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ABSTRACT 

Extensive research on the biology and ecology of Phragmites australis has been done since 

the 1960s. This has been carried out to manage and monitor the distribution of P. australis. 

Phragmites australis is one of the most invasive plants in wetlands that thrive successfully as 

compared to the native species. Phragmites australis alters hydrology and wildlife habitat, 

increases fire potential, and shades native species. In this study, the distribution and 

abundance of P. australis was mapped and analysed. To understand the distribution and 

abundance of the common reed P. australis invasions, research in a spatial context at several 

scales is required. In this study, Landsat 4-5 Thematic Mapper (TM), Landsat 8 Operational 

Land Imager (OLI), and SPOT 6 were used to map the distribution of P. australis in Nylsvley 

Wetland. Five sampling sites were selected in Nylsvley Wetland and reference data was 

collected to aid the classification process. Nylsvley Wetland is considered one of the largest 

floodplain systems in South Africa, with the Nyl River flowing through the central and North 

eastern parts of the Nylsvley Nature Reserve. The surface area of P. australis will be 

estimated using Garmin® Etrex 62 Global Positioning System (GPS) within the selected 

sites. Images from year 2011, 2013, 2015 and 2017 for SPOT and Landsat were selected for 

further P. australis classification. Supervised classification was used to classify the satellite 

images into different classes. From the classification images it was observed that P. australis 

covers a small area of the study site relative to other identified land cover types and were 

mostly distributed along the river system. However, SPOT images showed an increasimg 

trend in P. australis cover which was not evident on Landsat images. Accuracy assessment 

was performed to compare the performance of SPOT and Landsat.  The results showed that 

average overall accuracy was 71.50% and 61.62% for SPOT and Landsat, respectively. 

Correlation between the classified image is shown by the overall kappa coefficient average of 

0.5648 and 0.37 for SPOT and Landsat, respectively. 
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CHAPTER ONE: GENERAL INTRODUCTION 

 

1.1. Background 

Non-native P. australis,also known as common reed is a tall cane-like grass that can form 

dense monotypic stands in different habitats, including wetlands (Wilcox and Petrie, 1999). 

Phragmites australis reproduces both sexually and asexually, and their seeds can be spread 

by wind and animals, or intentionally introduced by humans (Pellegrin and Hauber, 1999). 

Most commonly, however, P. australis spreads by horizontal above-ground stolons and 

underground rhizomes, and once established in an area, they are difficult to eradicate or 

control (Hudon et al., 2005).  

 

Phragmites australis is an aggressive invasive plant species that colonises and outcompetes 

native vegetation. With their competitive ability, they tend to displace the native vegetation 

around them (Bolton and Brooks, 2010). According to Mal and Narine (2004), P. australis 

grows mostly in wetland areas that have been disturbed such as degraded salt and freshwater 

marshes and swamps, along streams, lakes, ponds, and roadside ditches. P. australis 

dominates the surrounding plants and animals, altering their habitats. As a result, P. australis 

also alters the accessibility of humans to water resources thus having major economic effects, 

including decreasing the value of properties due to use impairment (Hazelton, 2018). 

 

In general, invasive plant species affect the native population and the ecosystem invaded both 

directly and indirectly. Invasive species can directly affect native species by decreasing the 

germination of seeds and survival through litter deposition, reducing available water 

resources (D'Antonio and Vitousek, 1992). The invasive species can affect ecosystems 
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indirectly by changing soil biogeochemistry, geomorphology, and hydrology of the area that 

they invade (Mack and Antonio, 1998). 

 

Studies on P. australis have been carried out to manage and monitor their distribution. 

Various methods such as grazing and burning are utilised by resource managers to eradicate 

and control P. australis (Hazelton et al., 2014). In some areas P. australis can be identified as 

one of the invasive plants that poses a risk to global wetlands (Ontario Ministry of Natural 

Resources, 2011). According to Blossey (2003), identifying the differences in morphological 

characters can help wetland managers to make educated choices on obtrusive P. australis 

control. The spread of P. australis is of concern to ecosystem managers, and it is important to 

come up with managing techniques to limit its spread. 

 

This study aims to map the distribution and abundance of the common reed P. australis 

within the Nylsvley Wetland using both the SPOT series of CNES (Space Agency of France) 

(South Africa National Space Agency) and Landsat dataset. Establishing the trends of P. 

australis distribution can assist in coming up with control measures. Monitoring the 

distribution and pattern of P. australis over time depends on the sustainable supervision of 

the wetlands (Adam et al., 2010). Preliminary recognition and accurate data about the 

dispersal of species are important to foresee, evaluate, control, and alleviate their negative 

effects on the current ecosystem wellbeing (Callaway et al., 2000). 

 

Remote sensing techniques have been widely applied in mapping, classifying, and monitoring 

invasive species, with wetland vegetation mapping being one of the most performed by 

researchers and scientists for several decades. Satellites images have been used for mapping 

wetland vegetation since the early 1970s (Holmgren et al., 1998). With the development of 
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information technology, remote sensing became more productive and economical in recent 

years. Currently remote sensing is widely used as an effective tool to provide spatial and 

temporal information about vegetation and non-native species in wetlands. Remote sensing 

techniques offer information that is relatively accurate and up to date (Adam et al., 2010). 

This information assists in sustainable, effective monitoring and management of wetland 

vegetation. Remote sensing is less expensive and more time efficient than actual field 

surveys. However, together these two methods bring out the best results. 

 

In this study, mapping tools are used to identify the location and extent of P. australis. 

However, mapping P. australis in freshwater is challenging due to changing water levels and 

density of vegetation (Bruce et al., 2007). To understand the distribution and abundance of P. 

australis invasions requires an analysis of the spatial context. SPOT and Landsat Enhanced 

Thematic Mapper (ETM+) data were compared in this study, to assess their accuracies in 

mapping the distribution and abundance of P. australis in the Nylsvley Wetland. The 

comparison is based on the satellite sensors' ability to accurately identify areas with P. 

australis and separate these from other vegetation types. Landsat provides the wider view and 

low cost needed for practical applications but has shown less ability for distinguishing 

species than SPOT data (Pengra et al., 2007). Multispectral imagery analysis techniques have 

proven to be adequate for distinguishing P. australis from local wetland vegetation. 

However, this regularly requires extra data such as multi-temporal imagery (Ghioca-Robrecht 

et al., 2008). 

 

1.2. Problem statement 

Invasive plant species can lower the ability of native species to thrive. Of concern is the 

introduction of P. australis in wetlands (Mal and Narine, 2004). Rapid expansion of P. 
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australis is of concern because it displaces the native vegetation and decreases the overall 

biodiversity. Phragmites australis grows up to 5.5 m tall restricting shoreline views (Avers et 

al., 2007). It grows at a fast rate and its dead material forms a large concentration of dry plant 

material, causing an increase in the rate of wildfires that can threaten commercial and 

residential properties. 

 

1.3. Research aims 

1.3.1. Main aim 

To map the distribution and abundance of P. australis in the Nylsvley Wetland using both 

SPOT and Landsat imagery. 

 

1.3.2. Specific aims 

➢ To determine the distribution and abundance of P. australis in Nylsvley comparing 

both SPOT and Landsat satellite data. 

➢ To assess the changes in spatial distribution of P. australis in Nylsvley over time 

using SPOT and Landsat satellite data 

1.4. Hypothesis  

The distribution and abundance of P. australis will change with time.   

• Phragmites australis is more widely distributed and abundant in more recent years 

relative to previous years. 

 

1.5. Justification and significance of the study 

The invasion of P. australis has negative impacts on the surrounding wetlands wildlife such 

as other macrophytes leading to an imbalanced ecosystem. Phragmites australis are very 
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aggressive and displace wildlife living in and nearby the wetland. Analysing the spread of P. 

australis motivates the need to better understand the abundance of P. australis globally, as 

well as to better understand the structures of establishment for the purposes of future 

management planning. This study will provide beneficial data for those who seek to manage 

P. australis in wetland plant communities. The goal of this study is to provide information 

about the distribution and abundance of P. australis by comparing two datasets (SPOT and 

Landsat). These would contribute towards the formulation of more effective methods to 

control and manage common reeds. 

 

The study will further provide information about their distribution, which is currently 

inadequate (Saltstonstall, 2002). This will allow the prediction of future trends on distribution 

and abundance of P. australis through the analysis of past and current information. Analysing 

the trends on the distribution of P. australis helps identify some of the most important 

implications of complex interactions between social and environmental processes hence, the 

research will guide interested parties to carry out necessary actions in managing the invasion 

of P. australis. The study will also provide well-documented data about the area (square 

meters) that is occupied by P. australis within the Nylsvley Wetland and the data can be used 

by the Nylsvley Nature Reserve to develop effective management strategies to control P. 

australis. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1.  Introduction 

Wetlands are amongst the most valuable and productive natural ecosystems covering about 

6% of the Earth's surface (Castañeda and Herro, 2008). They provide essential services such 

as groundwater recharge and providing storage for floodwaters. Wetland vegetation acts as a 

barrier to erosion. They also provide habitats for wildlife and act as both carbon and nutrients 

sinks. They act as pollution control by filtering and reducing sediments in the water column.  

 

Despite their importance, recent studies have shown that approximately 50% of the wetlands 

in the world have been lost (Davidson, 2014). Human activities play a major role in 

modifying wetlands, and more than half of the world's wetlands have been transformed or 

degraded in the past 150 years (Gardner et al., 2015). Currently, the rate of conversion of 

wetlands is greater than that of any other aquatic or terrestrial ecosystem (Kandus et al., 

2011). According to Schummer et al. (2012), a constant increase in the human population 

will put more pressure on the remaining wetlands. 

