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Abstract

Microgrids are becoming a crucial component of the electricity grid in dependability, eco-
nomics, and environmental sustainability. Microgrids rely heavily on renewable energy
sources. From an engineering standpoint, anticipating short-term solar generation is a
critical challenge in microgrid planning and design. Anticipating solar power is heavily
reliant on forecasting sun radiation. Short-term solar radiation forecasting may also be
used to estimate the energy potentials of photovoltaic (PV) panels impacted by degrada-
tion rates. A comparison of multiple models, namely the Autoregressive Integrated Moving
Average (ARIMA), Long Short Term Memory (LSTM), Attention-based LSTM and a hybrid
Attention-based LSTM-ARIMA for forecasting 5-day ahead 1-minute solar radiation is per-
formed in this study. The best model for forecasting Global Solar Radiation(GHI) from
Richtersveld station is ARIMA with MAE = 0.782 and RMSE = 1.271, followed by hybrid
model with MAE = 4.120 and RMSE = 4.987. For Stellenbosch University station, atten-
tion LSTM was the best with MAE = 1.512 and RMSE = 1.640, followed by hybrid with
MAE = 2.011 and RMSE = 2.511. The hybrid attention-based LSTM-ARIMA model on the
USAid Venda station was the best fitting model with RMSE = 7.383 and MAE = 14.1293,
followed by LSTM with MAE = 7.817 and RMSE = 8.444. Comparing the results on non-
wavelet denoised and wavelet denoised, models performed better on wavelet denoised
data. ARIMA model was the best with MAE = 0.194 and RMSE = 0.542, followed by
hybrid with MAE = 2.176 and RMSE = 2.308.

Keywords: Deep learning Algorithms; Global Horizontal Irradiance; Hybrid ARIMA-LSTM
model; Solar Energy; Wavelet denoising.
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Chapter 1

Introduction

1.1 Background

Because of increased understanding of environmental emissions and depleting fossil fuel
reserves, renewable energy supplies have grown in value in the twenty-first century (Mu-
tavhatsindi, Sigauke, and Mbuvha, 2020). Researchers are working hard to create a pollution-
free world by proposing carbon-free solutions in various ways, including automobiles,
clothing, home appliances, and other energy-consuming industries. Introducing the sun’s
radiation into the electrical system is crucial but complex. Forecasting errors will destabilise
the supply-demand equilibrium and incur unnecessary costs. Consequently, reliably and
efficiently predicting global horizontal irradiance (GHI) is a vital function of a photovoltaic
installation.

1.2 Problem Statement

Under clear-sky conditions, solar radiation offers knowledge about the highest possible
magnitude of the solar resource available at a place of interest. This global horizontal irra-
diance (GHI) time-series data can determine the limits of solar energy use in applications
such as thermal and electrical energy generation. Thus, forecasting GHI can play a vital
role in electrical power systems. If people use GHI estimation, which is wrong, there will
be a strong impact on designing an electric power grid. Researchers and academicians in
different fields may find this study essential for future research on GHI or solar energy.
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1.3 Research Questions

The study seeks to answer two questions, which are:

(1) Between traditional LSTM, ARIMA, attention-based LSTM and hybrid attention-based
LSTM-ARIMA models, which model is best suited for modelling and forecasting the
GHI wavelet denoised time series data?

(2) Between the original GHI dataset and wavelet denoised GHI dataset, when do the
models perform better?

1.4 Research Aim and Objectives

1.4.1 Research Aim

This research aims to develop a model for short-term forecasting of GHI.

To achieve this, several models (namely ARIMA, LSTM, Attention-based LSTM, and Attention-
based LSTM-ARIMA) will be trained using the original GHI dataset and wavelet denoised
GHI historical data to capture the relationships, trends and seasonality of GHI time series
data.

1.4.2 Objectives

The objectives of the research are to:

• remove the noise from the GHI time series data using the wavelet transform,

• predict the GHI time sequence data using the LSTM,

• predict the GHI time sequence data using the ARIMA model,

• predict the GHI time sequence data using the attention-based LSTM-ARIMA model,

• compare the models.

1.5 Significance of the study

South Africa has seen 40% in load shedding and data shows it is still headed for a record
year of power cuts. Thus, Solar forecasting allows grid operators to forecast and balance
energy output and demand. Assuming the grid operator has a mix of producing assets at
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their disposal, effective solar forecasting enables the operator to optimise how their con-
trollable units are dispatched. Integration of solar energy in electricity generation will save
South Africa from power cuts and emissions reduction since Eskom uses coal for electricity
generation.

1.6 Definitions

1.6.1 Definitions

Terminology Definition

Time series data A collection of quantities in their order of occurrence in
time.

GHI The sum of the diffuse and direct solar radiation.

Wavelet Small wave that goes up, and back down to zero.

Neural Network Is a collection of algorithms that tries to detect underlying
correlations in a batch of data using a technique that mimics
how the human brain works.

Hybrid model Combination of two or more models.

Attention-based model Is a directed focus model which pays greater attention to
certain factors when processing data.

