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Abstract

Multilevel models take into account various degrees of aggregation in the
data. This study aims to bring together multilevel models from both fre-
quentist and Bayesian perspectives in identifying determinants of contracep-
tive choices. The study uses the data from the 2016 South African Demo-
graphic and Health Survey (SADHS). To analyse the dataset, a multinomial
logistic regression model has been used, model parameters were estimated
in SPSS for frequentist models. The Bayesian analyses with non informa-
tive priors were strengthened by the use of the state of the art Hamiltonian
Monte Carlo algorithm (HMC), as implemented in the RStan package in
the R statistical software. The Bayesian final model was selected based on
Watanabe–Akaike information criterion (WAIC), which has been shown to
outperform conventional information-criterion such as DIC. The results es-
tablished that an individual woman’s choice of contraception is a function of
both individual characteristics and community effects. In bivariate analysis,
injections showed a continued dominance as a preferred choice in SA. Com-
munity level education was the most useful determinant of contraceptive
choices. Thus, this study recommends that Empowering woman through
education, will have a positive effect on overall contraceptive prevalence.

Key words: Multilevel modelling, Rstan, Bayesian, HMC, Multinomial
regression, WAIC.
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Chapter 1

Introduction

1.1 Background

Worldwide, around three quarters of all pregnancies are deemed either un-

desirable or unplanned, yet account for almost three hundred thousand

pregnancies that happen daily (World Health Organization and Partners in

Health, 2009). It is evident that South Africa is no exception to these alarm-

ing figures, because 330 out of 1000 teenage pregnancies in South Africa end

in abortions (Hodes, 2016). Abortion clinics are booked to capacity and

the queue can stretch over to four months, because of that reason woman

opt for illegal abortions, which is one of leading causes of maternal deaths

worldwide. The vast majority of these deaths could be prevented, not only

by offering immediate medical care, but also by providing family planning

counselling and services, which could counteract future unintended pregnan-

cies and unsafe induced abortions (Luvai, 2017).

The use of contraceptives is an important element of family planning. In
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South Africa, proper family planning is a national concern and a necessity in

protecting women’s health and rights, impacting upon fertility and popula-

tion growth. Family planning prevents unwanted pregnancies and associated

consequences. It in this manner promotes economic development of a coun-

try (Ferede, 2013). In addition to functioning as a barrier to conception,

the use of family planning techniques such as condoms, a modest kind of

contraception, provides protection against STIs including HIV. (Magadi and

Curtis, 2003).

Modelling determinants of contraceptive method choice constitutes a vital

part of the health policy of a country, especially for a developing country like

South Africa, which has been particularly vulnerable to unplanned pregnan-

cies and sexually transmitted infections(STI’s) including HIV (Cowan and

Pettifor, 2009). Substantial proof is found in existing writing that widening

the choice of contraceptive methods results in an overall increase of contra-

ceptive prevalence rate (Ross and Stover (2013); Kulczycki (2004); Do and

Kurimoto (2012)).

Demographic characteristics, social and religious convictions, economic sta-

tus and education levels of the female populace can also influence the choice

of a contraceptive method. This population-based study is an attempt to

determine the determinants of choice of contraception in South Africa based

on the 2016 South African Demographic and Health Surveys (SADHS) data.
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1.2 Statement of the Problem

Most existing recent South African contraception analysis studies have mainly

focussed on using binary logistic regression to identify those factors that de-

termine use/non-use of contraceptives by individuals in the population (for

example, see Seutlwadi et al. (2012); Stephenson et al. (2008b); Kaida et al.

(2010); among others). One of the major inspirations for the current study

which focusses on determinants of contraceptive method choice is the fact

that, the challenge for policymakers does not end in urging more couples to

use contraceptives, but it rather stretches out to the choice of an appropriate

contraceptive method that suits the customer’s needs.

The data to be used in this dissertation is secondary level data from the

2016 South African Demographic and Health Survey (SADHS). The DHS

datasets have a multilevel nature in the sense that woman are nested within

clusters, thus leading to observations in the same cluster exhibiting some

similarities. It would be reasonable to believe that woman from the same

cluster will have contraceptive choices that are more highly correlated with

one another than they are with contraceptive choices of individuals chosen

at random from the population. We are interested in measuring the degree

of association among women in the cluster that is still present after control-

ling for the observed covariates. The association is a result of unobserved

factors. This within-cluster correlation would be due, for example, to similar

cultural beliefs, the same health care facilities and other factors. To account

for this heterogeneity the current study will resort to multilevel modelling.

Few studies have applied multilevel modelling for contraceptive method
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choice in a South African context. There is work that has been done

by Stephenson et al. (2008a), where they involved the use of multilevel-

multinomial regression models to model determinants of contraceptive method

choice in Eastern Cape. The fact that its a small-scale study focused in one

province limits the applicability of the results on a larger scale, particularly

considering a multi-regional and multi-cultural setting of South Africa. The

authors used multilevel modelling using a frequentist method of estimation,

and on an outdated data from 1998 SADHS. The current study will apply

multilevel modelling on a more recent dataset from 2016 SADHS and the

study will cover the whole country.

The majority of publications in the literature focus on the frequentist tech-

nique of estimation. One significant disadvantage of the frequentist method

is that it does not account for uncertainty in parameter estimation, Bayesian

analysis is one technique to overcome this. Bayarri and Berger (2004) in-

dicated that there are several areas of frequentist technique that may be

substituted with Bayesian methodology that offer prevailing results. In this

study we will use Bayesian multilevel multinomial logistic regression to mod-

els the determinants of contraceptive method choice in South Africa.

Bayesian multilevel multinomial logistic regression models are not widely

used. Very few studies have attempted to compare frequentist and Bayesian

approaches in estimating parameters of a multilevel multinomial logistic re-

gression model, and those that have, have yielded mixed findings. Therefore

more research and testing using the same methodology is required, to gain a

better understanding of an estimation technique which yields better results

as far as the multilevel multinomial logistic regression model is concerned.
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1.3 Study Aim and Objectives

This study aims to bring together frequentist and Bayesian estimation to-

gether with multilevel analysis in determining the factors which explain the

determinants of contraceptive choice among woman in South Africa.

1.3.1 Objectives of the Study

The specific objectives of this research are to:

• build a multilevel multinomial logistic regression model in order to

identify the determinants of contraceptive choice using classical/frequentist

approach,

• build a multilevel multinomial logistic regression model using Bayesian

statistical approach, and compare the results of the two approaches

• make provision of relevant recommendations for policy makers and

suggest directions for future research

1.4 Proposed Methodology

1.4.1 Data

In order to explore the whole country, this study will use the secondary

level data from the 2016 South African Demographic and Health Survey

(SADHS). The data was collected from May to November 2016, and that is

the latest South African national dataset with information on contraceptive

use.
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1.4.2 Target Population and Statistical Methods

Since this research study focuses on the determinants of contraceptive method

choice among women, the sample will be limited to Women who were at

risk of conception at the time of the survey. For analysis we fit multilevel

multinomial logistic regression models to cater for possible clustering of re-

sponses at regional level. This study will use both frequentist and Bayesian

approaches to estimate parameters.

1.5 Organization of the Study

The rest of the dissertation is organised as follows. In Chapter 2 a literature

review provides a background of statistical modelling framework linking the

multilevel modelling and contraceptive choices. It is in this chapter where

we review several recent studies that attempt to link the Bayesian analysis

and multinomial logistic regression models. Chapter 3 focuses on the theory

behind multilevel or hierarchical models built from frequentist and Bayesian

perspectives. Chapter 4 gives a detailed explanation of the data, some basic

exploratory analyses to explore elementary relationships between the vari-

ables, lastly the theory explained in Chapter 3 is used to fit the models.

Chapter 5 provides discussion, conclusion, recommendations and directions

for future research.



Chapter 2

Literature review

2.1 Introduction

Across many fields, the determinants of contraceptive choice is not a new

scientific problem. The problem has been studied by many researchers from

medical science, epidemiology, sociology and other disciplines. In this chap-

ter the main focus will be on the review of the related contraceptive choice

literatures. Special attention is paid to methodological approaches used for

analysis.

The chapter is organized as follows: Section 2.1 deals mainly with the

review of relevant literature on frequentist and Bayesian inference. Section

2.2 reviews articles on determinants of contraceptive choices. It starts by

presenting the context of familly planning in other parts of the world and

narrows down to the case of South Africa .

7
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2.2 Approaches to Statistical Analysis

In light of the objectives, the dissertation focuses on the modelling of de-

terminants of contraceptive method choice using a frequentist and Bayesian

analysis. First and foremost, it is noteworthy that there is an important

distinction in philosophy between Bayesian and frequentist estimation. (Ba-

yarri and Berger, 2004). Basically the essential contrast between the two

paradigms lies on how they define what probability expresses (Samaniego,

2010).

2.2.1 Frequentist Paradigm

The frequentist approach, as the name suggests, is the paradigm that inter-

pret probabilities as a long-run frequency of a “repeatable” event. As per

Bayarri and Berger (2004), a frequentist paradigm can be loosely refereed to

as ”classical”. It is in this paradigm where parameters of interest are treated

as fixed. The paradigm is divided into two inferential techniques namely:

model−based and design−based. As argued by Särndal et al. (1978), the

difference between the two techniques lies in the sources of random variation

that is capable of giving the stochastic structure in the data. Särndal et al.

(1978) and Cochran et al. (1977) are two classic references with an excellent

comparison of model−based and design−based inferences.

Over the past three decades, a frequentist modelling framework to multi-

nomial logistic regression models has been used extensively to model discrete

choices (see, Park and Kerr (1990); McFadden and Train (2000); Stark-

weather and Moske (2011); among others). These models can range from

single level to multilevel depending on sampling methods used in data col-

lection. Single level classical multinomial logit models are now commonplace
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tools for modelling the determinants of contraceptive choices and work very

well when the data is not nested. Compared with multilevel models, single

level models are usually straightforward to implement and produce relatively

robust solutions.

Despite the hierarchical structure of DHS data sets, Indongo (2007) and

Aragaw (2015) also used single level regression models, to model the de-

terminants of contraceptive choices among woman. Unfortunately without

properly accounting for violation of the independence assumptions the re-

sults of such studies can be biased. Fortunately multilevel modelling can be

used to to adequately adjust for hierarchies that exists within the DHS data

sets (Finch et al., 2016).

Although, hierarchical Frequentist models have been applied to contra-

ceptive choice, the literature is ”very small and scattered”. In the case of

South Africa, only one small contraceptive choice study was conducted using

the methodology (Stephenson et al., 2008a). Another example of the use of

a hierarchical analysis for polychotomous data is Magadi and Curtis (2003).

In this article the authors used a two-level hierarchical model for contracep-

tive method choice which was estimated using a frequentist approach. We

consider frequetist and Bayesian estimation of the same model.