 

Apart from human pressure, non-native species are considered a serious threat to wetland 

vegetation communities (Lantz, 2012). They compete successfully for resources and slowly 

replace the native plants around the wetland. Phragmites australis is one of the non-native 

species that colonise wetlands and displace native species. According to Short et al. (2017) 

once established in an area, it is difficult to control or eradicate. It has high competitive 

ability which allows it to modify the nutrient cycle and change the hydrological regimes in 

wetlands. 
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Remote sensing has been used successfully in identifying change in wetland vegetation for 

years. Current trends in assessing wetlands vegetation changes using satellite images show 

many applications of change detection methods. However, very few applications have 

focused on P. australis changes in wetlands (Ndzeidze, 2008).One disadvantage of Landsat 

over SPOT is the poor spatial resolution which can lead to confusion between P. australis 

and other types of vegetation, especially if their spectral properties are similar (Laba et al., 

2008). High-spatial-resolution satellite imagery provides the ability to detect very small 

patches of P. australis. Mapping the distribution and abundance of P. australis assists in 

implementing effective control measures and management techniques. 

 

2.2. Ecology of Phragmites australis 

Phragmites australis tolerates a wide range of environmental conditions, from fine to sandy 

topsoil, fresh to saline water, and a wide range of pH (ISSG, 2011). However, it mostly 

favours the wetland-upland interface (Avers et al., 2014). According to USDA, NRCS (2016) 

P. australis has a 75% chance to occur in wetlands. Fofonoff et al. (2015) also stated that P. 

australis is tolerant to a wide range of temperatures, but not highly frost resistant (Haslam, 

1972). It is most often found in wetland areas that are disturbed by inter alia altered 

hydrology, sedimentation, and nutrients load. 

 

The life expectancy of P. australis is approximately 4–5 years, but with clonal growth stands 

they have been known to survive over thousands of years (Haslam, 1972). They reproduce 

both sexually and asexually (Fofonoff et al., 2015). Cross-pollination with other plants is 

probably most common in P. australis, but self-pollination may occur (Gucker, 2008). Their 
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seeds can, however, also be transported by birds, water via waterways, or by flooding 

(Haslam, 1972).  

 

2.3. Distribution and abundance of Phragmites australis 

Although it is suggested that P. australis are native to Australia, it is believed that they 

originate from the Middle East (Swearingen and Saltonstall, 2010). They are currently 

globally distributed and considered native to Europe. Among all flowering plants, P. australis 

are one of the most widely distributed, with a very extensive native range throughout the 

world. Phragmites australis have been colonizing North America for over 3,000 years 

(Niering and Warren, 1980), and have shown a great deal of expansion along the Atlantic 

Coast during the past century (Meyerson et al., 2000).  

 

Phragmites australis are now regarded as one of the aggressive invaders and have recently 

expanded throughout the world (Rice et al., 2000). According to Weber (2003), P. australis 

are native in Europe and have been introduced to all other areas including Africa. According 

to Powell (2007), Phragmites australis distribution is highly dependent on the functioning of 

the wetland ecosystems. The variation of the distribution of P. australis is influenced by 

environmental conditions such as the availability of water in the wetland (Amelie et al., 

2014). 

 

Phragmites australis can be found occasionally along ponds and marshes from the Atlantic to 

the Pacific coasts of Canada, but other studies indicate that its range has increased from local 

clustering of populations to a more widespread distribution (Gervais et al., 1993). According 

to Tucker (1990), P. australis grows in every continent except Antarctica. Although P. 

australis are not common in other areas, presently they are distributed throughout the globe. 
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The major system of P. australis is freshwater but it may also be found in both brackish and 

salty wetlands. However, system dynamics differ between wetter and dryer sites (Güsewell 

and Klötzli, 2000).  

 

 

 

Figure 2.1 Global distribution of Phragmites australis (adapted from Güsewell and Klötzli, 

2000). 
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Figure 2.2 Spatial Distribution of Phragmites australis in South Africa (adapted from Fish 

and Victor 2006) 

 

Phragmites australis are widely distributed in South African provinces as shown in Figure 

2.2. They are sparsely distributed in the North-eastern part of South Africa (Limpopo) 

compared to the western part of South Africa (Western Cape) whereit is densely distributed. 

In the interior part of the country (Free State) the plant is also densely distributed. Phragmites 

australis seem to be dispersing extensively in the Limpopo province (Fish and Victor, 2006). 

 

2.4. Historic overview of remote sensing  

Remote sensing is the science, art, or technology of acquiring information about the earth's 

objects and the surrounding environment with the use of sensors located at a distant location 

from the features of interest (Meijerink, 1996). Remote sensing started as early as 1859 when 

Gaspard Tournachon took an oblique photograph of a small village near Paris from a balloon, 

marking the beginning of the era of earth observation and remote sensing (Aggarwal, 2004). 
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His example was soon followed by people all over the world. In the United States, aerial 

photography from balloons played an important role in revealing the defense positions in 

Virginia during the civil war (Colwell, 1983). Other scientific and technical developments in 

the United States accelerated the development of photography and lenses; and applied 

airborne earth observation and remote sensing in this war.  

 

The next period of fast development took place in Europe. Aeroplanes were used on a large 

scale for photo reconnaissance during World War I (Macdonald, 1984). Aircraft proved to be 

more reliable and more stable platforms for earth observation than balloons. The use of aerial 

photos by civilians commenced during the period between World War I and II (Brown, 

1999). Application fields of airborne photos at that time included geology, forestry, 

agriculture, and cartography. This coincided with improvements in the development of 

cameras, films and interpretation equipment (Paine and Kiser, 2012) 

 

The most necessary developments of aerial images and image interpretation was used almost 

at some stage in World War II. It was during this interval that the development of near-

infrared photography, thermal sensing and radar commenced. Only near-infrared 

photography and thermal-infrared proved very valuable to separate real vegetation from its 

surrounding. The first successful airborne imaging radar proved to be valuable for night-time 

bombing. Because of that, the system was called by the military ‘plan position indicator’ and 

was developed in Great Britain in 1941 (Witmer, 2015). After the wars into the 1950’s, 

remote sensing systems continued to evolve from the structures developed for the war effort 

(Aggarwal, 2004). Colour Infrared (CIR) Photography was found to be of importance in plant 

science. In 1956, Colwell conducted experiments on the use of CIR for the classification and 

identification of vegetation types, in addition to the detection of diseased, damaged or 
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stressed vegetation. It was also in the 1950s that significant progress in radar technology 

occurred (Aggarwal, 2004). Since the first launch of the satellites in the 1970s, remote 

sensing has been continuously growing as a science and in every field of study. Remote 

sensing techniques have yielded promising results across the globe (Adam et al., 2010). 

 

2.5. Remote sensing of Phragmites australis 

Assessing land cover change of wetlands provides the foundation for a better understanding 

of the relationships and interactions between man-made and natural phenomena of the 

wetlands (Liu et al., 2004). Increased understanding is necessary for improved resource 

management (Jensen, 2005). Remote sensing has been successfully used in assessing land 

cover change around and within wetlands for years. Remote sensing techniques are less 

costly and less time-consuming for large geographic areas as compared to actual field 

mapping (Kaplan and Avdan, 2017). Therefore, it provides a unique opportunity to 

characterize the spatiotemporal distribution of wetland changes and to collect important 

information on wetlands that is too difficult to obtain using field-based methods (Dixon and 

Candade, 2008). Detecting changes in wetlands using satellite images has greatly facilitated 

qualitative and quantitative spatial and temporal analysis of change (Ndzeidze, 2008). 

 

To understand the distribution and abundance of P. australis invasions, research in a spatial 

context at several scales is required. According to Mathre (2011), global studies using image 

processing analysis of P. australis have been conducted all over the world. Previously, 

studies have been conducted to determine areas with P. australis using Landsat data. 

According to Liira et al. (2010), satellite images with medium resolution can be used 

successfully to monitor macrophyte vegetation in wetlands. Satellites such as SPOT-5 were 

used successfully to determine the location of P. australis (Laba et al., 2008). SPOT and 
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Landsat data have been individually used to map the distribution of P. australis but have 

rarely been used together.  

 

The area covered by Landsat is wider, lower cost and necessary for practical applications 

(Bruce et al., 2007). Laba et al. (2010) states that Landsat (TM)’s resolution is, however, not 

enough to determine invasive species that cover a small area and does not allow the 

identification of an invasive impact until the species has reached dominance. Davranche et al. 

(2010) argue for the benefits of SPOT5 imagery, whereas, Ghioca-Robrecht et al. (2008) 

recognise the benefits of different satellite images. 

 

Studies indicate that the Maximum likelihood image classification is successfully used in 

classifying patches of P. australis (Knudby and Nordlund, 2011). This method uses training 

sites, areas of pixels with known class type to train the computer to recognize the different 

classes. The choice of appropriate training samples depends upon the analyst's knowledge of 

the actual features portrayed in the image (Forgette and Shuey, 1997). The downside of the 

maximum likelihood classification method is that classes of interest may not correspond to 

spectrally unique or homogeneous classes.  

 

The other disadvantage is that training data acquisition is time-consuming and expensive. 

According to Laba et al. (2010) "several supervised classifications methods were trialed, and 

the Maximum Likelihood Classifier achieved the highest separation between classes" and 

yield the best result. One of remote sensing limitations is often the case of mixed pixel 

problem, where one pixel may contain multiple land cover types, which reduces accuracy in 

image assessment and increases bias of small land cover types 

 (Powell et al., 2007). 