1.7 Overview

The rest of the study is divided into four chapters. Chapter 2 discusses relevant topics in the
field of study. Chapter 3 overviews how the data will be retrieved, cleaned, preprocessed
and analysed. The chapter discusses the methods to be used in modelling data (Section
3.3) and measurement of their errors (Section 3.4.3). Chapter 4 gives the results of all the
models and models comparison. Chapter 5 provides conclusions from the study and areas
for future studies.
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Chapter 2

Literature Review

2.1 Global Horizontal Irradiance

Renewable energy supplies are becoming increasingly valuable as environmental conscious-
ness and energy demand rise (Renno, Petito, and Gatto, 2015), and will thus be significantly
utilised in future power networks. Wind power plants and solar power plants, for exam-
ple, must be interconnected and regulated by power system operators. Because variable
renewable energy is non-dispatchable, it can influence system voltage and frequency, de-
crease load predictability, and cause reverse power flow (West et al., 2014). Solar irradiance
forecasting is thus one of the important methods for integrating solar energy into electric
power systems safely and reliably.

Solar irradiance displays time-dependent stochastic and fluctuant behaviour due to sea-
sonal deviation and weather shifts. As solar power is introduced into an electric power grid,
the erratic and irregular nature of solar irradiance triggers many serious issues, including
voltage instability and low power quality (Alonso-Montesinos, Batlles, and Portillo, 2015).
As a result, to ensure the future power grid’s security and safety, it is important to keep
track of solar irradiance (Urraca et al., 2016). However, several developing countries have
inadequate or incomplete solar irradiance data due to the prohibitively high cost of visual
equipment and maintenance (He and Yao, 2016).

2.2 Denoising methods

2.2.1 Introduction

In general, most time-series signals in actuality are noisy. Before doing a formal analysis,
valid signals must be extracted. Linear filtering methods that have been used in the past will
generate extra distortion since complex time series contain a high degree of nonlinearity.
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Many novel denoising approaches have been presented in recent years to handle this type
of noise removal problem (Wu, Jia, and Liu, 2021).

2.2.2 Wavelet denoising

The concept of wavelet threshold denoising is to use a wavelet transform to pass the signal.
Furthermore, the noise’s wavelet coefficient is less than the signals (Yang et al., 2021). Then,
choose a suitable threshold and keep the wavelet coefficient bigger than it. Because the
smaller one is called noise, it will be set to zero. Finally, use the inverse wavelet transform
to produce denoised data.

2.2.3 Empirical Mode Decomposition (EMD)

EMD is an innovative method for dealing with non-stationary signals (Huang et al., 1998).
Furthermore, linear and stationary signal analysis better captures the physical meaning of
the signal than other time-frequency analysis approaches.

EMD aims to break down the signal based on time scale characteristics without establishing
any fundamental functions. EMD does, however, have several flaws. According to the
energy law, it immediately discards numerous small-order Intermolecular forces (IMFs).
When filtering the noise, it will lose some essential signal information, especially if the
signal comprises multiple sharp signals or unique points.

2.2.4 Singular Spectrum Analysis

The main principle of singular spectrum analysis is to perform singular value decomposi-
tion on the time series’ trajectory matrix and partition the singular values into two big and
small groups. The lower value group is thought to be in the noise section. The group with
the higher value is called the normal part. After noise reduction, the normal group is rebuilt
to create the time series. The major challenge in noise reduction based on single spectrum
analysis is determining the border between noise components and usable components (Os-
pina, Newaz, and Faruque, 2019).

2.2.5 Conclusion

In summary, it is impossible to find time series data with no noise. For the prediction
model to perform better or give accurate predictions, denoising is a crucial step in data pre-
processing and must be done thoroughly. This study uses wavelet transform to denoise data
as wavelet transform can work effectively on non-stationary time series. Wavelet analysis
smoothes and filters the sun’s speed, direction, and power while retaining the primary
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trend of the time series. As a result, the wavelet is extremely beneficial for dealing with
highly erratic GHI time series.

2.3 Deep Learning Algorithms

Deep learning methods are suitable for predictive modelling and capturing of long and
short-term properties of non-linear time series and have been effectively utilised in the field
of new energy (Wu, Jia, and Liu, 2021). For example, literature (Hochreiter and Schmidhu-
ber, 1997) suggested LSTM, whose threshold structure overcomes the gradient problem of
RNNs and has had an impact on time series prediction. For solar irradiance prediction, lit-
erature (Wang et al., 2018) presents a model based on wavelet transform, CNN, and LSTM.

Machine learning-based forecasting approaches have also been widely applied in various
fields in recent years (Wang, Li, Liu, Mi, Shafie-Khah, and Catalão, 2018b). Non-linear
regression models, such as the Artificial Neural Network (ANNs), the Support Vector Ma-
chine (SVM) (Jianwu and Wei, 2013), and the Markov chain, have been commonly applied
in the field of solar forecasting. These non-linear regression models are often widely used
in conjunction with classification models (Wang, Zhen, Wang, and Mi, 2018a).

Chih-Chiang (2017) used four forecasting models, namely, the multilayer perceptron (MLP),
random forests (RF), k-nearest neighbours (kNN), and linear regression (LR), to model sur-
face solar irradiance for Tainan City in Taiwan. MLP performed better than the others and
LR was the worst-performing.

There are many divisions of the deep learning scheme, including LSTM, Convolutional
Neural Networks (CNN), and Recurrent Neural Networks (RNN), among others. Despite
the excellent performance of deep learning algorithms, few studies have used deep learn-
ing approaches in day-ahead solar irradiance forecasting.

