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Abstract
In the field of mathematical biology, researchers are beginning to witness an overwhelming ap-

preciation of multiscale modelling as an essential and suitable technique as opposed to a tradi-

tional single-scale modelling approach in predicting the dynamics of infectious disease systems.

Yet, there is still a lack of evidence that generally indicates which among the different categories

of multiscale models of infectious disease systems is more appropriate to use in multiscale mod-

elling of infectious disease systems at different levels of their organization. This research study

is the first of its kind to compare the suitability of the two fundamental categories of multi-

scale models of infectious disease systems which are nested multiscale models and embedded

multiscale models in predicting disease dynamics with specific reference to environmentally-

transmitted diseases. Two environmentally transmitted diseases are used as case studies, namely

ruminant paratuberculosis and human ascariasis, to compare the two fundamental categories of

multiscale models in predicting disease dynamics. The two environmentally-transmitted dis-

eases considered in this study represent infectious disease systems with replication-cycle at mi-

croscale (i.e. ruminant paratuberculosis) and infectious disease systems without replication cycle

at the microscale (i.e. human ascariasis). Firstly, the author develop a single-scale model at the

host-level that we progressively extend to different categories of multiscale models that we later

compare. The findings of this study (through both mathematical and numerical analysis of the

multiscale models) are that for ruminant paratuberculosis which has a pathogen replication-cycle

at the within-host scale both nested and embedded multiscale models can be used because both

the models provide the same prediction of disease dynamics. However, for human ascariasis the

findings are such that nested multiscale model is not appropriate in characterizing the disease

dynamics, only the embedded is appropriate. Although the comparison of different categories of

multiscale models in disease prediction carried out in this study are specific to paratuberculosis

in ruminants and human ascariasis, the results obtained in this study are robust enough to be ap-

plicable to other infectious disease systems. Our results can be generalized to imply that for any

level of organization of an infectious disease systems, if the disease has a replication cycle at the

microscale, the nested multiscale and the embedded multiscle model provide the same accuracy

in predicting disease dynamics. However, when the disease has no replication cycle at the mi-

croscale, only the embedded multiscle model is appropriate for predicting disease dynamics. In

such a case, a nested multiscale model is inappropriate. We anticipate that this study will enable

modelers to choose appropriate multiscale model category in the study of infectious diseases.
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Chapter 1

Introduction

1.1 Background of the Study

Infectious diseases have been and still continued to be a public health threat throughout the world,

more especially in low-and-middle income settings where majority of people have limited access

to clean water and adequate sanitation facilities as well as health facilities. It has been widely

accepted that better insights into transmission mechanisms of infectious diseases using mathe-

matical modelling methods may facilitate the development of new as well as improving existing

preventive and control measures against burdens in which these infectious diseases impose across

populations. In the past two and half decades and until now, mathematical models in the field

of biological systems have been and still continued to play a crucial role in improving our un-

derstanding about infectious diseases dynamics across different levels of organization (e.g. cell

level, tissue level, organism/host level, population level, etc.). They have also enhanced our un-

derstanding regards to the impact of different disease transmission mechanisms (e.g., fecal-oral

transmission, sexual-oral transmission mechanism, vector-borne transmission mechanism, etc.)

on the transmission risks of many infectious diseases in a given population as well as assisting

us to be able to compare and evaluate effectiveness of various health interventions against these

infectious diseases either at local or global level. The earliest account of mathematical modelling

of infectious disease dynamics can be dated way back in 1766 [3] when Daniel Bernoulli for-

mulated a model for the spread of smallpox to assess the effectiveness of the variolation practice

[4, 5]. Since that time until recently, countless mathematical models have been developed to
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describe and analyze transmission dynamics of various infectious diseases across different hier-

archical levels of biological organization of an infectious disease system (see the work in [4, 6]

and reference therein). Additionally, most of these models have further been remarkably useful

in addressing many aspects pertaining the transmission dynamics of infectious disease systems

such as stages of an infection in a host, susceptibility of the host to infective dose, persistence of

a disease in the population, pathogen shedding, pathogen co-evolution, severity of the disease,

multi-host infections, and multi-strain infections, etc. Moreover, in the context of infectious dis-

ease modelling, it is worthy to mentioning that different models have been and continue to be

developed based on different model structures depending on the addressed question(s) of inter-

est under study. These different model structures include susceptible-infected (SI), susceptible-

infected-pathogen (SIP), and variations of this paradigm (SIR, SIRP, SEIR, SEIRP, etc) that can

be developed at any levels of organization of an infectious disease system (i.e., cell level, tissue

level, host level, etc). For instance, the SI model structure and variations of this paradigm (SIS,

