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Abstract 

Data security is an important aspect in the field of data science where data 

collection, analysis, interpretation, and sharing are a primary goal. To prevent 

unauthorized access to data, creative methods to securing data are sought.  

Cryptography is about the development of algorithms with which to hide data. 

The three key objectives of cryptography are to achieve data confidentiality (C), 

data integrity (I), and data authenticity (A). Algorithms that can achieve all these 

three objectives at once are said to be CIA compliant. However, there are 

barely any algorithms out there that can satisfy these three objectives in one 

goal. However, CIA-compliant cryptosystems are, to the best of our knowledge, 

rare. 

The RSA algorithm is a compelling cryptosystem that was mainly designed to 

achieve data confidentiality. It demonstrates attractive properties for 

improvement towards CIA compliancy. Some research has tried to upgrade the 

RSA algorithm by combining it with the DH model or the El Gamal model. 

However, still, the outcome would either be CI or CA compliant, leaving out one 

of the three objectives.  

This study investigates the improvement of the RSA algorithm by incorporating 

a neural network to learn data integrity and data authenticity towards creating 

a CIA-compliant hybrid RSA model. To the best of our knowledge, this is the 

first time a neural network has been proposed for improving the RSA model 

towards CIA compliance.  

Experimental results indicate that a neural network can learn data integrity and 

data authenticity in RSA encrypted messages. Data analysis affirmed that 
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neural network learning can be generalized. A conclusion that the RSA 

algorithm can be upgraded towards CIA compliance when a neural network is 

incorporated was arrived at. These findings have implications for the 

commercial standing of the RSA algorithm as well as for the body of knowledge 

in the cryptography domain. 
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Chapter 1  : Introduction 

Cryptography is the study of mathematical techniques for data protection 

(Galbraith, 2012). In data science terms, it seeks to achieve, at least, one of 

the five main objectives of cryptosystems, namely, data confidentiality, data 

integrity, data source authentication, data users’ accountability, or data 

availability (Menezes, Katz, Van Oorschot & Vanstone, 1996). In this context, 

data confidentiality (C) refers to a set of rules that limit access to data by 

incorrect parties. This ensures that only authorized parties have access and 

permission to data (Samonas & Coss, 2014). On the other hand, data integrity 

(I) refers to the ability to keep data away from unexpected or unwanted 

modifications. The idea is to maintain the data’s original form (Samonas & 

Coss, 2014). Data integrity provides evidence that data has not been altered 

or tampered with by unauthorized parties (Samonas & Coss, 2014). Contrary, 

data source authentication (A) tackles the property that data originated from its 

purported source (Dworkin, 2010). It tracks data to its originator. Accountability 

(A) is about users taking responsibility for the losses or misuse of data by 

unauthorized parties (Li, Lou & Ren, 2010). Data availability (A) then refers to 

our ability to access data for use by the rightful parties at the right time and 

place (Li, Lou & Ren, 2010). Precisely, cryptography examines how these five 

objectives culminate the concepts of secrecy in computing and broadly 

speaking, data security. A cryptosystem that satisfies data confidentiality, data 

integrity, and data authenticity is said to be CIA compliant. A cryptosystem that 

goes beyond CIA (Confidentiality-Integrity-Authenticity) compliance can be 

CIAA (Confidentiality-Integrity-Authenticity-Accountability) or CIAAA 

(Confidentiality-Integrity-Authenticity-Accountability-Availability) compliant. 
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We understand data security as a collection of norms, methods, and 

techniques intended to protect data against malicious loss, modification, 

disclosure, or data leakage (Hauer, 2015). Data security can be enforced by 

using a variety of technologies and strategies, including administrative reviews 

(Crawford & Schultz, 2014), logical tests (Yavuz, Yazici, Kasapbaşi & Yamaç, 

2016), business guidelines (Peltier, 2016), firewalls (Blaisdell & Vuong, 2010), 

and most importantly, encryption techniques (Galbraith, 2012).  

In this context, administrative reviews are about the provision of security breach 

awareness, and employee training, before granting access to data (Aman & 

Snekkenes, 2013; Crawford & Schultz, 2014). However, administrative reviews 

are not clear on which data security objectives, among the five (see the first 

paragraph of this section for the five objectives), will be achieved.  

On the other hand, logical tests involve auditing the cryptosystem using a risk-

based approach to checking security breaches (Botella, Legeard, Peureux & 

Vernotte, 2014; Yavuz, Yazici, Kasapbaşi & Yamaç, 2016). This approach, 

nonetheless, satisfies more than one data security objective towards CIA 

compliance. We indicated that a CIA-compliant cryptosystem is one in which 

emphasis is on data confidentiality, data integrity, and data authenticity.  

Contrary, business guidelines refer to written policies and procedures that 

guide businesses on how to protect their sensitive data (Aman & Snekkenes, 

2013; Peltier, 2016). These are more theoretical policies and procedures such 

as ensuring that all laboratory doors are kept closed. However, business 

guidelines do not provide clear evidence that they can achieve total data 

confidentiality. They only focus on the theoretical ways of preventing data 

security breaches.  
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Data encryption techniques are more interesting. These mainly limit 

unauthorized users’ access to data (C), checking for data originality (I), while 

also verifying data sources (A). The properties of encryption techniques are 

more appealing. Data security through encryption techniques is indispensable 

in the field of data science. Although data collection, data analyses, data 

interpretation, and data sharing are the primary goals of data science, data 

security is paramount. How then can we ensure data security? How can we 

ensure data confidentiality, data integrity, and data source authentication? How 

do we develop encryption algorithms that are CIA compliant? In this study, we 

will defer considerations for user accountability (A) and data availability (A) as 

future work.  

There are many cryptosystems discussed in the literature. The Caesar 

algorithm (Paar & Pelzl, 2009) is the root of many cryptosystems. The Caesar 

cipher gave birth to cryptography. However, it is too easy to brute force attack 

because of its key size and the character set it supports. The Caesar cipher 

uses a numeric integer key from 2 to 24. It only supports alphabetic characters 

from A to Z. It is not case sensitive. In this study, the terms; cipher, algorithm, 

model, and cryptosystem are synonyms. 

Improvements to the Caesar cipher gave birth to the Vigenere cipher (Omolara, 

Oludare & Abdulahi, 2014), and the One Time Pad (Rubin, 1996), among many 

others. The Vigenere model replaced Caesar’s numeric integer key with a 

keyword. The One Time Pad model replaced Vigenere’s user-chosen keyword 

with a randomly generated keyword. However, the character set supported 

remained the same (alphabetic letters from A to Z). However, there have 

always been some flaws noted in these Caesar siblings (commonly linked to 

the problem of only focusing on one objective, –data confidentiality).  



4 
 

Alternative approaches to the Caesar, Vigenere, and one time pad followed 

which revised the character set supported. The Vernam ciphers (Dey, 2012) 

was the first promising model to satisfy this expansion. In this case, all 

characters in the plain text would be converted to corresponding ASCII codes 

before encryption. Data would be encrypted in binary form after relevant 

conversions. Data would also be transmitted between communicators in binary 

form. Decryption would also take place in binary form. The character set 

supported was, therefore, upgraded from the 26 letters of the alphabets to all 

the 256 characters in the ASCII set. Case sensitivity was introduced. Ciphertext 

was, therefore, further complicated.  

Other alternative interventions yielded transposition ciphers such as the rail 

fence model (Singh, 2000). In these, encryption changed from the substitution 

of characters by other characters, to shifting the positions of characters within 

the same text. Although these were plausible improvements to the body of 

knowledge, transposition models lacked the mathematical complexities 

extendable to CIA-compliant cryptosystems. These algorithms continued to 

only focus on data confidentiality.  

Block ciphers were also proposed as better improvements to cryptosystems. 

The popular block ciphers that made a mark on the markets include the Playfair 

algorithm (Singh, 2000; Rahim & Ikhwan, 2016), the Hill cipher (Rahman, 

Abidin, Yusof & Usop, 2013; Singh, 2000), the Feistel cipher (Knudsen, 1993; 

Singh, 2000), and the popular Data Encryption Standard (DES), together with 

its many siblings (Singh, 2013). Most of these block ciphers have been very 

successful. However, similarly, they emphasize on data confidentiality only. 

They do not satisfy the requirements for CIA compliance. 

More sophisticated approaches were proposed which exploited Euclidian 

algebra. These approaches include the DH model (Kallam, 2015), the RSA 



5 
 

algorithm (Stallings, 2006), and the El Gamal algorithm (Ahmed & Ali, 2011), 

to mention a few. In these models, modulo arithmetic is paramount. However, 

to the best of our knowledge, we are not aware of any cryptosystem in this 

category that satisfies three or more objectives of cryptography. We are not 

aware of a CIA-compliant model in this domain. Some algorithms only focus on 

data confidentiality (Alhassan, Ismaila, Waziri & Abdulkadir, 2016), while others 

isolatedly look at data integrity (Sadikin & Wardhani, 2016) or data authenticity 

(Thayananthan & Albeshri, 2015) independently.  

The demand for cryptosystems that satisfy more objectives at once is apparent. 

Precisely, how do we develop CIA, CIAA, or even CIAAA compliant 

cryptosystems to broaden the body of knowledge? How do we strengthen 

cryptosystems by allowing them multiple focus? The need for such re-focused 

algorithms is evidently apparent (Cha, Schmidt, Leicher, & Shah, 2014).  

The RSA model is a compelling asymmetric cryptographic algorithm (Stallings, 

2006) that uses two different key sets, a public key for encryption and a private 

key for decryption. Communicating parties can share and use the public key 

(Bangju & Huanguo, 2006). The intended receiver of encrypted data keeps the 

private key hidden (Stallings, 2006). Encryption is achieved when senders of 

data use the public key to get cipher data before data transmission. However, 

as already said, the RSA model achieves only data confidentiality. It lacks any 

aspects of data integrity and data authenticity. How can the RSA model be 

improved to consider data integrity and user authentication? 

A neural network is an algorithm aimed at understanding the relationship 

underlying a range of data through a mechanism that imitates the way the 

human brain works (Agarwal & Agarwal, 2013). It consists of a distributed 

network of nodes with local memory, performing localized information 

processing, linked by unidirectional signal channels (Hecht-Nielsen, 1992). The 
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learning algorithm of a neural network is supervised or unsupervised (Agarwal 

& Agarwal, 2013). A neural network can adapt to changing inputs without re-

designing the output criteria. These features of a neural network are attractive 

for their integration into the RSA algorithm towards learning data integrity and 

data authenticity (Meletiou, Tasoulis & Vrahatis, 2002).  

This work proposes, as a baseline to further studies and proof of concept, the 

design, and implementation of a CIA compliant cryptosystem based on the 

RSA algorithm which incorporates a neural network to learn data integrity and 

data authenticity. This is a proposal to improve the RSA model to CIA 

compliance. While the RSA algorithm, on its own, ensures data confidentiality 

(Goshwe, 2013), it lacks evident aspects for data integrity checks and data 

authentication. The main contribution of this study will be around those 

improvements to the RSA algorithm towards the creation of a CIA compliant 

hybrid RSA model with a neural network embedded.  

1.1     Statement of the problem 

The statement of the problem addressed by this study is, primarily, an 

investigation of ways of integrating the RSA algorithm with a neural network 

system that learns data integrity and data authenticity in RSA encrypted data 

towards a CIA compliant hybrid RSA model. It is envisioned that the proposed 

neural network will learn patterns related to the origins of data and the integrity 

of data encrypted using the RSA algorithm. The neural network is hoped to 

predictively associate incoming cipher information (on the receiver’s end) with 

its source. The neural network is also expected to predictively verify any 

chances that data was modified or tampered with. In our understanding, these 

improvements are substantially novel in the related body of knowledge. 
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1.2         Aim 

This study aims to investigate improvement to the RSA algorithm by 

incorporating a neural network which will learns data integrity and data 

authenticity towards a CIA-compliant hybrid RSA model.  

1.3         Objectives 

Guided by the aim of the study, three objectives are of interest as follows: 

a) To implement the RSA algorithm. 

b) To design and embed a neural network, into the RSA algorithm, which 

learns data integrity and data authenticity patterns in RSA encrypted data. 

c) To evaluate the performances of the CIA-compliant hybrid RSA model. 

1.4         Questions 

Steered by the aim and objectives of the study, three questions are asked in 

this study which we seek to answer upon completion of this study. The three 

questions are: 

a) How do we design and implement the RSA algorithm? The answer to this 

question is a piece of code that implements the RSA model.   

b) How do we design and embed a neural network into the RSA model to 

learn data integrity and data authenticity patterns? The answer to this 

question is another piece of code showing the steps we follow in 

designing a neural network and its incorporation into the RSA model.  

c) To what extent does the hybrid RSA model satisfy CIA compliance? The 

answer to this question is the evaluations administered on the hybrid RSA 

model. The performance results yielded from these evaluations are 

statistically analyzed. 
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1.5     Hypothesis 

The main hypothesis driving this study is that:  

• Ho - incorporation of a neural network into the RSA algorithm will yield an 

upgraded hybrid RSA model which satisfies three of the five objectives of 

cryptographic algorithms - data confidentiality, data integrity, and data 

authentication.  

We test this hypothesis through experimental processes driven by a tailor-

designed simulated RSA model integrated with a neural network. The aim is to 

demonstrate RSA based data encryption, data integrity, and data 

authentication.  

1.6    Motivation 

The undertaking of this study was motivated, mainly, by two factors as follows.  

• Data hiding through encryption is key in minimizing the risk of attacks by 

intruders, especially in the field of data science. There are several data 

hiding methods. However, most methods emphasize only on data 

confidentiality, ignoring data integrity and source authentication. The RSA 

algorithm also ensures only data confidentiality (Goshwe, 2013). Data 

integrity and user authentication are blurred or implicitly inferred. We are 

inspired by the desire to assess application of a neural network in the 

improvement of the RSA algorithm towards explicitly achieving data 

confidentiality, data integrity, and data authenticity towards CIA 

compliancy.  

• The idea of bringing together cryptography and machine learning is 

creative and inspiring. Cross-disciplinary research is particularly 

encouraged because it yields outcomes more than the sum of the 
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contributions of the individual contributing disciplines. We are curious to 

assess the extent to which bringing these two branches of Computer 

Science together can add content to the body of knowledge. We are 

inspired by the desire to assess the performance of a neural network in 

tracing data integrity and data authenticity patterns in RSA encrypted 

data. In our view, these are innovative interventions in the fields of 

cryptography and machine learning.  