 

Page | 17 

 

2.6. Remote sensing techniques for image classification   

The process of identifying land cover change in wetlands includes image classification which 

allows for the differentiation of various land cover in wetlands. Image classification is the 

task of extracting classes of information in an image by identifying a group of homogenous 

pixels representing features of interest (Natural Resource Canada, 2016). In this procedure, 

the analyst attempts to classify each pixel into a class or theme by using the spectral 

information provided in each pixel.  

 

The classification procedure relies upon the detection of spectral responses of various feature 

classes (Meijerink, 1996). Such classification techniques include unsupervised classification, 

supervised classification, and hybrid classifications. However visual interpretation was one of 

the techniques often used in the past to differentiate various land cover in satellite images 

(Green et al., 1994). 

 

2.6.1 Visual interpretation 

In the past satellite imagery used visual interpretation to identify land covers including P. 

australis (Nayak and Sahai, 1985). More recent studies have been conducted on water 

turbidity, seasonal water fluctuations and vegetation status of Harike wetland in Punjab, 

India. These used visual analysis of false color composite images (Chopra et al., 2001). 

According to Johnston and Barson (1993), visual interpretation of hard-copy images is useful 

for an overview and reconnaissance mapping of wetlands, especially for those who lack 

remote sensing knowledge. 
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2.6.2. Unsupervised classification or clustering 

Unsupervised classification, or clustering, groups together pixels with similar spectral values. 

Clusters information are given class labels. Spectral classes are chosen by the computer 

without the analyst’s intervention where the selection process is based only on deferential 

information in the data (Natural Resources Canada, 2016). Various computers are equipped 

with special programs called clustering algorithms, which are used to determine the natural 

groupings in image data.  

 

Unsupervised classification is less time consuming, the training phase is eliminated, and the 

classes are distinct units. However, the clusters may not correspond to desired information 

classes. Studies have revealed that the unsupervised method is the most used method and the 

most successful when many clusters are used (Ramsey and Laine, 1997). However, the 

number of clusters sought by the computer is predetermined by the analyst. Hence, 

unsupervised classification process is not completely without human supervision. Studies 

conducted in California’s Central Valley used 230 clusters per Landsat TM scene for 

identifying wetlands land covers (Kempka et al., 1992).  
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2.6.3 Supervised classification 

This method uses training sites, which are areas of pixels with known class type, to train the 

computer to recognize the different classes (Hepper et al., 1990). The choice of appropriate 

training samples depends upon the analyst’s knowledge of the actual features portrayed in the 

image. Therefore, the image analyst is responsible for directing the classification of various 

feature classes in a multispectral image (Foody and Mathur, 2004). Supervised classification 

approaches are mostly preferred over unsupervised because the cover class labels of interest 

are chosen a priori (Demir et al., 2012). 

 

A supervised classification relies solely on the statistical characteristics of the pixel’s 

brightness values in different bands to spectrally recognize similar areas for each class. 

Modern computer-based image processing software is equipped with a special program to 

recognize the spectrally similar areas in an image (Siddiqui, 2016). The downside of this 

method is that classes of interest may not correspond to spectrally unique or homogeneous 

classes. Furthermore, training data acquisition is time consuming and expensive (Sen et al., 

2020). 

 

Supervised classification has different techniques, such as minimum distance to means, 

parallelepiped and maximum likelihood classification. Minimum distance to means 

classifiers calculate the centroid of the training data classes and assign pixels that are 

unknown to the class with the nearest centroid (Nair and Bindhu, 2016). This technique has 

been used to map land use changes of wetlands (Forgette and Shuey, 1997). Parallelepiped 

uses the various spectral values in the training data to define a region in data space. Pixels 

that fall into the similar data space are classified into that class. This method was used with 

Landsat TM images in the Florida Everglades (Hines et al., 1993).  
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Maximum likelihood classification uses the means and variances of the training data to 

estimate the probability that a pixel is a member of a class. The pixel is then placed in the 

class with the highest probability of membership. This method generally gives more 

promising results than minimum distance to means or parallelepiped classifiers because the 

covariance of the data is considered. Hence, the maximum likelihood classification is the 

commonly used supervised classification method to map changes in wetlands (Macleod and 

Congalton, 1998). 

 

2.6.4. Principal component analysis  

Another approach for unsupervised classification is to use principal component analysis 

(PCA) to reduce the number of bands, and then apply clustering to the first few principal 

components. Principal Component Analysis (PCA) is a method that uses mathematical 

techniques to reduce the dimensionality of a data set (Jackson, 1983). According to Sebastia 

et al. (2013), it refers to a mathematical transformation involving the correlation of 

multispectral data from one band to the other. It is based on the logic that the level of a pixel 

in one band can to some degree be predicted from the level of that pixel in another band. 

PCA can be used as a technique for identifying wetland change (Muchoney and Haack, 

1994).  

 

The principal aim of this operation is to reduce the information contained in multi-spectral 

bands into few new images (Gupta et al., 2013). The principal component images describe 

data more efficiently than the original bands. The technique is more appropriate in situations 

where little background information about the area of interest is available (Gupta et al., 

2013). This approach was used together with ancillary data on wetlands to separate wetlands 

from other land uses (Ozesmi, 2002). Merged data transformation technique was used to 
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assess wetland change on the Kafue Flats in Zambia. The aim was to evaluate the potentials 

and disadvantages of using PCA for wetland change on this heterogeneous land cover scene. 

 

2.6.5 Hybrid classifications 

This method uses a mixture of both supervised and unsupervised classification techniques. 

One hybrid technique is to input statistics that is descriptive from a clustering algorithm into 

a maximum likelihood classifier (Hasmadi et al., 2009). In hybrid classification approach, 

unsupervised classification is done on only a part of the study area. Thereafter the clusters are 

assigned information classes, clusters statistics are created and input into a maximum 

likelihood classifier so that the entire study area can be classified (Ernenwein, 2009). 

 

This method was used in the study conducted in Canadian artic and subarctic wetlands by 

Pope et al. (1994). Hybrid classification was also used in north central Georgia to identify 

woos stork habitat using late spring Landsat TM data (Ozesmi et al., 2002). This method 

combines the advantages of both supervised and unsupervised approaches. They can be 

valuable for wetland studies because of the complex variability of spectral responses of 

wetland vegetation. 

 

2.7. Impacts of Phragmites australis on the wetland environment 

2.7.1. Ecological impacts 

Invasive species can lower the ability of plant diversity to thrive and decrease the quality of 

wildlife habitats within wetland and other sensitive environments (Laba et al., 2008). 

Invasive species occupy a large amount of space, which causes the displacement of native 

species. The problem of invasive species faced by wetlands in South Africa is significant; 

approximately 10 million ha has been invaded to some extent (Dean et al., 2000). These have 
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a significant impact on the native species and trophic structure. The introduction of P. 

australis in wetlands is of particular concern (Mal and Narine, 2004). 

 

Phragmites australis pose a threat to the wetlands environment by forming thick 

impenetrable stands that compete successfully with native vegetation (Minchinton et al., 

2006). Their competitive ability allows them to spread throughout wetland ecosystems. 

Phragmites australis are one of the greatest threats to the wetland ecosystem worldwide and 

their impacts are increasingly becoming a harmful component (Mack et al., 2000).  

 

Phragmites australis establish themselves more rapidly in adjacent areas, especially areas 

that are disturbed. Factors that contribute to P. australis invasions include disturbance of soil 

(Ailstock et al., 2001), pollution, alteration of the natural hydrological regime, increased 

sedimentation (Marks et al. 1994), and increases in nutrient concentrations (Hansson and 

Fredriksson, 2004). According to Windham and Meyerson (2003), P. australis changes 

wetland hydrology, sedimentation, nitrogen retention, and decrease dissolved oxygen, 

resulting in habitat alteration (Rooth et al., 2003). Due to their high productivity and 

transpiration, they tend to absorb high amounts of water compared to native plants (Marks et 

al., 1993).  
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2.7.2. Economic impacts of Phragmites australis 

Phragmites australis can absorb a high amount of water due to their deep roots, these prevent 

drainage leading to reduced crop production (Bonanno, 2011). They can block sight lines at 

intersections creating driving hazards. In conservation areas, overgrowth of P. australis has 

resulted in reduced property values, recreational opportunities, and reduced aesthetic 

enjoyment. Their dense stands prevent access and penetration can be difficult because of 

abrasions from the sharp-edged vegetation. Reduction of native fish and wildlife populations 

result in reduced recreational value for birdwatchers, walkers, naturalists, boaters, and 

hunters (Tewksbury et al., 2002). Such use impairment and restricted shoreline view also 

reduce property values (Avers et al., 2010). In addition to economic impacts, the introduction 

of P. australis poses a risk to human life and property. The Michigan Department of 

Transportation (MDOT) considers P. australis to be a safety hazard, as its height and dense 

growth may block signs and view of access roads, drives and curves (Sturtevant, 2019). 

 

2.8. Contribution of Phragmites australis to biodiversity 

Phragmites australis have a high ability in nutrient uptake and because of this, it improves 

water quality by filtration (Jiang et al., 2007). They have, therefore, been used as vegetative 

filters for wastewater treatment (Adler et al., 2008). Phragmites australis have dense stands 

and extensive root systems that prevent and minimise the effects of water erosion (Hawke 

and Jośe, 1996). In other countries such as Europe, P. australis are used commercially for 

livestock fodder, cellulose production, and thatching (Swearingen and Saltonstall, 2010). 