SIR, SIRS, SEIR, SEIRS, etc) models specifically infectious diseases that are transmitted primar-

ily by direct contact means (see the work in [4] for example and reference therein), while the SIP

model structure and variations of this paradigm (SISP, SIRP, SIRSP, SEIRP, SEIRSP, etc) concern

with infectious diseases that are transmitted by indirect contact means (see the work in [7] for

example and reference therein). Directly transmitted diseases are those infectious diseases that

are transmitted from one host to another through host-to-host transmission. Sexually-transmitted

infectious diseases such as HIV/AIDS are the most typical examples of directly transmitted dis-

eases. On the other hand, indirectly transmitted diseases are those infectious diseases that a

host acquire through ingestion of free-living pathogens located in contaminated physical envi-

ronment domains such as food, water, air, soil, or contact surface; with the resulting diseases

being called environmentally-transmitted diseases. Diarrheal infectious diseases such as cholera,

campylobacteriosis, listeriosis, paratuberculosis in ruminants, and soil-transmitted helminth in-

fections are typical examples of environmentally-transmitted diseases. It is so interesting to note

that although there is an increasing number of mathematical models that are developed to study

transmission dynamics of various infectious disease systems, most of them predominantly stud-

ied their dynamics at two scales being the epidemiological scale and the immunological scale. It

is again important to note that these two scales have been and continue to be considered sepa-

rately even for the same infectious disease system. This is despite the fact that infectious disease

systems are multiscale, multilevel systems that bridge a wide range of varying spatial and tem-

poral scales, from cellular levels to macroecosystem level [8].

In addition, limited knowledge about how to integrate information from the different sets of

scales of biological organization involved in the dynamics of infectious diseases has hampered



Chapter 1 3

progress in controlling, eliminating and even eradicating both social and economical burdens

that most of these infectious disease impose throughout the world, particularly in the developing

world. Multiscale modelling offers the mathematical technological infrastructure for integrating

information from the different sets of scales of biological organization involved in the dynam-

ics of infectious diseases as opposed to traditional single-scale modelling. This is due to the

fact that multiscale modelling facilitates the integration of different sets of scales of an infec-

tion disease system. Recently, we have witnessed the development and application of different

multiscale models for various infectious disease systems (see [9–18] for examples) and the es-

tablishment of a broader scientific theory for multiscale of infectious disease systems [8] . In

a recent set of landmark papers by Garira [1, 19, 20], the author identified five main different

categories of multiscale models of infectious disease systems that can be developed at different

levels of organization of an infectious disease system (be the cell level, the tissue level, the host

level, etc.) which are: (i) Individual-based multiscale models (IMSMs), (ii) Nested multiscale

models (NMSMs), (iii) Embedded multiscale models (EMSMs), (iv) Hybrid multiscale models

(HMSMs), and (v) Coupled multiscale models (CMSMs) with each having more than one class

within. More details with regards to the categorization of these multiscale models for infectious

disease systems a reader is invited to the two papers by Garira ([19, 20]). Here, we only give

a brief review of each of the five categories of multiscale model types for infectious disease

systems as follow:

(i) Category I - Individual based multiscale models (IMSMs): In this category, multiscale

models are formulated based on the assumption that the individual/lower/micro scale (i.e.,

within-cell scale, within-tissue scale, within-host scale) sub-model is used to describe the

entire infectious disease system across both the within-host scale and between-host scale.

The key features in this category are such that (a) there is no information flow from the

population/upper/macro scale sub-model to the individual/lower/micro scale sub-model,

and the population/upper/macro scale is observed as emergent behaviour of the individu-

al/lower/micro scale entities. Typical examples of the development of multiscale models

within this category see the works in [21–29].

(ii) Category II - Nested multiscale models (NMSMs): These are multiscale models of infec-

tious disease systems that are developed based on the assumption that there is only one-way

inter-scale or unidirectional flow of information (i.e., only from the individual/lower/mi-

cro sub-model to the population/upper/macro sub-model). In addition, the key features of

this category is that (a) the dynamics of the individual/lower/micro is independent from

the population/upper/macro scale, and (b) the formalism or mathematical representation

that describe both the individual/lower/micro sub-model and the population/upper/macro
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sub-model must be the same. The multiscale models in [30–33] are good examples of the

development of NMSMs. Another good examples of the development of NMSMs are in

[16, 17] in the context of malaria (a vector-borne transmitted disease) and HIV (a direct

transmitted disease), respectively.

(iii) Category III - Embedded multiscale models (EMSMs): These are multiscale models of

infectious disease systems in which there is a two-way inter-scale or bidirectional flow

of information between the individual/lower/micro sub-model and the population/upper/-

macro sub-model. Therefore, the key features in this category are such that (a) there

is a reciprocal influence between the individual/lower/micro scale sub-model and popu-

lation/upper/macro scale sub-model, and (b) both the individual/lower/micro scale sub-

model and population/upper/macro scale sub-model must be described by the same for-

malism or mathematical representation. The papers by [8–11, 14, 34] provide classical

examples of the development of EMSMs at the host level.