1.7    Contributions 

Three contributions are envisioned to arise from this study as follows: 

• The primary contribution of this study is the creation of additional literature 

to the body of knowledge. New content is created in the fields of 

cryptography and machine learning. Innovative and creative integration 

of the RSA algorithm and a neural network is new content that will be of 

value to future researchers in these fields.  

• Another contribution arises from the practical and commercial 

perspectives. Successful improvement of the RSA algorithm by 

incorporating a neural network towards achieving a CIA compliant hybrid 

may, potentially, bring the RSA algorithm closer to organizational 

demands and many governments’ expectations. These improvements 

may directly benefit entities where CIA features are indispensable, such 

as the Department of Home Affairs, Department of National Defense, and 

the Department of State Security. Similarly, the banking sector and the 

entire e-commerce industry may prefer CIA-compliant cryptosystems.  

• The last contribution is born from the notion that hybrid models achieve 

much more than the parent component units. The idea of bringing 

together the RSA algorithm with a neural network brings about strength 
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in the product cipher thereto. Successful completion of this work, thus, 

directly adds hope to all stakeholders regarding winning the war against 

hackers (Aiguokhian, 2013). The work, therefore, further contributes 

goodwill to cryptosystems especially when CIA compliance is mentioned. 

1.8       Location of the study 

This study solves a problem in the data security domain, particularly looking at 

aspects related to implementation and achievement of data confidentiality, data 

integrity, and user authentication in one goal. We hope to be able to design and 

implement a predictive cryptosystem based on the RSA model and a neural 

network, where data confidentiality remains the role of the RSA model, while 

data integrity and data authenticity are handled by a neural network.  

This work is part of a study towards a Master of Science degree. All simulations 

and experimental works will be completed at the University of Venda on a 

personal laptop. The data generated through simulations will be stored at the 

University of Venda students’ data repository. However, this data is simulated 

and generated by our system. It does not have any major ethical implications.  

The results of this work are software codes that implement the RSA model and 

incorporation of a neural network into the RSA model. This work may inspire 

commercial developments in various departments in South Africa. It may 

inspire policy reviews. However, testing the applicability of the hybrid RSA 

model in these other practical contexts is outside the scope of this study.  

1.9       Limitations 

Two limiting factors are noted in this study as follows.  

• The computational speed of available hardware is a challenge. Precisely, 

systems’ performance will drop drastically when large numbers 
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associated with the RSA model are computed. Some programming 

languages will not even be able to handle such data types. Some 

programming languages will freeze when computations give numbers out 

of range. This is a challenge we will face in the implementation of the RSA 

model. Nevertheless, we intend to exploit the use of the random library in 

Python in order to tackle this challenge.  

• The time allocated for completing this work is a challenge. A lot of sideline 

investigations are required before this project is completed. We cannot 

complete all possible aspects to include in the study. Rather, we will 

concentrate on proving the concept of incorporation of a neural network 

in the RSA model.  

1.10      Overview 

The rest of the project proceeds as follows:  

• Chapter 2 will present related works, emphasizing on how the RSA 

algorithm has been improved in the past.  

• Chapter 3 will give the methodology we follow towards solving the 

research questions. It clarifies the design and implementation issues, 

presenting the key routines of the proposed cryptosystem, unit testing 

methods, and the proposed integration strategies with which units are put 

together into one predictive cryptosystem.  

• Chapter 4 will present the experimental setup, the research design, the 

results achieved, and the scientific analyses and discussions of the 

results. It thoroughly explains the meaning of the results.  

• Our observations, reflections, contributions, conclusions, and 

recommendations are presented last in chapter 5, also highlighting 

potential future works emanating thereto.  
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1.11      Summary 

This chapter set the ball rolling by introducing the study. It introduced the 

statement of the problem as an investigation of ways of integrating the RSA 

algorithm with a neural network system that learns data integrity and data 

authenticity in RSA encrypted data towards a CIA-compliant hybrid RSA model. 

The aim of the study was pinpointed as; to investigate improvement to the RSA 

algorithm by incorporating a neural network that learns data integrity and data 

authenticity towards a CIA compliant hybrid RSA model.  

Three objectives were pinpointed as key. Precisely, the study seeks to 

implement the RSA algorithm. It also pursues the design and embedment of a 

neural network into the RSA algorithm to learn data integrity and data 

authenticity patterns in RSA encrypted data. The work then evaluates the 

performances of the proposed CIA-compliant hybrid RSA model. 

Three questions were asked in posed in this chapter, all aligned to the 

objectives of the study. The first question seeks to understand how the RSA 

algorithm is designed and implemented. The second question seeks to 

understand how a neural network is designed and incorporated into the RSA 

model to learn data integrity and data authenticity patterns. The final question 

assesses the extent to which the hybrid RSA model satisfies CIA compliancy. 

The chapter stated the null hypothesis that drives the entire study. We believe 

that: Ho - incorporation of a neural network into the RSA algorithm will yield an 

upgraded hybrid RSA model which satisfies three of the five objectives of 

cryptographic algorithms - data confidentiality, data integrity, and data 

authenticity.  

Two motivating factors for undertaking this study were singled out. Precisely, 

the desire to assess the application of a neural network in the improvement of 
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the RSA algorithm towards explicitly achieving data confidentiality, data 

integrity, and data authenticity towards CIA compliance will drive this study. 

Also, curiosity to assess the extent to which bringing a cryptography model and 

a machine learning system together further propels this study. That desire to 

assess the performance of a neural network in tracing data integrity and data 

authenticity patterns in RSA encrypted data is a motivating factor noted in this 

chapter.  

Three contributions are envisaged. It is hoped that the work will create literature 

and new content in the respective fields. It is also hoped that successful 

improvement of the RSA model incorporating a neural network towards CIA 

compliance will respond to most organizations’ needs. Generally, the hybrid 

model will be stronger. This adds goodwill to cryptosystems. 

The location of the study was indicated from a conceptual perspective, along 

with the limitations of the study. Two limitations were pointed out. The first 

pointed to computational performance during computation with large numbers. 

The second limitation has to do with the time allocated for the completion of 

this research work. The overview of the study culminated the work presented 

in this chapter. 
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Chapter 2  :  Literature review 

This chapter reviews literature related to the field of cryptography where 

improvements to the RSA algorithm have been connoted towards CIA 

compliance. Mainly, the RSA model is unpacked, and reviews related to how 

the RSA model has addressed data confidentiality, data integrity, and data 

authenticity in the past are presented. The computational challenges noticed in 

the RSA model are discussed before any attempts to move the RSA model 

towards CIA compliance are deliberated.  

 

Figure 2.1: Overview of the chapter. 
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We also review literature in which neural networks have been considered for 

improving cryptosystems. Our basis for making most of the conclusions we 

arrive at in this research study is grounded on the literature reviewed in this 

chapter. The gap our work seeks to fill in the body of knowledge is presented 

at the end of this chapter. Figure 2.1 shows the layout of this chapter in pictures. 

2.1 Components of the RSA algorithm 

We already mentioned that the RSA algorithm is asymmetric (Bhanot & Hans, 

2015). Asymmetric algorithms use two keys, a public key that is used for 

encryption and a private key that is used for decryption (Stallings, 2006). We 

also mentioned that communicating parties can share the public key, but they 

cannot share the private key. In this context, data encryption refers to a 

mechanism with which to transform a message, known as a plain text, into an 

alternative form called a ciphertext (Goshwe, 2013). Decryption would mean 

the reverse process (Goshwe, 2013). 

The security of the RSA algorithm depends on its internal mathematical 

properties (Zhou & Tang, 2011). The same mathematical properties are 

inferred in the generation of the RSA model’s public and private keys. 

Precisely, two large prime numbers, say p and q, are chosen secretly (Bangju 

& Huanguo, 2006). These two prime numbers are subsequently used to 

generate other large numbers of interest, including n, e, φ(n), and d. In this 

case, n is the product of p and q. The totient function, φ(n) is the product of (p 

– 1) and (q – 1). The integer e is such that the gcd (φ(n), e) = 1. The public key 

would be denoted as K1 = (n, e), while the private key would be denoted as K2 

= (p, q, φ(n), d) (Miller & Trbovich, 1982). Note that the value of d is such that 

d x e mod φ(n) = 1.   
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2.2 The RSA algorithm and data confidentiality 

We indicated that the RSA algorithm emphasizes on data confidentiality 

(Alhassan, Ismaila, Waziri & Abdulkadir, 2016). Although the RSA algorithm is 

powerful in this regard, it lacks aspects to probe data integrity and data 

authenticity. This is not the first time these flaws and vulnerabilities have been 

noted (Pfleeger & Pfleeger, 2012). Precisely, the possibilities of factorizing the 

public key components into picking the prime numbers used to compute the 

public key elements, then the private key components such as the totient 

function, is worrying. Hackers may tamper with the data integrity of RSA 

encrypted messages (Nguyen, 2009) once the key components are identified. 

Adding data integrity and data authenticity to RSA encrypted data is, thus, an 

apparent gap in the field. 

Other common issues raised about the RSA algorithm have to do with the 

possibilities of guessing the values of the private key component d - a private 

value (Al-Hamami & Aldariseh, 2012; Van Tilborg & Jajodia, 2014) used in 

decoding encrypted messages. Once correctly guessed, encrypted data can 

be decoded, modified, or masqueraded. Attempts have been made in the 

literature towards modifying and improving the RSA algorithm to bring in 

aspects of data integrity and data authenticity. This would qualify the RSA 

model as a CIA-compliant hybrid model. However, no tangible results are 

available in the literature. 

Another improvement to the RSA algorithm considered the use of algebraic 

finite fields towards achieving data confidentiality on wireless networks (Frunza 

& Scripcariu, 2007). Key generation, in their case, considered the use of two 

keys instead of the use of the traditional one key for encryption. This 

intervention reduced the chances of brute force attacks on the private key 
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(Jahan, Asif & Rozario, 2015). However, the algorithm’s CPU time and RAM 

demands escalated.  

The strength of the RSA algorithm was also enhanced by increasing or varying 

the key size (Amalarethinam & Leena, 2017). However, that on its own 

increased the CPU time the algorithm required to complete encryption and 

decryption processes (Amalarethinam & Leena, 2017).  

Concepts from quantum physics have also been considered and merged with 

the RSA algorithm to detect third-party eavesdropping in internet 

communication (Odeh, Elleithy, Alshowkan & Abdelfattah, 2013; Plesa & Mihai, 

2018). Although this intervention improved the RSA algorithm with regards to 

the data confidentiality aspect, data integrity and data authenticity were still 

ignored, leaving the RSA algorithm still not CIA-compliant.    

Other attempts to improve the RSA algorithm considered the use of the cubic 

congruential generator algorithm which, rather, improved the robustness of the 

RSA algorithm (Khairina & Harahap, 2019). This still did not touch on aspects 

related to data integrity and data authenticity. Instead, the claimed robustness 

remained on data confidentiality. 

Also, a hybrid encryption algorithm based on the RSA and the data encryption 

standard (DES) was considered towards enhancing the security of data during 

transmission in Bluetooth communication (Frunza & Scripcariu, 2007; Ren & 

Miao, 2010; Singh, 2013). This, again, enhanced data confidentiality, ignoring 

data integrity and data authenticity.  

Contrary, a convertible authenticated encryption scheme has been proposed 

and incorporated into the RSA algorithm to add data authenticity and non-

repudiation (Wu & Lin, 2009; Lin, Hsu & Huang, 2011). This is inspiring as it 

directly informs our intention to improve the RSA in similar directions. 
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Nonetheless, in our case, we do not only consider data authenticity, but also 

data integrity on top of data confidentiality. 

Many other works looked at modifying the RSA algorithm towards 

strengthening its robustness in terms of binary code format (Aiswarya, Raj, 

John, Martin & Sreenu, 2016). However, the Diffie-Hellman key exchange 

algorithm brought more hope and better improvements to the RSA model when 

it handled the sharing of a public key on an open communicating channel 

(Bodkhe & Jethani, 2015). This improvement also directly informs the 

hypothesis we bring into our study. Nonetheless, all the improvements noted 

in the literature practically re-emphasized improving data confidentiality, a bit 

of data authenticity, and non-repudiation, completely leaving out data integrity 

towards a fully CIA-compliant hybrid model. Our work seeks to fill that gap, 

hence worthwhile.  

2.3 The RSA algorithm and data integrity 

In responding to calls for improvement of the RSA algorithm to incorporate data 

integrity, various existing techniques were considered. On top of the list was 

an identity-based cloud data integrity checking protocol that was used to verify 

the integrity of the public key generated by the RSA algorithm (Yu, Xue, Au, 

Susilo, Ni, Zhang, Vasilakos, & Shen, 2016). Instead of emphasizing the 

integrity of data, the model stressed the integrity of the public key shared (n, 

e). The rationale of their study was that it is critically essential to verify the RSA 

algorithm’s public key before it is used in data encryption. This was a milestone. 

However, we are more concerned about the integrity of RSA encrypted data 

rather than the integrity of the public key.  

Issues to do with data integrity in the RSA model also emanated from the 

design of the message digest hashing algorithm. In this, the RSA partial 
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homomorphic algorithm was incorporated to maintain data confidentiality and 

data integrity in cloud computing (Ora & Pal, 2015). In this case, the RSA 

algorithm handled data confidentiality, while the message digest hashing 

algorithm kept responsible for the verification of data integrity (Ora & Pal, 

2015). Although this intervention directly informs the work we present in this 

study, these improvements still left out data source authenticity towards a CIA-

compliant hybrid RSA model.   

Compelling is mediations brought in when the RSA algorithm was combined 

with the AES (Kuswaha, Waghmare & Choudhary, 2015). In this combination, 

the RSA model provided data confidentiality, and the AES further encrypted 

already encrypted outcomes. This intervention neither looked at data integrity 

nor data authenticity. Rather, a product cipher arose which still emphasized 

data confidentiality. The inclusion of data integrity and data authenticity in the 

RSA model is the gap we seek to fill in the body of knowledge.  

Interventions through the use of the dynamic Merkle hash tree, at least, took 

the RSA model one step forward towards CIA compliance when dynamic data 

integrity was considered (Saranya, Usha & Alex, 2017). This was done for 

security assurance when recovering lost data blocks in the cloud storage 

(Saranya, Usha & Alex, 2017). These improvements are relevant to our work. 