2.2.2 Bayesian Paradigm

In the Bayesian approach which is an alternative statistical paradigm to

the Frequentist inference, probabilities are perceived as subjective and are

interpreted conditional to the availability of data (McElreath, 2020). The

Bayesian approach took a sizable step forward in 1763, when Richard Price

edited and published Bayes work posthumously. This paradigm uses prob-
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ability to quantify uncertainty, or degree of belief, hence probability distri-

butions called priors are used to represent what is believed before data are

observed. As highlighted in Congdon (2010) Bayesian statistics combines

a prior knowledge with the likelihood of the data to generate a posterior

distribution.

Choosing of prior in the Bayesian paradigm is the pivotal point, with

a choice of deciding between informative and non-informative (Lesaffre and

Lawson, 2012). using hirachical Bayesian multinomial models, For com-

putation ease many authors have adopted the Dirichlet priors, but it was

noted by that the conjugate prior does not always provide (?) . In expense

of simple conjugate the current study will adopt a hierarchical approach of

specifying a prior distribution. Referring to Ebenezer and Lougue (2019),

Multivariate normal priors will be used.

Since the exact computation of the posterior distribution is practically

infeasible, a Markov chain Monte Carlo (MCMC) technique is required to

sample from the target distribution (Lesaffre and Lawson, 2012). Metropolis

Hastings and the Gibbs samplers are the most frequently used MCMC algo-

rithms Wagenmakers et al. (2008). These can be computed from MCMC-

pack by Martin et al. (2020). Departing from the commonly used MCMC-

pack, this dissertation will utilize Rstan package by Carpenter et al. (2017),

which uses Hamiltonian Monte Carlo(HMC) algorithm to obtain draws from

the posterior distribution. While traditional MCMC chains conceivably re-

quire millions of iterations to arrive at stationarity, HMC often need a few

thousand iterations to attain a reasonably mixed posterior distribution Mon-

nahan et al. (2017).

Several authors have adopted hierarchical Bayesian multinomial models
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to analyse categorical data, however relative little contraceptive related re-

search has adopted the methodology. More recently, Ebenezer and Lougue

(2019) employed a Bayesian generalized linear mixed model to analyse multi-

nomial data for the problem of breast cancer. Their model is very compa-

rable to the one considered here; we describe it further in the next chapter.

2.3 Key Determinants of Contraceptive Choices

According to Hermalin (1983), a woman’s decision to use any contraceptive

method to avoid pregnancy is dictated by the relative costs and benefits

of a pregnancy. Tanfer et al. (1992) assumed that individual woman de-

fine these relative costs and benefits based on their socio-economic status,

demographic and maternal characteristics. This study utilizes the same the-

oretical framework adopted by (Tanfer et al., 1992).

Social and economic determinant factors associated with contraceptive

choices include education attainment. The more educated a woman gets, the

more likely she is to be aware of her risk of pregnancy and knowledgeable

about contraceptive options (Larsson and Stanfors, 2014). In USA, better

educated woman constantly reported a low use of Sterilization which is a

long term method, and much higher likelihood of using a pill(a short term

method) Mosher and Jones (2010). Similar to the results of Mosher and

Jones (2010), a Kenyan study by Kungu et al. (2020), demonstrated that

young woman with at least secondary education and coming from families

with high wealth status are more likely to use short term contraceptive

methods, and the pattern is reversed for poor and uneducated woman. In

the case of South Africa, contrary to Kungu et al. (2020), woman coming
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from less educated communities are negatively associated with long term

methods.

Evidence of associations between contraceptive choice and demographic

or residential characteristics was noted in (Chigbu et al., 2008). Radovich

et al. (2018) analysed the determinants of contraceptive choices among

women across 33 sub-saharan countries. Women aged 15 − 19 and 20–24

were significantly less likely to use IUD/implant (long−term method). A

South African study reveals that, compared with their younger (15 − 24)

counterparts, older woman (25+) had a considerably more frequent use of

sterilization (Stephenson et al., 2008a). Regarding parity, women with five

or more children were positively associated with the use of a more per-

manent method (sterilization) instead of injection, as compared to women

without children (Scott and Glasier, 2006). The marital status of a women

is important in contraceptive research because it reflects how sexually ac-

tive that person is. This is especially important considering the controversy

about sexual contact. The study highlighted that marital status, ethnicity

and residence type are also closely related to the choice of method. Since

the provision of contraceptives is free and highly accessible in both rural

and urban areas of South Africa this study will not use wealth and type of

residence as factors associated with contraceptive choices.
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2.4 Concluding Remarks

Departing from previous studies, this study applies the Bayesian and classi-

cal multinomial logistic regression methodology to contraception data. The

review reveals several gaps in the literature, including little or no research

on the topics of contraceptive choices in South Africa. It is evident from the

reviewed studies that very few population based studies on contraceptive

choices have been carried out in South Africa and some of them were based

on an outdated data, and some where conducted with inadequate method-

ologies. Also, no study has been done to compare frequentist and Bayesian

approach in estimating parameters of a Multi-level Multinomial logistic re-

gression model. Hence this study seeks to address the identified research

gaps by combining multilevel modelling with both frequentist and Bayesian

methods of parameter estimation.



Chapter 3

Study Methodology

3.1 Introduction

This chapter provides an in-depth review of methodological approaches for

clustered multinomial response models and multilevel models. Both frequen-

tist and Bayesian methods will be addressed. Special attention is paid to

methodological aspects of the random effects multinomial logit model from

a frequentist and a Bayesian viewpoint. After introducing methods a brief

exploration of techniques used in obtaining parameters and precision esti-

mates will follow. Software to be used in implementing these approaches

will also be highlighted.

3.2 Multinomial Logistic Regression

The multinomial logistic model is a generalization of the binary logistic

model (McFadden and Train, 2000). The response variable takes three or

more categories. We now consider models for the probabilities πij .

14
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3.2.1 The Model

Assume Yi is a nominal categorical outcome variable for the ith observa-

tion, which can take M possible integer values denoted by (1, 2, ...,M) with

corresponding probability πim when

πim = Pr(Yi = m) for m = 1, . . . ,M. (3.2.1)

Let xi be a vector of p explanatory variables for the ith observation, xi =

(x1, x2, ..., xp)
T . Under MNL (multinomial logistic regression) structure with

Yi = M as the baseline (reference category), the model is:

log

(
πim
πiM

)
= log

 πim

1−
M−1∑
h=1

πim

 = ηim

= xT
i βm = β0 + β1x1 + · · ·+ βpxp, (3.2.2)

where i = 1, 2, ..., N and m = 1, 2, ...,M − 1. For any m 6= M and the

coefficient vector βm = (βm1, βm2, . . . , β(M−1)p)
T where m = 1, 2, . . . ,M−1

(Starkweather and Moske, 2011). To calculate the probabilities, we have:

Pr(Yi = m) = πim =
exp

(
xT
i βm

)
1 +

M−1∑
h=1

exp
(
xT
i βh

) , (3.2.3)

for the non-baseline categories h = 1, 2, . . . ,M − 1, while for the baseline

category probability is

Pr(Yi = M) = πiM =
1

1 +
M−1∑
h=1

exp
(
xT
i βh

) . (3.2.4)
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The multinomial logistic regression model is a GLM (Generalizedlinear Model)

with three main components Starkweather and Moske (2011).

• Random component

The the response f follows a Multinomial distribution:

yi ∼ Multinomial(yi|πim)

while, πim = Pr(Yi = m) for m = 1, . . . ,M

• Systematic Component

This specifies explanatory variables (X1, X2, ..., Xp) and their linear com-

bination.

η = xT
i βj

• Link function

Generalized Logit function.

g(.) = ηi = logit(πi) = log

(
πi

1− πi

)
(3.2.5)

3.3 Multinomial Logit Model with Random Ef-

fects

In this study, our nominal response is contraceptive choices taking values

“Oral”, “barrier”, “sterilisation”,“other methods” and “injection”, which we

index k = 1, 2, 3, 4 and 5. We use the logit model to pair each of the first four

response categories with “injection” (baseline category) and fit these models

simultaneously. The general form of the baseline-category logit model with

random effects is given by
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ηijk = logit(πijk) =
P (Yij = k|xij , zij ,ui)
P (Yij = M |xij , zij ,ui)

(3.3.1)

= xTijβk + zTijui (3.3.2)

Where

πijk = h(ηijk) =
exp (ηijk)

1 +
M−1∑
k=1

exp (ηijk)

=
exp

(
xTijβk + zTijui

)
1 +

M−1∑
k=1

exp
(
xTijβk + zTijui

) , (3.3.3)

where βk = (βT0k, . . . , βpk)
T is a vector of fixed effects and ui = (ui0, . . . , uis)

T

is a s+ 1 dimensional cluster-specific random effect.

The models (3.3.2) and (3.3.3) can be presented in matrix form as multi-

variate generalized linear mixed models for categorical responses. We use

the notation Yij for the jth observation of cluster i. Yij takes values from

contraceptive choices {1, . . . ,M}, or yij = (yij1, . . . , yij(M−1))
T . The corre-

sponding model for observation yij has the form:

ηij = logit(πij) = Xijβk + zijui (3.3.4)

πij = h(ηij) (3.3.5)

where vector β is the vector for fixed parameters, and ui is the vector for the

random effects; M − 1× q-dimensional Xij and the (M − 1)× v-dimensional

Zij are the model matrices for the fixed and random effects respectively, all

typically have the forms:
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Xij =


xTij 0T . . . 0T

0T xTij . . . 0T

...
...

. . .
...

0T 0T . . . xTij

 zij =

x
T
ij
...
zTij

 β =

 β1
...

βM−1


ui usually follows a multivariate normal distribution with mean 0 and variance-

covariance matrix
∑

.

3.4 Frequentist Estimation

In applications, assuming that the correct model is being used, questions

arise as how to estimate the parameters βij . The solution to the question is

related to the notion of the likelihood. In this section we briefly introduce a

review of general concept behind the estimation approaches to be adopted in

this dissertation. To obtain the parameter estimates (and their precision) in

a frequentist way, we have to maximize the total marginal likelihood which

results in the Maximum Likelihood Estimate (MLE).

3.4.1 Likelihood Function of a Multinomial Random Effects

Model

Let yTij |ui = (yij1, . . . , yij(M−1)) ∼ MN(nij ,π), i = 1, . . . , ni, denote the

multinomial distribution with M categories. The multinomial distribution

has the form of a multivariate exponential family. The conditional density

of yij , given the explanatory variables, Xij and Zij in equation (3.3.5), and

the v- dimensional random effect ui, f(yij |ui) belong to the multivariate

exponential family with
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µij = E(yij |ui)] = h(ηij), ηij = Xijβ +Zijui (3.4.1)

The general multinomial model is defined by equation in terms of the re-

sponse vector yij or scaled multinomials/proportions pij =
1

nijyij
. For

example, the baseline-category logit random effects model has

πijk = hj(ηij) =
exp (ηijk)

1 +
M−1∑
k=1

exp (ηijk)

, k = 1, . . . ,M − 1 and πijM =
1

1 +
M−1∑
k=1

exp (ηijk)

Then the conditional probability function is

f(yij |ui) =
nij !∏M
k=1 yijk!