(iv) Category IV - Hybrid multiscale models (HMSMs): These are multiscale models that

are formulated based on the assumption that the individual/lower/micro sub-model and

population/upper/macro model can be modelled in a heterogeneous way using different

formalism or mathematical representation as appose to the multiscale models in categories

I, II and III, where the within-host scale and the between-host scale can be modelled in

a homogeneous way using the same formalism or mathematical representation. There-

fore, the key feature in this category is that the individual/lower/micro sub-model and

population/upper/macro sub-model are described by different formalism or mathematical

representation. The most typical examples of such paired formalisms are deterministic/s-

tochastic, mechanistic/phenomenological, ODE/PDE, and ODE/ABM. Multiscale models

of infectious disease systems that are based on this category can be found in the following

articles [35–39].

(v) Category V - Coupled multiscale models (CMSMs): These are multiscale models of in-

fectious disease systems in which multi-strain infections, multi-pathogen infections, multi-

group infections, multi-host infections, multi-level infections, multi-geographical environ-

ments infections, multi-biological environments infections take into account on the trans-

mission of infectious disease systems. The key features of this category are such that (a) the

diversity within a single-host species (multi-group infections) and diversity within a single-

pathogen species (multi-strain infections) are considered in multiscale modelling of infec-

tious disease systems, and (b) the other four categories of multiscale models (NMSMs,

IMSMs, EMSMs, HMSMs) can be used as sub-models to describe the dynamics of an
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infectious disease system across scales in each levels of biological organization. Typical

examples of multiscale models in this category are in [40–43].

It is important to mention that IMSMs, NMSMs and EMSMs are fundamental building blocks

for the development of most multiscale models that integrate micro-scale and macro-scale dy-

namics of an infectious disease system across different levels of biological organization. It is

further important to note that IMSMs integrate implicitly microscale and macroscale disease

dynamics, while both NMSMs and EMSMs integrate explicitly micro-scale and macro-scale

disease dynamics. Yet, nothing has been done in investigating which between these two multi-

scale models (NMSMs and EMSMs) is more suitable in describing the dynamics of infectious

disease systems. Therefore, this thesis investigates the suitability of application of NMSMs and

EMSMs in modelling infectious disease systems using environmentally-transmitted diseases as

example paradigms. The modelling of environmentally transmitted diseases involves the use

of pathogen load as a common metric of host infectious and burden of disease across all the

seven main biological levels of organization of an infectious disease system (i.e. cell level, tissue

level, organ level, micro-ecosystem level, host level, community level, and macro-ecosystem

level) [8]. For purposes of implementing multiscale modelling methods, we can demarcate

environmentally-transmitted into three different types: (i) type II environmentally transmitted

disease - in which there is no replication of their disease-causing pathogens at the microscale,

(ii) type I environmentally-transmitted disease - in which their disease-causing pathogens only

replicates at the microscale, and (iii) type III environmentally transmitted disease - in which their

disease-causing pathogens replicates at both the microscale and macroscale (see [8] and Sec. 1.2

of this thesis for more details).

1.2 Preliminary Comparison of Multiscale Models for Infec-

tious Disease Systems

Despite the increase in the use of multiscale modeling to study the complexity and multiscale

nature of infectious diseases dynamics, currently it has been urged by the author in [1] that

we cannot be able to draw general conclusions about which of the five categories of infectious

disease systems is suitable in addressing the problem of an infectious disease system in different

conditions. However, what is now clear as pointed out in [1] is what dictates the selection of a

particular category of multiscale models for a particular disease is:
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a. IMSMs – their selection is dictated by the need of incorporating heterogeneity into the

multiscale model (e.g., heterogeneity in (i) host susceptibility, (ii) the ability of hosts to

transmit pathogens to other hosts, (iii) host behavior, and (iv) host immune response).

b. NMSMs – their selection is based on the choice of biological linking mechanisms between

two adjacent scales of an infectious disease system (i.e., macroscale and microscale) in

which the contribution of super-infection/reinfection at the macro-scale to pathogen repli-

cation at the micro-scale is considered irrelevant/insignificant and that the effect of this

super-infection/reinfection on the dynamics of an infectious disease can be ignored.

c. EMSMs – their selection is as appose to NMSMs is based on the choice of biological

linking mechanisms between two adjacent scales of an infectious disease system (i.e.,

macro-scale/upper/population scale and micro-scale/lower/individual scale) in which the

contribution of super-infection/reinfection at the macro-scale to pathogen replication at the

micro-scale is considered significant such and that the effect of this super-infection/reinfection

on the dynamics of an infectious disease cannot be ignored.

d. HMSMs – their selection is also dictated by the freedom of the representation of the

two scales of an infectious disease system using different mathematical formalizations

(e.g., deterministic/stochastic, discrete time/ continues time, mechanistic/phenomenologi-

cal, ODE/PDE, etc.).

e. CMSMs – their selection is the same as the other four categories of multiscale models

(IMSMs, NMSMs, EMSMs, HMSMs), except that in this case the need of incorporating at

least the following aspects of infectious disease systems can be considered in the develop-

ment of multiscale models: (i) multiple levels of biological organization of the infectious

disease system, (ii) multiple host species such in the case of vector-borne diseases, (iii)

multiple pathogen species/strains such as in the case of co-infections, (iv) multiple com-

munities, and (v) multiple anatomical compartments or organs.