Mutavhatsindi, Sigauke, and Mbuvha (2020) in their paper applied long short-term mem-
ory (LSTM) networks, support vector regression (SVR) and feed-forward neural networks
(FFNN) models on South African hourly solar irradiance data. Their findings show that the
FFNN model was the best, with lower mean absolute error (MAE) and root mean square
error (RMSE).
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Chapter 3

Research Methodology

3.1 Introduction

The path researchers must take to perform their study is referred to as research methodol-
ogy. It demonstrates how these researchers construct their problem and objectives and how
they present their findings based on the data collected during the study period.

3.1.1 Wavelet Denoising

Wavelet is a type of localised function in the time and frequency domain that decomposes
time series into extra elementary parts that hold time series-related information. For this
purpose, wavelets transform will be used for noise removal in the GHI time series data.
Data preprocessing will provide further details on the wavelet denoising process.

3.1.2 Deep Learning Algorithms

Artificial Intelligence (AI) for signal prediction entails utilising classic machine learning
(ML) methods as well as deep learning models such as neural networks (Lu, Wang, and
Xu, 2018). To forecast output values, ML algorithms receive and analyse input data. While
being fed with more data, they enhance their performance; the higher the sample size,
the better performance (Lu, Wang, and Xu, 2018). Neural networks (NN) are computing
systems inspired by the human brain and are good at pattern recognition (Lu, Wang, and
Xu, 2018).

3.1.3 ARIMA Model

To forecast the low volatility time series, an AutoRegressive Integrated Moving Average
(ARIMA) model is utilised. The model is fit for ARIMA parameters p, d, and q. The dif-
ferencing d is determined via Phillips Perron, Augmented Dickey-Fuller or Kwiatkowski
Phillips Schmidt Shin.
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3.1.4 Models Averaging

Artificial intelligence may be used in collaboration with statistical approaches and proce-
dures. While statistics can cope with large volumes of data, AI is better at capturing rela-
tionships between data points. (Lu, Wang, and Xu, 2018). The predictions are averaged to
generate the predicted 1-minute GHI time series data.

FIGURE 3.1: Research design (Attention-based LSTM-ARIMA hybrid model
on wavelet denoised series).

Figure 3.1 shows the flow diagram of how the research will be conducted (i.e., the research
design).

3.2 Data

The study uses secondary minute-averaged data from SAURAN website https://sauran.

ac.za/ for three sites in South Africa, namely, UNV: USAid Venda, RVD: GIZ Richtersveld,

https://sauran.ac.za/
https://sauran.ac.za/
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and SUN: Stellenbosch University. The paper will cover 1-minute time series data for five
days from 23 March 2021 to 28 March 2021 for two stations (SUN and UNV), and 1-minute
data for five days from 30 April 2020 to 4 May 2020 for the RVD station. The main reason
for the selected periods was that they covered the most recent time and dates the stations
last recorded the data. Table 3.1 gives the first two rows of the data for three sites’ GHIs:

TABLE 3.1: Head of GHI historical data.

TmStamp SUN UNV TmStamp RVD
23/03/2021 00:00:00 0 0 30/04/2020 00:00:00 0
23/03/2021 00:01:00 0 0 30/04/2020 00:01:00 0

3.2.1 Data Preprocessing

There are many different methods one can use for time series data preprocessing. This
research will focus on wavelet transformation due to their properties, which will be men-
tioned throughout this section.

Wavelet Transform

GHI data is monitored and evaluated for its behaviour using time signals. The first and
most popular method for this is the Fourier transform, developed in 1807 by a French
mathematician and physicist, Joseph Fourier (Fourier, 1807). The substitute method with
appealing properties is the wavelet transform, which was first mentioned in a thesis by
Alfred Haar in 1909 (Haar, 1909). A better knowledge of Fourier transform accompanies
a good understanding of wavelet transform. Wavelet analysis may be done in numerous
methods, including continuous wavelet transforms, discretised wavelet transforms, and
genuine discrete wavelet transformations.

The Fourier transform only retrieves the global frequency content of a signal. Therefore,
the Fourier transform is only useful for stationary and pseudo-stationary signals (Merry
and Steinbuch, 2005). The Fourier transform does not give satisfactory results for signals
that are highly non-stationary, noisy, and periodic (Sifuzzaman, Islam, and Ali, 2009).

The short-time Fourier transform (STFT) addresses the Fourier transform’s restriction. A
signal’s frequency and temporal information can be extracted using the STFT. The STFT
computes the Fourier transform of a windowed portion of the original signal that shifts
along the time axis (Daubechies, 1990).
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The selected window has a significant impact on the performance of the STFT analysis
(Rioul and Vetterli, 1991). Although a small window provides adequate time resolution,
distinct frequencies are not well identified. This resolution is not satisfactory (Sifuzzaman,
Islam, and Ali, 2009). A high-frequency resolution is essential because low-frequency com-
ponents frequently endure a long time. High-frequency components often arise in brief
bursts, necessitating a higher temporal resolution (Merry and Steinbuch, 2005).

In comparison to the Fourier transform, the wavelet transform’s analysing function may
be selected with greater freedom, as it does not need the use of sine-forms. A wavelet
function is a tiny wave that must be oscillatory in some form to differentiate across fre-
quencies (Schneiders, van de Molengraft, and Steinbuch, 2001). The wavelet involves both
the structure and the window study. Several types of wavelet functions are designed for
the Continuous Wavelet Transform (CWT), each with unique features (Schneiders, van de
Molengraft, and Steinbuch, 2001).