M∏
k=1

π
yijk
ijk

=
nij !

yij1! . . . yij(M−1)!
(
nti −

∑M−1
j=1 yijk

)
!
π
yij1
ij1 . . . π

yij(M−1)

ij(M−1)

1−
M−1∑
j=1

πijk

(nti−
∑M−1

j=1 yijk)

= exp
{
yTij + nij log(πijM ) + log(Mij)

}
= exp

{
nijp

T
ijφij + nij log(πijM ) + log(Mij)

}
,

where the canonical parameter φij = (φij1 . . . φijg)
T , φk = log

(πijk
i
πijM

)
, πijk =(

1−
∑M−1

k=1 πijk

)
, and the dispersion parameter is 1

nij
,Mij =

nij !∏M
j=1 yijk!

.

Averaging out the continuous random effect through integretion, the marginal

distribution has mean (using Adams law).

E(yij) = E[E(yij |ui)] = E[h(ηij ],

and variance-covariance matrix (law of total varience).
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V (yij) = E[V (yij |ui)] + V [E(yij |ui)].

The distribution of the total response for ith cluster ni × 1 − vector yi =

(yTi1, . . . ,y
T
ini1

, . . . , )T = (yi11, . . . , yi1g, . . . , yini1, . . . , yinig)
T is obtained by

assuming the conditional independence of yi1, . . . ,yini given ui. The marginal

probability function of yi is

f(yi) =

∫
f(yi,ui)dui =

∫
f(yi|ui)φ(ui,

∑∑∑
)dui

=

∫ [ ni∏
t=1

f(yij |ui)

]
φ(ui,

∑∑∑
)dui,

Where φ(ui,
∑∑∑

) denotes the density of the random effects, which are as-

sumed to have no relations with the fixed effects. The generalised linear

mixed model (GLMM) likelihood function is the marginal mass function

of the observed multinomial data, yi, we consider it as a function of the

parameters of interest, with the form:

L(β,
∑∑∑

) =
m∏
i=1

f(yi) =
m∏
i=1

∫ [ ni∏
t=1

f(yij |ui)

]
φ(ui,

∑∑∑
)dui

=

m∏
i=1

∫ [ ni∏
t=1

exp
{
yTij + nij log(πijM ) + log(Mij)

}]
φ(ui,

∑∑∑
)dui,

where β and covariance matrix
∑∑∑

are the parameters of interest, that needs

to be estimated, where the covariance matrix
∑∑∑

of the random effects u− i

depends on an unknown parameter vector σ, which represents the variance

components.

3.4.2 Numerical Integration

Integration over the distribution of random effects is needed to solve the

above likelihood expression. In the literature, some approximations (nu-
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merical integration techniques) for estimating the integral over the random-

effects distribution have been suggested. Here we use a deterministic method

(Gauss-Hermite quadrature) to approximate the integration.

3.4.3 Random Intercept Multinomial Logit Model

In order to address cluster heterogeneity and intra-cluster correlation we use

the random intercept multinomial model. We will look at the simple model

containing only one random intercept. Here we consider a random intercept

model, where the linear predictor, ηijk, of a woman coming from the ith

cluster and choosing the kth (contraceptive method choice) is given by:

ηijk = g(πijk) = logit(πijk) =
P (Yij = k|xij , ui)
P (Yij = M |xij , ui)

= xTijβk + ui

πijk = h(ηijk) =
exp (ηijk)

1 +
M−1∑
k=1

exp (ηijk)

=
exp

(
xTijβk + ui

)
1 +

M−1∑
k=1

exp
(
xTijβk + ui

) ,
where ui is the cluster-specific intercept for all categories. The fixed effects

determine the effects of the covariates but the response strength may vary

across different clusters. This model is obtained by specifying zit = 1 from

the general random effects multinomial logit model ??. When our data is

sparse, i.e., when the number of observations per cluster is small, we may

use conditional likelihood (Demidenko, 2013).
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3.4.4 Random Intercept Variance Component Model

We first employ a simple model with no explanatory variables i.e. an

intercept-only model (usually called the empty model) that predicts the

probability of contraceptive Choices. The functional form of the model is

log

(
πijk
πijM

)
= ηijk = β0j + ξijk. (3.4.2)

Allowing the intercept to differ across clusters, leads to the random intercept

that we express as

β0j = γ00 + U0j , (3.4.3)

where γ00 is an average or overall intercept value that holds across groups

(clusters), whereas U0j refers to a group-specific deviation from the intercept.

Hence the unified random intercept model can be expressed as

log

(
πijk
πijM

)
= γ00 + U0j + ξijk. (3.4.4)

3.4.5 Odds Ratios with 95% Confidence Interval (CI)

Since point estimates can be misleading, odds ratios should be interpreted

in terms of their 95 percent confidence interval. A wide confidence interval

means that the OR has a poor level of precision, while a small confidence

interval indicates that the OR has a higher level of precision. The population

log odds ratio has a 95% confidence interval of approximately:

CI = ln(OR)± 1.96× {St.Er ln(OR)}, (3.4.5)
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where ln(OR) is the log odds and St.Er ln(OR) is the standard error of

estimate of the log odds ratio. We can deduce the 95% confidence interval

of OR as:

eCI = exp{log(OR)± 1.96× {SE log(OR)}}

3.5 The Bayesian Hierarchical Modelling

This section introduces the Bayesian methods and the computational method-

ologies on which parameter estimates in this study are obtained. The de-

velopment of Bayesian inference has the data likelihood as a fundamental

concept (Lesaffre and Lawson, 2012).

3.5.1 The Likelihood Function

Let yi, i = 1, ..., n be a random variable with probability density function

π (yi|φ), where φ = (φ1, ..., φp) is a vector of relative risk parameters. The

likelihood function of yi is defined as

π (y|φ) =
n∏
i=1

π (yi|φ) (3.5.1)

Equation 3.5.1 is based on the assumption that the sample values of y =

(y1, ..., yp)
′

given the parameters φ are independent (Lesaffre and Lawson,

2012).

3.5.2 The Prior Distribution

As previously stated, Bayesian methods are based on prior belief about the

parameters of interest. However, this belief about a parameter is captured

in a density function referred to as a prior distribution. In the case of poor
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or small sample sizes, the analysis will be dominated by the the prior distri-

bution. According to Lesaffre and Lawson (2012), Prior distributions give

extra “data” for a problem and may thus be utilized to improve parameter

estimation.

The Propriety

The condition of improper prior distribution is when the integration of a

random variable φ’s prior distribution over ω is infinity. Mathematically we

write:

∫
ω
π(φ)dφ =∞ (3.5.2)

If the normalizing constant of a prior distribution is finite, it is said to be

proper Bayarri and Berger (2004). It should be remembered that, while

impropriety is a restriction to any prior distribution, an inappropriate prior

does not always imply impropriety in the posterior.

Conjugate Prior

If a prior π(φ|y) and the posterior π(φ) are both coming from the same

family of distributions, then such prior is refereed to as a conjugate of the

likelihood.

In the case of MNL model the conjugate prior is the Dirichlet distribution.

if y = (y1, y2, . . . , yq), and y has a multinomial distribution with parameters

n and φ = (φ1, φ2, . . . , φq) denoted as Multin(n;φ) then the likelihood:

π(φ|y) ∝ φy11 φ
y2
2 . . . φ

yq
q ,

where φj ≥ 0 for all j = 1, . . . , q and
∑q

j=1 φj = 1.
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The conjugate prior is the Dirichlet distribution D(α1, . . . , αq):

π(φ) ∝ φα1−1
1 φα2−1

2 . . . φ
αq−1
q ,

where φj , αj ≥ 0 for all j = 1, . . . , q and
∑q

j=1 φj = 1. As a result, the

posterior distribution that results is another dirichlet distribution denoted

as D(α1 + y1, . . . , αq + yq):

π(φ) ∝ φα1+y1−1
1 φα2+y2−1

2 . . . φ
αq+yq−1
q .

additional “data” for a problem, hence can be used to enhance estimation

of parameters

Non-Informative Priors

A non-informative prior, also known as flat, or reference prior, was defined

by Arango et al. (2002) as one that gives very little or no detail at all about

the experiment or has a minor influence on the results relative to the data.

3.5.3 Posterior Distribution

The posterior distribution is determined by multiplying the prior distribu-

tion and the likelihood, which can be expressed mathematically as:

π(φ|y) =



f(y|φ)g(φ)∑
φ f(y|φ)g(φ)

, for a discrete parameter

f(y|φ)g(φ)∫
f(y|φ)g(φ)d(φ)

, for a continuous parameter
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Since the parameters of interest in this analysis are continuous, the emphasis

is on Bayesian inference for continuous results. Hence using Bayes theorem

we can rewrite the above equation with only the continuous parameters as:

π(φ|y) =
π(y|φ)g(φ)

π(φ)
, (3.5.3)

with,

π(φ) =

∫
π(y|φ)g(φ) (3.5.4)

which is known as the normalising constant. Ignoring the constant we can

write the marginal probability in equation (3.5.3) as:

π(φ|y) ∝ π(y|φ)× g(φ) (3.5.5)

more colloquially,

posterior ∝ likelihood× prior

where π(y|φ) denotes the likelihood function, g(φ) is the prior and π(φ|y) is

the posterior distribution.

3.5.4 Prior and Posterior

In this research we desire to use a non-informative prior for our multinomial

logistic regression model, we choose the multivariate normal distribution

as a prior distribution for the mean parameters β, that is we assume that

β0 ∝ N(β0,
∑

0) where β0 and
∑

0 are hyper-parameters.

β ∼MVN(β0,
∑

0)
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we can write the general formula for a prior distribution as follows:

π(β) ∝ exp

(
−1

2
(β − β0)TΣ−1

0 (β − β0)
)

Where,

∑∑∑
0 =

s
2
0 . . . 0
...

. . .
...

0 . . . s21

 β0 =

β0...
β1


From Ebenezer and Lougue (2019) multivariate normal prior does not have

to be made up from independent components, hence the posterior distribu-

tion will be multivariate normal (β1,
∑

1) where

∑
1 =

∑−1
0 +

∑−1
MLE

and

β1 =
∑

1 |
∑−1

MLE |β̂MLE +
∑

1 |
∑−1

0 |β0

where
∑

MLE is the covariance matrix of the maximum likelihood estimate

(MLE) vector with inverse
∑−1

MLE that is defined as:

∑−1
MLE = XT

∑−1
0 X

while β̂MLE represents the maximum likelihood vector. After observing the

data we can arrive at the posterior distribution

π(β|yi) ∝ π(yi|β)π(β)

where π(yi|β)π(β) is the likelihood function and the prior distribution. The

likelihood has a form:
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π(y|β) ∝ exp

(
−1

2
(β − bLS)TΣ−1

LS(β − bLS)

)
Considering the fixed effects alone, the posterior distribution for a multino-

mial logistic regression is expressed as:

p(β|y) ∝ exp

(
−1

2
(β − β1)TΣ−1

1 (β − β1)
)

3.5.5 Markov Chain Monte Carlo (MCMC)

In this section, we will provide the elementary notion of MCMC algorithm

used to compute the posterior distribution described above, since integration

over the product of likelihood (observed data) and a prior is often analyti-

cally infeasible.