However, there is still lack of evidence that generally indicates which among these categories of

multiscale models is more appropriate to use in modelling infectious disease systems for differ-

ent conditions. The author in [1] further elaborates the need for studies to establish evidence that

would guide in the selection of these categories of multiscale models. Thus, the current study

is the first of its kind to compare the suitability in characterizing infectious diseases transmis-

sion dynamics within these five different categories. We particularly compare the suitability of

NMSMs and EMSMs in characterizing the multiscale dynamics of infectious disease systems.

This is partly because of their simplicity and partly because both they are fundamental build-

ing blocks for the development of other categories of multiscale models of infectious disease
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systems that can be developed at any biological organization. The comparison between these

two categories of multiscale models in their suitability in predicting the dynamics of infectious

disease systems is conducted using environmentally-transmitted disease systems as paradigms.

Environmentally-transmitted diseases are infectious diseases that arise or transmitted across pop-

ulations as a result of interaction of a host (be human, animal, and even plant) with free-living

pathogens in the outside-host/physical environmental domain (such as water, food, air, soil or

contact surface and objects). In any given population, individual hosts can be exposed to various

types of free-living pathogens (e.g., viruses, parasites, bacteria, and fungus) that are capable of

living in multiple environments which we can roughly demarcate into two main types as: (i) the

outside-host environment - which is generally associated with the pathogen’s free-living stages

in the geographical environment’s physical domains, and (ii) the inside-host/biological environ-

mental domain - which is also associated with the developmental life stages of the pathogen in

the biological host environment’s organs, tissues, and cells. In the outside-host environment,

these free-living pathogens that are solely responsible for causing environmentally-transmitted

diseases in the population are generally transmitted from one host to another host through differ-

ent modes of transmission which can roughly be classified into five classes as follows:

i. Food-borne diseases: These are illnesses that arise from ingestion of spoiled or poisonous

food contaminated by microorganisms or toxicants, which may occur at any stage during

food processing from production to consumption. The World Health Organization (WHO)

reported that every year, 1 in 10 people become infected from eating contaminated food,

and further approximately 420 000 people die each year as a result [44]. Bacterial infec-

tions such as salmonelliosis, listeriosis and campylobacteriosis, and viral infections such

as rotovirus and norovirus infections are among the most common food-borne infectious

diseases that afflict millions of people throughout the world annually.

ii. Water-borne diseases: These are infections that are transmitted among hosts through

drinking from unsafe water contaminated by infective pathogens. Some of water-borne

diseases are transmitted as a result of an individual being exposed to vectors whose life-

cycle are influenced by environmental factors, with the resulting disease being termed

vector-borne transmitted diseases. According to WHO, four-fifths of all infections in

the developing world are caused by water-borne diseases, with diarrhea being the lead-

ing cause of death among children under the age of five years [45]. Diarrheal infections

such as hepatitis e, cholera and other vector-borne transmitted illnesses such as malaria,

typhoid, schistosomiasis, guinea worm infection, and onchocerciasis are the most common

examples of water-related diseases.
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iii. Air-borne diseases: These are infectious diseases that are transmitted through the air by

means of breathing, talking, coughing, sneezing, or any activities which generates aerosol

particles or droplets. The most common well-known examples of air-borne related diseases

include: anthrax, chickenpox, influenza, measles, smallpox and tuberculosis.

iv. Soil-transmitted diseases: These are infection that are transmitted through walking bare-

foot on the contaminated soil contaminated with faecal matters or through the ingestion of

worm larvae (eggs) presented in the vegetables, drinking water and raw or undercooked

meat. WHO have also reported that soil-transmitted helminth infections are among the

most common infections worldwide and affect more than 1.5 billion people, or 24% of

the world’s population [46]. Typical examples of soil-transmitted diseases are the whip-

worm (Trichuris trichiura), the roundworm (Ascaris lumbricoides) and the two species of

hookworms (Necator americanus and Ancylostoma duodenale) that are highly prevalent in

developing countries.

v. Formites-transmitted diseases: These include infectious diseases which are transmitted

through contact with surfaces contaminated with infective free-living pathogens in the en-

vironment.

However, it is important to note that this classification is not important in the development of

multiscale models of infectious disease systems. In the following we discuss categorization of

environmentally-transmitted disease systems which is more suitable for multiscale modelling.

Therefore, following the work in [8], we categorize environmentally-transmitted diseases into

three main types related to the scale of organization of an infection at which the replication and

transmission of their pathogens occur:

i. Type I, Environmentally-transmitted diseases: In this type of environmentally-transmitted

infectious disease systems, pathogen replication-cycle do not occur at the micro-scale but

only the developmental stages of the pathogen occur at this scale, while the transmission

of the pathogen takes place at the macroscale. The most common example of this Type I

environmentally-transmitted infectious diseases include schistosomiasis [9], Guinea worm

[10], and soil-transmitted diseases such as hookworm [8].

ii. Type II Environmentally-transmitted diseases: In this type of environmentally-transmitted

infectious disease systems, pathogen replication-cycle only occurs at the microscale (i.e., at

the within-host/within- tissue/within-cell scale) while the transmission of the pathogen oc-

curs at the macroscale (i.e., at the between-host/between-tissue/between-cell scale). Most
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air-borne viral infections such as influenza [47] and some food-borne bacterial infec-

tions such as paratuberculosis species [48] are good examples of Type II environmentally-

transmitted infectious disease systems.

iii. Type III Environmentally-transmitted diseases: In this type of environmentally-transmitted

infectious disease systems, replication-cycle of pathogen replicates at both the micro-scale

and at the macro-scale while the transmission of the pathogen still happens at the macro-

scale. These environmentally-transmitted diseases are typically caused by opportunistic

infections such as cholera, salmonella enterica and anthrax (see [8] and reference therein).