This research study is aimed at bringing together the three aspects of data 

security into the RSA algorithm by incorporating a neural network that would 

learn data integrity and data authenticity in RSA encrypted messages.  

2.4     The RSA algorithm and data source authentication 

Data source authentication has been a challenge in the cryptography domain 

for a while. How do we avoid denial of action? How do we avoid non-
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repudiation? How do we get data digitally signed? These questions have not 

yet been fully answered, especially where the RSA algorithm is involved. 

A hybrid algorithm called the elliptic curve RSA was proposed to deal with the 

issue of data authentication (Krishnamoorthy & Perumal, 2017). This is a hand-

off authentication protocol that was used in the roaming of mobile nodes 

(Krishnamoorthy & Perumal, 2017). However, this intervention only dealt with 

data authentication, ignoring data confidentiality and data integrity. The 

outcome hybrid algorithm was, therefore, not CIA compliant.  

A four-layered authentication stack has also been proposed and used to 

improve the RSA algorithm towards a data authenticating hybrid. This is when 

and where the techniques of password, external digital certificates, and a third 

party in data authentication emanated (Bhattacharjya, Zhong & Li, 2019). In 

this case, the four-layered authentication stack enforces a built-in way of 

identifying the source of RSA encrypted messages. This is inspiring. However, 

the works discussed here only emphasized the issue of tracing the source of 

the data (data authenticity), while on the other hand ignoring, the quality of the 

data (data integrity) as well as data confidentiality. We want a system in which 

the three objectives are all tackled at once. 

Further attempts to improve the RSA algorithm led to the adaption of the 

handshaking theorem on an extensible authentication protocol framework to 

ensure the security of client data in the cloud (Marium, Nazir, Ahmed, 

Ahthasham & Mirza, 2012). In this, the origin of data was considerably verified, 

hence the name extensible authentication protocol framework. However, 

again, only data authentication is considered, ignoring data integrity. We 

propose an improved RSA model which achieves data confidentiality, data 

integrity, and data authentication on one goal. 

https://www.sciencedirect.com/topics/computer-science/elliptic-curve
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The digital signature technology slotted into the RSA model allowed proving 

that medical images are authentic or not (Smith, 1995; Gola, Gupta & Iqbal, 

2014; Sadikin & Wardhani, 2016). The same technology has been in use in the 

security circles related to the transfer of funds. Key in these attempts is 

authentication of the data source, thereby preventing non-repudiation. 

Nonetheless, the idea of bringing all three aspects of data security at once, 

towards CIA compliant hybrid models was not tackled. 

Tracing the source of data in an RSA model is an ongoing subject for study in 

cryptography (Khan, Pervez & Abbasi, 2017). Tracing the source of data curbs 

most possible data security breaches related to non-repudiation (Venkatraman 

& Overmars, 2019). The introduction of an improved RSA algorithm based on 

the use of prime number factorization to protect the newly introduced field, the 

internet of things, from data security breaches, provided a thorough explanation 

of the vulnerability of the keys generated by the RSA algorithm (Andrea, 

Chrysostomou & Hadjichristofi, 2015; Venkatraman & Overmars, 2019). 

However, CIA compliancy still lacked. This research study tries to close that 

gap by bringing together the RSA model and a neural network.  

2.5     Computational performance of the RSA algorithm 

Improvements to the RSA model require us to also pay attention to issues 

around the computational performance of the model. Generally, the RSA 

algorithm degrades in performances when large integers are used to generate 

the related keys (Nozaki, Motoyama, Shimbo & Kawamura, 2001). As a result, 

Montgomery multiplication based on residue number systems has been 

proposed to remedy such speed issues (Nozaki et al., 2001). However, still, no 

explicit analysis was made regarding speed issues versus CIA compliancy.  
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On the other hand, the El-Gamal algorithm has also been proposed in 

combination with the RSA algorithm to enhance the computational speed of 

integer factorization during the encryption process (Ahmed & Ali, 2011). A 

similar merge of the RSA algorithm with the algorithmic OpenMP also came in 

towards improving execution time when computing large prime numbers in 

parallel (Saxena, Jain, Singh & Kushwah, 2017; Ayub, Onik & Smith, 2019). 

Exploration of speed issues continued when attempts became visible when the 

elliptic curve method hardware engines were used to improve the massive, 

large prime numbers computation and cost time product of the RSA algorithm’s 

moduli factorization by the general numbers field sieve (Cavallar et al., 2000). 

However, still, these interpolations did not bring aspects of CIA compliance in 

the RSA model. Our work seeks to fill this gap. 

One other weakness of the RSA algorithm has been identified as time-

consuming during modular exponentiation computation when a plaintext 

undergoes the encryption process. To compact this problem, Kumaravel and 

Marimuthu (2007) introduced a concept that enhances the RSA algorithm by 

using the Indian Vedic mathematics. This is a good view to embrace in our 

study. Great consideration will be made towards adopting some of the good 

views purported in Indian Vedic mathematics. 

2.6 The RSA algorithm and CIA compliance 

Prevalently, improvements to the RSA algorithm have not achieved CIA 

compliance. Fault attacks have, mainly, been considered along with the 

incorporation of the Chinese remainder theorem in smartcards (Blömer, Otto & 

Seifert, 2003). Similarly, the hash function, together with the RSA algorithm, 

has been used to check the correctness of the users’ data in mobile cloud 

computing (Garg & Sharma, 2014). These improvements pointed to the RSA 

algorithm realizing digital signature schemes, especially in secure electronic 
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health record applications (Gola, Gupta & Iqbal, 2014; Sadikin & Wardhani, 

2016). These improvements connoted embracement of data integrity as well 

as data authenticity at the same time. However, this was never formalized as 

an aspect of CIA compliance in the RSA model.  

Similar attempts to bring data integrity and data authenticity into the RSA model 

are also visible in the work of Blömer et al. (2003), where checks have been 

made regarding whether there were faults when the cryptosystem was tested 

(Blömer et al, 2003). The RSA algorithm was modified to focus on storage 

security to assure and check the correctness of the data stored on the cloud 

service (Venkatesh, Sumalatha & SelvaKumar, 2012). A blowfish algorithm 

was adapted in cloud computing to merge with the RSA algorithm to perform 

the modules of authentication and integrity of data files stored on the cloud 

(Syam & Subramanian, 2012; Yamuna & Anusha, 2015). These attempts 

inform our study as well. Nevertheless, they did not explicitly connote CIA 

regulations. In continuation, Mishra, Singh, and Ali (2018) introduced an 

improved RSA model based on cross-domain secure deduplication to minimize 

the possibilities of security breaches and making it easier to add new capacity. 

However, still, data confidentiality, data integrity, and data authenticity aspects 

were looked at separately, ignoring the need to comply with all these three 

aspects of data security at once. Our aim in this study is to investigate 

improvement to the RSA algorithm towards a CIA compliant hybrid model by 

incorporating a neural network that learns and reports data integrity and data 

authenticity.  

2.7 Interventions in which neural networks are considered 

The inclusion of a neural network in the design of a cryptosystem is a powerful 

idea. There is various research that looked at an angle of incorporating a neural 

network into cryptographic algorithms. Cryptographic algorithms are aimed at 



24 
 

avoiding the occurrence of cryptoanalysis. Alallayah et al. (2012) have adopted 

the idea of bringing a neural network closer to cryptosystems. For example, a 

neural network has been incorporated in the data encryption standard (DES) 

by combining a mathematical black-box model and a system identification 

technique with an adaptive system technique, to create the Neuro-Identifier that 

would combat the problem of cryptoanalysis in this cryptographic algorithm. 

This would be achieved by first revealing the encryption algorithm and its key 

from the given plaintext and ciphertext pair. However, this work dwelt too much 

on the violation of the three cryptographic algorithm objectives which are data 

confidentiality, data integrity, and data authenticity. Nevertheless, our work 

aims at preserving these three objectives into one cryptographic algorithm, the 

RSA algorithm. 

Attempts have been made to consider the training of a neural network model 

over encrypted data by using the emerging functional encryption scheme 

instead of homomorphic encryption or secure multi-party computation for data 

security (Xu, Joshi & Li, 2019). Practically and conceptually, their work aimed 

at tackling the problem of data confidentiality and data integrity, leaving out the 

aspect of data authenticity. The idea here was similar to ours. However, their 

work ignored other objectives of cryptographic algorithms. Our work considers 

tackling the inclusion of all three objectives at once in a single cryptographic 

algorithm.   

In general, we indicated that the RSA algorithm degrades in performances 

when large integers are used to generate the related keys (Nozaki, Motoyama, 

Shimbo & Kawamura, 2001). To tackle the problem of computational 

performance in the RSA algorithm, Chakraborty et al. (2018) proposed a model 

that analyzed the performance of an artificial neural network based on the RSA 

technique towards execution time of the RSA algorithm’s large integers for key 
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generation. However, these interventions ignored the inclusion of the aspects 

of CIA compliance into the RSA model or any other cryptosystem. 

Nevertheless, our work seeks to fill this gap, mainly, to create a CIA-compliant 

hybrid model built on the incorporation of a neural network into the RSA model. 

2.8 The gap 

We noted that the RSA algorithm alone responds to the data confidentiality 

problem. We also noted that attempts to improve the RSA algorithm are a niche 

research area. More interestingly, considerations to aspects of data integrity 

and data authentication are higher on the list of desired improvements to the 

RSA model. To the best of our knowledge, these attempts have not, as yet, 

arrived at the prescription of a new version of the RSA model that addresses 

all three aspects of data security (data confidentiality, data integrity, and data 

authenticity) towards a CIA compliant RSA hybrid. This is the apparent gap we 

intend to fill in the field of cryptography’s body of knowledge. 

A neural network is considered. It is brought forward to learn data integrity and 

data authenticity in RSA encrypted data. Precisely, the neural network is meant 

to learn the sources of data, as well as the data’s original form before it was 

encrypted. The aim of learning the source and the form of data before 

encryption is to allow the neural network to verify such data integrity and data 

authenticity when the data arrives at the receiver’s end. The neural network 

verifies an RSA encrypted piece of data’s integrity and authenticity at the 

receiver’s end.  Once this verification is completed, RSA encrypted data would 

comprise data confidentiality, while also satisfying data integrity and data 

authenticity. The RSA model would then be regarded as CIA compliant. This is 

the precise gap our research work intends to fill in the body of knowledge. 
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2.9 Summary 

This chapter commenced with an introduction and a flowchart describing an 

overview of what we reviewed. A detailed explanation of the RSA algorithm 

came first in section 2.2, emphasizing the component units of the RSA 

algorithm and mainly key generation.  

The link between the RSA algorithm and aspects of data confidentiality was 

dwelt on in section 2.3, emphasizing on literature that attempted to improve the 

RSA model along with the data confidentiality angles.  

Section 2.4 worked on the improvements connoted from the literature around 

aspects of data integrity on the RSA model. Conclusions were derived which 

pointed to a lack of RSA models which combined data confidentiality, data 

integrity, and data authenticity. This review gave pointers to the gap this study 

seeks to fill in the body of knowledge.  

Section 2.5 then reviewed works in which attempts were made to bring aspects 

of data authenticity into the RSA model. Similarly, conclusions were arrived at 

which indicated a lack of literature which brought together the three objectives.  

In section 2.6, we dwelt on literature that looked at the computational flaws of 

the RSA model. Attempts to bring data confidentiality, data integrity, and data 

authenticity together are shared in section 2.7. This literature was found 

inspiring and informing our study.  

On the contract, section 2.8 reviewed interventions towards bringing in neural 

networks in cryptography. It was noted that this was a novel idea in the context 

of cryptology. The gaps we seek to fill were elucidated in section 2.9 before the 

chapter closed in this section 2.10. The next chapter presents the methodology 

and theoretical framework we embrace in this study. 
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Chapter 3  :    Methodology and theoretical 
framework 

The choice of incorporating a neural network into the RSA model is mainly 

motivated by the desire to improve the RSA algorithm to include, on top of data 

confidentiality, also data integrity and data authenticity towards a CIA compliant 

hybrid RSA model. The purported improvements require us to code the RSA 

algorithms separately before the proposed integration with a neural network is 

undertaken.  

This chapter explains the procedures we followed in implementing the RSA 

algorithm and the integration subsystem. It explains, consequently, how the 

RSA algorithm is merged with a neural network to create the proposed hybrid 

RSA model. The explanation of the theoretical framework on which this 

research is underpinned is also included in this chapter. 

3.1 Statement of the problem 

The statement of the problem addressed in this chapter can be summarized 

into three sub-questions as follows: 

a) What is the methodology that informs the development of this project? 

b) What is the theoretical framework that underpins the argumentation and 

reasoning followed in this study? 

c) What are the methods used for data collection, reporting, and data 

analysis? 



28 
 

In our views, answers to these three questions would summarize the 

methodology followed and the theoretical ground for the reasoning presented 

in the study. 

3.2 Overview of the chapter 

Key in this chapter is the description of the software tools employed in the 

development and integration of the RSA algorithm and a neural network 

towards a CIA-compliant predictive cryptosystem. The procedures and 

software tools described in this chapter are all aimed at yielding a hybrid RSA 

model that satisfies data confidentiality, data integrity, and data authenticity.  

We will first explain the theoretical framework on which the reasoning 

presented in this study is grounded. Requirement elicitation and how each 

algorithm works will be explained hereafter. Precisely, we look at the research 

design, emphasizing how the RSA model was implemented, how the neural 

network was implemented, and how the integration problem was tackled. We 

then look at the data samples, sampling procedures, as well as the tools 

employed for arriving at data-based conclusions. The data analyses of interest 

and the key statistics we extract are also presented in this chapter.  

3.3 Theoretical framework 

Design science research is the theoretical framework on which this study is 

built. Design science research is a set of synthetic and analytical techniques 

and perspectives for performing research in information technology (Hevner & 

Chatterjee, 2010). It presents a large opportunity to increase the relevance of 

research in the field of Computer Science (Nunamaker, Dennis, Valacich, 

Vogel & George, 1991; Hevner & Chatterjee, 2010). Mainly, design science 

research addresses unsolved and important problems in unique and innovative 

ways (Hevner & Chatterjee, 2010), solving problems in more efficient ways as 
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opposed to routine design.  Achievement of knowledge when design science 

research is connoted is based on the foundations and strategies used (mainly 

inspired by the Boehm spiral model). In these strategies, positivism is 

dominant, requiring scientific evidence to argumentations and reasoning.  