According to Ntzoufras (2011) these MCMC methods are the reason why

quantitative researchers are now able to accurately estimate posterior dis-

tributions of highly complicated models with ease. MCMC has made a

significant contribution to the growth and dissemination of Bayesian theory

Ntzoufras (2011).

The Markov chain methods include building MCMC that ultimately “con-

verges” to the desired (stationary) distribution. (Ntzoufras, 2011). The

target distribution in this dissertation is the posterior distribution π(φ|y).

In the next Section, we explain how MCMC algorithms work.

3.5.6 Markov Chain Monte Carlo Algorithm

Let φ1, φ2, ..., φG be a sample of size G from the posterior distribution π(φ|y).

A Markov Chain is a stochastic process defined by φ1, φ2, ..., φG such that
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π
(
φg+1|φg, ..., φ1

)
= π

(
φg+1|φg

)
.

That is, the distribution of φ at time g + 1 given all the preceding φ values

for g, g − 1, ..., 1 depends only on the value φg of the previous sequence g.

As g → ∞, the distribution φg converges to its equilibrium, which is inde-

pendent of the initial value of the chain φ0 (Ntzoufras, 2011).

Metropolis Algorithm and Gibbs sampling are commonly used MCMC meth-

ods but their draw back is the use of random walk which results in slow con-

vergence. This study will avoid the issue by considering the use of Hamil-

tonian Monte-Carlo which only need few thousand iterations for the same

problem where Gibbs sampling would need millions of iterations.

3.5.7 Hamiltonial Monte Carlo (HMC)

HMC is an MCMC approach that generates efficient transformations span-

ning the posterior using the derivatives of the density functions that are

being sampled (Betancourt and Girolami, 2015). It employs a numerical

integration-based approximate Hamiltonian dynamics simulation.

Momentum Variable

Hamiltonian Monte Carlo introduces ρ as an auxiliary variable that samples

from the posterior distribution.

π(ρ, φ) = π(ρ|φ)π(φ) (3.5.6)

In Rstan ρ does not depend on φ and it is distributed as,

ρ ∼ MultiNormal(0,Σ). (3.5.7)
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The Hamiltonian

According to Carpenter et al. (2017), the Hamiltonian is defined by density

π(ρ, φ) such that:

H(ρ, φ) = − ln (π(ρ, φ))

= − ln (π(ρ|φ))− ln (π(φ)) .

= T (ρ|φ) + U(φ), (3.5.8)

where

T (ρ|φ) = − ln (π(ρ|φ)) , (3.5.9)

is the potential energy and,

U(φ) = − ln (π(φ)) , (3.5.10)

expresses the kinetic energy.

Generating Transitions

Starting with the current value of parameter φ, we create a transition to a

new state in two steps before submitting it to the Metropolis accept step.

(Carpenter et al., 2017).

First, a momentum value is computed independently of the underlying pa-

rameter values,

ρ ∼ MultiNormal(0,M). (3.5.11)
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Next, the joint system made up of the current parameter values and new

momentumφ is evolved via Hamilton’s equations,

Following that, Hamilton’s equations are used to develop the joint system

(φ, ρ) made up of the existing parameter values φ and new momentum φ.

dφ

dt
= +

∂H

∂ρ
= +

∂T

∂ρ
(3.5.12)

dρ

dt
= −∂H

∂φ
= −∂T

∂φ
− ∂U

∂φ
. (3.5.13)

dφ

dt
= +∂T

∂ρ
dρ
dt = −∂U

∂φ
. (3.5.14)

To solve these differential equations, the R package Rstan uses a numerical

integration called method called leapfrog. From there the algorithm move

to Metropolis acceptance step, once that is done, we either update to a new

state (φ∗, ρ∗) or maintain the current state (φ, ρ) (Hoffman et al., 2014).

3.5.8 Assessing and Improving Markov Chain Monte Carlo

Convergence

It is crucial to figure out how many iterations to use to describe the posterior

density to make sure the Markov chain has converged. However it is worth

noting that a model’s convergence does not always mean that it’s a strong

model. Model evaluation is just the beginning. These tests are used to

assess whether the algorithm has achieved its target distribution (posterior

distribution).

• Autocorrelation Function (ACF) Plots (Lesaffre and Lawson,

2012) stated that non vanishing Autocorrelation at long lags means
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that each iterate provides less knowledge about the posterior, im-

plying that a large sampling size is needed to cover the parameter

space. Autocorrelation is a situation when there exists a correlation

between model parameters in the MCMC. Usually autocorrelation can

be eliminated by storing every ith iteration, that process is called “thin-

ning”(Congdon, 2010). Thinning reduces MCMC error and storage

requirements especially when long runs are being carried out (Larsson

and Stanfors, 2014).

• Kernel Density Plots Kernel Density Plots: A more satisfac-

tory density plot for a converged chain would look more bell-shaped

or parameters whose marginal posterior densities are approximately

normal.

• Gelman and Rubin Multiple Chain Convergence :The use of

two or more parallel chains with distinct beginning values is the basis

for Gelman and Rubin convergence diagnostics (Lesaffre and Lawson,

2012). Lesaffre and Lawson (2012) stated that multiple chain conver-

gence diagnostics provide evidence for the robustness of convergence

across different subspaces. Standardizing variables and the unstruc-

tured random effect can help MCMC Chains to converge.

3.5.9 Software for Bayesian Data Analysis

There are various software programs which can fit models using the Bayesian

approach. We show how to utilize RStan for this study, which uses Hamil-

tonian Monte Carlo (HMC) techniques instead of the Gibbs samplers and

Metropolis-Hastings algorithms used in previous packages, such as BUGS

and MLwiN (Browne and Rasbash, 2009). For complicated models, Hamil-
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tonian Monte Carlo estimation offers significant advantages, see McElreath

(2020) for an introduction of the approach that includes tips on interpre-

tation and convergence diagnostics. The random effects logistic regression

model will be fitted using HMC sampling in Rstan. The data preparation

for the Bayesian random effects logistic regression models will be done in R

(Core Team, 2013).

3.6 Criteria for Model Selection

In this section, we describe methods used to select the best fitting model

from a set candidate models. Though technology to fit complex models

through the Bayesian hierarchical models is widely available, there is no

clear criteria to compare models and select best models. The most widely

used criteria is how to measure and appropriately penalised the complexity

of a hierarchical model.

3.6.1 Akaike Information Criterion (AIC)

One of the popular criterion for models comparison is the Akaike Information

Criterion(AIC). The test was developed by Akaike (1973) for the aim of

picking the best model from a pool of alternative models. The AIC chooses

the model that minimizes the gap between fitted and anticipated true values,

and it has the form,

AIC = −2 ln(L) + 2k (3.6.1)

The AIC, on the other hand, has a habit of selecting models with an excessive

number of parameters in cases of large samples.
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3.6.2 Bayesian Information Criterion (BIC)

Schwarz et al. (1978) suggested the Bayesian Information Criterion, which

was a modified version of the AIC when reasoning from a Bayesian perspec-

tive. This information criterion is defined by,

BIC = −2 ln(L) + k ln(n), (3.6.2)

where n is the sample size, L is the maximized likelihood and k is the number

of regressors including the intercept.

3.6.3 Deviance Information Criterion (DIC)

The most commonly and widely used criteria for comparing hierarchical

models is the Deviance Information Criterion proposed by Spiegelhalter

et al. (2003). The DIC works in a similar manner like that Bayesian In-

formation Criterion (BIC) (Schwarz et al., 1978). The DIC includes terms

for both the fit and the complexity of a model. Spiegelhalter et al. (2003)

proposed to estimate k. Given the likelihood function, π(y|φ), the deviance

is usually defined as D(φ) = −2 lnπ(y|φ) and the posterior average deviance

D̂.

DIC = kD + D̂

= 2D̂(φ)−D(φ̂), (3.6.3)

where D(φ̂) is the deviation calculated using the parameters’ posterior mean.

For non-hierarchical models, the DIC is seen as a generalization of the

Akaike’s Criterion (AIC), where DIC ≈ AIC.
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3.6.4 Widely Applicable Information Criterion (WAIC)

According to Gelman et al. (2014) WAIC is given by:

lpd =
n∑
i=1

log

[
1

S

S∑
s=1

p(yi|φs)

]
(3.6.4)

Pwaic =
n∑
i=1

var[log[p(yi|φ)]] (3.6.5)

WAIC = −2(lpd− Pwaic), (3.6.6)

where lpd is the natural log of DIC. The number of simulation draws S

is usually assumed to be big enough to completely capture the posterior

distribution. Gelman et al. (2014).



Chapter 4

Data Analysis

Introduction

This chapter presents sources of data and the data analysis. The chapter

is divided into two sections. The first section describes the source of data

used. In the second section, using the methodology explained in chapter

3, the captured data from the qualitative research is presented, analysed,

described and interpreted, followed by a discussion of the research findings.

4.1 Data collection

4.1.1 Sources of data

The study uses a quantitative research method. The South African Demo-

graphic and Health Survey (SADHS) conducted from January to September

2016 is the major source of data used in this study. The data was down-

loaded free of charge from http://www.measuredhs.com after permission

was granted to do so by USAID − Macro International. The SADHS pro-

vided a secondary data for this study, and only that will be used for analysis

36
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without any other primary data to complement it. Questionnaires were ad-

ministered to all sampled women in each of sampled households, collecting

data on fertility, family planning, and child health, in addition to demo-

graphic and socio-economic data. The 2016 (SADHS) is the latest South

African national data-set with information on contraceptive use. The data

were intended for use by programme managers and policy-makers in order

to evaluate and improve family planning and maternal and child health pro-

grammes.

4.1.2 Target population

The population was reduced to women under risk of conception, that is

non pregnant sexually active women by the time of the survey. This thesis

define sexually active women as “Women who had a sexual intercourse 4

weeks before the survey”. All non users of contraceptives were excluded in

the analysis, this reduced the sample to 4025 sexually active women coming

from 689 clusters.

CLUSTER 1                                     CLUSTER 2                                     CLUSTER  3                                           CLUSTER 689

women 1 women 2       woman 10  women 1  women 2        women 17  women 1  women 2       women 16           women 1 women 2      women 20

Figure 4.1: Structure of the data considered for analysis.
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4.2 Exploratory data analysis (EDA)

Exploratory data analysis (EDA) is crucial and should be a first step in the

the whole process of analysing data. EDA helps one to understand the re-

lationships or correlations that may exist between the variables in the data,

as well as any anomalies that might arise.

4.2.1 Response Variable

Table 4.1 below displays the percentage distribution of sexually active women

in South Africa by the contraceptive method they currently use. Overall,

the most popular methods are injections (50.04%) and Oral (23.88%). Less

than 10% use a more permanent contraceptive methods (9.29% use long-

acting methods (IUD/sterilization/implants)).

Table 4.1: Frequency and percentage distribution of sampled woman by

contraceptive method currently used.