Additionally, it is important to note from [8] that this type of environmentally-transmitted

diseases is the combination of type (I and II) environmentally-transmitted disease systems.

All of these three categories of environmentally-transmitted diseases can be further explained

by a conceptual framework of environmentally-transmitted disease systems as shown in Fig. 1.1

which shows four main components of environmentally-transmitted disease systems.
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Figure 1.1: Conceptual diagram showing four main components of an environmentally-

transmitted disease system and the associated levels of organization of infection for each com-

ponent.

Based on Fig. 1.1, it should be noted that these four main components of environmentally-

transmitted disease systems are interdependently to one another and within each of them there

is at least two associated levels of biological organization of an infection disease system. These

four main components of environmentally-transmitted disease systems are: (a) the pathogen-host
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component which consists of (i) organism/host level, (ii) host-tissue level, (iii) host-cell level;

(b) the environmental component which also consists of (i) outside-host environmental level, (ii)

inside-host environmental level; (c) the health interventions component further consists of (i)

public health intervention level, (ii) medical intervention level; and (d) the host-immune system

component which again consists of (i) lypocytes level, (ii) phagocytes level. these four com-

ponents are also described in [20]. In what follows, we briefly describe each components for

environmentally-transmitted disease system and their associated levels of biological organization

of an infectious disease systems.

1. Pathogen-host component: This could be either the interaction between a free-living

pathogen in the physical environmental domains (such as soil, water, air, food, etc.) and a

host (such as animal, human or vector) at a host level in the host behavioral physical en-

vironment (i.e., outside-host environmental level) or the interaction between pathogen and

a host tissue at a host-tissue level within a single infected host (inside-host environmental

level) or the interaction between pathogen and a host cell at a host-cell level within an in-

fected individual host (i.e., inside-host environmental level) that could lead to an infection

in a host/host-tissue/host-cell populations. From a biological point of view, pathogen-host

interaction component generally takes place at different ordered hierarchical levels of bio-

logical organization of an infectious disease system ranging from molecule level and cell

level to tissue level and to organism/host level and host population level. However, the

three main ordered hierarchical levels of organization of an infectious disease system in-

clude (a) the organism/host level, (b) the host-tissue level and (c) host-cell level all which

serve as the units of multiscale analysis [20]. These three ordered hierarchical levels of

biological organization of an infectious disease system can be briefly described as follows

[19, 20]:

(a) Host level. This is an upper level of infection in the pathogen-host interaction compo-

nent at which infection can be observed. At the hierarchical level of the pathogen-host

component, empirical studies (i.e., those that are based on experiment, observation,

surveillance, clinical trials, etc.) or quantitative studies (i.e., those that are based on

mathematical models, statistical models, and computational modellings) that charac-

terize infectious disease systems across two adjacent scales of organization of an in-

fectious disease system can be carried out using a host as a basic unity of multiscale

analysis. The disease dynamics at the host level begin within the infection/super-

infection of the host by free-living pathogen in the physical environment. Following

infection/super-infection of the host by pathogen that has successfully entered in-

side the host, then pathogen replicate at the micro-scale. The replication of pathogen
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within a host in most cases is followed by pathogen shedding/excretion into the phys-

ical environment outside the host at the macro-scale. Shedding/excretion of pathogen

from host individual level (i.e., within-host scale) into the physical environment at the

host population level (i.e., between-host scale) by a single infected host is followed

by pathogen transmission between hosts at the host population scale (between-host

scale). This close up a circle of transmission-replication at the host level through

infection/super-infection and shedding/excretion that link the individual scale and

the population scale within this level. Diarrheal infections such cholera and some

helminth infections such as hookworm are typical examples of environmentally-

transmitted disease systems which can be studied at this order hierarchical level of an

environmentally-transmitted disease system.

(b) Host-tissue level. This is a central level of infection in the pathogen-host interaction

component at which infection happens. At this order of hierarchical level, empirical

studies or quantitative studies that characterize infectious disease systems across two

adjacent scales and associated four pathogen specific diseases processes within this

level can also be conducted using a host-tissue as a basic unity of multiscale analysis.