There are two types of wavelet transform, namely Continuous Wavelet Transform (CWT)
and Discrete Wavelet Transform(DWT). A brief description of the Discrete wavelet trans-
form is given below, as it is the focus of the project:

Discrete Wavelet Transform

To perform wavelet analysis, the discrete wavelet transform (DWT) employs filter banks
(Bullmore, 2002). The discrete wavelet transform decomposes the signal into wavelet coef-
ficients, which may then be used to recreate the original signal (Merry and Steinbuch, 2005).
The signal is represented by the wavelet coefficients in various frequency bands. The coef-
ficients may be treated in a variety of ways, making the DWT more appealing than linear
filtering (Percival and Walden, 2000).

To enhance the performance of the proposed models, version 4.0 of the Discrete wavelet
transform (DWT), called the maximal overlap discrete wavelet transform (MODWT), is
proposed in data preprocessing. The DWT and the MODWT draw on multi-resolution
analysis to decompose a time series into lower and lower wavelet scales. In terms of multi-
resolution research, the wavelet transform decomposes a time series into weighted moving
average values ("smooths") and the information required to reconstruct the signal ("details")
from the averages (Percival and Walden, 2000).
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Wavelet Denoising Process

Wavelet denoising consists of three steps which are visible in Figure 3.2 and explained be-
low:

FIGURE 3.2: Wavelet denoising process diagram.

1. Apply wavelet transform to the noisy signal to produce the noisy wavelet coefficient
to the level where GHI signal occurrence can be properly distinguished.

2. Select the appropriate threshold limit at each level and threshold method.

Thresholding methods

Soft thresholding - provides smoother results than hard thresholding.

Hard thresholding - provides better peak preservation than the soft one.

3. Inverse wavelet transform of the thresholded wavelet coefficient to obtain a denoised
signal

The denoised signal will then be partitioned to a training set of 75% and a test set of 25%.
The description models for training and testing are given in Section 3.3.

3.3 Methods

The research methodology is employed to achieve the study’s objectives. That will be fo-
cused on in this chapter. Furthermore, a detailed empirical framework of the proposed
traditional and deep learning methods for the researcher to achieve the objectives will be
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provided. The study suggests adopting and discussing ARIMA(p,d,q) and deep learning
algorithmic frameworks to model and estimate GHI.

This is so due to the extensive use of ARIMA(p,d,q) models in related studies and that
non-linear modelling techniques have gained much attention by academic researchers and
electricity generation contributors like governments, corporations, enterprises, and dealers,
lately, with neural networks assuming a prominent role. Neural Networks (NN) applica-
tions have shown an increase in power engineering for live systems and the results are
promising. To support these claims, various performance figures are being quoted. Still,
the absence of explicit models, due to the non-parametric nature of the approach, makes
it difficult to assess the significance of the model estimated and the possibility that any
short-term success is due to data mining (Achilleas and Apostolos-Paul, 1999).

3.3.1 Recurrent Neural Networks

RNNs are neural networks that are good at modelling sequence data. Recurrent neural
networks are used in speech recognition, language translation, and stock predictions (Illus-
trated Guide to Recurrent Neural Networks). Recurrent neural networks allow information to
persist as they are networks or loops. Figure 3.3 shows, the hidden network ht, some input
xt and output yt. A loop allows information to be passed from one step to the next.

FIGURE 3.3: RNN model. Adapted from (Illustrated Guide to Recurrent Neural
Networks)

ht = f (Whhht−1 + Wxhxt + b) (3.1)

yt = f (Whyht + c), (3.2)

where the equation of the hidden state ht and output yt is given by Equation 3.1 and 3.2
respectively. For which a non-linear function like tanh or ReLU are indicated by f , and
t = 1, ..., n, where n is the sample size.
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3.3.2 Long Short Term Memory

LSTM is a kind of RNN that was first introduced in 1997 (Hochreiter and Schmidhuber,
1997). In the case of LSTM architecture, LSTM cells replace the normally concealed layers.
The cells are made up of several gates that may regulate input flow. Figure 3.4 shows the
structure of an LSTM network, which can be formulated as follows:

FIGURE 3.4: LSTM model. Adapted from (Yan, 2016).

ft = σ(Wt.[xt, ht−1 + b f ]) (3.3)

it = σ(Wi.[xt, ht−1 + bi]) (3.4)

C̃t = tanh(Wc.[xt, ht−1 + bc]) (3.5)

Ct = ft ∗ ct−1 + it ∗ C̃t (3.6)

ot = σ(Wo.[xt, ht−1 + bo]) (3.7)

ht = Ot ∗ tanhCt, (3.8)

where xt is the input value at each time t, ht and ht−1 are hidden states of the LSTM, and Ct

is the memory state. sigmoid(σ) and tanh are two types of the activation functions for three
types of gating units: the input gate it, forget gate ft, and output gate ot (Selvin et al., 2017).
W and b denote weight matrices and bias vectors, respectively.
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3.3.3 Attention Based LSTM

By assigning enough attention to vital information, the attention mechanism highlights im-
portant local information (Qiu, Wang, and Zhou, 2020). Attention is a network design com-
ponent that manages and quantifies interdependence: (1) between the input and output
ports, and (2) within the input elements (Attention mechanism). The soft attention mecha-
nism can be formulated as:

et = tanh(Wd[xt, ht−1 + bd]) (3.9)

at = exp(et)
∑(exp(et))

, (3.10)

where Wd is the weight matrix of the attention mechanism, indicating information that
should be emphasised; et is the result of the first weighting calculation; dd is the deviation
of the attention mechanism; xt is the input of the attention mechanism, which is now, the
output of the LSTM hidden layer; and at is the final weight obtained by xt.