Despite its status as the global's "worst" invasive plant species, in Canada, P. australis are 

still considered ornamental in some garden and landscape designs (MNR 2010).  
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Phragmites australis produces various potentially interesting pharmacological compounds 

(Kiviat 2010). However, to our knowledge, there is currently no research that focuses on that 

area. Phragmites australis were used for medicinal purposes to treat diarrhea and 

gastrointestinal problems and it is also used traditionally in native American tribes 

(University of Michigan, 2016). In other tribes, P. australis was used as a material for 

building and to make products such as mats and buckets (University of Michigan, 2016). The 

seeds of P. australis were eaten in the absence of other food (University of Michigan, 2016). 

As much as it is a problem to most countries P. australis provide habitats and food for 

smaller organisms such as reptiles and insects (Kiviat, 2010). In South Arica, P. australis is 

used extensively for hut building, fencing, craftwork, and thatching (Rooyen et al., 2004). 

 

2.9. Management of P. australis 

Phragmites australis are powerful invaders that take over the area in which they are 

introduced, and once they colonise, they are not easy toeliminate. There are several methods 

so far used to control the overgrowth of P. Australis viz, ecological and non-ecological. 

These methods can be used either individually or in combination. According to Avers et al. 

(2014), effective control is likely to require multiple treatments using a combination of 

methods. However, some studies suggest that these methods are fully effective when used 

alone (Marks et al., 1994). Reinvasion by P. australis is likely when the management 

intervention is not maintained or closely monitored. The response of P. australis to control 

methods differs in different systems and will depend on the conditions that exist in that area 

(Güsewell and Klötzli, 2000). 
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2.9.1. Non-ecological management 

Burning is one of the non-ecological methods used to control P. australis, however, it does 

not reduce the ability of P. australis to grow since rhizomes are covered by a layer of either 

soil or water (Marks et al., 1994). In most cases, burning is not applicable as it may stimulate 

the growth of young shoots, due to an increase in light exposure, especially in spring. In 

wetlands that are near urban areas and have high conservation status, burning is not an 

appropriate management method. Another downside of burning is that it reduces vegetation 

cover for wildlife habitats (Mamolos et al., 2011). 

 

Another common non-ecological method used to manage P. australis is the application of 

herbicides. Herbicides are more effective when used in combination with other methods such 

as burning and mechanical methods. Treatment should be done repeatedly for several years to 

avoid re-establishment of P. australis (Avers et al., 2014). Herbicides need to be carefully 

applied as they are not species-specific and may affect native plant species (Pagnucco et al., 

2015).  

 

2.9.2. Ecological management 

Grazing and cutting have been used to reduce P. australis beds and density. Grazing may 

compress the rhizomes; however, this may not be as effective as other methods. Studies 

conducted by Van Deursen and Drost (1990) found that cattle consumed approximately 67–

98% of aboveground P. australis biomass. Grazing has not been considered as a suitable 

management method because the P. australis tend to establish again and reach an equilibrium 

state (Vulink et al., 2000). 
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Another ecological method is cutting. This method manipulates the possible growth of P. 

australis (Russell and Kraaij, 2008). In general, cutting increases the density of P. australis 

(Warren et al. 2001), while it decreases shoot length and the decomposition of organic matter. 

Cutting can also be used together with burning to avoid accumulation of biomass. Other 

ecological methods include flooding, whereby water level is increased to control the growth 

of P. australis. Although P. australis are intolerant of persistent flooding, increasing water 

level alone is not effective in controlling them, hence the use of combined methods for better 

and lasting results. 

 

2.10. Conclusions 

Wetlands are freshwater systems that provide essential services throughout the globe. They 

provide habitats for thousands of species and act as carbon and nitrogen sinks. Wetlands, like 

any other water system, encounter challenges such as non-native species invasions, including 

P. australis. Phragmites australis compete successfully for resources, negatively affecting 

other native species. Mapping the distribution of P. australis assists in coming up with more 

effective management and monitoring tools and plans of their establishment. Remote sensing 

has been used successfully for the past decades to map the distribution of P. australis. To 

understand their distribution and abundance, research in a spatial context at several scales is 

required. Satellite images can be used successfully to monitor macrophyte vegetation in 

wetlands. Satellites such as SPOT-5 and Landsat are used to determine their location. SPOT 

and Landsat data have been individually used to map distribution of P. australis but rarely 

used together. 
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CHAPTER THREE: MATERIALS AND METHODS 

 

3.1 Study area 

The Nylsvley Nature Reserve (NNR) is located within the Waterberg district municipality 

between the latitudes of 24º35'S and 24º40'S, and longitudes of 28º35'E and 28º45'E in 

Limpopo Province. The Nylsvley Wetland covers a total area of 3965.3 ha (LEDET, 2013) 

and is situated within the Mookgophong Local Municipality. The altitude of NNR ranges 

between 1080 m and 1154 m above sea level, with a median altitude of 1100 m. The nature 

reserve is a 40 km
2
 protected area, lying on the seasonally inundated floodplain of the Nyl 

River. 
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Figure 3.1 Location of the study sites within the Nylsvley Wetlands, Limpopo Province of 

South Africa. N1 to N5 are the sites visited for field data collection. 

 

3.1.1. Climate  

The climate of Limpopo is mostly dry and it receives most of its rainfall in summer between 

the months of September and March (Vermeulen et al., 2012). The local rainfall ranges 

between 200 and 2000 mm per annum, the provincial mean annual rainfall is 530 mm. The 

NNR gets an average annual rainfall of 648 mm, most of which is falling in summer. 

Waterberg district region receives the least amount of rainfall in July and most in November. 

The reserve has a monthly maximum temperature ranging from 22°C in July to 31°C in 

February (Scholes and Walker, 2004). 
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The climate of the NNR is characterized by cool dry winters and warm wet summers. About 

60% of summer rainfall occasions occur as serious thunderstorms spreading across just a few 

kilometres in distance, while the other 40% of precipitation events are delicate downfalls 

traversing different spans. The mean yearly precipitation of the Waterberg region is 623 mm 

with a mean temperature of 19°C (Coetzee et al., 1976). 

 

3.1.2 Topography 

The NNR has a gently sloping landscape, with several rocky outcrops that spread throughout 

the reserve. According to LEDET (2013), there are few outcrops, namely the Stemmerskop 

and Maroelakop, which are located at the central interior of the reserve at an altitude of 1 132 

m above sea level and in the eastern corner of the reserve at an altitude of 1 154 m above sea 

level, respectively. A third unnamed outcrop is located inside the western corner of the nature 

reserve at an altitude of 1 122 m above sea level. 

 

3.1.3. Vegetation 

The Waterberg Biosphere represents a considerable area of the savanna biome of Southern 

Africa. The Waterberg contains a high level of biological diversity, which includes many red 

data and orange listed species of conservation concern, and many endemic species. Habitats 

are adequately represented to ensure that the current high biodiversity is maintained. The 

NNR has low human density resulting in large areas of unspoiled wilderness and open spaces 

being a main characteristic of the Waterberg Biosphere.  
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Figure 3.2 The tallest trees are Burkeaafricana, while the lower tree layer is composed of 

Terminalia sericea and Dichrostachyscinerea, with the tall grass Hyperthelia dissoluta 

characteristically present on the well-drained sandy soils (Photo: T.H. Setsaas). 

 

Sour Bushveld is characterized by Transvaal beech (Faureasaligna), common hookthom 

(Senegalia caffra), wild seringa (Berkeaaficana), silver cluster-leaf (Terminalia sericea) and 

African wattle (Peltopehorumafricanum) on the deep sandy areas and steep and bare rock. 

Other common treespeecies of the area arepaperbark false-thorn (Albiziatanganyicensis) and 

velvet bushwillow (Combretum molle). River-bank and freshwater habitats including 

wetlands are characterised by Transvaal red milkwood (Mimusopszevheri), tigerwood 

(Clerodendrum glabrum), and common wild fig (Ficusthonningi) (Madilonga, 2017) 
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3.1.4 Land use  

Presently, an estimated 80 000 people inhabit the Waterberg Biosphere (Madilonga, 2017). 

The Waterberg lies in the Waterberg district of the Limpopo Province of South Africa 

(Netshipale et al., 2017). After cattle grazing brought a nadir of ecosystem health issues in 

the mid-1900s, the inhabitants gradually became aware of the advantages of restoring habitats 

to accommodate the original species of antelope, other bovids, black and white rhino, giraffe, 

hippopotami, warthogs and other important species whose numbers had declined with the 

advent of cattle. A steady rise in eco-tourism has increased the interest in game farming and 

land conservation practices to restore indigenous species to the Waterberg (Constant et al., 

2015).  

3.1.5. Geology  

The geology of the area consists of sandstones with some shales (Blight, 2004) as shown in 

figure 3.3. The sandstones of the Waterberg cluster are typically found within the higher 

reaches of the field and are semi-permeable with high infiltration rates (Higgins et al., 1996). 

The Waterberg cluster additionally consists of some greywacke, mudstones, and siltstones 

(Roberry, 2011). The centre reaches of the field are comprised of felsites of the Rooiberg 

cluster. Basalts of the Karoo sequence typify the lower reaches of the Waterberg, being areas 

of spring water sources. The 15 m deep alluvium overlay covering most of the Nyl 

watercourse vale, is primarily identified as Waterberg arenaceous rock (Higgins, 1996).  

 

The geological characteristic of this area has been hypothesized firstly as a Zebidelia fault 

running through the Nyl watercourse vale. The movement related to this fault is thought to 

have created a basin which has subsequently been filled up with sediment from the Nyl 

watercourse (Tooth, et al., 2002). This hypothesis has but recently challenged by McCarthey, 

et al.(2011), proposing that rather than tectonic forces, the deep geological phenomenon of 
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the Nyl has been due to the obstruction of the lower reaches by coarse-grained sediment 

being delivered by steep tributaries. This successively has caused back ponding and thus 

gradient reduction within the higher reaches. Regardless, it has created an unusual 

hydrological formation where the watercourse flows up to 35m higher than the bedrock 

(McCarthey et al., 2011). 