Contraceptive Method choice Frequency percentage (%)

Injection 2014 50.04

Oral 961 23.88

Barrier 652 16.20

Sterilization/IUD/Implants 374 9.29

Others 24 0.60

Total 4025 100
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4.2.2 Explanatory Variables

Age group

Table 4.2 exhibits age divided into 6 categories. South Africa is considered

a young population by age structure. In order to reflect the age structure,

substantial proportion (proximately 49%) of the sampled women were be-

tween the ages of 15 and 30 years. As can be seen in the table below, the

proportion of respondents in each age group decreases as they get older.

Table 4.2: Frequency and percentage distribution of respondents’ age

groups.

Age group Frequency percentage (%)

15− 24 1147 28.5

25− 29 833 20.70

30− 34 734 18.23

35− 39 567 14.09

40− 44 443 11.01

45− 49 301 7.48

Total 4025 100

Marital status

Individual women’s marital status is observed as a binary attribute in which

the respondent is either married/in-union or single/not in-union. In this

study in-union category comprises both married women and any woman

who is living together with her sexual partner. The marital status of the

respondents is predominantly not in union, accounting for slightly over 60%

of the sample (see Table 4.3).
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Table 4.3: Frequency and percentage distributions of respondents’ marital

status.

Marital status Frequency percentage (%)

Not in union 2495 61.99

In union 1530 38.01

Total 4025 100

Number of children

Table 4.4 report the frequency and percentage of respondents in each of the

number of children categories. The results in the table below indicate that a

significant proportion of the sampled women has at most 3 children. Which

is very close to South Africa’s TFR (total fertility ratio) of 2.3 births per

woman (United Nations, 2019).

Table 4.4: Frequency and percentage(%) distribution of women by number

of children they have.

No. of living children Frequency percentage (%)

0 608 15.11

1 1186 29.47

2 1158 28.77

3 646 16.05

4+ 427 10.61

Total 4025 100

Community aggregates

The SADHS did not gather data that could be used to explicitly portray

the clusters’ characteristics. Nonetheless, we aggregated individual woman’s

characteristics within their clusters to generate community variables.

Table 4.5 presents statistical summaries of some of the key determinants
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Table 4.5: Summary statistics for aggregated cluster level covariates.

variables No. of clusters Mean SD

Educated woman within PSU(%) 689 12.02 19.01

Cluster mean age at first sex 689 17.37 1.59

Black woman within PSU(%) 689 87.38 30.09

of contraceptive choices, aggregated at community level to get level two

estimates of the determinants of contraceptive choices. In this thesis, per-

centage of educated woman at community level is defined as the percentage

of woman who have attained any post secondary level qualification. Female

educational attainment was disappointingly low with an average of 12% of

educated woman per community. For a total of 4025 sexually active women

that live in 689 communities of South Africa. On average 87.38% of sampled

woman in each community were black. Relatively smaller promotions were

sampled from whites and other races to mirror South Africa’s population

which is predominantly black.

4.3 Bivariate Analyses

Figure 4.2 below shows the distribution of each community level or cluster

specific variables on the diagonal. Below the main diagonal are the bivariate

scatter plots of the covariates with a fitted line. The correlation value and

its p-value are displayed above the diagonal.
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Figure 4.2: Distributions and Correlations of the aggregated level 2 co-

variates.

A p-value significance is denoted by: (0 ‘***’0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

‘ ’1). The figure was obtained using the PerformanceAnalytics package

in R. From the figure we observe that there is significant correlation between

the covariates. We also observe that there is negative correlation between

percentage of black woman in a community and percentage of educated

woman within the community. This denotes that a community with more

black women is associated wit less percentage of educated woman.

The correlation ρ = −0.14 between the community level covariates, in-

dicates that the independent variables do not depend on one another, thus

we wont have to worry about multicollinearity, which is often a problem in

regression models.
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Figure 4.3: Bar plot of Contraceptive choices by marital status.

Now coming to contraceptive choices by marital status, for both in union

and not in union women, injections shows a continued dominance, consti-

tuting (approximately 52% and 48% respectively).

Table 4.6: Cross tabulation for marital status by number of children.

Marital status

Not inunion In union

No. of children Number % Number %

0 554 13.76 54 1.34

1 952 22.98 261 6.48

2 667 15.81 551 13.68

3 268 6.66 378 9.39

4+ 141 3.50 286 7.11

Table 4.6 displays marital status by number of children contingency ta-
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H

Table 4.7: Cross tabulation depicting relationships between contraceptive

choices and some demographic and maternal characteristics.

Variables
Contraceptive choices

Df χ2 p
s Oral Barrier Long-acting Others

Age group 20 272.86 < 0.001

15-24 684 74 272 112 5

25-29 475 84 184 84 6

30-34 374 84 159 112 5

35-39 237 60 153 113 4

40-44 166 45 96 134 2

Marital Status 4 164.93 < 0.001

Not in-union 1297 168 707 314 9

In union 717 206 254 388 15

No of children 16 339.46 < 0.001

0 238 49 272 45 4

1 678 96 277 127 8

2 621 140 213 178 6

3 289 59 121 172 5

4+ 188 30 78 130 1

ble. Considerable proportion of women with at least 2 children are in union,

and the pattern is reversed for not in union woman, with majority(36%)

accounting for less than 2 children.

4.3.1 Chi-squre(χ2) Test of Association

The results of the χ2 are presented in this section. The test was performed

on all categorical potential independent variables. Table 4.7 summarises the

results of the cross tabulation.

Age groups is an important factor in answering the questions about the

contraceptive method choice. The results in Table 4.7 indicate that the test

statistic is χ2(20) = 272.86, with the corresponding p of the test statistic

p < 0.001. Since the p < α, this is enough evidence to conclude that

age groups and contraceptive method choices are significantly associated.
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Positive association was found between current number of children a woman

has and her choice of contraceptive method (χ2(16) = 339.46,p < 0.001).

Another statistically significant association was found between contraceptive

choice and marital status with the Chi-square test χ2(4) = 164.93 and p <

0.00.

4.4 Classical Multivariate Analysis

In this section, we present fitted models and their estimated effects. The

MIXED command in SPSS is used to fit the multilevel multinomial models.

These multilevel multinomial regression models were considered to predict

the probability of a woman choosing any other contraceptive method over

injection. Since the outcome variable is nominal, we consider a generalised

logit link. All fitted models will be based on the model building strategies

laid out in Table 4.8.

Table 4.8: Detailed description of Model constructing strategy.

Model A Model B Model C

No predictors, but only

random effects for the cluster

Model A+ level 1 fixed effects

related to Demographic and

maternal characteristics of an

individual women such as Age,

Number of children ever born

(1,2,3 and 4 or more) and

Marital status.

Model B + level 2 fixed effects

or community level characteristics,

which include percentage of

educated woman within PSUs,

Mean age at first sexual intercourse

and Percentage of Black women

within PSUs

This model captures the

percentage variation in

contraceptive choice explained

by level 2 units(Communities)

Results indicate the relationship

between individual level predictors

and the choice of contraception

The results show whether including

community level variables enhances

model fit

4.4.1 Classical Multilevel Multinomial Empty Model

Here we investigate a random intercept model in which just the intercept

is used to fit the model (Model A), this model is often refereed to as the
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variance component model. The results of fitting a random intercept empty

model are summarised in Table 4.9.

Table 4.9: Classical Multilevel multinomial random intercept Model A.

Covariates β SE

Fixed effects

Oral (intercept) -1.691** 0.062

Barrier(intercept) -0.802** 0.049

Long-acting(intercept) -1.130** 0.050

Others(intercept) -4.506** 0.227

Random effects Varience of random errors at cluster level: var(u0)=σ
2
u0 0.67** 0.070

Model fit

-2*log likelihood 69879.335

AIC 69887.35

BIC 69912.48

Significance codes, * p < 0.1; ** p < 0.01

From the results presented in Table 4.9, it is observed that the community

level variance σ2u0 is estimated as 0,67. In logit models, the residual variance

σ2ε of an individual women (level 1) within a cluster is zero but the variance is

considered fixed at π2/3(3.29). Hence the intra-cluster correlation coefficient

ICC = σ2u/(σ
2
u + σ2ε ) = 0.67/(0.67 + 3.29) = 0.169

According to Heck and Thomas (2015), ICC = 0.05 is the “cuttoff” for the

evidence of clustered observations. Thus, our computed ICC estimate of

0.169 or approximately 17% is indicative of substantial clustering between

communities. The clustering variability greater than 10% which is due to

between group differences justifies the need for a multilevel modelling, since

ignoring it may result in overstatement of the significance of our model

parameters.
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4.4.2 Results of Random Intercept Multinomial Models

Using our modelling process described in Table 4.8, we add various combi-

nations of fixed effects to Model A in order to get Model B and Model C. In

Model B, we add individual level characteristics such as age group, marital

status and no children ever born. Finally, to get model C we augment Model

B by adding community level variables. For all three different models we

consider a simple random structure (i.e., only a single random intercept for

each cluster, u0jk = u0j for all k = 1, . . . , 5 contraceptive choice categories).

For simple comparison only parameter estimates of the fixed effects of Three

fitted models are presented in Table 4.10 below.

Model A

ηijk = log

(
πijk
πij4

)
= β0j

= γ00 + u0j

Model B

ηijk = log

(
πijk
πij4

)
= β0j + β1jAge(25− 29)ijk

+β2jAge(30− 34)ijk + β4jAge(35− 39)ijk

+β4jAge(40− 44)ijk + β5jAge(45− 49)ijk

+β6jMarital(inunion)ijk + β7jChildren(1)ijk

+β8jChildren(2)ijk + β9jChildren(3)ijk

+β10jChildren(4+)

β0j = γ00 + u0j
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Model C

ηijk = log

(
πijk
πij4

)
= β0j + β1jAge(25− 29)ijk

+β2jAge(30− 34)ijk + β4jAge(35− 39)ijk

+β4jAge(40− 44)ijk + β5jAge(45− 49)ijk

+β6jMarital(inunion)ijk + β7jChildren(1)ijk

+β8jChildren(2)ijk + β9jChildren(3)ijk

+β10jChildren(4+)

β0j = γ00 + γ01(clustereducated)j + γ02(clusterageAtSex)j

+γ03(clusterblacks)j + u0j

The reference category is “injection”; and so, we estimate a model for “Oral”

relative to “injection”, “barrier” relative to “injection”, “long-acting” rela-

tive to “injection” and again a model for “others” relative to “injection”.

The parameter estimates in model A, model B and model C above are pre-

sented in Table 4.10 below.
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Table 4.10: Fixed effects of Three fitted classical multilevel multinomial

logit random intercept Models.