3.3.4 Autoregressive Integrated Moving Average

The Autoregressive Integrated Moving Average (ARIMA) method depends on historical
values in the series for forecasting. It was invented by Box and Jenkins (Box et al., 2015) and
is a widely used forecasting model (Jang and Lee, 2018). The ARIMA model consists of the
AutoRegressive terms (AR) and the Moving Average terms (MA).

Applying the lag operator denoted L, Autoregressive AR terms are lagged values of the
dependent variable and refer to it as lag order p as the number of time lags. A non-seasonal
AR(p) can be formulated as follow:

AR(p) : ϕ(L) = 1 − ϕ1L − ϕ2L2 − ... − ϕpLp (3.11)

Moving Average MA terms are lagged forecast errors in the predictions between actual
past values and their predicted values and refer to it as the order of moving average q. A
non-seasonal MA(q) can be formulated as follows:

MA(q) : θ(L) = 1 + θ1L + θ2L2 + ... + θqLq (3.12)

The ARIMA model can be formulated as follows:

ARIMA(p, d, q) : ϕ(L)(1 − L)drt = θ(L)ϵt, (3.13)
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where L is the backward operator, rt is the GHI time series for t = 1,..., n, εt is the white
noise, and the d is the number of times that the observations are differenced.

3.3.5 Hybrid ARIMA-LSTM with Attention

Artificial intelligence and statistical methodologies and techniques can be integrated. While
statistics make it possible to cope with large volumes of data, AI efficiently captures in-
terconnections between data points. The hybrid model takes on the averages of all three
models, i.e.:

Hybrid_prediction =
∑k

1(modelk_predictioni)

number_o f _models
, (3.14)

where k is the number of models for the i’s term.

3.4 Analysis

3.4.1 Wavelet Analysis

Wavelet decompositions will be performed using MODWT, wavelet filter of haar wavelet
family, hard thresholding, and wavelet length of 2. Previously, both the discrete wavelet
transform (DWT) and the maximum overlap discrete wavelet transform (MODWT) ap-
proaches were utilised to generate functional connectivity matrices in the literature (Vértes
et al., 2012). Therefore, the L scale MODWT wavelet coefficient process is defined by Equa-
tion 3.15:

W j,t ≡
Lj−1

∑
l=0

h̃j,lXt−l , t = 1, ..., n, (3.15)

where the MODWT wavelet filter {h̃j,l} is based on a Haar wavelet filter of length L.
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3.4.2 Model Specifications

ARIMA

The best fit for the ARIMA model was determined by the function autoarima() in python,
which automatically finds the best ARIMA(p,d,q) parameters for the series, the Table 3.2
shows the ARIMA specification for the GHI’s of all three sites.

TABLE 3.2: ARIMA Specifications

Site ARIMA(p,d,q)
RVD ARIMA(5,1,0)
SUN ARIMA(5,1,0)
UNV ARIMA(5,1,0)

UNV denoised ARIMA(5,1,0)

LSTM and Attention Based LSTM

TABLE 3.3: LSTM specifications

Variables LSTM Attention-based LSTM
Units 100 25

Activation — relu
Dense 1 1

Dropout 0.15 —
Attention activation — sigmoid

Optimizer adam adam
Loss mse mse

Epoch 25 100
Batch size 70 70

Table 3.3 shows the model specifications for the LSTM model and attention-based LSTM.
The same specifications were the same for all the four datasets of 3 different sites.

Hybrid Attention Based LSTM-ARIMA

The hybrid Attention-based LSTM-ARIMA comprises the aggregate of ARIMA, LSTM, and
Attention-based LSTM.
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3.4.3 Model Performance Metrics

The prediction results will be evaluated using the measures of errors, namely the root mean
square error (RMSE) and mean absolute error (MAE), to find the best model, which will
be used for predictions (Qiu, Wang, and Zhou, 2020). The smaller the RMSE and MAE, the
closer the predicted return to the true return, and the better the model’s fit. The formulation
of the two performance metrics is as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (3.16)

MAE =
1
N

N

∑
i=1

|(yi − ŷi)| , (3.17)

where N is the number of 1-minute GHI time series data, yi is the actual GHI and ŷi is the
predicted GHI.
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Chapter 4

Results and Discussions

4.1 Introduction

The chapter presents and analyses data obtained from https://sauran.ac.za/. The results
on a 1-minute GHI signal will be provided. The analysis considers the objectives outlined
in chapter 1 and the methodology discussed in Chapter 3. Matlab R2020a was used for
wavelet denoising and Python 3.7 was used for analysing the non-wavelet and wavelet
denoised GHI signal.

4.2 Data Source

The study uses secondary 1-minute GHI signal data from https://sauran.ac.za/ over five
days for three different sites.

4.3 Explanatory Data Analysis

Explanatory data analysis (EDA) is an approach to analysing data sets and summarising
their main characteristics or a critical step in analysing the data from an experiment (Tukey,
1977). Exploratory data analysis covers a preliminary selection of appropriate models, ex-
aminations of assumptions, and assisting statisticians in data exploration.

4.3.1 Time series plots

Time series charts study data patterns and behaviour across time and are frequently used
to investigate a process modification’s daily, weekly, and seasonal consequences. They pro-
vide a visual representation of the time series. Time-series graphs make it simple to examine
data patterns.

https://sauran.ac.za/
https://sauran.ac.za/
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(A) GHI for RVD station over time.