 

 

Figure 3.3 Map showing the (a) geology and (b) soil type of the Nylsvley Nature Reserve 
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3.1.6. Hydrology  

The Nylsvley Wetland is considered one of the largest floodplains in South Africa with the 

Nyl River flowing through the central and North-Eastern parts of the NNR. NylsvleyWetland 

is a seasonal natural inland covering approximately 70 km
2 It is comprised of a seasonal river 

associated with a grassland floodplain. The floodplain gets most of its influx from streams 

and rivers draining from the south-eastern edge of the Waterberg plateau, with its primary 

water input coming from the Olifant spruit (contributing eighty percent of the overall annual 

drift). The Groot Nyl and Klein Nyl Rivers contribute minimally (LEDET, 2013). 

 

Hydrologically the Nylsvley floodplain serves as a basin, temporarily storing floodwater and 

later releasing it slowly back into the Nyl River. The floodplain contributes significantly to 

groundwater recharge within the area with high groundwater yields in the Waterberg area 

occurring near the lower floodplain. The Nylsvley floodplain wetland plays a vital role in 

supplying water for the biodiversity of the surroundingarea (LEDET, 2013). 

 

3.2. Research design 

A quantitative methodology was undertaken to study the distribution of P. australis along the 

Nylsvley Wetland, using a shoreline survey technique. This technique allows for the 

evaluation of the distribution density of P. australis. Shoreline surveys are commonly utilised 

because they are available, and satisfactory for P. australis area mapping. Typically, P. 

australis is found on the shorelines, which facilitates data analysis and pattern evaluation.  

 

3.3. Preliminary work 

This is the first stage of the research that provides an overview of the study area. It is made 

up of a secondary desktop study and a reconnaissance survey.  
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3.3.1. Desktop study  

A desktop study was carried out before field work to acquire first-hand information about the 

geology of the area. This was done through the access of existing data from scientific and 

commercial databases and available project sources. These sources are books, journals, 

previous reports, internet resources and topographic maps as well as geological maps. 

 

3.3.2. Reconnaissance survey 

An overview field survey of the study area was carried out before actual fieldwork. Visual 

observations were carried out to gather information about the topography, vegetation, soil 

and general characteristics of the Nylsvley Wetland. This stage aided the preparations of 

actual field work and selection of appropriate methods of acquiring data in the field. 

 

3.4. Data collection 

3.4.1. Sampling methods 

The classification processes of remote sensing imagery requires some reference data from 

ground cover features to aid in identifying features within the image. To obtain these ground 

control points (GCPs), field work was completed on the 25
th

 of March 2020. A total of 5 

points were taken using a Garmin GPS60 unit. This was conducted mainly to help in 

classifying different land covers within the wetland. The surface area of P. australis was 

estimated using Garmin® Etrex 62 Global Positioning System (GPS) by calculating the area 

round the P. australis patches. The GPS points were taken at all five sites and test sites were 

selected to further assist in ground truthing. Ground truthing is essential to relate image data 

to real features and materials on the ground. The training sites selected assisted in the 
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accuracy assessment of the supervised classification of the images. Hence, errors of omission 

and commission were minimized. 

 

Figure 3.4 P. australis stands within study area at different field sites. 

 

3.5. Remote sensing 

3.5.1. Image selection 

High spatial resolution Landsat 5 TM (Thematic Mapper), Landsat 8, and SPOT 5 and 6 were 

used in mapping the distribution of P. australis. The Landsat images were obtained from 

USGS and the SPOT images were requested from the South African National Space Agency 

(SANSA). High spatial resolution on satellite images often comes at the expense of image 

swath width. The large swath width and moderately high (30m) spatial resolution of Landsat 

TM make the sensor's imagery suitable for mapping the distribution of P. australis .SPOT, 

however, has a higher spatial resolution of 1.5 m hence, the comparison of the two. The 

images were enhanced to improve visual interpretation and appearance of land features. To 
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do that, image enhancement techniques such as linear contrast stretching, and edge 

enhancement filters were applied.  

 

The images were all taken in early spring for both SPOT and Landsat. The Nylsvley Wetland 

shapefile was overlaid on the images so that only the study area was covered and processing 

time was lowered significantly. Classified images used have 4 classes namely: trees, grass, 

bare land, and P. australis.   

 

3.5.2 Image pre-processing  

Pre-processing techniques, sometimes referred to as image restoration and rectification, are 

normally required for easy visual interpretation and understanding of imagery before the 

main data analysis and information extraction are conducted (Bazeille et al., 2006). These 

pre-processing techniques are generally intended to correct for sensor-specific radiometric 

and geometric errors or distortions of data (Schowengerdt, 2012). 

 

The image was pre-processed with the aim of correcting defects inherent in remotely sensed 

data (i.e. radiometric and geometric distortions) and enhancing the quality of the raw data to 

facilitate interpretation of the data (Chang 2018). In this study, image restoration was applied 

to the images to compensate for image errors, noise, and geometric distortions introduced 

during the scanning, recording, and playback operations. This was performed through the 

application of geometric correction, radiometric correction (haze compensation) and noise 

reduction filters developed by ERDAS imagine 2014. The objective was to make the restored 

image resemble the scene on the terrain.  

 

3.5.2.1 Radiometric correction 
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Radiometric correction is important to ensure that terrestrial variables retrieved from optical 

satellite sensor systems are calibrated to a common physical scale. Radiometric correction is 

one of several corrections performed on satellite image data prior to the retrieval of land, 

atmosphere, and ocean information. These pre-processing procedures are essential for 

ensuring high-quality information from remote sensors. Radiometric correction ensures that 

measurements and methods yield self-consistent and accurate geophysical and biophysical 

data, even though the measurements are made with a variety of different satellite sensors 

under different observational 20 conditions and the parameter retrieval methodologies vary. 

Radiometric correction was performed to remove noise and haze on the images.  

 

3.5.2.2. Geometric correction  

Geometric correction is to correct the geometric distortions, internal and external distortions. 

Raw digital images usually contain geometric distortions so that they cannot be used as maps. 

The sources of these distortions range from variations in the altitude, velocity of the sensor 

platform, to factors such as panoramic distortion, earth curvature, and atmospheric refraction 

and relief displacements. The intent of geometric correction is to compensate for the 

distortions introduced by these factors so that the corrected image will have the geometric 

integrity of a map (Lillesand and Keifer, 1994). 

 

3.5.2.3 Image enhancement  

A 3 × 3 edge sharpening filter and non-directional edge enhancement, developed by ERDAS 

imagine 2014, was applied to the image to sharpen linear features in the image while non-

directional edge enhancement was applied to enhance the edges of linear features without 

considering their orientation. Contrast stretch and tonal enhancement were also applied to 

improve the brightness differences of the image. A contrast stretch was performed with the 
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aim of improving the brightness differences uniformly across the dynamic range of the 

image.Tonal enhancement filters improve the brightness differences in the shadow, mid tone 

or highlight (bright) regions at the expense of the brightness differences in the other regions 

(Suman et al., 2014). 

 

3.5.2.4 False colour composite images  

A False Colour Composite (FCC) image is an effective means for visual interpretation of 

multi-spectral imagery (Aqdus et al., 2012). This is because the human eye is more sensitive 

to colour than greyscale brightness variations and thus colour images are easier to interpret 

(Lissner et al.,2012). The bands, 4 (blue), 5 (green) and 6 (red) were used to generate RGB 

(red-green-blue) composites associated with both high spatial and spectral information 

(Zhimin et al., 2002). 

 

3.5.3. Image processing  

The detection of fine-scale details in structure, texture, and pattern on very high spatial 

resolution image data allows identification of some macrophytes up to species level (Bryson 

et al., 2013; Visser et al., 2013). The individual monochromatic bands were combined using 

the layer stacking tool, in ERDAS imagine 2014. This was accomplished by loading bands 1, 

2, 3, 4, 5, 6, 7, 8 and 9 from Landsat and band 1, 2 and 3 from SPOT into the programme and 

combining them using the layer stacking tool to form the required dataset: a true colour 

composite map. It should be noted that the acquired remotely sensed data came in a form of 

individual monochromatic bands (i.e. Very Near Infrared (VNIR) bands, SWIR bands). 

These bands, on their own, were not effective for identifying different land covers, therefore 

the individual bands were combined to form one dataset, which could then be used to identify 

different land covers of interest. The nearest neighbour resampling method was used during 
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the layer stacking to ensure that all the pixels in the bands were reordered in an appropriate 

manner, and to ensure that the radiometric integrity of the data remained intact. Selected 

images were overlaid by the Nylsvley catchment to ensure an effective extraction to cover 

only the study site. 

 

3.5.4. Image classification 

Image classification is a common method of categorizing land into various use functions. 

This procedure assigns data cells to one of many groups of land-cover classes/features 

depending on the reflectance values within the area on the image. There are three main 

categories of classification methods: unsupervised, supervised and combined. This study only 

used supervised classification. 