Adoption of the design science research methodology is mainly motivated by 

the desire to improve the RSA algorithm. Such improvements are based on the 

incorporation of a neural network into the RSA towards adding data integrity 

and data authenticity aspects. The introduction of new and innovative artifacts 

and the processes for building these artifacts are the key activities of this study 

(Simon, 1996). There are three cycles associated with design science research 

namely, relevance, design, and rigour. 

Figure 3.1: Design science research cycle (Source: Hevner, 2007). 
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The relevance cycle initiates design science research with an application 

context that not only provides the requirements for the research as inputs but 

also defines acceptance criteria for the ultimate evaluation of the research 

results (Hevner, 2007). The central design cycle then follows. This is the core 

and heart of every design science research study. Simon (1996) describes the 

nature of this cycle as generating design alternatives and evaluating these 

alternatives against the requirements until a satisfactory design is achieved. 

The rigour cycle then provides grounding theories and methods along with 

domain experience and expertise from the foundational knowledge base into 

the research (garnered from literature in the community or body of knowledge). 

It adds the new knowledge generated by the research to the growing 

knowledge base of a research community (Hevner, 2007). Figure 3.1 illustrates 

the processes of each cycle in the design science research paradigm. 

The key activities in the design science research framework are theory building 

and evolution. It involves solution technology invention activities that bring 

about information technology artifacts involving information system 

development methods, techniques, tools, algorithms for computer processing, 

and planning methods among others (Venable, 2006). The design science 

research framework is not necessarily concerned with methods of testing 

theories. Rather, it is more concerned with bringing more knowledge in the 

field. Such new knowledge refers to constructs, models, methods, 

instantiations, and more improved theories towards the literature. The 

knowledge that the design science research framework brings forward can 

provide vision and complete guidelines to newcomers in the field. The findings 

should provide a thorough and complete statement of the outcomes. These 

outcomes should be tested for validity. They should potentially be improved by 

other researchers. Design science research is a provable theory for checking 

whether the solution is consistent. It verifies the performance of the solution 
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discovered. A framework for theory and theorizing (needed for evaluation) is 

thus apparent. The theory thereto will be the link between researchers and 

different research activities over time. This is a central activity that ties in 

various areas of research (Venable, 2006). 

The theory that guides the building or formulating of this research study 

corresponds to that of prescriptive information system design theory which 

makes use of utility theory (Venable, 2006). There are three major concepts in 

the utility theory, namely, the problem space, the solution space, and utility 

theories. The problem space channels the researcher for a thorough 

understanding of the problem domain. We do the same. The solution space 

gives more details on the solution techniques used by the researcher in 

addressing the problem. The utility theories deal with the implementation of the 

proposed solution method. Our study embraces all these spaces.  

3.4 Research design 

Research design describes the overall approach used to conduct a research 

study. It defines a concise and logical plan to tackle the research question (s). 

Precisely, procedures for data collection, data interpretation, data analysis, and 

the discussions thereof are presented (Yoshikawa, Weisner, Kalil & Way, 

2008). In this case, the research design explains the procedure used in the 

development of the predictive cryptosystem built towards improving the RSA 

algorithm through the incorporation of a neural network to learn data integrity 

and data authentication. The algorithmic and mathematical procedures 

followed in the development of these two algorithms, the original RSA and a 

neural network are the key routines we discuss.  

This is a quantitative research study in which simulated data (related to the 

performance of a neural network in predicting data integrity and data 
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authenticity) is collected. Quantitative research is mainly concerned with 

objective, measurable, and repeatable processes (Yoshikawa et al, 2008). 

Precisely, we investigate the performances of the proposed hybrid model. 

Quantitative research tests hypotheses. The null hypothesis of this research is 

that no significant changes would be observed in the RSA model even when a 

neural network is incorporated to learn data integrity and data authenticity in 

RSA encrypted data. Two directional alternate hypotheses emanate, one 

suggesting significant upgrade, and another pointing to degraded performance.  

A positivist philosophy is apparent, where knowledge, reasoning, and 

argumentations are grounded in deductive phenomena (Bechtel, 2013). 

Precisely, positivism and deductive reasoning are, fundamentally, methods 

aimed at arriving at conclusions grounded in scientific theories, laws, and 

proofs (Bechtel, 2013). The purported positivist beliefs and deductive 

argumentation and the reasoning thereto will be supported by experiments. 

Experiments are scientific approaches for creating observable proofs, 

investigating the validity of theories, or testing scientific facts (Windschitl, 

Thompson & Braaten, 2008). Experiments will be used for generating data with 

which to test the hypothesis and its alternates. Precisely, experiments will 

provide data upon which conclusions will be derived.  

3.4.1 Proposed methods 

The development of two algorithms is the fulcrum of this study. The first 

algorithm to develop is the RSA model. The other one is a neural network to 

be incorporated into the RSA model. We discuss the methods followed in 

developing these two algorithms before we look at how they were combined 

into the proposed hybrid RSA model. A discussion around the implementation 

of each of these two algorithms would address the problem posed.  
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3.4.1.1 The RSA algorithm 

We indicated that the RSA algorithm is widely used to provide data 

confidentiality. The algorithm is quite visible in the commercial space (Boneh, 

1999). It is a globally renowned public-key encryption algorithm. Security 

protocols such as the TLS/SSL, transport data security (web), PGP email 

security, IPSEC/IKE IP data security, SILC conferencing service security, and 

SSH terminal connection security are all based on the RSA model. Its 

importance and the need to improve is quite apparent in the body of knowledge. 

Implementation of the RSA algorithm is based on the use of two prime numbers 

(Bakhtiari & Maarof, 2012), say p and q. The two prime numbers are multiplied 

together to give one key component of the public key, which we here denote 

as n. This n, the product of p and q, is a very important part of the RSA algorithm 

both on the public and private sides. Encryption is completed in modulo n. 

Decryption also uses the same modulo n. As a result, the main threat against 

the RSA algorithm is around decoding of the two prime numbers through 

factorization from n. Once p and q are decoded, the RSA algorithm is broken 

into because the private key can be found.  

The public key emanating is (n, e). The private key would be (p, q, φ(n), d). 

Note that the public key is broadcast to everyone who wants to communicate 

hidden data. The private key remains secret to the receiver of hidden data. 

The Rabin-Miller algorithm is used during the RSA algorithm to determine if the 

provided p and q are prime numbers. Preferably, p and q are likely odd 

numbers unless one of these two parameters is a 2. However, the use of 2 as 

one of the two prime numbers p or q is discouraged because of the simplicity 

of factorizing the n that arises thereto. 
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Algorithm 3.1: The RSA algorithm. 

Input: Data set D. 

Output: Encrypted data set E. 

Internal computation: 

1. Generates two prime numbers p and q, 

a) Apply algorithm 3.2 on p, 

b) Apply algorithm 3.2 on q 

2. Calculates n = p x q, 

3. Calculates φ(n) = (p - 1) (q - 1), 

4. Choose e, such that e is a co-prime to φ(n) and gcd (φ(n), e) = 1, 

a) Apply algorithm 3.3 on e and φ(n) 

5.  Find d, such that d x e mod φ (n) = 1, 

6. The public key would be (n, e), 

7. The private key would be (p, q, φ(n), d), 

8. Ciphertext is computed as:  

E = D e mod n, and, 

9.   Plaintext is recovered as: D = E d  mod n. 
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Algorithm 3.2: Rabin-Miller algorithm (Rahim et al, 2017). 

Input: Any integer, preferably odd.  

Output: Primality. 

Internal computation: 

1. Select a random number p,  

2. Calculate b, where b is the number (p - 1) divided by 2,  

b is, therefore, the largest power of 2, such that 2b is a factor of (p - 1),  

3. Calculate m, such that p = 1 + 2 bm,  

4. Choose a random number a such that a is smaller than p, 

5. Set j = 0 and set z = a x m mod p,  

6. If z = 1 or if z = p - 1, then p passes the test and may be a prime number,  

7. If j > 0 and z = 1, then p is not a prime number,  

8. Set j = j + 1. If j < b and z ≠ p – 1, set z = z 2 mod p and return to step 4,  

If z = p – 1, then p passes the test and may be prime, and, 

9. If j = b and z ≠ p – 1, then p is not a prime number. 
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Algorithm 3.3: Euclid’s algorithm (Backhouse & Ferreira, 2011). 

Input: Two positive integers, φ(n), and e. 

Output: The greatest common divisor, gcd (φ(n), e).  

Internal computation: 

1. If φ(n) < e exchange φ(n) and e, 

2. Divide φ(n) by e and get the remainder r, 

3. If r = 0, report b as the gcd (φ(n), e), Replace φ(n) by e and replace e by 

r, and, 

4. Return to step 2. 

The Euclidean algorithm is a way to find the greatest common divisor of two 

positive integers (Shantz, 2001). In the context of this research, Euclid’s 

algorithm is used by the RSA algorithm in the implementation stage, to 

determine the greatest common divisor of the totient function and the value, e, 

such that e is a co-prime to φ(n) (Zhou & Tang, 2011). The totient function, 

φ(n), is the product of (p-1) and (q–1). On the other hand, the integer e is a 

primitive root of the totient function such that gcd (φ(n), e) = 1. There are four 

algorithmic steps involved in the computation of the greatest common divisor 

of the RSA’s totient function, φ(n), and the value of e in Euclid’s algorithm. 

3.4.1.2   A neural network 

We indicated that the RSA algorithm will be enhanced by a neural network. The 

incorporation of a neural network into the RSA model will enable data integrity 

and data authenticity towards a CIA-compliant hybrid RSA model. The goal is 
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to come up with an algorithm that tackles three of the five objectives of 

cryptography at once.   

A neural network is a machine learning algorithm that tries to learn the 

underlying properties of a certain phenomenon, through a mechanism that 

imitates the way the human brain works (Agarwal & Agarwal, 2013). In this 

context, the phenomenon learned by the neural network is data integrity and 

data authenticity. Successful incorporation of a neural network to learn the 

RSA’s encrypted data integrity and data authenticity will take us closer to a 

CIA-compliant hybrid RSA model. That will be a creative innovation in the data 

security domain. Below is the structure of a neural network comprising the input 

layer, hidden layer, and output layer.  

 

 

Figure 3.2: A simple neural network. 



38 
 

The input layer is responsible for receiving data into the neural network 

(Agarwal & Agarwal, 2013).  It is the starting point of the neural network. The 

hidden layer is the subsequent layer after the input layer where input data 

relating to the RSA’s encrypted data is transformed through mathematical 

procedures and thereafter directed through an activation function to the output 

layer (Guliyev & Ismailov, 2016). The output layer is responsible for producing 

the results after learning from the workflow of the neural network (Guliyev & 

Ismailov, 2016). There are two-layer perceptron involved in a neural network, 

namely single-layer perceptron and multi-layer perceptron. We discuss each 

perceptron below.  

A single-layer perceptron is the simplest form of a neural network. It consists 

of only one layer of the input layer that directs the computed inputs to the 

subsequent layers, the hidden layer, and the output layer (Stengel, 2017). The 

structure of a single-layer neural network can be visualized as follows.  

 

Figure 3.3: Single-layer neural network. 

The mathematical expression which describes a single-layer neural network 

can be written as follows: 



39 
 

y
k
= 𝑔(∑wixi

𝐷

𝑖=0

) 

where y
k
 is the output, and 𝑔 (.) is an activation function. In this function, xi is 

the input and wi represents the corresponding weight of  xi. Although this type 

of neural network may not be practical, it helps us in understanding the basics 

of neural networks (Stengel, 2017).  

A multi-layer perceptron consists of multiple layers of computational units, 

usually interconnected in a feed-forward way (Lee & Choeh, 2014). 

Mathematically, a multi-layer neural network with one hidden layer can be 

expressed as follows: 

y
k
= ℎ(∑𝑤𝑘𝑗

(2)
𝑔(𝑎𝑗)

𝑀

𝑗=0

) 

where, 

𝑔(𝑎𝑗) = 𝑔 (∑𝑤𝑖𝑗
(1)
𝑥𝑗

𝐷

𝑖=0

) 

A multi-layer neural network is very similar to a single-layer neural network 

except that a multi-layer neural network's output is again multiplied by a new 

weight vector and wrapped in an activation function as input to the next layer. 

This research work uses a multi-layer perceptron in the learning of data 

integrity and data authenticity of the RSA algorithm’s encrypted data. It uses 

the feed-forward perception where the learning of the data integrity and data 

authenticity is supervised.  
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3.4.1.3   The hybrid algorithm 

We hope to combine the RSA model and a neural network to improve the RSA 

algorithm towards a CIA compliant model that achieves, on top of data 

confidentiality, data integrity, and data authenticity. The idea is to realize CIA 

compliance in the hybrid model. Algorithm 3.4 summarizes the proposed 

predictive RSA cryptosystem, supported by Figure 3.4. 

Algorithm 3.4: Predictive RSA algorithm. 

Input: data set D.  

Output: Decrypted data set D. 

Internal computation: 

1. D is encrypted using the RSA model to form data set E, 

2.  Data set E is split into test and training data,  

3. Training and testing data are input into a neural network, 

4.  A neural network’s learning process on the hidden layer occurs on 

the training and testing data, and, 

5. Tests are conducted on the training and testing results to check CIA 

compliance. 
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Figure 3.4: RSA’s predictive crypto-system workflow. 
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The flowchart depicted in Figure 3.4 shows how activities in the hybrid 

algorithm occur concerning how the problem statement stated in chapter one 

is addressed. The parent RSA algorithm together with its internal algorithms, 

Rabin-Miller and Euclid’s algorithm, is responsible for preserving data 

confidentiality wherein a neural network is responsible for preserving data 

integrity and data authenticity. A CIA-compliant model is yielded.  

3.4.2 Samples and sampling techniques 

The sample space used by this research study is simulated data. A collection 

of 200 sampled plain data is provided as input. This data set is transformed 

from plain format into a cipher data set using the RSA algorithm. Once 

encrypted, further random sampling is handled by the neural network itself. 

This is done by splitting the encrypted data set into two equal subsets 

comprising 100 test (50%) and 100 training (50%) data items in each data set. 

The results related to the performance of the neural network on these data sets 

are the ones we report and analyze in the next chapter. 