Characteristics Model A Model B Model C

Oral Intercept -1.691** -1.832** -2.759**

Age 45-49 1.454** 1.241**

40-44 1.209** 1.012**

35-39 1.126** 0.967**

30-34 0.879** 0.747**

25-29 0.662** 0.564**

Marital status In union 0.772** 0.620

Number of children 4+ -1.671** -1.299**

3 -1.239** -0.952**

2 -0.898** -0.700**

1 -0.813** -0.666**

% of educated woman 0.018**

Mean age at first sex 0.049

% of black woman -0.002

Barrier Intercept -0.802** -0.092 -3.800

45-49 2.678** 2.661**

40-44 1.820** 1.751**

35-39 1.909** 1.885**

30-34 1.271** 1.224**

25-29 0.815** 0.775**

In union -0.407** -0.349**

Number of children 4+ -2.531 -2.539**

3 -2.276** -2.279**

2 -2.198** -2.223**

1 -1.556** -1.590**

% of educated women 0.010**

mean age at first sex 0.133**

% of Black women 0.015**

Long-acting Intercept -1.130** -1.745 -3.270**

Age 45-49 1.667 1.395**

40-44 1.279** 1.044**

35-39 0.766** 0.575**

30-34 0.397* 0.254

25-29 -0.017 -0.115

Marital status 0.225* 0.055

Number of children 4+ 0.244 0.674

3 0.326 0.632**

2 -0.140 0.049

1 -0.167 -0.027

%of educated woman 0.017**

Mean age at first sex 0.106**

% of black women -0.006**

Others Intercept -4.506** -4.601 -7.908**

Age 45-49 1.704 1.227

40-44 0.924 0.526

35-39 1.274 0.941

30-34 0.852 0.530

25-29 0.781 0.524

Marital status In union 1.235* 0.991*

No of children 4+ -2.827 -1.987

3 -1.411 -0.750

2 -1.731* -1.276

1 -0.872 -0.492

% of educated woman 0.026**

Mean age at first sex 0.172

% of Black women -0.002

Significance codes, * p < 0.1; ** p < 0.01
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Results of the multilevel multinomial logistic regression models in Table 4.10,

presents parameter estimates of three fitted models. The models were fit-

ted in such a way that model A is nested under model B and model B is

nested under Model C . The reason for that was to make it possible to use

The likelihood ratio hypotheses test for nested models to compare the three

models based on their deviances (-2*log likelihood).

4.4.3 Model Comparison and Selection

In this section We verify that the statistical models fitted to the data is

appropriate by assessing goodness of fit tests described in section 3.6 of

Chapter 3

Table 4.11: Results of model comparison statistics

Covariates Model A Model B Model C

Random effects

Error variance of the random intercept 0.670 ** 0.601 ** 0.532**

ICC 0.169 0.151 0.139

Model fit

-2*log likelihood 69879.34 68686.04 65961.76

AIC 69887.35 68694.05 65969.75

BIC 69912.48 68719.20 65994.93

Significance codes, * p < 0.1; ** p < 0.01

Having accounted for the three explanatory variables in Model B we notice

reduction in the variability of the group levels. On the basis of deviance

(-2*log likelihood) which is much smaller in Model C as compared to other

fitted models, this suggests that Model C fit data better than Model A and

Model B as the drop in deviance is statistically significant. Other comparison

measures like AIC and BIC values leads to similar conclusions, Hence we

choose Model C to model the determinants of contraceptive method choices.

The full results of Model C are presented in the Table 4.12 below.
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Table 4.12: Fixed effects of the frequentist multinomial logistics regression.

Variables β̂ SE Pr(> |z|) 95% CI of β̂ p− value
Lower Upper

Oral Intercept -2.759 0.7263 -3.799 -4.183 -1.335 0.000**

Age 45-49 1.241 0.2977 4.169 0.658 1.825 0.000**

40-44 1.012 0.2517 4.023 0.519 1.506 0.000**

35-39 0.967 0.2321 4.164 0.512 1.422 0.000**

30-34 0.747 0.2083 3.584 0.338 1.155 0.000**

25-29 0.564 0.1934 2.918 0.185 0.943 0.004**

Marital status In union 0.620 0.1327 4.667 0.359 0.880 0.000**

Number of children 4+ -1.299 0.3128 -4.152 -1.912 -0.686 0.000**

3 -0.952 0.2682 -3.548 -1.477 -0.426 0.000**

2 -0.700 0.2302 -3.039 -1.151 -0.248 0.002**

1 -0.666 0.2120 -3.141 -1.082 -0.250 0.002**

% of educated woman 0.018 0.0030 5.921 0.012 0.024 0.000**

Mean age at first sex 0.049 0.0391 1.250 -0.028 0.125 0.211

% of black women -0.002 0.0019 -1.083 -0.006 0.002 0.279

Barricidal Intercept -3.800 0.6733 -5.643 -5.120 -2.480 0.000**

Age 45-49 2.661 0.2160 12.319 2.238 3.085 0.000**

40-44 1.751 0.1920 9.120 1.375 2.128 0.000**

35-39 1.885 0.1724 10.938 1.547 2.223 0.000**

30-334 1.224 0.1567 7.811 0.917 1.531 0.000**

25-29 0.775 0.1411 5.489 0.498 1.051 0.000**

Marital status In union -0.349 0.1051 -3.322 -0.555 -0.143 0.001**

Number of children 40+ -2.539 0.2213 -11.475 -2.973 -2.105 0.000**

3 -2.279 0.1925 -11.838 -2.657 -1.902 0.000**

2 -2.223 0.1642 -13.537 -2.545 -1.901 0.000**

1 -1.590 0.1385 -11.481 -1.861 -1.318 0.000**

% of educated woman 0.010 0.0029 3.560 0.005 0.016 0.000**

Mean age at first sex 0.133 0.0353 3.765 0.064 0.202 0.000**

% of black women 0.015 0.0022 6.605 0.010 0.019 0.000**

Long-acting Intercept -3.270 0.6375 -5.129 -4.520 -2.020 0.000**

Age 45-49 1.395 0.2231 6.253 0.958 1.833 0.000**

40-44 1.044 0.1960 5.325 0.659 1.428 0.000**

35-39 0.575 0.1918 3.000 0.199 0.951 0.003**

30-34 0.254 0.1788 1.421 -0.096 0.605 0.155

25-29 -0.115 0.1738 -0.662 -0.456 0.226 0.508

Marital status In union 0.055 0.1080 0.505 -0.157 0.266 0.613

Number of children 4+ 0.674 0.2550 2.645 0.175 1.174 0.008**

3 0.632 0.2377 2.660 0.166 1.098 0.008**

2 0.049 0.2200 0.223 -0.382 0.480 0.824

1 -0.027 0.2023 -0.135 -0.424 0.369 0.893

% of educated woman 0.017 0.0027 6.354 0.012 0.022 0.000**

Mean age at first sex 0.106 0.0341 3.120 0.039 0.173 0.002**

% of Black women -0.006 0.0015 -4.281 -0.009 -0.004 0.000**

Others Intercept -7.908 2.5213 -3.136 -12.851 -2.965 0.002**

Age 45-49 1.227 1.0025 1.224 -0.738 3.193 0.221

40-44 0.526 0.9689 0.543 -1.373 2.426 0.587

35-39 0.941 0.8202 1.147 -0.667 2.549 0.251

30-34 0.530 0.7510 0.706 -0.942 2.003 0.480

25-29 0.524 0.6675 0.785 -0.785 1.833 0.433

Marital status In union 0.991 0.4940 2.006 0.023 1.960 0.045

Number of children 4+ -1.987 1.2875 -1.544 -4.512 0.537 0.123

3 -0.750 0.8688 -0.863 -2.453 0.954 0.388

2 -1.276 0.7915 -1.612 -2.828 0.276 0.107

1 -0.492 0.6842 -0.719 -1.833 0.850 0.472

% of educated woman 0.026 0.0086 2.982 0.009 0.043 0.003**

Mean age at first sex 0.172 0.1312 1.312 -0.085 0.429 0.190

% of black woman -0.002 0.0063 -0.339 -0.014 0.010 0.735
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The only level 2 variable that was continuously associated with the contra-

ceptive choice methods was education within communities. Among level 1

(or individual variables), all factors were significantly associated with the

use of oral or barrier choices respectively. In order to be able to facilitate

the interpretation of the model parameters, we further evaluated the odds

ratios for the estimates that are presented in Table 4.12. The results are

displayed in Table 4.13.



Table 4.13: Odds ratios and 95% confidence interval of the odds of parameters from a classical multilevel-

multinomial model, estimating contraceptive method choice among women in South Africa.

Oral Barrier Long-acting Others

Parameters (β) Exp(β̂) 95% CI for Exp(β) Exp(β̂) 95%CI for Exp(β) Exp(β̂) 95%CI for Exp(β) Exp(β̂) 95%CI for Exp(β)

Lower Upper Lower Upper Lower Upper Lower Upper

Intercepts 0.063 0.015 0.263 0.022 0.006 0.084 0.038 0.011 0.133 0.000 0.000 0.005

Individual variables

Age groups 45− 49 3.460 1.930 6.204 14.317 9.373 21.867 4.036 2.606 6.251 3.411 0.478 24.350

40− 44 2.752 1.680 4.508 5.726 3.954 8.395 2.839 1.934 4.169 1.692 0.253 11.311

35− 39 2.629 1.668 4.144 6.588 4.699 9.236 1.778 1.221 2.589 2.563 0.513 12.796

30− 34 2.110 1.402 3.174 3.401 2.501 4.624 1.289 0.908 1.831 1.699 0.390 7.410

25− 29 1.758 1.203 2.569 2.170 1.645 2.862 0.891 0.634 1.253 1.689 0.456 6.250

15− 24

Marital Status in union 1.858 1.432 2.410 0.705 0.570 0.867 1.056 0.855 1.305 2.694 1.023 7.098

not inunion

Number of childern 4+ 0.273 0.148 0.504 0.079 0.051 0.122 1.936 1.191 3.236 0.137 0.011 1.711

3 0.386 0.228 0.653 0.102 0.070 0.149 1.882 1.181 2.999 0.473 0.086 2.595

2 0.497 0.316 0.780 0.108 0.078 0.149 1.050 0.682 1.617 0.279 0.059 1.317

1 0.514 0.339 0.779 0.204 0.156 0.268 0.973 0.655 1.447 0.612 0.160 2.339

0

Community level variables

% of educated woman within PSU 1.018 1.012 1.024 1.010 1.005 1.016 1.017 1.012 1.022 1.026 1.009 1.043

Mean Age at First sexual intercourse 1.050 0.973 1.134 1.142 1.066 1.224 1.112 1.040 1.183 1.188 0.918 1.536

% of black woman within PSU 0.998 0.994 1.002 1.016 1.010 1.019 0.994 0.991 0.996 0.998 0.986 1.010

53
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Table 4.13 presents the 95% confidence interval of the odds ratio (OR) from

the classical multilevel multinomial random intercept regression model. A

significant association exists between contraceptive method choices and mar-

ital status, age group, number of children a woman have, percentage of edu-

cated women in a community(cluster), community specific mean age at first

sex and percentage of black women in a community. For interpretation this

study will use a combination of both point estimates of the odds and their

95% confidence interval to interpret the results, because confidence interval

does not only point out the region/point where the parameter is most likely

estimated, it also gives information about the accuracy of the estimate. In

that sense it contains more information which makes it more meaningful.

The results show that, controlling for all other variables in the model, we

can say with 95% confidence that, relative to women aged 15− 19, the odds

of using any method other than injections increase with age, peaking at

45 − 49, for the first three choices; OR=3.460, 95%CI [1.93, 6.20]; OR =

14.317, 95%CI [9.37, 21.87]; OR=4.036, 95%CI [2.61, 6.25]; for oral, barrier

and IUD/sterilization/implants method choices respectively. Our results are

in line with the findings from (Stephenson et al., 2007)

In union women had the reduced odds of using barrier methods over injec-

tion, which is understandable since married people would be looking into

building a family.