 

There are several classification techniques used for the identification of P. australis stands, 

including minimum distance (MINDIST), maximum likelihood (MAXLIKE), and Bayesian 

soft classifier (BAYCLASS). Maximum likelihood classification was chosen for the study 

because it is comparatively the most powerful method as well as a better method for training 

sites with a large sample size. It is also a relatively better method for mixed pixels (Ilic, 

2012). Maximum likelihood classification is based on Bayesian probability theory, evaluating 

the probability of pixels belonging to a category and classifying those pixels with the highest 

probability to the category (Clark Labs, 2007). This is the most common supervised 

classification used within remote sensing studies of vegetation. Using maximum likelihood, 

all pixels in the image are assigned to a signature class, which was developed during 

signature creation. The satellite images were therefore classified according to different land 

covers. Four classes were created, namely P. australis, grasses, trees, and bare land. 
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3.6 Data analysis and interpretation 

3.6.1 Area calculation 

The total area covered by P. australis was calculated using the “Calculate Geometry” 

function in the attribute table by right-clicking on the “Sh_Area_ha” field and selecting 

“Calculate Geometry”. “Area” was selected as the property, the same coordinate system as 

the data source was used, which is UTM Zone 17N, and “Hectares” was selected as the units. 

No projection was lost during the conversion process, as the coordinate system was retained 

as being UTM Zone 17N. The area calculation of the P. australis class for each selected year 

was done to compare and define the difference and distribution patterns changes of P. 

australis. 

 

3.7 Accuracy assessment 

One of the most important final steps of classification process is accuracy assessment. The 

aim of accuracy assessment was to quantitatively assess how effectively the pixels were 

sampled into the correct land cover classes. The key emphasis for accuracy assessment pixel 

selection was on areas that could be clearly identified in more than one satellite image. It 

was, therefore, carried out to compare the performance of classified images for both SPOT 

and Landsat data in mapping the distribution and abundance of P. australis. 

 

Accuracy assessment points were created on ArCMap using classified images for both SPOT 

and Landsat images. Thereafter the points were converted to KML file and imported on 

Google Earth as shown in Figure 4.15. The purpose of using Google Earth in this case was to 

determine correctly classified pixels over incorrectly classified pixels of each land cover. A 

total of 86 points were randomly selected. According to Tammy et al. (2011), the higher the 
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number of points selected the more reliable the results. The points were subsequently 

represented on attribute table to validate the classified land classes as shown in Figure 4.16. 

 

 

 

Figure 3.5 Accuracy assessment points on ArcMap 

 



 

Page | 42 

 

Figure 3.6 selected points on attribute table 

 

To determine the accuracy of the classified maps, various statistics related with classification 

accuracy as well as overall Kappa statistic were computed based on formulae as indicated 

below:  

Sensitivity = 
𝑎

𝑎+𝑏
 (equivalent to Producers Accuracy') 

Specificity =  
𝑑

𝑑+𝑏
 

 Commission error = 1-Specificity 

 Omission error = 1-Sensitivity 

 

Positive Predictive Power = 
𝑎

𝑎+𝑏
 (Equivalent to User's accuracy)  

Negative Predictive Power = 
𝑑

𝑑+𝑐
 

where:  

a = number of times a classification agreed with the observed value  
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b = number of times a point was classified as X when it was observed to not be X.  

c = number of times a point was not classified as X when it was observed to be X.  

d = number of times a point was not classified as X when it was not observed to be X.  

 

Total points: N = (a + b + c + d)  

 

KAPPA analysis is a discrete multivariate technique used in accuracy assessments. KAPPA 

analysis yields a Khat statistic (an estimate of KAPPA), that is a measure of agreement 

between two raters or accuracy. The Khat statistic is computed as;  

𝐾 =
𝑁∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖 + 𝑋𝑥+𝑖)

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖𝑖 + 𝑋𝑥+𝑖
𝑟
𝑖=1 )

 

Where, 

r = number of rows and columns in error matrix,  

N = total number of observations (pixels)  

Xii = observation in row i and column i,  

Xi+ = marginal total of row i, and  

X+i = marginal total of column i 

 

A Kappa coefficient can range between 0 and 1. 1 means perfect agreement whereas a value 

close to zero means that the agreement is no better than mere chance. 
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Table 4.4.1 Criteria of Kappa statistics 

Kappa statistics  Strength of agreement  

<0.00  Poor  

0.00 - 0.20  Slight  

0.21 - 0.40  Fair  

0.41 - 0.60  Moderate  

0.61 - 0.80  Substantial  

0.81 - 1.00  Almost perfect  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter will be separated into three parts. The first part is the analysis and interpretation 

of Landsat, followed by the analysis and Interpretation of SPOT images. Lastly, the 

comparison of SPOT and Landsat performance using the accuracy assessment table created 

from ArcGIS 10.1 Software is presented. 

 

The application of the supervised maximum likelihood in this study reveals considerable 

differences over time in the distribution and abundance of P. australis. The classification, 

identification and labelling were based on the experiences of the field survey, satellite 

images, and comparable studies. Using such subjective bases, the land cover classes were 

created. This chapter thus answers the research objectives about the performance of Landsat 

imagery as compared to SPOT imagery in mapping the abundance and distribution of P. 

australis. Overall, the results of this chapter reveal a significant change of the P. australis 

distribution over time. 

 

Satellite data spanning a period of seven years was used for this study. Landsat Enhanced 

Thematic Mapper (ETM+) and Landsat Operational Land Imager (OLI) was obtained from 

USGS. SPOT 6 and 7 was requested from SANSA. Table 4.1.1 shows the specifications of 

the satellite data used in this study. The satellite images represented the entire Nylsvley 

Wetland area. The acquired satellite images were in geo TIFF format. 
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Table 4.1 Specifications of the satellite data used in this study 

Sensor Date of acquisition Resolution (m) Spectral Bands 

Landsat 5 2011/09/12 30 Blue, Green, Red, 

Near Infrared 

Landsat8 (Operational 

Land Imager OLI) 

2013/08/17 15 Shortwave Infrared 

  2015/08/07 15 1, Shortwave 

  2017/08/29 15 Infrared 

SPOT 6 2011/08/25 2.3 Blue, Green, Red 

2013/08/05 1.5 

2015/08/18 5.5 

2017/09/15 1.5 

 

 

4.2. Landsat image analysis and interpretation 

Following Chapter 3, acquired remotely sensed data came in\single bandform. Histogram was 

performed after band composite on the Landsat images to aid in image visual interpretation 

as shown in Figure 4.1. Histogram stretching is process of increasing the contrast of an image 

(Kaur and Sohi, 2017). Contrast is defined as the difference between maximum and minimum 

pixel intensity values in an image. To increase the contrast of image the range of intensity 

values are stretched to cover the full dynamic range of the histogram. A histogram of an 

image depicts that the image is having low or high contrast. A histogram having the full 

range of dynamic intensity values is considered as high a contrast image .It should be noted 

that the above process was performed on Landsat images, SPOT images came in the form 

which was ready to be classified. However, images came in the form of single images which 
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were then merged to create one single raster dataset to cover the study area, this process is 

called photo mosaicking. 

 

 

Figure 4.1 Histogram stretching 

 

It is important to note that each image was overlaid by the Nylsvley Wetland (Figure 4.2). 

This is to ensure an effective extraction to cover only the study site as shown in. Exaction 

helps to reduce time of the classification process and to produce reliable results. Image 

classification was performed on individual images after the process of study area extraction. 
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Figure 4.2 Study site extraction process  

 

As can be seen in the Figure 4.3, trees are clearly delineated in dark green colour, grass in 

light green, bare land is shown in yellow, and areas which are shown to have an occurrence 

of P. australis are shown in red. More P. australis are observed at one side of the image; 

however, they cover less area as compared to other land covers shown in the image above. 

Approximately 117.4 ha is covered by P. australis stands. 

Figure 4.3. Year 2011 classified Landsat image  
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Year 2013 shows less P. australis as shown in Figure 4.4. Phragmites australis stands are 

being observed along the river, as they thrive in aquatic areas. However less red colour can 

be seen towards the edge of the image. This could indicate human error associated in 

classifying the correct P. australis stands. 

 

 

Figure 4.4 Year 2013 classified Landsat image 

 

Less P. australis stands are being observed in Figure 4.5 as compared to year 2011 and 2013. 

Phragmites australis are mostly found along the river as explained in Figure 4.3. Year 2015 

covers about 5 ha which is a 50% decrease from year 2013. This could be because of the 
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management of P. australis from year 2013 to 2015 within the Nylsvley Wetland. 

Management tools and methods included burning and cutting. Other reasons may be because 

of the low resolution of Landsat satellite imagery used in the study. In this case, resolutions 

of 30 and 15 m, whereby each pixel covers 900 and 225 m
2
, respectively, were used. Due to 

the large area that a single pixel covered, this could possibly have led to “mixed pixels” 

problems, where a single pixel contained a combination of several features classifying as a 

wrong pixel during the classifying process. This error is called “mixed pixel”. 

 

 

Fig 4.5 Year 2015classified Landsat image 
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The year 2017 showed more of the red colour at the edges of the study site as shown in 

Figure 4.2.6. This could mean misclassification of pixels especially from images with low 

spatial resolution. Another plausible reason could be that the images were acquired in spring,  

 

 

Fig 4.2.6 Year 2017 classified Landsat image 

 

Tables 4.2.1 to 4.2.4 indicates the parameters used to calculate area of classified land covers 

for each year. The count column represents the number of pixels in each class. To calculate 

the area of each class, the number of pixels for each class were multiplied by the image 

resolution and divided by 10000 to get the area in hectares(ha). Since the Landsat images had 

different resolutions of 30×30m for 2011 and 15×15m for 2013 to 2017, the pixel number 
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was multiplied by 900m
2
 for 2011 and 225m

2
 for 2013, 2015 and 2017. Figure 4.2.6 shows 

that P. australis covers less area in every successive year compared to other land cover 

classes. 2011 is the only year when P. australis was observed to be covering a larger area 

than trees. 