3.4.3 Data collection 

We indicated that the study extracts data from the simulations administered 

during the experimental runs. The simulator is given, as input, a public data set 

in the health domain. This data set is freely available on the internet, comprising 

two hundred records, with each record built up of five attributes. This is the data 

set that is encrypted using the RSA model before it is split into the test and the 

training data sets. This is sensitive data about patients’ medical information 

where data hiding is of paramount priority. The key attributes of interest in this 

data include patients’ first name, last name, email address, gender, and 

medical policy number. These are the fields that are first hidden and, as proof 

of concept, whose data integrity and data authenticity are learned by a neural 

network. All other sensitive attributes of the data have been filtered out.  
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3.4.4 Tools 

The experiments we administer are conducted on a Dell XPS laptop with an 

Intel(R) Core (TM) i7-8500Y CPU, 16 GB RAM, running Windows 10 Home 

operating system. The pieces of code that form the units of the proposed hybrid 

model are all designed and developed using Python. We understand Python 

as an interpreter, a high-level programming language, which comprises several 

libraries (Karssenberg, de Jong & Van Der Kwast, 2007). We use the following 

libraries in developing the proposed RSA predictive cryptosystem. 

Library Use in this project 

Random Generating random prime numbers p and q. 

Math Provides access to functions such as power, sqrt, and log. 

Pandas Creates data frames out of the RSA’s encrypted values. 

NumPy Manipulates prime numbers p and q depending on the size of 

the data set, as well as the learning by the neural network. 

randrange Used by Rabin-Miller algorithm to test the primality of p and q. 

CSV Used for reading data in the data sets. 

itertools Used to iterate into the data set during the encryption process. 

Table 3.1: Python libraries. 
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3.4.5 Data analysis 

The work is a mono-method type of study. This is a choice used when only one 

research design method is embraced (Onwuegbuzie & Leech, 2005), using a 

single data collection technique, and following a single data analysis procedure 

(Saunders, Glenn & Kohn, 2010). In this case, we solely rely on simulated data 

collected from the experiments administered. We extract descriptive (measures 

of central tendencies and measures of variability) and inferential statistics (tests 

for data normality, T-tests, and F-tests) from the collected data.  

3.4.5.1 Descriptive statistics 

Descriptive statistics explain the internal properties of the data collected from 

the experiments. They give a concise summary of the sample data and its 

behavior. Measures of central tendencies assess for commonalities in the data. 

On the other hand, measures of variability (Khalfan, 2004), also known as 

measures of dispersion, assess the spread in the data. In this context, the 

measures of central tendencies we focus on are the mean, mode, and median. 

We extract these central tendencies from data related to the performances of 

the neural network in predicting data integrity and data authenticity in RSA 

encrypted data. On the other hand, the measures of variability we focus on are 

the standard deviations and kurtosis. The mean, as a measure of central 

tendency, is defined as the average value of the data set. It is mathematically 

expressed as follows: 

𝑋 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖 = 1

 

where 𝑥𝑖 denotes elements in the data set D, with indexes i = {1, 2,…..,n}, and 

n denotes the sample size. The equation, ∑ denotes a sigma notation for sum.  
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The mode of a data set is k, where k ∈ D is the most frequent value in the 

data set. On the other hand, the median is defined as the middle number of 

the data set, often computed as follows:  where n denotes the sample size. 

𝑀 = 𝐷 [
𝑛 +  1

2
] 

The standard deviation describes how the data is spread around the mean. It 

is mathematically expressed as follows: 

𝜎 = √
1

𝑁
∑(𝑥𝑖  −  µ)2
𝑁

𝑖 = 1

 

where N denotes the sample size of the data set. Then  𝑥𝑖 denotes the elements 

in the data set, with index i = {1, 2,…..,n}. In this, µ is the computed mean of 

the data set, while 𝜎 denoted the standard deviation we are looking for.  

The kurtosis is a statistical measure that explains how tails of a statistical 

distribution differ from the tails of a normal distribution. Sometimes, kurtosis 

investigates the peak of a statistical distribution relative to the peak of a normal 

curve. It can be mathematically expressed as follows: 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑

(𝑋𝑖  −  µ)
𝑁

𝑁
𝐼 = 1

 𝜎 4
 

where N denotes the sample size of the data set, and µ denotes the mean of 

the same data set.  The 𝜎 denotes the standard deviation of data in the data 

set. Our work extracts all these measures of central tendencies from the data 

collected as performances of a neural network tasked to learn data integrity 

and authenticity in RSA encrypted data. 
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3.4.5.2 Inferential statistics 

This section commences by describing tests for the normality of the data 

collected based on Kolmogorov – Smirnoff tests. It then discusses inferential 

statistics related to the administration of T-tests and F-tests towards gathering 

evidence for possibilities of mapping the observed outcomes to generalized 

views.  

Normality tests are based on Kolmogorov – Smirnoff tests. This is a test used 

to decide if a sample comes from a population with a specific distribution. The 

Kolmogorov – Smirnoff test is based on the empirical distribution function. 

Given N ordered data points 𝑌1, 𝑌2, . . . . . , 𝑌𝑁 the empirical distribution function is 

defined as: 

𝐸𝑁  =  
𝑛(𝑖)

𝑁
 

where 𝑛(𝑖) is the number of points less than 𝑌𝑖 and the 𝑌𝑖 are ordered from 

smallest to largest value. This is a step function that increases by 1 𝑁⁄  at the 

value of each ordered data point. Its main aim is to map and compare the data 

points to that of a normal distribution. 

Once normality is confirmed, we seek evidence for generalization through T-

test and F-tests. T-tests decide whether the mean values of two data sets have 

a meaningful difference which can be related to some features (Marshall & 

Jonker, 2011). It adopts the use of T-distribution and degrees of freedom to 

determine the statistical relevance of the differences noted between the two 

means. The T-test helps us to compare whether the two data sets emanate 

from the same hypothetical population of data or not. The required outcome 

when we perform T-tests is a conclusion whether the two means are sampled 

from the same hypothetical population or not (Marshall & Jonker, 2011). In this 



47 
 

context, the two data sets we refer to would be the outcomes recorded from 

different runs of the simulations. Mathematically a T-test can be defined as: 

𝑡 =  
𝑥 1  − 𝑥 2

√(𝜎2(
1
𝑛1

+
1
𝑛2
))

 

where 𝑥 1, 𝑥 2 and 𝑛1, 𝑛2 denote the means and sample sizes of the two data sets 

respectively. The 𝜎 2 used in the formula denotes the square of the standard 

deviation of both data sets. The t we compute is the T-test value.   

The F-test, on the other hand, is a regression test in an F-distribution (Marshall 

& Jonker, 2011). In most cases, it is used to compare statistical models that 

are used on data sets to identify the model that best fits. In the context of this 

research study, F-tests are used to compare the variability of data from two 

data sets. It assesses whether the variations we see in data sets occur by mere 

chance or whether they represent significant variations. The mathematical 

model of the F-test can be expressed as: 

F = 
𝜎1
2

𝜎2
2 

where 𝜎1
2 and 𝜎2

2 describes the variances of the two samples under study.  The 

F we compute is the required F-test value. 

3.5   Summary 

This chapter commenced with providing the statement of the problem 

addressed. The statement of the problem connoted interests in presenting the 

methodology we embrace, as well as the theoretical framework underpinning 

the study.  
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The theoretical framework grounding the development of this research study 

followed after the overview of the chapter. Precisely, design science research, 

grounded in positivism and deductive reasoning, is the theoretical framework 

we follow.  

A description of the research design followed, emphasizing explaining how the 

two algorithms, the RSA algorithm, and a neural network, were implemented. 

Important is the implementation procedure of the integration of the two 

algorithms. The programming language of choice remained Python, whose 

libraries of interest were pointed out.  

Sampling, data collection, and data analysis techniques were also discussed 

in this chapter. The emphasis in these analyses was pointed out to be on the 

descriptive and inferential statistics. The descriptive statistics comprised 

measures of central tendencies as well as measures of dispersion. Inferential 

statistics comprised tests for data normality, T-tests, and F- tests. The next 

chapter administers the experiments, collects data, and presents the data 

analyses thereto. 
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Chapter 4  :    Experiments, Findings, and 
Interpretation 

This chapter discusses the procedure through which results are generated and 

reported, as well as the actual results yielded from the simulated execution of 

the experiments, and the analyses thereto. Results relate to the performances 

of the proposed RSA predictive cryptosystem built on the notion that a neural 

network can learn data integrity and data authenticity are reported and 

analyzed. We mainly pinpoint, record, and interpret the neural network’s 

learning rates to arrive at generalizable views about the hybrid RSA model. 

These results will be scrutinized concerning centrality, variability, normality, 

and inferential issues. Evidence is sought with which to accept or reject the null 

hypothesis that: Ho: A neural network has no significant effect on the 

improvement of the RSA algorithm towards CIA compliancy. Two alternate 

directional hypotheses arise. The first alternate hypothesis states that H1: 

inclusion of a neural network to learn data integrity and data authenticity makes 

some significant improvement to the RSA algorithm towards a CIA compliant 

hybrid. Alternatively, H2: inclusion of a neural network to learn data integrity 

and data authenticity degrades the RSA algorithm.  

In our view, the outcomes envisioned would answer the questions posed and 

allow the selection of one of the three alternative hypotheses. The benefits of 

the study will likely be more than the sum of the contributions of the builder 

component units of the study.   
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4.1 Statement of the problem 

The key question answered in this chapter is whether the inclusion of a neural 

network into the RSA algorithm upgrades the RSA model towards CIA 

compliance or not. To respond to this question, we administer three 

experiments aimed at investigating and demonstrating possibilities of 

incorporating the neural network towards assessing capabilities to predict the 

underlying properties of the RSA algorithm for data integrity and data 

authenticity. The results yielded will be statistically verified for centrality, 

variability, normality, and correlations. Useful inferences are then drawn from 

these analyses towards acceptance or rebuttal of the null hypothesis.  

4.2 Overview of the chapter  

The rest of the chapter continues to describe the learning process, training, and 

testing processes the proposed neural network goes through. Precisely, 

section 4.3 covers the design of the learning process undergone by the neural 

network. It also touches on the testing and training procedures we embrace. 

The results yielded from the training and testing processes are reported and 

analyzed in section 4.4, mainly emphasizing the statistical measures of central 

tendencies, variability, correlations, normality, and the inferential statistics 

thereto. Section 4.4 also presents data visualization. In the end, statistically 

supported conclusions are drawn at a specified level of confidence, in this case, 

95% level of confidence.    

4.3    Design of the neural network’s learning process 

In this section, we outline the learning process undergone by the neural 

network for it to be able to learn data integrity and data authenticity in RSA 

encrypted data. First, the neural network is trained. Thereafter, it is tested for 

abilities to learn data integrity and data authenticity. The average number of 
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epochs and the neural network’s learning rate are the key metrics measured. 

These metrics quantify the cost of using a neural network in this scenario. In 

this context, an epoch is a measure of how many times all the training vectors 

have been used to change weights in the hidden layer of a neural network. On 

the other hand, a neural network’s learning rate refers to the configuration of 

the hyperparameter used by the neural network, often giving small positive 

values that range between 0 and 1. Data visualization through graphs is 

presented to augment the meanings of the results reported. 

4.3.1 Training a neural network  

The focus here is more on the process and the results extracted to validate the 

neural network meant to learn data integrity and data authenticity in RSA 

encrypted data towards CIA compliancy. In this case, our neural network was 

presented with a supervised learning algorithm. The supervised training 

algorithm used the RSA algorithm’s encrypted data set as the input vector to 

the training process. The desired output formed the output vector.  

In this case, the training process required the use of two data sets, the training 

data set and the testing data set. The training data set comprised data used to 

train the neural network so that it can accurately predict future outcomes. 

Contrary, the testing data was used to describe the evaluation of a neural 

network’s outcomes towards model validation. 

Supervised learning took advantage of both the testing and the training data 

sets. The testing and the training data sets were acquired splitting the main 

data set into two equal data sets 50 - 50. In this case, the main data set 

comprised the RSA algorithm’s encrypted data. As proof of concept, the RSA 

encrypted data items formed the main data set that was split into training and 
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testing data sets. It follows that both the testing and the training data sets 

comprised encrypted data.     

Splitting of the main data set was achieved through a Python code that 

randomly picked data items into each subset. The data in question relates to 

health records retrieved from a free source on the internet. Precisely, the 

sklearn.model_selection library in Python was used to perform the splitting of 

this main data set.  

While the training data set served as the input vector to the neural network, for 

learning to occur, an activation function was required. In this case, we used 

logistic regression as the activation function of choice. Logistic regression is 

used to find the updated parameters by minimizing the cost function of the 

predictive cryptosystem model’s neural network. The derivative of the 

activation function was also apparent for minimizing the cost function towards 

the updated parameters. Logistic regression, in this case, was designed by a 

Python code’s NumPy library where the manipulation of the input data set in 

terms of numbers was possible. The one hot function designed to handle the 

labels of the data sets was also of interest. The function took in n numerical 

labels and created an array of two-dimensional data where each row contained 

a ‘one hot’ vector.  

A neural network is a layered machine learning algorithm with at least three 

layers, including the input layer, hidden layer, and output layer. The input layer 

is responsible for receiving the training data set into the neural network for the 

learning process. The hidden layer is where the training data set is transformed 

through mathematical procedures before it is directed to the activation function 

(logistic regression) as output. The output layer is responsible for disseminating 

results after the learning process is completed by a neural network.  



53 
 

A class of layers has been designed to handle this important aspect of the 

predictive cryptosystem model. A class of layers, in this case, consisted of 

weights, the weighted sum of inputs into the hidden layer, derivatives, or deltas, 

and the activations. The class function was more concentrated on the hidden 

layer where most of the learning activities occurred. There was a reserved 

method used for random initialization of weights in the hidden layer with four 

parameters. One of them was an activation function explained earlier which 

activates the weights. The number of nodes per layer was also initialized in the 

reserved method. Lastly, in the class function, there was an activate function 

designed to activate the input data with the weights inside the hidden layer for 

learning purposes.  

