluorescing behavior of the metabolites, for instance the blue and red 

fluorescent gamma solanine and solanocapsine, respectively, on the TLC in Fig. 1a, could be 
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due to the possibility of various structural moieties within the metabolites. Alpha-tomatine and 

gamma-solanine have been reported in S. lycopersicum (tomato) to be toxic for consumption 

particularly during the greening stage [21].  

 

 

Fig. 1 a Flourescent spots on TLC pate when choroform–ethyl acetate–methanol (45:40:15, 

V/V) was as a developing solvent at 365 nm. b Scraped fluorescent spots from B1 to B6 
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Fig. 2 Base peak single-ion UHPLC–QTOF–MS chromatograms of metabolites extracted 

using ethanol under positive ionization via ATPE from the leaves of Solanum 

retroflexum  
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Table 1 Major compounds identified by UHPLC in Solanum retroflexum leaf aqueous methanol extracts 

    

Band Compound Chemical formula [M+H]+ Diagnostic ions tR (min)  λmax (nm) Plant species previously found in Reference 

B1 UO/OA/BO  C30H48O3 457 374, 512 7.31 210 Scutellaria barbata D.  [14] 

B2 Quercetin-X (reynoutrin) C20H18O11 435 149, 277, 303 5.40 352 Solanum spp. [15] 

B3 Solanocapsine C27H46N2O 415 142, 224 3.27 293 S. capsicastrum, S. psuedocapsicum [16] 

B4 Alpha-tomatine C50H83NO21 1034 263, 416, 528, 578 3.83 208 S. lycopersicum [19] 

B5 Stigmasterol I C29H48O  413 133,  301, 326 7.46 257 S. chacoense, S. tuberosum [20]  

 Stigmasterol II C29H48O  413 133, 301, 369 7.83 257 S. chacoense, S. tuberosum [20]  

B6 Gamma-solanine C33H53NO6 560 376, 443 7.42 325 S. chacoense, S. tuberosum [21]  
*X = 3-O-β-D-xylofuranoside, UO = ursolic acid, OA = oleanolic acid, BO = betulinic acid 
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4 Conclusion 

The combined application of TLC and UPLC–QTOF–MS was shown to be useful in the 

identification of nine UV–fluorescent compounds from S. retroflexum for the first time, with the 

aid of the KNapSAcK metabolite database. Three UV–fluorescent alkaloids, solanocapsine (red 

fluorescent), alpha-tomatine (red fluorescent) and gamma-solanine (blue fluorescent) were 

simultaneously extracted via ATPE and subsequently isolated by chromatography-based methods. 

The diverse fluorescing behavior of the metabolites, under UV light, was possibly due to the 

variation in the structural moieties of the metabolites. To date, alpha-tomatidine and gamma-

solanine have generally been limited to S. lycopersicum. However, this study has demonstrated 

that both glycoalkaloids can also be found in S. retroflexum. The use of an environmentally 

friendly method, ATPE, in conjunction with TLC and UPLC–QTOF–MS has shown to be an 

efficient method for the simultaneous extraction of UV–fluorescent metabolites from S. 

retroflexum and may prove vital for the well-being of man. Though this study was an untargeted 

approach with a tentative identification of UV–fluorescent metabolites from S. retroflexum, future 

studies may be directed at the isolation and comprehensive identification of isomers (ursolic acid, 

betulinic acid, oleanolic acid) by incorporation of derivatization agents. 

 

Acknowledgements  

The authors are grateful to the National Research Foundation of South Africa (NRF-SA) and the 

University of Venda for its financial support.  

 

Declarations 

Conflict of interest The authors declare that they have no conflict of interest. 

 

References 

1. Paudel JR, Davidson C, Song J, Maxim I, Aharoni A, Tai HH (2017) Pathogen and pest 

responses are altered due to RNAi-mediated knockdown of glycoalkaloid metabolism 4 in 

Solanum tuberosum. Mol Plant Microbe Interact 30:876-885. https://doi.org/10.1094/MPMI-

02-17-0033-R 

2. Daji G, Steenkamp P, Madala N, Dlamini B (2018) Phytochemical composition of Solanum 

retroflexum analysed with the aid of ultra-performance liquid chromatography hyphenated to 



219 
 

quadrupole-time-of-flight mass spectrometry (UPLC–qTOF–MS). J Food Qual 2018:1-9. 

https://doi.org/10.1155/2018/3678795 

3. Alam MA, Zaidul ISM, Ghafoor K, Sahena F, Hakim MA, Rafii MY, Abir HM, Bostanudin 

MF, Perumal V, Khatib A (2017). In vitro antioxidant and, α-glucosidase inhibitory activities 

and comprehensive metabolite profiling of methanol extract and its fractions from 

Clinacanthus nutans. BMC Complement Altern Med 17:1-10. 

https://doi.org/10.1186/s12906-017-1684-5 

4. Sobeh M, Youssef FS, Esmat A, Petruk G, El-Khatib AH, Monti DM, Ashour ML, Wink M 

(2018) High resolution UPLC–MS/MS profiling of polyphenolics in the methanol extract of 

Syzygium samarangense leaves and its hepatoprotective activity in rats with CCl4-induced 

hepatic damage. Food Chem Toxicol 113:145-153. https://doi.org/10.1016/j.fct.2018.01.031 

5. Artanti AN, Pujiastuti UH, Prihapsara F, Rakhmawati R (2020) Synergistic cytotoxicity effect 

by combination of methanol extract of Parijoto fruit (Medinilla speciosa Reinw. Ex. Bl.) and 

cisplatin against Hela cell line. IJCC 11:16-21. 