At the host-tissue level disease dynamic begins within the infection/super-infection

of the host tissue by invading pathogen at the host tissue individual (within-tissue)

scale. Once the infection of the host by pathogen has successfully occur, pathogen

replication at the tissue micro-scale follows. The replication of pathogen within a

host tissue is followed by pathogen shedding/excretion into the extra-tissue environ-

ment outside the host tissue at the host tissue macro-scale. Shedding/excretion of

pathogen by a damaged host tissue at the host-tissue individual scale is followed by

pathogen transmission between host tissues at the host-tissue population scale (i.e,

between-tissue scale). This also close up a transmission-replication circle in the host

tissue level. Environmentally-transmitted disease system that can also be studied at

this order hierarchical level include bacterial infections such as paratuberculosis and

some helminth infections in which their pathogens do infect specific tissue such gran-

ulomas and microabscess to cause damage to the host tissues and organs.

(c) Host-cell level. This is a lower level of infection in the pathogen-host interaction com-

ponent at which infection occur. At this order of hierarchical level of the pathogen-

host interaction component both empirical and quantitative studies that characterize

infectious disease systems across two adjacent scales and associated four pathogen

specific diseases processes within this level can also be carried out using a host-cell

as a basic unity of multiscale analysis. The disease dynamic at this level begins

within the infection of the host cell by cell invasion pathogen within an infected host
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at the site of infection (e.g. lung, small intestine, etc.). Once infection of the host

cell successfully occurred, pathogen replication at the host-cell individual level fol-

lows. The replication of pathogen within a single infected host-cell at the site of

infection within an infected host is generally followed by pathogen shedding/excre-

tion by bursting cells into the extracellular environment at the host cell population

level. Shedding/excretion of pathogen by bursting cell is followed by pathogen trans-

mission between cells at the host cell population scale (i.e., between-cell scale) at the

site of infection inside an infected host. This also close-up a circle of transmission-

replication at the host cell level. Typical examples of environmentally-transmitted

disease systems which can further be studied at this order hierarchical level of an

environmentally-transmitted disease system are bacterial infections such as campy-

lobacteriosis, listeriosis and ruminant paratuberculosis in which their disease-causing

pathogens do infect specific cells such as epithelial cells in the host small intestine,

and cause damage to these cells.

2. Environmental component: This component constitute both the outside-host and the inside-

host environmental levels. At the inside-host environmental level (a) host cells such as

epithelial cells and macrophages, (b) host tissues such as granulomas and microabscess,

and (c) host organs such as small intestine and lungs all constitute the inside-host (bio-

logical) environmental level for an infectious disease system including environmentally-

transmitted diseases where pathogen grow, reproduce and spread across host-cell and host-

tissue levels. While at the outside-host environmental level geographical environment

(such as village, district, town, province/state, country, region, etc.) and the associated

physical environment domains (including water, food, soil, contact surfaces and objects,

etc.) constitute the outside-host environmental level where both pathogen and host grow,

produce and interact with each other within this environmental level. Host individuals are

usually exposed to a variety of environmentally-transmitted disease-causing pathogens in

the outside-host environmental level through ingesting contaminated food or water with

infective pathogens or through direct contact with infective pathogens in the soil. In the

context of environmentally-transmitted disease systems, there is always a reciprocal in-

fluences between the outside-host and the inside-host environment dynamics of pathogen

which are linked through infection of an individual host by the pathogen in the geographi-

cal environment (at the host population scale) and the shedding/excretion of the pathogen

or its progeny in the biological environment (at the host individual scale) to the geograph-

ical environment. Therefore, the outside-host level coupled with the inside-host environ-

mental level strongly determine the nature of health infrastructures and technologies re-

quired against epidemics of a particular environmentally-transmitted disease in a specific
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village/district/town/province/region/country.

3. Health intervention systems component: This could be public health intervention or medi-

cal health intervention or the combination of both depending on the type of an environmentally-

transmitted disease system. On one hand, public health interventions are those interven-

tions that are generally administrated at the outside-host or geographical environmental

level to interfere with the transmission-replication processes of a pathogen outside the

host. Water, sanitation and hygiene (WASH) intervention systems along with health edu-

cation all are public health intervention level as they target to control, eliminate, and even

eradicate an environmentally-transmitted disease system by preventing/reducing/stopping

pathogen transmission between hosts at the host population scale in a specific village/dis-

trict/town/province/region/country. Medical health interventions on other hand are those

interventions that are normally administrated at the inside-host or biological environmen-

tal level to interfere with the development and establishment of an infection (based on the

transmission-replication of pathogen) within a single infected individual (inside-host en-

vironmental level). Vaccines and therapeutic drugs as pharmaceutical or medical health

intervention level are implemented at the individual level to control, eliminate, and even

eradicate an environmentally-transmitted disease system by preventing/reducing/stopping

pathogen replication in host cells, tissues or organs at the site of infection in a single in-

fected individual host. Due to the pathogen transmission-replication cycle that occur at the

outside-host environmental level and at the inside-host environment, there is also a recip-

rocal influence between the public health interventions that target to prevent/reduce/stop

the movement of pathogen in the physical environment and among individual hosts (at the

outside-host environmental level) and the medical health interventions that target to pre-

vent/reduce/stop circulation and replication of pathogen at the host-cell/host-tissue/host-

organ levels.