The main logic for predicting output and updating the weight values in the 

hidden layer of the neural network has been designed through the Python code 

which instantiates the NumPy library for easy computations of numbers. A 

neural network class contained the logic behind the model’s predictions. It was 

used to call the initialized layers in the layer's class. This was done by the 

reserved method with four parameters, where one of those parameters 

contains information about the layers. Through a neural network’s reserved 

method, the hidden layer was created by considering the number of nodes 

initialized. There was an activation function developed inside the neural 

network class to activate each layer of the model through the input data in the 

form of a vector. As such, there was a backpropagation algorithm responsible 

for calculating derivatives for the hidden and output layer. Besides, for the 

context of this research study, the backpropagation algorithm was also 

responsible for updating the weights for the hidden and output layers with the 

derivatives of the main activation function (logistic regression) and weights for 

the initial input data.  
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To determine the data integrity and data authenticity of the RSA algorithm’s 

encrypted data set, we designed a method or function called training epochs 

which has four parameters. Amongst those parameters were, data, targets, and 

learning rates. In this context, data refers to the batch of training data inputs 

(half of the encrypted data items), stored in rows or records. Targets would 

mean the batch of training target outputs (test data set), stored in rows. The 

learning rate refers to the configuration of the hyperparameter used in the 

model, with small positive values that range between 0 and 1. The output of 

this function is defined as the average cost of the neural network which maps 

the input data to the target outputs after the learning process has occurred for 

both data sets. This is the function of interest.  This is where the data is fed into 

the model with the desire to answer the research question stipulated in chapter 

one.  

The problem of overfitting may occur during the training process of a neural 

network. The regularization function has been developed to tackle the problem 

of overfitting during the learning process. This is a technique used by the neural 

network to tune the training results by adding a penalty term in the error 

function, that is the backpropagation function. The additional term controls the 

excessively fluctuating function such that the coefficients do not take extreme 

values.  

There was a method called cost in the built model in which when given a set of 

input data, it calculates the average costs or the error output of the neural 

network. The method was provided for use with advanced optimization 

routines. 

The number of epochs, the neural network’s learning rate, data used, node per 

layer, regularization, and regularization parameter were specified as 10000, 

0.008, train data set, [10, 10], True, and 0.01 respectively. This specification 



55 
 

took place in the function named train. One hot function contains the target 

values, while on the other hand, the average cost values are contained by the 

training epoch function which is then referenced as a parameter in the training 

method. The results obtained thereof are appended to a single data frame 

using Python code’s pandas' library for a better understanding of the outcomes.  

The developed model used an input layer of five nodes, a hidden layer of ten 

nodes, and an output layer of two nodes, except the standardized number of 

nodes per layer which is [10, 10]. This implies that a simple neural network 

technique was used. The training results for the training data set are presented 

in table 4.1 below. The results are acquired after the model was run six 

sequential times, over the number of epochs that are sampled to be equal to 

10000 in an experimental setup. Each value in the table below represents the 

average value of the first and last 100 average costs of the learned training 

data in terms of a neural network’s learning rate.  Going down, the numbers 

represent increased target values, that is, predictions per run.   

Training rate averages 

 First Second Third Fourth Fifth Sixth 

1 0.541442 0.528595 0.277996 0.237715 0.898377 0.48046 

2 0.542724 0.528646 0.278721 0.239689 0.898393 0.480516 

3 0.544015 0.528748 0.279448 0.241719 0.898425 0.480628 

4 0.545314 0.5289 0.280177 0.243807 0.898473 0.480795 

5 0.546622 0.529101 0.280908 0.245955 0.898536 0.481015 

6 0.547938 0.529353 0.281641 0.248164 0.898614 0.481285 

7 0.549262 0.529652 0.282376 0.250436 0.898708 0.481603 

8 0.550596 0.53 0.283113 0.252772 0.898817 0.481967 

9 0.551938 0.530394 0.283851 0.255173 0.898941 0.482372 

10 0.553289 0.530834 0.284592 0.257642 0.899079 0.482817 

11 0.554649 0.531318 0.285334 0.260179 0.899231 0.483297 

12 0.556018 0.531846 0.286078 0.262784 0.899397 0.483811 

13 0.557396 0.532416 0.286824 0.26546 0.899577 0.484354 
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14 0.558783 0.533026 0.287571 0.268206 0.89977 0.484923 

15 0.560179 0.533676 0.288321 0.271024 0.899975 0.485517 

16 0.561585 0.534363 0.289073 0.273913 0.900193 0.486132 

17 0.563 0.535087 0.289826 0.276873 0.900422 0.486766 

18 0.564424 0.535846 0.290581 0.279905 0.900663 0.487417 

19 0.565859 0.536638 0.291338 0.283009 0.900914 0.488082 

20 0.567302 0.537468 0.292097 0.286183 0.901176 0.48876 

21 0.568755 0.538625 0.292857 0.289426 0.901448 0.489449 

22 0.570218 0.539992 0.29362 0.292739 0.90173 0.490148 

23 0.571691 0.541405 0.294384 0.296119 0.90202 0.490854 

24 0.573173 0.542857 0.29515 0.299565 0.902319 0.491567 

25 0.574666 0.544345 0.295918 0.303076 0.902626 0.492286 

26 0.576168 0.545866 0.296688 0.306648 0.902941 0.493008 

27 0.577679 0.547415 0.297459 0.31028 0.903263 0.493734 

28 0.579201 0.548989 0.298232 0.31397 0.903592 0.494462 

29 0.580733 0.550587 0.299007 0.317715 0.903927 0.495192 

30 0.582274 0.552205 0.299784 0.321511 0.904268 0.495922 

31 0.583826 0.553842 0.300562 0.325357 0.904614 0.496653 

32 0.585387 0.555494 0.301342 0.329248 0.904966 0.497383 

33 0.586958 0.557162 0.302124 0.333181 0.905322 0.498112 

34 0.588539 0.558841 0.302907 0.337154 0.905683 0.498839 

35 0.59013 0.560532 0.303692 0.341163 0.906047 0.499564 

36 0.591731 0.562233 0.304478 0.345204 0.906416 0.500286 

37 0.593341 0.563942 0.305266 0.349274 0.906787 0.501006 

38 0.594961 0.565658 0.306056 0.353368 0.907162 0.501723 

39 0.596591 0.56738 0.306847 0.357485 0.907539 0.502436 

40 0.598231 0.569106 0.30764 0.36162 0.907919 0.503145 

41 0.59988 0.570836 0.308434 0.36577 0.908301 0.50385 

42 0.601538 0.572568 0.309229 0.369931 0.908684 0.504551 

43 0.603206 0.574302 0.310026 0.374101 0.90907 0.505248 

44 0.604883 0.576036 0.310824 0.378277 0.909456 0.50594 

45 0.606569 0.577769 0.311623 0.382455 0.909844 0.506628 

46 0.608264 0.579501 0.312423 0.386632 0.910232 0.507311 

47 0.609968 0.58123 0.313225 0.390806 0.910621 0.507988 

48 0.611681 0.582955 0.314027 0.394974 0.911011 0.508661 

49 0.613403 0.584675 0.314831 0.399135 0.911401 0.509329 

50 0.615132 0.58639 0.315635 0.403285 0.911791 0.509991 

51 0.616871 0.588099 0.31644 0.407423 0.912181 0.510648 

52 0.618617 0.589799 0.317246 0.411546 0.91257 0.5113 
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53 0.620371 0.591491 0.318053 0.415653 0.912959 0.511947 

54 0.622133 0.593173 0.31886 0.419743 0.913348 0.512588 

55 0.623902 0.594844 0.319667 0.423813 0.913736 0.513224 

56 0.625679 0.596503 0.320475 0.427863 0.914123 0.513854 

57 0.627463 0.598149 0.321284 0.43189 0.914509 0.514479 

58 0.629253 0.599781 0.322092 0.435895 0.914894 0.515099 

59 0.63105 0.601397 0.322901 0.439875 0.915278 0.515713 

60 0.632854 0.602998 0.32371 0.443831 0.91566 0.516322 

61 0.634663 0.604581 0.32452 0.44776 0.916041 0.516925 

62 0.636478 0.606145 0.32533 0.451662 0.916421 0.517523 

63 0.638298 0.60769 0.326141 0.455536 0.916799 0.518116 

64 0.640124 0.609214 0.326953 0.459382 0.917175 0.518703 

65 0.641954 0.610717 0.327767 0.463198 0.91755 0.519285 

66 0.643789 0.612197 0.328582 0.466984 0.917923 0.519862 

67 0.645627 0.613653 0.3294 0.470738 0.918294 0.520434 

68 0.64747 0.615084 0.330222 0.47446 0.918663 0.521 

69 0.649316 0.61649 0.331049 0.478149 0.91903 0.521562 

70 0.651164 0.617869 0.331883 0.481802 0.919395 0.522118 

71 0.653015 0.619221 0.332725 0.485419 0.919758 0.522669 

72 0.654869 0.620545 0.33358 0.488999 0.920119 0.523215 

73 0.656724 0.62184 0.33445 0.492539 0.920478 0.523756 

74 0.65858 0.623107 0.335341 0.496037 0.920834 0.524292 

75 0.660437 0.624343 0.336257 0.499491 0.921188 0.524823 

76 0.662295 0.625549 0.337205 0.502899 0.92154 0.52535 

77 0.664152 0.626725 0.338195 0.506257 0.92189 0.525871 

78 0.666009 0.62787 0.339236 0.509564 0.922237 0.526388 

79 0.667865 0.628985 0.340343 0.512816 0.922582 0.5269 

80 0.66972 0.630068 0.341531 0.516011 0.922925 0.527408 

81 0.671572 0.631121 0.34282 0.519147 0.923265 0.527911 

82 0.673422 0.632142 0.344234 0.522222 0.923603 0.528409 

83 0.675269 0.633133 0.345801 0.525237 0.923938 0.528903 

84 0.677112 0.634094 0.347554 0.528194 0.924271 0.529393 

85 0.678951 0.635025 0.349535 0.531099 0.924602 0.529878 

86 0.680785 0.635927 0.351791 0.533964 0.92493 0.530358 

87 0.682614 0.6368 0.354376 0.536809 0.925255 0.530835 

88 0.684437 0.637644 0.357353 0.539663 0.925578 0.531307 

89 0.686253 0.63846 0.360793 0.542573 0.925899 0.531775 

90 0.688063 0.63925 0.364776 0.545603 0.926217 0.532239 

91 0.689865 0.640013 0.36939 0.548849 0.926533 0.532699 
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92 0.691658 0.64075 0.374733 0.552436 0.926846 0.533154 

93 0.693442 0.641462 0.380914 0.556534 0.927157 0.533606 

94 0.695217 0.642151 0.388057 0.561354 0.927465 0.534236 

95 0.696982 0.642816 0.396312 0.567142 0.927774 0.543011 

96 0.698736 0.643458 0.405869 0.574164 0.928134 0.556836 

97 0.700478 0.644079 0.416976 0.582663 0.928507 0.571129 

98 0.702208 0.644679 0.429958 0.592804 0.928876 0.585356 

99 0.703926 0.645259 0.445195 0.604609 0.92924 0.599073 

100 0.705629 0.64582 0.463045 0.617916 0.929601 0.611974 

Table 4.1: Average Training Rates. 

We extract central tendencies, variability, correlations, and test this data for 

normality before drawing any inferences thereto. In this context, measures of 

central tendencies refer to the mean, mode, and median of the training rates. 

Measures of variability refer to standard deviations and kurtosis. Correlation 

establishes the degree of association between results extracted from different 

runs. Normality tests decide whether the training rates are normally distributed 

or not. Thereafter, T-test and F-test would culminate the promised inferential 

statistics. 

We exploit the use of an online tool for determining normality in a data set. The 

tool also reports the mean, median, mode, standard deviation, skewness, and 

kurtosis of a distribution. In this case, the Kolmogorov – Smirnoff test for data 

normality is calculated for each set of the training rates yielded in each run as 

presented in Table 4.1. This Kolmogorov – Smirnoff test allows us to decide 

whether a sample distribution matches the characteristics of a normal 

distribution. It is important to know this since we intend to extract inferences at 

the end. The higher the Kolmogorov - Smirnoff test value, the less probable it 

is that the data is normally distributed. The p-value reported quantifies this 

probability, with a low probability indicating that the sample deviates from a 
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normal distribution to an extent unlikely to arise merely by chance. Put simply, 

a high Kolmogorov – Smirnoff test value and a low p-value are evidence that 

data is not normally distributed. The reverse would hold for normally distributed 

data sets.  

Figure 4.1 shows a Kolmogorov – Smirnoff test conducted on the first set of 

training rates reported in the first column in Table 4.1. A value of 0.07353 is 

yielded, with a p-value of 0.62518. These outcomes favour a conclusion that 

this set of results does not differ significantly from that which is normally 

distributed. Precisely, these results are normally distributed.  

The mean, mode, and median are the measures of central tendency we use as 

descriptive statistics. These three measures represent the central tendencies 

we seek. In this case, the training rates yielded in this first run produced the 

mean performance of 0.61888, the modal performance of 0.541442, and a 

median of 0.616002. Interesting is how close to each other these central 

tendencies are, connoting commonality in the distribution of the data, thus 

consistently pointing to possibilities that the normality we observe does not 

occur by chance.  

On the other hand, standard deviation and kurtosis describe measures of 

variability. Standard deviation checks how dispersed the values in the 

distribution are from the central tendencies. In this case, a standard deviation 

of 0.049103 is reported. Kurtosis then measures how peaked the normal curve 

thereto would be, how far the pick of the data set is from the peak of the 

Gaussian curve. Positive Kurtosis indicates distributions highly peaked than 

the normal curve. Negative kurtosis would mean curves below the normal 

curve. In this case, a kurtosis value of -1.228544 is reported from the first set 

of the neural network’s training rates. This is not very far below the normal 

curve, also then connoting commonality in this data set.  
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Figure 4.1: Test for normality on learning rates achieved in the first run. 

 

Figure 4.2: Test for normality on learning rates achieved in the second run. 
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Figure 4.2 reports analyses for the training rates achieved in the second run of 

the experiment, reported in the second column of Table 4.1. Consistent 

outcomes are observed, where a Kolmogorov – Smirnoff value of 0.09999 and 

a p-value of 0.25289 are achieved. The probability of a match with the normal 

curve is high, providing good evidence that the data reported in this run is 

normally distributed. The measures of central tendency confirm this 

observation, where a mean of 0.58591, mode of 0.52860, and median of 

0.58745 are observed. Compelling is also how these three measures 

approximate one another. Similarly, measures of variability support an 

insignificant variation of scores from centrality, where a standard deviation of 

0.040548 and kurtosis of -1.484263 are reported. These outcomes purport 

common trends in the two different experiment runs discussed so far.  