(B) GHI for SUN station over time.

(C) GHI for UNV station over time.

FIGURE 4.1: Time series plots of GHI vs time for 3 sites.

Figure 4.1 (A) gives the GHI time series plot for RVD: GIZ Richtersveld station, Figure 4.1
(B) gives the GHI time series plot for the SUN: Stellenbosch University station and Figure
4.1 (C) gives the GHI time series plot for the VEN: USAid Venda station, with a display of
volatility clustering and shows that volatility occurs in bursts.
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4.3.2 Box plots

Box charts show data in batches. Conventionally, five values from a collection of data are
used: the extremes(minimum and maximum), the upper(Q3) and lower(Q1) quartiles, and
the median(Q2). These charts are becoming popular for exploratory data analysis and vi-
sual summaries for statisticians and non-statisticians.

(A) Hourly GHI for
RVD.

(B) Hourly GHI for
SUN.

(C) Hourly GHI for
UNV.

FIGURE 4.2: Box plots of hourly GHIs for the 3 sites.

Figure 4.2 (A) gives the box plot of GHI for RVD: GIZ Richtersveld station, Figure 4.2 (B)
gives the box plot of GHI for the SUN: Stellenbosch University station and Figure 4.2 (C)
gives the box plot of GHI for the VEN: USAid Venda station. When comparing the boxplots
for each hour and each site, it can be noticed that the median GHI is much higher at 12h00
than in other hours. This implies that 12h00 contains the peak GHI. From hour 00h00 to
05h00 am and hour 18h00 to 23h00 pm, in these hours, the stations recorded the lowest
GHI of value 0. GHI increases from 06h00 am approaching 12h00 pm and decrease after
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that. From Figures 4.1(A) and (B), it can be seen that the five-number summary(minimum,
Q1, Q2, Q3, and maximum) are close to one another, whereas in Figure 4.2 (C) they are far
apart This implies that the 1-minute time series GHI data from the UNV station is too much
volatile, thus most models in volatile data tend to perform the worst.

Summary of descriptive statistics

Table 4.1 reports the key descriptive statistics of the GHI series. Descriptive statistics quan-
titatively describe or summarise features of the collected information. Descriptive statistics
provides sample summaries of the sample. The sample summaries are the minimum, mean,
maximum, standard deviations, skewness, kurtosis and sample size.

TABLE 4.1: 1 minute GHI data for 3 stations descriptive statistics.

Variables UNV SUN RVD
Min 0 0 0

Mean 213.4625 267.6134 301.3076
Std Dev 306.2724 337.1492 369.2255
Kurtosis 0.8023 -1.1099 -1.2020

Skewness 1.3976 0.7589 0.7025
Max 1211.8950 917.9128 980.0505

Range 1211.8950 917.9128 980.0505
n 6849 7189 6897

The kurtosis is a statistical measure used to describe the distribution and can also help ex-
plain the distribution’s tails concerning the overall shape. Kurtosis has three categories
which can be displayed by a data set, i.e. mesokurtic (kurt=3), leptokurtic (kurt>3), and
platykurtic (kurt<3). The GHI signals have kurtosis values less than 3 for all three sites.
Thus, they are platykurtic, implying that both the datasets have lighter tails than the nor-
mal distribution. All the datasets have positive skewness; RVD and SUN stations have
moderate skewness, whereas UNV is highly skewed since it has skewness greater than 1.
From the descriptive statistics, it can be seen that the UNV station dataset is noisy.

4.3.3 Data preprocessing

For solar energy generation planning, the model for GHI signal prediction can give valu-
able guidance to electricity suppliers, solar energy power suppliers and investors. How-
ever, due to excessive noise in GHI data, deep neural networks trained on the original data
frequently fail to effectively forecast the GHI signal Liang et al., 2019. To address this issue,
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the training data was subjected to the wavelet threshold-denoising approach, which has
been widely used in signal denoising Liang et al., 2019.

(A) RVD station Wavelet denoised vs original GHI over time.

(B) SUN station Wavelet denoised vs original GHI over time.

(C) UNV station Wavelet denoised vs original GHI over time.

FIGURE 4.3: Wavelet denoised vs original GHI over time for 3 sites.

Figure 4.3 shows the results from wavelet denoising, where a MODWT was applied with
a soft thresholding method at the limit of level 2, and the haar family was used to denoise
the data. The data still represents the original and once denoised, it is easy for the deep
learning algorithm to capture the data’s trends and relationships.
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Descriptive statistics for denoised wavelet data(After preprocessing)

Table 4.2 reports the key descriptive statistics of the wavelet denoised GHI series. Since
RVD and SUN GHI’s show smooth curves, it is unnecessary to apply wavelets; thus, wavelets
will be used to UNV GHI since the series has a lot of fluctuations.

TABLE 4.2: Descriptive statistics 1-minute wavelet denoised GHI data for
UNV station.

Variables Min Mean Std Dev Kurtosis Skewness Max n
Values -49.8800 213.0866 282.5993 -0.0115 1.1277 946.2600 6849

The wavelet denoised GHI signal for the UNV site have a normal kurtosis value. Thus it is
mesokurtic. Several models were considered to find the best model for the data to model
the signal of GHI for the three sites.