Compared to not in union women, the chance of in union women using oral

over injection was slightly higher than that of not in union women (OR =

1.86 , 95% CI [1.43, 2.41]). Moreover, relative to woman with less than 1

children, the odds of a woman with 4 or more children using long increases
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with number of children; (OR = 1.936 , 95% CI [1.91, 3.23]).

Interestingly, at the community level, the likelihood of using any other

method over injection was associated with a higher percentage of well ed-

ucated women within the community; OR = 1.018, 95%CI [1.01, 1.02];

OR=1.010, 95%CI [1.01, 1.02]; OR = 1.017, 95%CI [1.01, 1.02]; OR =

1.026, 95%CI [1.01, 1.04]; for oral, barrier, UID/sterilization/implants and

other methods respectively. This demonstrates that educated woman are

more likely to be selective rather than going with the majority.

Furthermore, among women who came from communities in which the mean

age at first sex was higher it was more common to use Barrier (OR=1.142,

95%CI [1.07, 1.22]), IUD/sterilization/implants (OR=1.11, 95%CI [1.04,

1.18]), compared to injection. For the random effects, the results give the

cluster level variability, with the non-zero intra-cluster correlation coeffi-

cient, this justifies the multilevel approach for analysis. Based on the result

of estimated intercept for clusters, there exists statistically significant vari-

ation between the different contraceptive choices that woman can access in

South Africa. The co-variance parameter estimate was used for the compu-

tation of intraclass correlation coefficient.

ICC =
τ00

τ00 + σ2
= 0.139

The result of intraclass correlation coefficient indicates how much of the total

variation in the likelihood of woman choosing a particular form of contra-

ception over non using. The intraclass correlation coefficient is calculated as

0.139 representing about 14% of the total variation in the outcome variable

is accounted for by Clusters.
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The cluster-level random intercept term remained significant for all method-

choice categories after the inclusion of the individual level variables in the

model.

4.5 Results of Bayesian Modelling Framework

In this section we present the results of Bayesian multilevel multinomial lo-

gistic regression models in explaining the relationship between demographic,

maternal characteristics of women and their contraceptive choices. The

Bayesian multilevel multinomial logistic regression models were fitted using

rstan package within R software. We ran two chains for 10000 iterations

with the first 5000 discarded as a burn in period. The NUST sampler ex-

tends static Hamiltonian Monte Carlo chains via automated tuning: the user

need not to specify neither number of steps nor step size. NUTS determines

the number of steps via a sophisticated tree building algorithm, which we

briefly described in chapter 3, We set flat multivariate normal priors on fixed

effects.

4.5.1 Bayesian Empty Model

The results of a Null or empty model are summarized in Table 4.14
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Table 4.14: Bayesian Multilevel multinomial epty model (Model I).

Covariates β SE

Fixed effects

Oral (intercept) -1.85 0.00

Barrier(intercept) -0.90 0.00

Long-acting(intercept) -1.20 0.00

Others(intercept) -5.97 0.01

Random effects

Varience of random errors at cluster level: var(u0)=σ
2
u0 1.05 0.01

ICC 0.242

Model fit

Widely Applicable Information Criterion (WAIC) 9574.4

This model contains no predictors, it is focussed on the assessment of

the heterogeneity of contraceptive choices among communities (clusters).

The ICC shown in Table 4.14 gives an estimate of 0.242 or just over 24%

of the variability in contraceptive choices is allocated between community

differences. We now add the same explanatory variables as those used in

the frequentist approach to get Model II and Model III respectively and the

results are presented below.
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Table 4.15: Summary of the Posterior Distributions for Multilevel-

multinomial Models estimating the determinants of contraceptive method

choice among women in South Africa.

Variables Model I Model II Model III

Oral intercept -1.85 -1.93 -2.86

Age 25-29 0.67 0.59

30-34 0.93 0.80

35-39 1.20 1.03

40-44 1.26 1.06

45-49 1.53 1.30

Marital status In union 0.74 0.63

No of children 1 -0.87 -0.72

2 -0.97 -0.76

3 -1.32 -1.04

4+ -1.79 -1.42

% of educated woman 0.02

Mean age at first sex 0.05

% of black woman 0.00

Barrier intercept -0.90 -0.11 -4.03

Age 25-29 0.87 0.82

30-34 1.37 1.31

35-39 2.07 2.02

40-44 1.95 1.86

45-49 2.87 2.83

Marital status In union -0.45 -0.38

Number of children 1 -0.70 -1.71

2 -2.39 -2.39

3 -2.49 -2.47

4+ -2.76 -2.75

% of educated woman 0.01

Mean age at first sex 0.14

% of black woman 0.02

Long-acting intercept -1.20 -1.82 -3.33

Age 25-29 -0.03 -0.12

30-34 0.40 0.26

35-39 0.79 0.59

40-44 1.32 1.07

45-49 1.72 1.43

Marital status In union 0.23 0.05

Number of children 1 -0.17 -0.03

2 -0.14 0.04

3 0.35 0.64

4+ 0.27 0.68

% of educated woman 0.02

Mean age at first sex 0.11

% of black women -0.01

Others intercept -5.97 -6.63 -11.4

Ages 25-29 0.74 0.53

30-34 0.80 0.49

35-39 1.30 0.98

40-44 0.63 0.24

45-49 1.48 0.98

Marital status In union 1.33 1.14

Number of children 1 -1.78 -0.44

2 -1.74 -1.33

3 -1.31 -0.69

4+ -3.31 -2.57

% of educated woman 0.03

Mean age at first sex 0.23

% of Black women -0.00
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4.5.2 Model Assessment and Comparison

The most commonly used criterion DIC, is not implemented in rstan be-

cause it is not nearly as good as WAIC estimators produced by loo package.

Table 4.16: WAIC of Bayesian Multilevel models .

Model WAIC (SE) Effective parameters

Model I 9574.4 (112.97) 231.5

Model II 9267.0 (113.26) 324.5

Model III 8721.6 (123.68) 284.3

In the Bayesian paradigm, Table 4.16 above shows model diagnostics for all

equipped models. A model with a low WAIC value fits the data well. Hence

based on the comparison of model complexity and goodness of fit, we choose

model III

4.5.3 Result of Final Bayesian Multilevel Multinomial Re-

gression Model

Table 4.17 show parameters, the approximation of the average of the pos-

terior distribution of the model parameter coefficient; an approximation of

the standard deviation of the posterior distribution and computational accu-

racy of the mean. Furthermore it shows percentiles which include the 97.5th

percentile or an approximation of the upper endpoint of the 95% credible in-

terval and the 2.5th percentile or an approximation of the lower end point of

the 95% credible interval. It also suggests that Markov chain has converged

with R̂ = 1. That can also be backed by Mean errors which are low.
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Table 4.17: Summary of the Posterior Distribution for a Multilevel-

multinomial Model Parameters estimating the determinants of contraceptive

method choice among women in South Africa

Covariates Mean SEmean 2.5th% 97.5th% R̂

Oral intercept -2.86 0.10 -4.40 -1.36 1.00

Age 25-29 0.59 0.00 0.20 0.97 1.00

30-34 0.80 0.00 0.038 1.21 1.00

35-39 1.03 0.00 0.57 1.50 1.00

40-44 1.06 0.00 0.56 1.57 1.00

45-49 1.30 0.00 0.68 1.89 1.00

Marital status In union 0.63 0.00 0.37 0.89 1.00

No of children 1 -0.72 0.00 -1.14 -0.29 1.00

2 -0.76 0.00 -1.23 -0.30 1.00

3 -1.04 0.00 -1.58 -0.49 1.00

4+ -1.42 0.00 -2.07 -0.80 1.00

% of educated woman 0.02 0.00 0.01 0.03 1.00

Mean age at first sex 0.05 0.00 -0.03 0.13 1.00

% of black woman 0.01 0.00 -0.01 0.01 1.00

Barrier intercept -4.03 0.01 5.48 -2.6 1.00

Age 25-29 0.82 0.00 0.54 1.11 1.00

30-34 1.31 0.00 1.00 1.63 1.00

35-39 2.02 0.00 1.67 2.37 1.00

40-44 1.86 0.00 1.48 2.26 1.00

45-49 2.83 0.00 2.39 3.28 1.00

Marital status In union -0.38 0.00 -0.59 -0.10 1.00

Number of children 1 -1.71 0.00 -2.00 -1.42 1.00

2 -2.39 0.00 -2.74 -2.05 1.00

3 -2.47 0.00 -2.87 -2.07 1.00

4+ -2.75 0.00 -3.21 -2.30 1.00

% of educated woman 0.01 0.00 0.00 0.02 1.00

Mean age at first sex 0.14 0.00 0.06 0.22 1.00

% of black woman 0.02 0.00 0.01 0.02 1.00

Long-acting intercept -3.33 0.11 -4.62 -2.0 1.00

Age 25-29 -0.12 0.00 -0.47 0.22 1.00

30-34 0.26 0.00 -0.09 0.61 1.00

35-39 0.59 0.00 0.21 0.96 1.00

40-44 1.07 0.00 0.68 1.45 1.00

45-49 1.43 0.00 0.98 1.88 1.00

In union 0.05 0.00 -0.16 0.27 1.00

1 -0.03 0.00 -0.43 0.37 1.00

2 0.04 0.00 -0.39 0.48 1.00

3 0.64 0.00 0.17 1.12 1.00

4+ 0.68 0.00 0.18 1.19 1.00

% of educated woman 0.02 0.00 0.01 0.02 1.00

Mean age at first sex 0.11 0.00 0.04 0.18 1.00

% of black women -0.01 0.00 -0.01 -0.00 1.00

Others intercept -11.4 0.70 -19.72 -5.20 1.00

Ages 25-29 0.53 0.00 -0.91 2.00 1.00

30-34 0.49 0.06 -1.21 2.16 1.00

35-39 0.98 0.04 -0.88 2.78 1.00

40-44 0.24 0.20 -2.11 2.31 1.00

45-49 0.98 0.11 -1.51 3.14 1.00

Marital status In union 1.14 0.00 0.06 2.29 1.00

Number of children 1 -0.44 0.00 -1.92 1.18 1.00

2 -1.33 0.00 -3.06 0.50 1.00

3 -0.69 0.12 -2.66 1.36 1.00

4+ -2.57 0.20 -6.19 0.25 1.00

% of educated woman 0.03 0.00 0.01 0.05 1.00

Mean age at first sex 0.23 0.01 -0.08 0.59 1.00

% of Black women 0.00 0.01 -0.02 0.02 1.00
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Before we can make inference we need to check if parameters have con-

verged

4.5.4 Convergence Diagnostics

To asses convergence this study used autocorrelation plots, probability den-

sity plots, trace plots and geweke plots. The posterior probability density

functions (pdfs) for the multinomial logistic regression model parameters

are given in this section. We discuss the results of the First 9 parameters

and the posterior distributions of the rest of parameters are summarized in

Table 4.17

Figure 4.4: Kernel/ density plots of Markov Chain Monte Carlo for the

first 9 parameters.