Figure 4.3 provides analyses of the training rates achieved when the 

experiment was run for the third time to ensure rigour and validity of the 

outcomes of the study. Interestingly, these results do not generally significantly 

differ from that which is normally distributed. A Kolmogorov – Smirnoff test 

value of 0.10959, with a p-value of 0.16804 is encouraging. It is likely true that 

the performances of the neural network can be mapped to a generalized 

opinion regarding normality based on Kolmogorov – Smirnoff tests, measures 

of central tendency, and variability. In this case, a mean value of 0.32265, a 

mode of 0.27810, and a median of 0.316038 arise, also very close to each 

other. The standard deviation of 0.036526 is quite low and the kurtosis of 

2.969665 is fairly good. These results similarly demonstrate normality patterns. 

Similar trends are noticed in Figure 4.4, Figure 4.5, and Figure 4.6 in which the 

performances of the neural network in the fourth, fifth, and sixth run are 

analysed. In all cases, good Kolmogorov – Smirnoff test values are  
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Figure 4.3: Test for normality on learning rates achieved in the third run. 

 

Figure 4.4: Test for normality on learning rates achieved in the fourth run. 
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Figure 4.5: Test for normality on learning rates achieved in the fifth run. 

Figure 4.6: Test for normality on learning rates achieved in the sixth run. 
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observed, along with plausible p – values, all suggesting data sets that do not 

differ significantly from that which is normally distributed. The central 

tendencies reported in these runs also connote centrality and commonalities. 

Related measures of variability connote minimal variations. In all the cases, the 

observed normality does not show evidence of occurring by chance.   

Figure 4.7 shows a heatmap plot used to explain the correlation among data 

reported from each run. Each square shows the correlation between data 

labels on each axis. Correlation ranges from -1 to +1. Values close to zero 

imply that there are no linear patterns between the two data labels under 

investigation. A strong positive correlation is achieved when the values are 

closer to 1. In that case, the values of one data field increase when those for 

the other one also increases. A negative correlation is achieved when the 

values are closer to -1. In this case, the values of one data field increase while 

the other one decreases. The diagonal squares are all 1 because there is a 

perfect positive correlation between values in the same data fields.  The larger 

the number in the squares the higher the correlation between the two data 

fields.  

The plot is symmetrical since the same two data fields are being paired together 

in those squares. We are encouraged by observing strong positive correlations 

between all data sets, connoting these results coming from a normally 

distributed population. Every set of results can be mapped to the results 

achieved in a different run. Precisely, we can regressively decide on missing 

factors from one run using results achieved from another run. These are all 

pointers towards possibilities of arriving at generalized opinions. Table 4.2 

summarizes the statistics reported, 
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Figure 4.7: Correlation between training results. 

 

SUMMARY 

Groups Median Mode Mean Kurtosis Standard Deviation 

First 0.616002 0.541442 0.618885 -1.228544 0.049103 

Second 0.587245 0.528595 0.585908 -1.484263 0.040548 

Third 0.316038 0.277996 0.322651 2.969665 0.036526 

Fourth 0.405354 0.237715 0.405303 -1.253331 0.108541 

Fifth 0.911986 0.898377 0.912365 -1.35246 0.010008 

Sixth 0.51032 0.48046 0.511512 3.768961 0.024359 

Table 4.2: Summary of the neural network’s training rates. 
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ANOVA 

Source of Variation SS df MS P-value F value 

Between Groups 21.09145 5 4.21829 0.002 2.229193 

Within Groups 1.76854 594 0.002977 
  

Total 22.85999 599       

Table 4.3: Analysis of variances in the neural network’s training rates. 

Following the summary of the neural network’s training rates, we have adopted 

the one-way ANOVA to check the relationship between the means of the six 

sets of results. Table 4.3 summarizes these relationships. 

Our null hypothesis stated that the inclusion of a neural network to learn data 

integrity and authenticity in RSA encrypted data has no significant effect on the 

enhancement of the algorithm towards CIA compliance. ANOVA p-value is 

0.002, which is less than the significance level of 0.05. This provides evidence 

for us to reject the null hypothesis in favor of an alternate hypothesis. Positive 

correlations are observed throughout, connoting the alternative hypothesis that 

plausible improvement of the RSA algorithm from integration with a neural 

network is noted, which brings integrity and authenticity into the RSA algorithm 

towards a CIA compliant hybrid. 

Further inferential statistics confirmed these observations. We used T-tests to 

compare the means achieved in different experiment runs. This test checks 

whether the means show commonalities with known hypothetical population 

mean. F-tests were also used to compare variations in the training rates 

achieved in different runs. Inferential statistics are used to allow us to reach 
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better-informed conclusions. In the six runs reported in this study, a 

hypothetical population mean of 0.3 is estimated when T-tests are evaluated 

with a significance level of 0.05 and a one-tailed hypothesis. All the sets of data 

produced T-values above 5, with probability values less than 0.00001 

respectively. This outcome suggests that all the T-values achieved are 

significant at p < 0.05. All the means can be mapped to the population at a 95% 

level of confidence. The variation we observe in the data sets are mere random 

insignificant variations which occur by chance. We can conclude that a neural 

network can learn data integrity and data authenticity in RSA encrypted 

messages, allowing the model to then exhibit properties of a CIA-compliant 

model. 

4.3.2    Testing of the neural network after training 

We shifted our focus to the processes involved in testing the neural network’s 

performances after the training process. In this case, we now used the testing 

data set as input data to be passed into the subsequent layers of a neural 

network, implying a feedforward analogy. Logistic regression has been used 

as an activation function. The backpropagation was used to perform derivations 

of the hidden layer’s activation function into the output layer. Also, the 

backpropagation was responsible for updating the weights in the hidden layer 

and the output layer with the derivatives of the main activation function (logistic 

regression) and weights for the initial input data. The same regularization 

function used in section 4.3.1 was also adopted, tackling the problem of 

overfitting.  

Similarly, the cost function calculates the average cost of a neural network, 

allowing optimization of the model. The train function has parameters including 

the number of epochs, learning rate, data used, node per layer, regularization, 

and regularization parameter. These parameters were assigned the same 
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values as in the training process; 10000, 0.008, train data set, [10, 10], True, 

and 0.01 respectively. The hot function contained the target values, while on 

the other hand, the average cost values were contained by the testing epoch 

function which was then referenced by a parameter in the training method. The 

results obtained thereof were appended to a single data frame using Python 

code’s pandas library. To avoid biases in the two data sets, the developed 

model used an input layer of 5 nodes, a hidden layer of 10 nodes, and an output 

layer of 2 nodes. A simple supervised neural network was used to learn data 

integrity and authenticity towards a CIA-compliant hybrid.  

The test results for the test data set are presented in table 4.4 below. The 

results are acquired after the model was run six sequential times in an 

experimental setup. In these testing results, epochs are also sampled to be 

equal to 10000 in an experimental setup. Each value in the table represents 

the average value of the first and last 100 average costs of the learned testing 

data in terms of a neural network’s learning rate.  Going down, the numbers 

represent increased target values, that is, predictions per run. 

Testing rate averages 

 First Second Third Fourth Fifth Sixth 

1 0.175374 0.802344 0.619979 0.923925 0.742672 0.788377 

2 0.177367 0.804074 0.621028 0.924456 0.742724 0.788432 

3 0.179543 0.80578 0.622089 0.924977 0.742826 0.788542 

4 0.181927 0.807459 0.623163 0.925487 0.742976 0.788704 

5 0.184547 0.809113 0.624249 0.925986 0.743171 0.788915 

6 0.187434 0.810741 0.625347 0.926475 0.743405 0.789173 

7 0.190625 0.812344 0.626459 0.926954 0.743674 0.789472 

8 0.194161 0.813922 0.627583 0.927424 0.743974 0.789809 

9 0.198089 0.815475 0.62872 0.927884 0.744301 0.790179 

10 0.202463 0.817004 0.629871 0.928335 0.744651 0.790578 

11 0.20734 0.818508 0.631035 0.928778 0.745021 0.791001 
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12 0.212785 0.819988 0.632212 0.929213 0.745408 0.791446 

13 0.218869 0.821444 0.633403 0.929639 0.74581 0.791907 

14 0.225664 0.822877 0.634608 0.930057 0.746224 0.792383 

15 0.233245 0.824286 0.635828 0.930468 0.74665 0.79287 

16 0.241685 0.825673 0.637061 0.930872 0.747084 0.793366 

17 0.251045 0.827038 0.638309 0.931268 0.747527 0.793869 

18 0.261372 0.82838 0.639572 0.931657 0.747977 0.794377 

19 0.272689 0.829701 0.64085 0.932039 0.748434 0.79489 

20 0.284981 0.831 0.642142 0.932415 0.748896 0.795405 

21 0.298191 0.832279 0.64345 0.932785 0.749364 0.795923 

22 0.312209 0.833537 0.644773 0.933148 0.749836 0.796443 

23 0.326876 0.834775 0.646112 0.933505 0.750328 0.796963 

24 0.341986 0.835993 0.647467 0.933856 0.750863 0.797484 

25 0.357303 0.837192 0.648837 0.934202 0.751401 0.798006 

26 0.372578 0.838372 0.650224 0.934542 0.751941 0.798528 

27 0.387571 0.839534 0.651627 0.934876 0.752483 0.79905 

28 0.40207 0.840678 0.653046 0.935205 0.753026 0.799572 

29 0.415905 0.841805 0.654482 0.935529 0.75357 0.800094 

30 0.428955 0.842914 0.655935 0.935848 0.754116 0.800616 

31 0.441146 0.844007 0.657405 0.936162 0.754663 0.801138 

32 0.452445 0.845084 0.658893 0.936472 0.755211 0.801661 

33 0.462857 0.846145 0.660398 0.936776 0.75576 0.802183 

34 0.47241 0.847191 0.661921 0.937076 0.75631 0.802706 

35 0.481149 0.848223 0.663461 0.937372 0.756862 0.803228 

36 0.489131 0.84924 0.66502 0.937663 0.757414 0.803752 

37 0.496416 0.850244 0.666596 0.93795 0.757968 0.804275 

38 0.503067 0.851234 0.668192 0.938233 0.758523 0.804799 

39 0.509142 0.852213 0.669805 0.938512 0.759079 0.805323 

40 0.514698 0.853179 0.671438 0.938787 0.759636 0.805848 

41 0.519789 0.854135 0.67309 0.939058 0.760194 0.806373 

42 0.524462 0.855079 0.67476 0.939326 0.760754 0.806898 

43 0.52876 0.856014 0.67645 0.93959 0.761314 0.807425 

44 0.532723 0.85694 0.67816 0.93985 0.761876 0.807951 

45 0.536384 0.857857 0.679889 0.940106 0.762439 0.808479 

46 0.539776 0.858767 0.681638 0.940359 0.763003 0.809007 

47 0.542925 0.859669 0.683407 0.940609 0.763567 0.809535 

48 0.545855 0.860566 0.685196 0.940856 0.764134 0.810065 

49 0.548589 0.861458 0.687005 0.941099 0.764701 0.810595 

50 0.551145 0.862345 0.688835 0.941339 0.765269 0.811125 
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51 0.553541 0.863229 0.690684 0.941576 0.765838 0.811656 

52 0.555791 0.864111 0.692554 0.94181 0.766409 0.812188 

53 0.557909 0.864992 0.694445 0.942042 0.76698 0.812721 

54 0.559907 0.865872 0.696355 0.94227 0.767553 0.813254 

55 0.561796 0.866754 0.698286 0.942495 0.768127 0.813788 

56 0.563586 0.867637 0.700238 0.942718 0.768701 0.814323 

57 0.565284 0.868523 0.702209 0.942938 0.769277 0.814858 

58 0.566899 0.869413 0.7042 0.943155 0.769854 0.815394 

59 0.568438 0.870307 0.70621 0.94337 0.770432 0.81593 

60 0.569907 0.871207 0.708238 0.943582 0.771012 0.816468 

61 0.571312 0.872112 0.710285 0.943791 0.771592 0.817005 

62 0.572659 0.873023 0.71235 0.943998 0.772173 0.817544 

63 0.573951 0.873939 0.714431 0.944203 0.772756 0.818083 

64 0.575195 0.874861 0.716527 0.944405 0.773339 0.818623 

65 0.576393 0.875786 0.718637 0.944605 0.773924 0.819163 

66 0.577552 0.876713 0.720759 0.944803 0.774509 0.819704 

67 0.578673 0.87764 0.722892 0.944998 0.775096 0.820245 

68 0.579763 0.878564 0.725032 0.945191 0.775684 0.820787 

69 0.580826 0.87948 0.727179 0.945382 0.776273 0.82133 

70 0.581866 0.880385 0.729327 0.945571 0.776863 0.821873 

71 0.582889 0.881273 0.731474 0.945758 0.777454 0.822416 

72 0.583903 0.882139 0.733617 0.945943 0.778046 0.82296 

73 0.584916 0.882976 0.735751 0.946126 0.778639 0.823505 

74 0.585939 0.883779 0.737872 0.946307 0.779233 0.82405 

75 0.58699 0.884541 0.739977 0.946486 0.779828 0.824596 

76 0.588091 0.885255 0.742061 0.946663 0.780425 0.825142 

77 0.589275 0.885917 0.744121 0.946838 0.781022 0.825688 

78 0.590592 0.886522 0.746158 0.947011 0.78162 0.826235 

79 0.592119 0.88702 0.748172 0.947183 0.78222 0.826782 

80 0.593974 0.887214 0.750169 0.947352 0.78282 0.82733 

81 0.596342 0.887362 0.752163 0.94752 0.783422 0.827879 

82 0.599513 0.887509 0.754175 0.947687 0.784025 0.828427 

83 0.603934 0.887654 0.756242 0.947851 0.784628 0.828976 

84 0.610284 0.887797 0.758417 0.948014 0.785233 0.829525 

85 0.61953 0.887937 0.760779 0.948175 0.785838 0.830075 

86 0.632911 0.888072 0.76344 0.948335 0.786445 0.830625 

87 0.651694 0.888201 0.766546 0.948493 0.787053 0.831175 

88 0.676571 0.888325 0.770283 0.94865 0.787662 0.831726 

89 0.706851 0.888443 0.774868 0.948805 0.788272 0.832277 
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90 0.740164 0.888553 0.780527 0.948958 0.788882 0.832828 

91 0.773295 0.888655 0.787453 0.94911 0.789494 0.83338 

92 0.803573 0.888749 0.795754 0.949261 0.790107 0.83395 

93 0.829642 0.888833 0.805395 0.94941 0.790721 0.839465 

94 0.851311 0.888909 0.816173 0.949558 0.791336 0.849063 

95 0.869031 0.888974 0.827733 0.949704 0.791952 0.858756 

96 0.883468 0.889029 0.839641 0.949849 0.792569 0.868277 

97 0.895276 0.889073 0.851461 0.949993 0.793186 0.877415 

98 0.905007 0.889107 0.862833 0.950135 0.793805 0.886024 

99 0.913104 0.889129 0.873502 0.950276 0.794425 0.894019 

100 0.91991 0.88914 0.880746 0.950416 0.795046 0.901365 

Table 4.4: Average Testing Rates. 