4.4 Models comparison

4.4.1 Model results on original GHI signal(not denoised)

Results on UNV: USAid Venda station

TABLE 4.3: Original UNV GHI signal model results

Models ARIMA LSTM ALSTM Hydrid
MAE 8.855 7.818 9.317 7.383

RMSE 35.988 8.444 13.570 14.1293

The results in Table 4.3 show different models used to model and forecast GHI signal. The
Hybrid Attention-based LSTM-ARIMA was the best model of all the models, followed by
the LSTM model with little difference. This can be confirmed by the lower MAE = 7.383,
and RMSE = 14.1293.

Figure 4.4 shows the respective GHI signal prediction results of the four prediction mod-
els on the GHI signal dataset. The black, red, green, and yellow lines represent the LSTM
model, the ARIMA model, the attention LSTM model, and the proposed prediction model.
The blue line indicates the actual GHI signal of the testing data time step. From figure 4.5,
it can be seen that the prediction of the GHI signal of the hybrid model is the same as the
original value in the trend, and the predicted value floats around the initial value.
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FIGURE 4.4: UNV GHI vs Timestamp of testing data predictions

FIGURE 4.5: UNV GHI vs Timestamp for the subset of testing data
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Results on RVD: GIZ Richtersveld

The results in table 4.4 show different types of models that were used to model and forecast
GHI signal.

TABLE 4.4: Original RVD GHI signal model results

Models ARIMA LSTM ALSTM Hydrid
MAE 0.782 7.905 5.292 4.120

RMSE 1.271 9.969 7.314 4.987

In all the models, the ARIMA model was the best, followed by the hybrid Attention-based
LSTM-ARIMA. This can be confirmed by the lower MAE = 0.782, and RMSE = 1.271.

FIGURE 4.6: RVD GHI vs Timestamp for testing data and predictions

Figure 4.6 shows the respective GHI signal prediction results of the four prediction mod-
els on the GHI signal dataset. The black, red, green, and yellow lines represent the LSTM
model, the ARIMA model, the attention LSTM model, and the hybrid model. The blue line
indicates the actual GHI signal of the testing data.
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FIGURE 4.7: UNV GHI vs Timestamp for the subset of testing data

From Figure 4.7, it can be seen that the predictions of the GHI signal of the ARIMA model
are the same as the original value in the trend, and the predicted value floats around the
initial value.

Results on SUN: Stellenbosch University

The results in Table 4.5 show different types of models that were used to model and forecast
GHI signal.

TABLE 4.5: Original SUN GHI signal model results

Models ARIMA LSTM ALSTM Hydrid
MAE 1.417 4.928 1.512 2.011

RMSE 3.726 6.235 1.640 2.511

In all the models, the Attention-based LSTM model was the best, followed by the hybrid
Attention-based LSTM-ARIMA. This can be confirmed by the lower MAE = 1.512, and
RMSE = 1.640.
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FIGURE 4.8: SUN GHI vs Timestamp for testing data and predictions

FIGURE 4.9: SUN GHI vs Timestamp for the subset of testing data
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Figure 4.8 shows the respective GHI signal prediction results of the four prediction mod-
els on the GHI signal dataset. The black, red, green, and yellow lines represent the LSTM
model, the ARIMA model, the attention LSTM model, and the hybrid model. The blue line
indicates the actual GHI signal of the testing data.

From Figure 4.9, it can be seen that the prediction of the GHI signal of the ARIMA model is
the same as the original value in the trend, and the predicted value floats around the initial
value.

4.4.2 Model results on wavelet denoised GHI signal

The results in Table 4.6 show different types of models that were used to model and forecast
GHI signal.

TABLE 4.6: Wavelet denoised UNV GHI signal model results

Models ARIMA LSTM ALSTM Hydrid
MAE 0.194 3.759 5.068 2.176

RMSE 0.542 4.950 5.778 2.308

In all the models, the ARIMA model was the best, followed by the hybrid Attention-based
LSTM-ARIMA. This can be confirmed by the lower MAE = 0.194, and RMSE = 0.542.

FIGURE 4.10: Wavelet denoised UNV GHI vs Timestamp for testing data and
predictions
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Figure 4.10 shows the respective GHI signal prediction results of the four prediction mod-
els on the GHI signal dataset. The black, red, green, and yellow lines represent the LSTM
model, the ARIMA model, the attention LSTM model, and the hybrid model. The blue line
indicates the actual GHI signal of the testing data.

FIGURE 4.11: Wavelet denoised UNV GHI vs Timestamp for the subset of
testing data

From Figure 4.11, it can be seen that the predictions of the GHI signal using the ARIMA
model are the same as the original value in the trend, and the predicted value floats around
the initial value.

4.4.3 Best Model Conclusions

UNV: USAid Venda station

The results from Table 4.3, supported by Figures 4.4 and 4.5 shows that the best model to
forecast UNV GHI is the attention-based LSTM-ARIMA(hybrid). From the Figures 4.4 and
4.5, the line which is much closer to the original value is the one which represents the hybrid
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model. This implies that the hybrid model best predicts and forecasts GHI from the UNV
station.

RVD: GIZ Richtersveld station

The results from Table 4.4, supported by Figures 4.6 and 4.7 show that the best model to
forecast RVD GHI is ARIMA. From the Figures 4.6 and 4.7, the line which is much closer
to the original value is the one which represents the ARIMA model. This implies that the
ARIMA model is the best model to predict and forecast GHI from the RVD station.

SUN: Stellenbosch University station

The results from Table 4.5, supported by Figures 4.8 and 4.9 shows that the best model to
forecast RVD GHI is attention-based LSTM. From the Figures, 4.8 and 4.9, the line which
is much closer to the original value is the one which represents the attention-based LSTM
model. This implies that the best model to predict and forecast GHI from the SUN station
is the attention-based LSTM model.