6. Zakaria ZA, Kamisan FH, Omar MH, Mahmood ND, Othman F, Hamid SSA, Abdullah, 

MNH (2017) Methanol extract of Dicranopteris linearis L. leaves impedes acetaminophen-

induced liver intoxication partly by enhancing the endogenous antioxidant system. BMC 

Complement Altern Med 17:1-14. https://doi.org/10.1186/s12906-017-1781-5 

7. Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, Wang X, Haung L, Peng D, Sattar A, Shabbir MAB, 

Hussain HI, Ahmed S, Yuan Z (2016) Aqueous two-phase system (ATPS): An overview and 

advances in its applications. Biol Proced Online 18:1-18. https://doi.org/10.1186/s12575-016-

0048-8 

8. Mokgehle T, Madala N, Gitari W, Tavengwa N (2021) Deciphering the effects of kosmotrope 

and chaotrope salts during aqueous two phase extraction (ATPE) of polyphenolic compounds 

and glycoalkaloids from the leaves of a nutraceutical plant, Solanum retroflexum, with the aid 

of UPLC–QTOF–MS. Appl Biol Chem 64:1-15. 

9. Shamsaldin H (2018) Study of Chemical composition of Ropas of Kerman (Solanum villosum 

Mill.) (Doctoral dissertation, School of Pharmacy, Kerman University of Medical Sciences, 

Kerman, Iran). 

10. Patel BR, Kotak N, Pandya P (2018) Pharmacognostical and phytochemical evaluation of root 

of Solanum trilobatum Linn. Pharma Sci Monit 9:235-241. 



220 
 

11. Jadesha G, Velappagounder P (2021) Identification of antifungal compounds from solanum 

torvum against post harvest anthracnose of banana. J Agric Sci Technol 23:457-471. 

http://jast.modares.ac.ir/article-23-22535-en.html 

12. Knapsack core system. Available online: 

http://www.knapsackfamily.com/knapsack_core/top.php (accessed: 20 March 2020). 

13. Nazir S, Akhtar KP, Sarwar N, Saleem MY, Asghar M, Siddique Z, Saleem K, Jamil FF 

(2012) Time-course analysis of the phenols in cucumber mosaic virus-resistant, -tolerant and 

susceptible tomato genotypes. Arch Phytopathol Pflanzenschutz 45:1304-1318. 

https://doi.org/10.1080/03235408.2012.673264 

14. Xu XH, Su Q, Zang ZH (2012) Simultaneous determination of oleanolic acid and ursolic acid 

by RP-HPLC in the leaves of Eriobotrya japonica Lindl. J Pharm Anal 2:238-240. 

https://doi.org/10.1016/j.jpha.2012.01.006 

15. Houël E, Rodrigues AMS, Jahn-Oyac A, Bessière JM, Odonne G, Gonzalez G, Espindola LS, 

Eparvier V, Deharo E, Stien D (2016) How can plant defences lead to valuable products? 

Inspiration from plant complexity in phytochemistry. Planta Med 82:S1-S381, Conference 

Proceedings, Copenhagen, 24–27. 07. 2016. 

16. Martucci MEP, Vos RCH, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential 

chemotaxonomical tool: application in the genus Vernonia Schreb. PLOS ONE 9:1-8. 

https://doi.org/10.1371/journal.pone.0093149 

17. Garcia ME, Borioni JL, Cavallaro V, Puiatti M, Pierini AB, Murray AP, Penenory AB (2015) 

Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular 

docking and biological studies. Steriods 104:95-110. 

https://doi.org/10.1016/j.steroids.2015.09.001 

18. Kaminski KP, Kørup K, Andersen MN, Sønderkaer M, Andersen MS, Kirk HG, Nielsen KL 

(2016) Next generation sequencing bulk segregant analysis of potato support that differential 

flux into the cholesterol and stigmasterol metabolite pools is important for steroidal 

glycoalkaloid content. Potato Res 59:81-97. https://doi.org/ 10.1007/s11540-015-9314-4 

19. Itkin M, Heinig M, Tzfadia O, Bhide AL, Shinde B, Cardenas PD, Bocobza SE, Unger T, 

Malistky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, 

Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is 

mediated by clustered genes. Science 341:175-179. https://doi.org/10.1126/science.1240230 



221 
 

20. Kumar A, Fogelman E, Weissberg M, Tanami EE, Veilleux Z, Ginzberg I (2017) Lanosterol 

synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. 

Planta 246:1189-1202. https://doi.org/10.1007/s00425-017-2763-z 

21. Glossman-Mintik D (2007) CHIH–DFT determination of the molecular structure and infrared 

and ultraviolet spectra of γ-solanine. Spectrochim Acta A 66: 208-211. 

https://doi.org/10.1016/j.saa.2006.03.033 

22. Zhao DK, Zhao Y, Chen SY, Kennelly EJ (2021) Solanum steroidal glycoalkaloids: structural 

diversity, biological activities, and biosynthesis. Nat Prod Rep 38:1423-1444. 

https://doi.org/10.1039/D1NP00001B 

 

 

 

 

 

 

 