 

Table 4.2 Signature editor table for year 2011 Landsat classified image. 

Class           Signature name                 Count Area (ha) 

1 Trees 820 73.8 

2 P. australis 1304 117.36 

3 Grass    10999 989.91 

4 Bareland   1174 105.66 

 

 Table 4.3 Signature editor table for year 2013 classified Landsat image  

Class           Signature name                 Count Area (ha) 

1 Trees 17871 402.09 

2 P. australis 457 10.28 

3 Grass    34029 765.65 

4 Bareland   4868 109.53 

 

Table 4.4 Signature editor table for year 2015 classified Landsat image 

Class Signature name Count Area (ha) 

1 Trees 820 419.94 

2 P. australis 265 5.96 

3 Grass    32026 720.59 

4 Bareland   18664 141.07 

 

 

Table 4.5 Signature editor table for year 2017 classified Landsat image  
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Class Signature name Count Area (ha) 

1 Trees 15180 341.55 

2 P. australis 3542 79.69 

3 Grass    33790 760.28 

4 Bareland   4713 106.04 

 

 

 

Figure 4.7 Pie chart showing area covered by each land cover classes 

 

Figure 4.8 shows the changes in prevalence of P. australis. From year 2011 to 2013 a sharp 

increase of 37% is observed, followed by 2% of decrease from 2013 to 2015. A sharp 

increase of 43% is observed again from year 2015 to 2017. The average increase of P. 

australis over the 7-year time span is 4%. Although slight changes in areas were observed 

over the years, according to Kruskal-Wallis analysis no significant differences (H = 0.066, p 

= 0.987) were observed across years, whereas significant differences (H = 10.919, p = 0.012) 

were observed among the different vegetation land classes.  
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Figure 4.8 Bar graph showing total area (%) covered by Phragmites australis 

 

4.3 SPOT image analysis and interpretation  

SPOT consisted of different images which had to be merged through mosaicking to produce 

one dataset (details of which are elaborated on in the Chapter 3). It should be noted that 

spatial resolution of SPOT images is higher than that of Landsat. SPOT images used in this 

study have high spatial resolution that ranges from 1.5 to 5.5m. Hence, mixed pixel problems 

are minimised. Figure 4.1 shows that P. australis cover less area and are more visible along 

the river. 
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Figure 4.9 Year 2011classified SPOT Image 

 

More P. australis are observed in Figure 4.10 as compared to Figure 4.9 There has been a 

slight observed increase of P. australis from year 2011 to 2013. 
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Figure 4.10 Year 2013 Classified SPOT image for SPOT. 

 

Figure 4.11 shows less P. australis as compared to year 2011 and 2013. More of the P. 

australis are observed along the river and this is because they have preferable conditions 

which include aquatic and semi aquatic areas. 
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Figure 4.11 Year 2015 classified SPOT Image. 

 

Year 2017 shows significant increase in P. australis stands as compared to years 2011, 2013 

and 2015. This is suspected to be due to mixed pixels and same reflectance of different 

features on the ground. The red colour is observed along the river and at the edge of the study 

site (Figure 4.12). 
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Figure 4.12 Year 2017 classified SPOT image 

 

Figure 4.13.5 shows that P. australis covers a smaller part of the study area compared to 

other land covers classes. An increase of 10% P. australis area coverage from year 2011 to 

2013 was observed (Figure 4.11) and a noticeable decrease of 15% from year 2013 to 2015. 

A significant increase of 52% from year 2015 to 2017 was also observed (Figures 4.11 and 

4.12).  
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Figure 4.13 Area (ha) covered by each landcover class 

 

 

Figure 4.14 Bar graph showing total areas covered by Phragmites australis 

 

The area of land cover classes was computed using pixel count shown from the signature 

(Tables 4.2 and 4.5). As SPOT images had different spatial resolutions (Table 4.1), different 

calculations were used for each spatial resolution. Higher resolutions produced the more 
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reliable results. Similar to Landsat imagery, slight changes in areas were observed over the 

years, however, according to Kruskal-Wallis analysis no significant differences (H = 1.833, p 

= 0.596) were observed across years, whereas significant differences (H = 11.735, p = 0.008) 

were observed among the different vegetation land classes. 

 

Table 4.6 Signature editor for year 2011 classified image  

Class           Signature name                 Count Area (ha) 

1 Trees 113972 598.35 

2  P. australis 20101 10.56 

3 Grass     576158 302.48 

4 Bareland   424442 222.83 

 

 

Table 4.7 Signature editor for year 2013 classified image 

Class           Signature name                 Count Area (ha) 

1 Trees 92054 288.68 

2 P. australis 6420 20.13 

3 Grass    207295 650.07 

4 Bareland   66307 207.93 

 

Table 4.8 Signature editor for year 2015 classified image 

Class           Signature name                 Count Area (ha) 

1 Trees 55421 173.8 

2 P. australis 2004 6.28 

3 Grass    217127 680.91 

4 Bareland    97524 305.83 

 

 

 



 

Page | 61 

Table 4.9 Signature editor for year 2017 classified image 

Class           Signature name                 Count Area (ha) 

1 Trees 893627 201.06 

2 P. australis 232494 52.31 

3 Grass    423463 952.79 

4 Bareland   265904 59.82 

 

A comparison of the two satellite imagery types revealed similarities (F = 1.071, Df = 3, p = 

0.495) across the study years in terms of area based on ANOVA analysis, with significant 

differences (F = 34.321, Df = 3, p = 0.008) being observed across the different land classes 

for the two satellite imagery types.  

 

4.4. Accuracy assessment  

Accuracy assessment was used to quantitatively assess how effectively the pixels were 

sampled into the correct land cover classes (Congalton, 1991). It was used to compare the 

performance of classified images for both SPOT and Landsat data in mapping the distribution 

and abundance of P. australis.  

 

Accuracy table used was the theoretical confusion matrix (error matrix) of classified images. 

These tables are important in determining whether the classified image is fit to be used or the 

need to be reclassified (Stehman, 2004). The columns of the confusion matrix show to which 

classes the pixels belong in the validation set and the rows show to which classes the image 

pixels have been assigned in the image. The diagonal shows correctly classified pixels. Pixels 

that are not assigned to the class they belong to are not represented diagonally and give an 

indication of the confusion between the different land-cover classes in the class assignment 

(Yan et al., 2006). 
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One of the objectives of the study was to use both Landsat and SPOT accuracy assessment to 

determine which sensor is more suited for mapping the distribution of P. australis. Using 

different formulas, accuracy evaluating parameters were calculated and represented in 

accuracy Tables 4.4.1 and 4.4.2. Landsat images showed an average overall accuracy and 

average kappa coefficient of 61.20% and 0.337, respectively. The 2011 images, however, 

showed the lowest overall classification accuracy likely due to their low spatial resolution at 

30m.  

 

SPOT images have an average overall accuracy of 71.50% and an average Kappa coefficient 

of 0.567. For the year 2015 the producer’s accuracy ranged from 56% to 88% and 33% to 

97% for Landsat and SPOT, respectively. SPOT images had a user’s accuracy that ranged 

from 18% to 90%, whereas Landsat images ranged from 60% to 75%. Producer’s accuracy is 

a measure for how often features on the ground are correctly classified on the classified 

image. User’s accuracy reflects how often features on the map will be present on the ground 

(Foody, 2010). The area coverage for year 2015 in both images shows similar results, 

requiring a further analysis of accuracy from both SPOT and Landsat images. The user’s 

accuracy for P. australis is 63% for SPOT and 60% for Landsat images. Omission error 

refers to reference sites that were left out in the classified image. P. australis had omission 

errors of 30% and 33.3% for SPOT and Landsat, respectively. 

 

The commission error reflects the points which are mistakenly included in a specific category 

to which they do not belong. Commission error is Landsat and SPOT implies that there are 

several points which are classified as P. australis in the classified map but are actually not P. 

australis on the reference map, accounting for “mixed pixels”. The overall classification 
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accuracy was81.4% and 68.6% for SPOT and Landsat, respectively. An overall Kappa 

coefficient of 0.53 for Landsat which is considered moderate according to the criteria of 

Kappa statistics was observed. The Kappa coefficient for SPOT was 0.73 and rated to be 

substantial. 