UNV: USAid Venda station(Wavelet denoised GHI)

The results from Table 4.6, supported by Figures 4.10 and 4.11 shows that the best model
to forecast RVD GHI is ARIMA. From the Figures 4.10 and 4.11, the line which is much
closer to the original value is the one which represents the ARIMA model. The best model
to predict and forecast wavelet denoised GHI from UNV station is ARIMA.
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4.4.4 Best Model Future Forecasts

(A) 1 day forecast of GHI for RVD station over time.

(B) 1 day forecast of GHI for SUN station over time.

(C) 1 day forecast of GHI for UNV station over time.

FIGURE 4.12: Time series forecasts plots of GHI vs time for 3 sites.

Figure 4.12 shows the predicted values and future forecasts using the best model. From
each of the Figures 4.12 (A)-(C), it can be seen that the best models were able to capture GHI
trends and seasonality.



32

Chapter 5

Conclusions and future directions

5.1 Introduction

This chapter summarizes the research findings and proposes some recommendations. The
study’s limitations, including areas for future research, are also discussed in this chapter.

5.2 Study findings

This project explored the analysis of solar radiation. All the findings for this project are
based on the GHI time-series data for three different sites in South Africa; namely, UNV
(from 23 March 2021 to 28 March 2021), SUN (from 23 March 2021 to 28 March 2021) and
RVD (from 30 April 2020 to 4 May 2020) stations retrieved from https://sauran.ac.za/.
The main reason for the selected period was that it covers the recent timestamp with no
null values.

Descriptive statistics indicate that the GHI signals for the three sites are not normally dis-
tributed. This study was carried out assuming univariate distributions and their skew vari-
ants.

An overall of 4 models, namely ARIMA, LSTM, attention-based LSTM, and hybrid attention-
based LSTM-ARIMA, were used to forecast the signals of GHI in which the hybrid attention-
based LSTM-ARIMA model on USAid Venda station was found to be the best fitting model
with RMSE = 7.383 and MAE = 14.1293, followed by LSTM with MAE = 7.817 and
RMSE = 8.444. Comparing the results on non-wavelet denoised and wavelet denoised,
models performed better on wavelet denoised data. ARIMA model was the best with
MAE = 0.194 and RMSE = 0.542.

The best model for forecasting GHI from GIZ Richtersveld station is ARIMA with MAE =

0.782 and RMSE = 1.271, followed by hybrid model with MAE = 4.120 and RMSE =

https://sauran.ac.za/
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4.987. For Stellenbosch University station, attention LSTM was the best with MAE = 1.512
and RMSE = 1.640, followed by hybrid with MAE = 2.011 and RMSE = 2.511.

5.3 Limitations

The limitation of this study is that only four type models in a whole bunch of models were
used and the comparison was made in four models.

5.4 Conclusion

5.4.1 UNV: USAid Venda station

The results from Table 4.3, supported by Figures 4.4 and 4.5 shows that the best model to
forecast UNV GHI is the attention-based LSTM-ARIMA(hybrid). From the Figures 4.4 and
4.5, the line which is much closer to the original value is the one which represents the hybrid
model. This implies that the hybrid model is the best to predict and forecast GHI from the
UNV station.
On this station, an improved hybrid model (ARIMA-LSTM with attention) was used to
have a better GHI prediction model. The performance was better than traditional methods.
The experimental results illustrate that the data characteristics are of great significance to
the performance of the whole model (Qiu, Wang, and Zhou, 2020).

5.4.2 RVD: GIZ Richtersveld station

The results from Table 4.4, supported by Figures 4.6 and 4.7 shows that the best model to
forecast RVD GHI is ARIMA. From the Figures 4.6 and 4.7, the line which is much closer
to the original value is the one which represents the ARIMA model. This implies that the
ARIMA model is the best model to predict and forecast GHI from the RVD station.

5.4.3 SUN: Stellenbosch University station

The results from Table 4.5, supported by Figures 4.8 and 4.9 shows that the best model to
forecast RVD GHI is attention-based LSTM. From the Figures 4.8 and 4.9, the line which
is much closer to the original value is the one which represents the attention-based LSTM
model. This implies that the best model to predict and forecast GHI from the SUN station
is the attention-based LSTM model.
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5.4.4 UNV: USAid Venda station(Wavelet denoised GHI)

The results from Table 4.6, supported by Figures 4.10 and 4.11 shows that the best model to
forecast RVD GHI is ARIMA. From the Figures 4.10 and 4.11, the line which is much closer
to the original value is the one which represents the ARIMA model. The best model to pre-
dict and forecast wavelet denoised GHI from UNV station is ARIMA. The prediction results
for the original data technique without wavelet processing exhibit substantial fluctuations,
and the fitting impact of the real data is weak (Qiu, Wang, and Zhou, 2020). The model’s
overall performance is impacted.

5.5 Areas of future study

Future research should look at forecasting GHI signals using a combination of several sta-
tistical, mathematical and Deep learning models (e.g., it can be a hybrid attention-based
LSTM-GRU-ARIMA-GARCH on wavelet denoised GHI model). Also, future studies should
look at modelling GHI for several sites to see which model is the best based on having the
smallest RMSE, MSE, MAE and bigger R2 on both or most stations. This will help check for
the persistence of volatility in the renewable energy sector.
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