4. Host-immune system component: The host-immune system component of an environmentally-

transmitted disease system is made up of a complex network of host-cells, host-tissues and

host-organs that work together to protect a host from infection by pathogens, remove tox-

ins, and destroy infected host-cell/tissue/organ or tumor cells. Lymphocytes and phago-

cytes are the two main levels of the host-immune system component that are involved in

fighting against pathogens that are responsible of causing an infection within a host.

(a) Lymphocytes are small white blood cells that form part of the immune system in a

host and play a crucial role in the host immunity. They generate a specific immune

response which is referred as adaptive immunity. Lymphocytes mainly circulate in

the blood and lymphatic system and they can also found in other host tissues/organs
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including bone marrow, peyer’s patches, spleen, thymus, liver, lymph nodes, and

tonsils to defend the host body from invading pathogen, foreign matter, and infected

host cells by pathogen as well as tumor cells. There are three types of lymphocytes

which are B cells, T cells and Natural killer (NK) cells. The first type is B cells

that are responsible for manufacturing/secreting antibodies which neutralize bacteria

and viruses. The second type is T cells that are of three kinds: (i) helper T cells

which produce cytokines that stimulate the production of antibodies by the B cells,

(ii) cytotoxic T cells which produce granules that induce the apoptosis of the infected

cells, and (iii) suppressor T cells which inhabit the immune response towards the

self-antigens in the body. The third type is NK cells that are capable to identify

and/or induce apoptosis of altered host cells such as tumor cells or infected cells by

pathogens.

(b) Phagocytes are also part of white blood cells that are essential for protecting the body

from infection by ingesting and destroying or engulfing harmful pathogens, foreign

particles, and dead or dying cells at the site of infection within an infected host. They

can also be found in different host tissues or organs such as blood, bone marrow

and tissue, lymphoid tissue, gut and intestinal peyer’s patches, liver, lung, spleen,

skin, etc. In contrast to lymphocytes, phagocytes generate a non-specific immune

response referred as innate immunity. Example of phagocytes include macrophages,

neutrophils, dendritic cells, monocytes, and mast cells.

1.3 Problem statement

In recent years, multiscale modelling of infectious disease systems has begun to receive an over-

whelming appreciation over single-scale modelling as a suitable methodology for studying the

reciprocal influence between the scales of an infection as well as intervention strategies that oper-

ate at different scales. Yet, to the best of our knowledge there has been little that have been done

in attempting to compare the suitability in predictions of structurally different multiscale models

for the same infectious disease systems. Thus, a comparison study of these structurally different

multiscale models is a key component in selecting a suitable multiscale models for predicting

infectious disease with various disease properties as well as identifying factors or conditions that

are necessary for the control, elimination and even eradication of the burden they cause across

the populations. In this study, we bridge this gap by investigating if nested and embedded mul-

tiscale models predict the different pattern of multiscale dynamics of infectious diseases using

environmentally-transmitted diseases as paradigms. Environmentally-transmitted diseases are
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among the most infectious disease systems that remain the leading cause of public health and

socioeconomic burden in many parts of the world, most notable in the developing world. In de-

veloping countries, more than billion cases of environmentally-transmitted diseases are reported

annually. Interestingly, environmentally-transmitted diseases are multilevel and multiscale com-

plex systems as a results of the combined interactions of three subsystems, namely the host

sub-system, the free-living pathogen sub-system, and the environment sub-systems.

1.4 Aim and objectives

The current study aimed to compare different categories of structurally different multiscale mod-

els of infectious diseases and identify the most appropriate category of multiscale models for a

given multiscale modelling problem of an infectious disease system. The specific objectives of

the study were as follows:

1. To investigate if nested multiscale models are an appropriate category of multiscale models

to characterize the multiscale dynamics of infectious diseases with a replication cycle at

microscale using ruminant paratuberculosis as an example.

2. To investigate if embedded multiscale models are an appropriate category of multiscale

models to characterize the multiscale dynamics of infectious diseases with a replication

cycle at microscale using ruminant paratuberculosis as an example.

3. To compare between nested and embedded multiscale models and identify the most appro-

priate category of multiscale models to characterize the multiscale dynamics of infectious

diseases with a replication cycle at microscale using ruminant paratuberculosis as an ex-

ample.

4. To compare between nested and embedded multiscale models and identify the most appro-

priate category of multiscale models to characterize the multiscale dynamics of infectious

diseases without a replication cycle at microscale using human ascaris as an example.