We also determine Kolmogorov Smirnoff test values of the data reported in 

table 4.4 using the same online tool which also reports some central tendencies 

and measures of dispersion.  Figure 4.8 summarizes tests on the results 

achieved in the first run using test data. A Kolmogorov - Smirnoff test value of 

0.13157 and the p-value of 0.05712 are achieved, similarly connoting data 

which does not significantly differ from that which is normally distributed. 

Measures of central tendencies, in this case, equally showed a similar picture, 

with a mean of 0.5046907, a mode of 0.575374, and a median of 0.552343. 

Striking is how close these scores are to one another, further connoting 

normality in the data distribution. Dispersion measures are also consistent. A 

standard deviation of 0.191575 and kurtosis of -0.301438 are observed. 

Figures 4.9 to 4.13 report Kolmogorov – Smirnoff tests, central tendencies, and 

measures of dispersions observed in the second to the sixth run of the 

experiment. Consistent Kolmogorov – Smirnoff values and p-values pointing to 

results that do not significantly differ from data that is normally distributed are 

persistent. Central tendencies plausibly remain close to each other (e.g., a  
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Figure 4.8: Normality test for the first column. 

Figure 4.9: Normality test for the second column. 
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Figure 4.10: Normality test for the third column. 

Figure 4.11: Normality test for the fourth column. 



74 
 

Figure 4.12: Normality test for the fifth column. 

Figure 4.13: Normality test for the sixth column. 
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mean of 0.8584446, mode of 0.802344, and median of 0.862787 achieved in 

the second set of results), purporting commonality in the different data sets. 

Variability tests also persistently achieved low standard deviations and 

acceptable kurtosis measures.  

 

Figure 4.14: Correlation between testing results. 

Figure 4.14 shows a heatmap plot used to explain the correlation among these 

data labels. The plot is also symmetrical since the same data fields are being 

paired. The high positive correlation coefficients observed throughout are 

indicative of well-related outcomes in each run. They indicate common trends. 

They point to possibilities of drawing inferences towards generalizations. 

However, we proceed to extract inferential views before arriving at conclusions.  

T-tests are administered on pairs of the sets of results reported from every run-

in order to compare the means. F-tests follow to compare variation. A 

hypothetical population mean value of 0.3 is proposed before the T-tests are 

administered with the significance level of 0.05 and a one-tailed hypothesis. All 
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outcomes from T-tests are above 10.684625, with probability values less than 

0.00001. Precisely, we observe T-values that significantly suggest means 

arising from the same hypothetical population.  This indicates that the means 

we observe are true means not occurring by chance. It is possible to infer a 

mean to a new sample from observing these means. An analysis of variance 

(ANOVA) confirmed the same observations. Table 4.5 summarizes the 

measures reported in this category. Following this summary, table 4.6 shows a 

one-way ANOVA on the same data.  

Because the p-value reported here is 0.00129, which is less than the 

significance level of 0.05, we do not have sufficient evidence with which to 

accept the null hypothesis. Rather, we conclude that the means and variations 

we observe are truly not occurring by chance. We accept the alternative 

hypothesis that plausible improvements to the RSA algorithm are observed 

when a neural network is incorporated to learn data integrity and authenticity 

towards a CIA-compliant RSA hybrid. 

SUMMARY 

Groups Median Mode Mean Kurtosis Standard Deviation 

First 0.552343 0.175374 0.504691 -0.301438 0.191575 

Second 0.862787 0.802344 0.858445 -0.990454 0.026558 

Third 0.68976 0.619979 0.701394 0.310694 0.062911 

Fourth 0.941458 0.923925 0.940078 -0.89113 0.007513 

Fifth 0.765554 0.742672 0.766308 -1.244792 0.016079 

Sixth 0.811391 0.788377 0.814576 3.795561 0.02236 

Table 4.5: Summary of the neural network’s testing rates. 
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ANOVA 

Source of Variation SS df MS P-value F-value 

Between Groups 11.36469 5 2.272939 0.00129 2.229193 

Within Groups 4.175727 594 0.00703 
  

Total 15.54042 599       

Table 4.6: Analysis of variances in the neural network’s testing rates. 

4.4    Discussion of the results 

Hypothesis testing is about seeking evidence to accept or reject a claim. In this 

work, we hypothesized that the inclusion of a neural network to learn data 

integrity and data authenticity in the RSA model would upgrade the resultant 

hybrid RSA model towards CIA compliance.  

A null hypothesis was formulated which assumed insignificant effects of a 

neural network to the performance of the hybrid RSA model. An RSA model 

was developed which assessed a neural network’s learning rate on training and 

testing data. The central tendencies reported, the measures of dispersion 

achieved, correlation analyses, and tests for normality on all the results 

achieved connoted mappable outcomes from the reported samples to 

hypothetical populations. Inferential analyses based on T and F tests yielded 

consistent results with the descriptive statistics achieved. We, therefore, failed 

to get grounds with which to accept the null hypothesis. Rather, sufficient 

deductive evidence based on the derived descriptive and inferential statistics 

provided grounds on which to believe that inclusion of a neural network to learn 

data integrity and data authenticity in the RSA model upgrades the resultant 
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hybrid RSA model towards CIA compliance. This is a notable improvement to 

the RSA model with the potentials to inspire further research and revive the 

application of the RSA model in commerce and business.  The null hypothesis 

which states that a neural network does not affect the enhancement of the RSA 

algorithm towards a CIA compliant RSA hybrid was, therefore, rejected. An 

alternative hypothesis which states that the observation of plausible 

improvement of the RSA algorithm from the incorporation of a neural network 

brings data integrity and data authenticity into the RSA algorithm towards a CIA 

compliant hybrid was then accepted.  

4.5     Summary 

This chapter mainly collected data on the performance of the RSA predictive 

cryptosystem built on the notion that a neural network can learn data integrity 

and data authenticity from RSA’s encrypted data towards a CIA-compliant 

hybrid RSA model. The design of the learning process using a training data set 

and a testing data set was explained. Neural network learning rates were 

reported from six replicated experiment runs. Analyses of those learning rates 

based on descriptive and inferential statistics showed common consistent 

trends towards normally distributed outcomes. These outcomes provided 

support with which the null hypothesis was rejected in favour of an alternative 

hypothesis which supports the view that inclusion of a neural network to learn 

data integrity and data authenticity in RSA encrypted data upgrades the hybrid 

RSA model towards CIA compliance. We arrived at and made this conclusion 

at a 95% level of confidence. The next and final chapter concludes this study.  
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Chapter 5  : Conclusion 

This chapter concludes the project by summarizing the chapters, answering 

the research questions posed in chapter one, reviewing the contributions of the 

study, and pointing out avenues for future work. This is where we reflect on the 

findings of the study and the results yielded.  

5.1 Summary of the chapters covered 

The project was divided into five chapters. Below is a summary of what each 

chapter contributed to the project.  

• The first chapter introduced the study by stating the statement of the 

problem as an investigation of ways of integrating the RSA algorithm with 

a neural network system that learns data integrity and data authenticity in 

RSA encrypted data towards a CIA compliant hybrid RSA model. The aim 

of the study was pinpointed as to investigate improvement to the RSA 

algorithm by incorporating a neural network that learns data integrity and 

data authenticity towards a CIA-compliant hybrid RSA model. Chapter 1 

stated three objectives; (a) to implement the RSA algorithm, (b) to design 

and embed a neural network into the RSA algorithm to learn data integrity 

and data authenticity patterns, and (c) to evaluate the performances of 

the CIA compliant hybrid RSA model. Questions were asked in line with 

the three objectives. The first question sought to understand how the RSA 

algorithm is implemented. The second sought an understanding of how a 

neural network could be incorporated into the RSA model. The third 

question assessed the extent to which the hybrid RSA model satisfied 

CIA compliancy. The hypothesis of the study was stated as: Ho - 
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incorporation of a neural network into the RSA algorithm will yield an 

upgraded hybrid RSA model which satisfies three of the five objectives of 

cryptographic algorithms - data confidentiality, data integrity, and data 

authenticity. Two motivating factors were pointed out as (a) the desire to 

assess the application of a neural network in the improvement of the RSA 

algorithm towards CIA compliance, and (b) curiosity to assess the extent 

to which bringing a cryptographic model and a machine learning system 

together works. Envisaged contributions were given as (a) creation of 

literature and new content in the fields, as well as (b) responding to most 

organizations’ needs. The location of the study was indicated from a 

conceptual perspective before the limitations of the study closed the 

chapter.  

• Chapter two presented related works on which our work is grounded. 

Precisely, we reviewed works concerned with the improvement of the 

RSA algorithm in general. We looked at literature related to the inclusion 

of neural networks in cryptography. The chapter closed by elucidating the 

gap we fill in the body of knowledge, also justifying the worthiness of the 

work here undertaken. 

• Chapter three presented the methodology we followed, as well as the 

theoretical framework upon which most of our reasoning and 

argumentations are grounded. Precisely, a design science research 

methodology was assumed which emphasized the spiral design of the 

artifacts required for improving the RSA model and to prove the concept 

at hand.  

• In chapter four, we generated results, interpreted the same, and 

discussed the bigger picture emanating. Experiments were conducted 

towards testing and training the designed predictive cryptosystem. 
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Plausible performances were noted, confirming the functionality of the 

proposed hybrid RSA model. The results yielded, on their own, are 

evidence, a milestone, and a deliverable of the work undertaken and 

presented in this study. 

• In this chapter, we firstly summarize the chapters covered in the study 

and what each chapter offered to the study. We then explicitly present the 

answers to the research questions asked in the first chapter. Our 

philosophical reflection of the work, the findings, the results, and the 

conclusions arising is also presented in this chapter. The key 

contributions this study makes to the field and body of knowledge are also 

revisited in this chapter. Then, the potential direction for future work is 

discussed at the end of this chapter. 

5.2 Answers to the research questions 

Three questions were posed in chapter one. The first question sought the 

design and implementation of the RSA encryption/decryption algorithm. This 

aspect was successfully achieved (see related code in the appendices). 

Successful encryption and the reverse process thereto are sufficient results 

that serve as evidence of the achievement of the first objective, and an answer 

to the first question of the study.  

The second question investigated the design and implementation of a neural 

network. A convolutional neural network arose which learns data integrity and 

data authenticity in RSA encrypted messages. The validity of the evidence of 

achievement of this objective is implicitly inferred in the results presented in 

chapter four.  

The key deliverable of this work was the development of the RSA predictive 

cryptosystem which incorporates a neural network. This integrated hybrid was 
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successfully implemented, tried, and tested in chapter four. Data analysis on 

the results from the performances of the hybrid RSA model indicates 

generalizable commonalities in the different data sets of the results reported. 

In our view, the hybrid RSA model responded to the idea of including all three 

cryptographic objectives. The hybrid RSA model satisfied data confidentiality, 

data integrity, and data authenticity. Any central tendencies and variations 

observed when the hybrid RSA model was tested are insignificant, occurring 

by chance. This was statistically confirmed at a 95% level of confidence. The 

hypothesis that the inclusion of a neural network in the RSA model upgrades 

this cipher from handling only data confidentiality to also handling data integrity 

and data authenticity holds over the null hypothesis.     

5.3 Reflections 

The combination of the RSA algorithm with a neural network embraced the 

notion of hybridization. Hybridized cryptosystems apply mathematical rules 

which diffuse traces that enable brute force attacks to the resultant hybrid 

cipher. Data encrypted using the RSA model and signed using a neural network 

satisfy data confidentiality, data integrity, and data authentication. Data integrity 

and data authentication are digital signature issues that are indispensable in 

today’s online transactions. Our intervention and contribution in this study are, 

thus, worthwhile.  

5.4 Contributions 

Successful design and implementation of the proposed RSA predictive 

cryptosystem came with valuable contributions both from an academic and 

from a practical point of view. Precisely: 

• we added content to the body of knowledge. We provided additional 

literature upon which future researchers can base arguments on.  
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• Various matters outside the scope of this research work have been 

observed. These are recommended as future work which upcoming 

researchers can explore. We thus contribute ideas for new research. 

• Practical and commercial perspectives are envisioned to arise from this 

work. That alone renders the work worthwhile. Precisely, the RSA model 

may be re-considered on the market. Current RSA users may also 

upgrade their systems to enjoy CIA-compliant siblings of the RSA model. 

Also, the improvements we reported bring us closer to fulfilling the 

expectation of most organizations and government entities in which data 

security is paramount.  

• Above all, we have learned a few more aspects of computational designs 

and algorithms.  

5.5 Future works  

Improvement of the RSA algorithm where a neural network is used to learn 

features of the RSA algorithm is possible. However, the same improvement 

could, potentially, be achieved and optimized by incorporating machine 

learning algorithms such as the support vector machines or the principal 

component analysis method. We propose further studies which investigate the 

quality of CIA compliance and the relative performance of other potential hybrid 

RSA models built using different machine learning algorithms.  
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Appendix A- Screenshots of Important code 
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Appendix B- Editing Certificate 

  



113 
 

Appendix C – Similarity Report 

When searched from all repositories (internet, student papers, periodicals, 

journals, and publications) including title, preamble sections, and reference list. 

  

Hits are mainly in the declaration, chapter headings, section headings, and in 

the reference list. See screenshot of one of the reference list pages. 
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Below is the similarity report after excluding the reference list, keeping 

everything else the same. 

 

        

 

 

 

 

 

 

======= IN GOD WE TRUST ======= 