Figure 4.4 Displays the posterior distribution of the first 9 model parameters.
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probability density estimate of the parameter. The peak of the distribution

(the posterior mode) is the most likely. More satisfactory kernel density plots

for parameters of interest would be more bell-shaped or symmetric. Hence,

the density plots above show that convergence of the chain has been reached.
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Figure 4.5: Trace plots for the first 9 parameters.

Figure 4.5 displays time series of a parameters in the model as MCMC

iterates. The caterpillars are fuzzy indicating that the MCMC chains have

mixed well. The Gelman and Rubin trace plots show the convergence of the

two parallel chains (Chains with different initial values).
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Figure 4.6: Trace plots of Markov Chain Monte Carlo for the first 9 co-

variates .

Figure 4.6 shows the autocorrelation plots. These plots appear to dampen

quickly; therefore, this provides evidence of the convergence of the Markov

chain and suggests that it may be appropriate to average Markov chains
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output.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Geweke plots for the first nine coefficients from the posterior

distribution

Geweke plots for the first few parameters are displayed in Figure 4.7. There

is no significant proportion of Z−scores outside the two-standard deviation

bands (ignorable amount can be seen in (b)). Based on the rule of thumb,

the plots are indicative of a chain that have converged after 10000 iterations.

Since MCMC chain have converged, we can make inferences from our model.
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To interpret parameters in Table 4.17, we compute odds ratios and the

results are stored in Table 4.18.

Table 4.18: Odds ratios of the parameters of a final multilevel Bayesian

model.

Variables OR 95% Credible interval of OR

Lower Upper

Oral intercept 0.06 0.01 0.26

Age 25-29 1.80 1.22 2.64

30-34 2.23 1.04 3.35

35-39 2.80 1.77 4.48

40-44 2.89 1.75 4.81

45-49 3.67 1.97 6.62

Marital status In union 1.88 1.45 2.44

No of children 1 0.49 0.24 0.75

2 0.47 0.29 0.74

3 0.35 0.21 0.61

4+ 0.24 0.13 0.45

% of educated woman 1.02 1.01 1.03

Mean age at first sex 1.05 0.97 1.14

% of black woman 1.00 0.99 1.00

Barricidal intercept) 0.02 0.004 0.07

Age 25-29 2.27 1.72 3.03

30-34 3.82 2.72 5.10

35-39 7.54 5.31 10.70

40-44 6.42 4.39 9.58

45-49 16.94 10.91 26.58

Marital status In union 0.68 0.55 0.90

Number of children 1 0.18 0.14 0.24

2 0.09 0.06 0.13

3 0.08 0.06 0.13

4+ 0.06 0.04 0.10

% of educated woman 1.01 1.00 1.02

Mean age at first sex 1.15 1.06 1.25

% of black woman 1.02 1.01 1.02

Long-acting intercept 0.04 0.01 0.14

Age 25-29 0.89 0.63 1.25

30-34 1.30 0.91 1.84

35-39 1.80 1.23 2.61

40-44 2.92 1.97 4.26

45-49 4.18 2.66 6.55

Marital status In union 1.05 0.85 1.31

Number of children 1 0.97 0.65 1.45

2 1.04 0.67 1.62

3 1.90 1.19 3.06

4+ 1.97 1.20 1.21

% of educated woman 1.02 1.01 1.03

Mean age at first sex 1.12 1.04 1.20

% of black women 0.99 0.99 1.00

Others intercept 0.00 0.00 0.001

Ages 25-29 1.70 0.40 7.39

30-34 1.63 0.30 8.67

35-39 2.66 0.41 16.12

40-44 1.27 0.12 10.07

45-49 2.66 0.22 23.10

Marital status In union 3.13 1.06 9.87

Number of children 1 0.64 0.15 3.25

2 0.26 0.05 1.65

3 0.50 0.07 3.90

4+ 0.08 0.002 1.28

% of educated woman 1.03 1.01 1.05

Mean age at first sex 0.23 0.92 1.80

% of Black women 1.00 0.98 1.02



66

For the Bayesian method, stan (Bayesian Inference using HMC) is used to

fit the model.

Relative to women aged 15 − 19, the odds of using contraceptives increase

with age, peaking at 35−39, for long acting and barrier methods; OR=1.80,

95%CI [1.23, 2.61]; OR =7.54, 95%CI [5.37, 10.07]; OR=4.036, 95%CI [2.61,

6.25]; for oral, and long-acting methods respectively. The results further

show that, under barrier methods, there is a general increase in the odds

of using barrier over injection; with age peaking at 40 − 44 and then falls

thereafter. The higher odds associated with those in age group 35− 39 may

be because of the elevated sexual habits that are characteristic of people in

that age range.

Compared to women without children, those who have 3 children were more

likely to use long acting methods, which include sterilisation (a permanent

method choice); OR=1.90, 95%CI [0.90,0.36], it would be reasonably to

think that woman with 3 or more children would have reached their desired

number of children, since 3 is above South African’s total fertility ratio.

Thus explains the higher odds of using Sterilization which is a more perma-

nent method.

With reference to unmarried (not in-union) women, the odds of a married

woman using oral contraceptives over injection are almost double those of an

unmarried woman, (OR = 1.88, 95% CI = [1.45 -2.44]), holding the effects

of other variables in the model constant.

For age at first intercourse (OR = 1.15, 95% CI: [1.06, 1.25]), one unit in-

crease in age at first sex results in 1.15 times the likelihood of using a barrier
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method over injection. perhaps this may be due to the fact that people who

practice late sex, they tend to be responsible since they start having sex

while they are already matured.

For community level education, one unit increase in the percentage of edu-

cated woman inflates the odds of choosing any other contraceptive method

over injection. OR=1.03, 95%CI [1.01, 1.05]; OR =1.02, 95%CI [1.0,1.02 ];

OR=1.02, 95%CI [1.01, 1.03]; for oral, barrier, long-acting and other meth-

ods respectively.

Discussion and Partial Conclusion

In this section we reported empirical results of applying multilevel Bayesian

statistics in modelling individual and community level factors that influence

individual woman’s choice of contraceptive.

The use of non informative prior afforded the data an opportunity to

speak for it self. This study shows that Bayesian have a better way of

handling uncertainty, we see that from Bayesian results which uses credi-

ble intervals of a probability density to estimate a parameter of interest,

shifting away from confidence interval of point estimates in the frequentist

approaches.

4.5.5 Statistical Computing

We used the package rstan in R to compute the posterior distributions using

an MCMC algorithm. In rstan we specified non informative priors for the

fixed effects with very large standard deviation. as suggested by Ebenezer

and Lougue (2019). The rstan package uses NUST to run well behaved

MCMC chains. For model comparison we computed the WAIC from loo
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package in R,



Chapter 5

Discussion and Conclusions

5.1 Introduction

This chapter presents discussion based on the study objectives followed by

conclusion and future research.

5.2 Discussion

In the last chapter we fitted multilevel models to analyse the SADHS data.

The frequentist the novel Bayesian multilevel models are the models con-

sidered. The SADHS dataset had a three level hierarchical structure where

women were nested within households and households within communities/

primary sampling units(PSUs). In our analysis we restricted the data to two

levels, where women are nested within communities, we ignored the house-

hold level because in most cases there were few women per household.

Both the frequentist and the Bayesian multilevel models yielded similar in-

ference about the parameters. We noted differences in standard errors of

69
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estimate. Standard errors of estimates from the frequentist model were lower

than the ones obtained in Bayesian analysis. Another notable difference was

that the odds ratios of frequentist models are generally lower than those from

the Bayesian models. Now, in comparison of the parameter estimates, the

results from Bayesian model with non informative prior were similar to those

obtained by the frequentist model. Thus decision of choosing between fre-

quentist and Bayesian with non informative prior should depend on other

factors like computation speed, though Bayesian results have more infor-

mation, because one can choose to interpret posterior means or median, a

choice that does not exist under the frequentist modelling framework.

In an attempt to find the determinants of contraceptive choices, fitted multi-

level models revealed that there exists community variations in determinants

of contraceptive choices, since all level 1 and level 2 covariates were found

to be significantly associated with contraceptive choices.

Increase in percentage of well educated woman in a community changes the

contraceptive behaviour of women, especially reducing the percentage of

injection use. Injection is by far the most common contraceptive method in

South Africa. However, for well-educated women, injection is not the main

choice; they often choose barrier methods or more permanent methods.

It was found that, women who are not in union have reduced odds of using

barrier methods over injection. This is alarming because unmarried women

are less likely to be in stable relationships. The fact that the odds of using

any type increases with age, it only means a lot has to be done to encourage

youth since it might be too late when they start using contraceptives. The

fact that young ones are less likely to use any method including condoms
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which prevent both conception and STIs leaves them at a very high of con-

tracting and spreading STIs including HIV.

The results from this study shed a light on how the community dynamics

can influence women’s choice of contraceptive methods. Policy makers and

program managers may use this new information to help better shape imple-

mentation and provision of family planning programs. Lastly empowering

women by providing more educational opportunities would have a significant

effect on their choices.

5.3 Conclusion

To this date contraceptive studies remains heavily invested in modelling the

use, the current study addressed that issue by modelling choices. Our study

has extended the application of qualitative response analysis to contracep-

tive studies, and the use of Bayesian analysis to model choices as called

for by earlier studies. Specifically, we used multinomial logit analysis to

identify key variables that affect individual woman’s choice of contraceptive

method. The results suggest that the key determinants are, education, Age

and number of children a woman has.

5.4 Future research

There is still a need for exploration of multilevel multinomial models most

especially in the case of non responses. For contraceptive studies it would

help to explore the male population as well.
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Apendices

Selected Rstan codes

library(rstan)

data {

int K; // number of contraceptive choices (outcome categories)

int K1; // K-1 alternative categories

int N; // number womens

int P; //Number of women level covariates

int y[N]; // contraceptive choice for each women coded 1 to K

vector[P] x[N]; //women level covariates

int G; // number regions or provinces

int map[N]; // map woman to regions or provinces

}

transformed data {

vector[K1] zero;

real baseline;

zero = rep_vector(0, K1);

baseline = 0;

}

parameters {

matrix[K1,P] beta; // fixed effects

corr_matrix[K1] omega; // ranef correlations

vector<lower=0,upper=10>[K1] sigma; // ranef scales

vector[K1] u[G]; // random intercepts

}
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transformed parameters{

cov_matrix[K1] V;

V = quad_form_diag(omega, sigma);

}

model {

// prior for beta (vectorized)

for(i in 1:K1) {

beta[i]~ normal(0,100);

}

// prior/hyper prior for random effects

omega~ lkj_corr(2);

for(g in 1:G) {

u[g] ~ multi_normal(zero, V);

}

{ // local block for linear predictorf

vector[K] xb;

for(n in 1:N) {

xb = append_row(baseline, beta*x[n] + u[map[n]]);

y[n] ~ categorical_logit(xb);

}

}

}
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