 

Table 4.4.1 Accuracy of classification for year 2011 Landsat image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 0 4 0 3 7 57.14% 0.00% 

Grass 20 37 3 2 60 36.67% 61.67% 

P. australis 1 3 7 0 11 36.36% 63.64% 

Bareland 5 3 0 0 8 37.50% 0.00% 

Total 26 47 10 5 86     

Omission Error 80.77% 21.28% 30.00% 100.00%       

Producer's Accuracy% 0.00% 78.72% 70.00% 0.00%       

Overall classification Accuracy 51.16%             

KAPPA COEFIENT 0.14887             

 

Table 4.4.2 Accuracy of classification for year 2013 Landsat image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 18 16 3 0 37 51.35% 48.65% 

Grass 0 34 0 3 37 8.11% 91.89% 

P. australis 2 0 4 0 6 33.33% 66.67% 

Bareland 0 6 0 0 6 100.00% 0.00% 

Total 20 56 7 3 86     

Omission Error 10.00% 39.29% 42.86% 100.00%       

Producer's Accuracy% 90.00% 60.71% 57.14% 0.00%       

Overall classification Accuracy 65.12%             

KAPPA COEFIENT 0.4298             

 

 

Table 4.4.3 Accuracy of classification for year 2015 Landsat image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 18 4 2 0 24 25.00% 75.00% 

Grass 11 27 0 1 39 30.77% 69.23% 
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P. australis 3 1 6 0 10 40.00% 60.00% 

Bareland 0 4 1 8 13 38.46% 61.54% 

Total 32 36 9 9 86     

Omission Error 43.75% 25.00% 33.33% 11.11%       

Producer's Accuracy% 56.25% 75.00% 66.67% 88.89%       

Overall classification Accuracy 68.60%             

KAPPA COEFIENCY 0.53711             

 

 

Table 4.4.4 Accuracy of classification for year 2017 Landsat image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 15 10 2 0 27 44.44% 55.56% 

Grass 6 30 1 3 40 22.50% 75.00% 

P. australis 3 1 7 0 11 36.36% 63.64% 

Bareland 1 6 0 1 8 75.00% 12.50% 

Total 25 47 10 4 86     

Omission Error 36.00% 36.17% 30.00% 75.00%       

Producer's Accuracy% 60.00% 63.83% 70.00% 25.00%       

Overall classification Accuracy 61.63%             

KAPPA COEFFIENT 0.39608             

 

 

Table 4.4.5 Accuracy of classification for year 2011 SPOT image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 19 20 1 0 40 52.50% 47.50% 

Grass 3 17 1 4 25 28.00% 68.00% 

P. australis 2 0 8 0 10 20.00% 80.00% 

Bareland 1 0 10 0 11 90.91% 0.00% 

Total 25 37 20 4 86     

Omission Error 20.00% 54.05% 60.00% 100.00%       

Producer's Accuracy% 76.00% 45.95% 40.00% 0.00%       

Overall classification Accuracy 51.16%             

KAPPA COEFFIENT 0.30893             

 

Table 4.4.6 Accuracy of classification for year 2013 SPOT image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 
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Trees 19 4 3 0 26 26.92% 73.08% 

Grass 3 34 0 2 39 12.82% 87.18% 

P. australis 2 1 7 0 10 30.00% 70.00% 

Bareland 0 9 0 2 11 81.82% 18.18% 

Total 23 48 10 4 86     

Omission Error 21.74% 29.17% 30.00% 50.00%       

Producer's Accuracy% 82.61% 70.83% 70.00% 50.00%       

Overall classification Accuracy 72.09%             

KAPPA COEFFIENT 0.56834             

 

Table 4.4.7 Accuracy of classification for year 2015 SPOT image 

  Trees Grass P. australis Bareland Total Commision Error User's accuracy 

Trees 18 1 1 0 20 10.00% 90.00% 

Grass 1 35 1 2 39 7.69% 89.74% 

P. australis 4 0 7 0 11 36.36% 63.64% 

Bareland 2 3 1 10 16 25.00% 62.50% 

Total 25 39 10 12 86     

Omission Error 20.00% 10.26% 30.00% 16.67%       

Producer's Accuracy% 72.00% 89.74% 70.00% 83.33%       

Overall classification Accuracy 81.40%             

KAPPA COEFIENCY 0.728828             

 

 

Table 4.4.8 Accuracy of classification for year 2017 SPOT image 

  Trees Grass P. australis Bareland Total Commision error User's accuracy 

Trees 19 20 1 0 40 52.50% 47.50% 

Grass 3 17 1 4 25 28.00% 68.00% 

P. australis 2 0 8 0 10 20.00% 80.00% 

Bareland 1 0 10 0 11 90.91% 0.00% 

Total 25 37 20 4 86     

Omission Error 20.00% 54.05% 60.00% 100.00%       

Producer's Accuracy% 76.00% 45.95% 40.00% 0.00%       

Overall classification Accuracy 51.16%             

KAPPA COEFIENCY 0.30893             

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
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5.1. Conclusions 

Mapping the distribution and abundance of P. australis in the is of importance to the 

environmental managers. The study aim was to assess the distribution and abundance of P. 

australis comparing two different types of satellite images, SPOT and Landsat. This research 

served to fulfil the objectives established in this thesis, which were to show any changes in 

distribution and abundance of P. australis. Remote sensing has been used since the 1970s for 

different purposes including the mapping of P. australis distribution (Adam et al., 2010). 

However, the reliability of remote sensing can be increased using additional classification, 

analysis and interpretation of satellite images using reference data (Yuan et al., 2005). In the 

case of this study, reference data took the form of collected field data. The main aim of the 

field work was to gain familiarity with the area. Measuring P. australis also provided insight 

into what could be expected on the satellite images during the classification process. 

 

Supervised classification was chosen as the best classification method for the study. 

Maximum likelihood classification was then applied after training site selection to complete 

the classification process. The classification method chosen was best suited for the study 

because prior knowledge about the area studied was available, which also made training sites 

selection easier. Eight images were used in this study consisting of four Landsat and four 

SPOT images spanning seven years between years 2011 and 2017.  

 

It was observed in this study, that the total cover of P. australishad increased between years 

2011 and 2017. More P. australis stands were observed along the river, as they thrive in wet 

conditions. There, however, P. australis were observed on the edges of study site, due to the 

problem of “mixed pixels” wherein pixels fall in the category they do not belong. The 

problem of mixed pixels is common, and in some cases, it is caused by low spatial resolution 
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(Villa et al 2010). Landsat images showed a sharp decrease in P. australis from years 2011 to 

2013, whereas SPOT images showed a slight increase for the same period. Year 2015 both 

SPOT and Landsat showed similar area coverage by P. australis which was 6.3ha and 5.9ha, 

respectively.  

 

The study demonstrated the advantages of using SPOT image over Landsat to map landcover 

especially small patches of P. australisstands, evidenced by a considerably higher overall 

accuracy of classification. SPOT produced the highest overall accuracy (OA = 81.4%) and 

the lowest error of omission (OE = 1.59%) as well as a relatively low error of commission 

(CE = 30%) for P. australis. Landsat produced an overall accuracy of 68.6% and an error of 

commission of 33.3% for year 2015. Correlation between the classified image is shown by 

the overall kappa coefficient average of 0.5648 and 0.37 for SPOT and Landsat, respectively. 

 

As a consequence of the satellite images selected for this study having been acquired during 

the early spring there was an issue of incorrectly classifying P. australis with other land 

cover classes. According to Arzandeh and Wang (2003), this was attributed to other wetland 

vegetation and P. australis having similar reflectance responses in spring season. Another 

limiting factor was the spatial resolution of the remote sensing imagery in comparison to the 

size and shape of P. australis stands within the area. The year 2011 classified image has the 

lowest spatial resolution of 30m meaning that a pixel covered 900m
2
. This caused less 

reliable results as more pixels were classified into incorrect categories. Given the aerial 

coverage of the satellite images, these images may have not be applicable for small stands of 

P. australis. Future research with a small aerial coverage of P. australis would therefore not 

benefit from using satellite imagery in the analysis due to the poor resolution of the sensors. 

Therefore. it will be ideal to use satellite images with high spatial resolution.  
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In this study remote sensing data was used to map the distribution and abundance of P. 

australis. Two satellite sensors namely SPOT and Landsat were selected for this purpose. 

The reason behind the selection of the two sensors was there being limited literature of both 

being used together to map the distribution of P. australis. The study shows an increasing 

trend in P. australis when using SPOT images, whilst no trend is depicted from using 

Landsat satellite images. The other objective of the study was to assess the performance of 

both sensors in mapping P. australis. This was achieved by individually assessing their 

classification accuracy. From the results it can be concluded that SPOT performance is better 

than that of Landsat. This is supported by the overall accuracy of 71.20 and kappa coefficient 

of 0.56, which is said to be substantial according to the criteria of Kappa statistics. The better 

performance of SPOT over Landsat might be attributed to its high spatial resolution that 

ranges from 1.5 m to 5.5 m and 30 m to 15 m, respectively. Remote sensing has proven to be 

a suitable tool in mapping P. australis as the study has yielded promising results. 

 

 

 

 

 

 

 

5.2. Recommendations 

Future studies should consider using machine learning such as random forest regression to 

minimise misclassification of pixels. An extensive field work should be done before the 

actual classification processes. Future research should consider the use of sensors with high 
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spatial resolutions to detect small patches of P. australis. More points should be chosen for 

accuracy assessment of classification to increase the overall accuracy of the classification. 
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Appendices 
 

Appendix ARemote sensing timeline (adapted from Aggarwal, 2004) 

1800 Discovery of Infrared by Sir W. Herschel 

1839 Beginning of Practice of Photography 

1847 Infrared Spectrum Shown by J.B.L. Foucault 

1859 Photography from Balloons 

1873 Theory of Electromagnetic Spectrum by J.C. Maxwell 

1909 Photography from Airplanes 

1916 World War I: Aerial Reconnaissance 

1935 Development of Radar in Germany 

1940 WW II: Applications of Non-Visible Part of EMS 

1950 Military Research and Development 

1959 First Space Photograph of the Earth (Explorer-6) 

1960 First TIROS Meteorological Satellite Launched 

1970 Skylab Remote Sensing Observations from Space 

1972 Launch Landsat-1 (ERTS-1): MSS Sensor 

1972 Rapid Advances in Digital Image Processing 

1982 Launch of Landsat -4: New Generation of Landsat Sensors: TM 

1986 French Commercial Earth Observation Satellite SPOT 

1986 Development Hyperspectral Sensors 

1990 Development High Resolution Space borne Systems 

1990  First Commercial Developments in Remote Sensing 

1998 Towards Cheap One-Goal Satellite Missions 

1999 Launch EOS: NASA Earth Observing Mission 

1999 Launch of IKONOS. very high spatial resolution sensor system 

 
 