1.5 Methodology

The study focused on comparing multiscale models of infectious diseases based on ordinary

differential equations that describe the dynamics of environmentally-transmitted diseases at the

host-level using ruminant paratuberculosis as an example. We firstly develop an epidemiological
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model that describes the transmission dynamics of ruminant paratuberculosis at the between-

host scale. This is followed by the development and analysis of two structurally different mul-

tiscale models for paratuberculosis that integrate the between-host scale and within-host scale

sub-models. We then make a comparison between these two structurally different multiscale

models of ruminant paratuberculosis to investigate the most appropriate category in characteriz-

ing paratuberculosis transmission dynamics in ruminants. We further illustrate the importance

of embedded multiscale models over nested multiscale models by evaluating the reciprocal in-

fluence between scales using human ascariasis as a representative of all type I environmentally-

transmitted disease as paradigm. We use various mathematical analysis techniques to analyze

all the models in this study. which include: (i) Routh-Hurwitz criteria, (ii) Next generation op-

erator, (iii) Center Manifold Theory, and (iv) Lyapunov function. We also conducted sensitivity

and numerical analyses for all the models. Sensitivity analysis is conducted using Latin Hy-

percube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs). Also, numerical

simulations in all the models are done in order to illustrate analytical results obtained from these

multiscale models using Python odeint function in the scipy.integrate which solves any system

of differential equations. The methodology for development of multiscale models in this thesis

is a variation of the one described in [1].

1.5.1 Process of Multiscale Modelling of Infectious Disease Systems

Traditionally, the developmental process of multiscale models for infectious disease systems,

at any hierarchical level of biological organization of an infectious disease system (cell-level,

tissue-level, organ-level, host-level, community level, etc.) commonly involves an iterative pro-

cess between four main stages which are [1]: (a) Formulation stage of multiscale models of

infectious disease systems, (b) Testing stage of multiscale models of infectious disease systems,

(c) Application stage of multiscale models of infectious disease systems, and (d) communication

stage of multiscale models of infectious disease systems. Fig. 1.2 shows schematic diagram of

the four main stages of the developmental process for multiscale models of infectious disease

systems, which we can briefly describe as follows:

(a) Formulation stage of multiscale models of infectious disease systems: This stage involves

development of an appropriate multiscale model to address a particular given problem of

an infectious disease system. Within this stage there are three main steps that are involved

in order to complete the cycle of the multiscale models development which are:

(i) identification of the infectious disease problem to be addressed,
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(ii) identification of the levels/scales of an infectious disease system involved in the in-

fectious disease problem,

(iii) formulation of multiscale models of infectious disease systems to describe the infec-

tious disease problem at appropriate levels/scales being identified,

Therefore, in this stage, a researcher/modeler firstly becomes familiar with the infectious

disease problem he/she is intending to address. After identification of the infectious dis-

ease problem, a modeler should further define research question(s), aim and objectives

of the study as well as stating the hypothesis of the study. Once the infectious disease

problem has been identified and well stated, the modeler should clearly identify levels of

a biological organization to be incorporated into the multiscale model and their associated

scale of infection and further ascertains if there exists any knowledge with regard to the

infectious disease problem to be addressed across all the identified scales (i.e., reviewing

what has been achieved or done about the problem across all the scales and what is lacking

or missing). This can be achieved through either empirical observation or literature review

or both. Empirical observation can be made through experiments and data collections. In

addition, proper literature review is necessary in attaining the right knowledge required to

detail the system under study as well as to understand data and experimental results. After

that, the modeler formalizes a biological model that involves detailing the flow of informa-

tion from one scale to another as well as detailing mechanisms and different relationships

of any entities involved in the infectious disease system under observation. This is then

followed by the formulation of sub-models for multiscale model that are related to scales

of an infection in the biological organization under study. In the formulation of these sub-

models of multiscale model for infectious disease problem, a modeler should decide which

most features of the system under observation must be included in the models and which

must not be included. Following that, the modeler chooses symbols to represent variables

included in the multiscale model for infectious disease problem [1].

(b) Testing stage of multiscale models of infectious disease systems: This stage involves

testing the quality of the multiscale model of infectious disease through verification, vali-

dation and/or sensitivity analysis of the multiscale model results. It is important to verify

and validate the results of the multiscale model before trying to do anything else with the

model. The testing of the quality of the multiscale model can be analyzed using any avail-

able and reliable mathematical techniques. It is at this stage where the modeler decides

which technique he/she needs to utilize in analyzing the multiscale model results. It is

also at this stage where the modeler determines whether the model is mathematically well-

posed through examining the existence and uniqueness of the multiscale model equilibrium
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steady states, and further determine their local and global stabilities through analytical and

numerical analysis.

(c) Application stage of multiscale models of infectious disease systems: This involves the

use of multiscale models of infectious disease systems to (i) evaluate the influence of func-

tionally organized complex systems on infectious disease dynamics, (ii) to analyze the

underlying mechanisms of infectious disease dynamics, (iii) predict dynamics of infec-

tious disease, and (iv) inform policy and guide research for the control and elimination of

environmentally-transmitted diseases (see for instance the work in [17]).

(d) Communication stage of the results of multiscale models for infectious disease systems:

This involves interpreting the results of the models and comparing them with the real-world

systems in order to determine whether the outcome behavior of the model matches with

what is observed in the system. However, if the outcome behavior of the model matches

with the behavior that is observed from the real-world system the results of the model can

then be communicated through publication, reports, or writings. Yet, if the outcomes of

the models differ with observation made from the system, the formulated model needs to

be refined or modified together with assumptions.
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Figure 1.2: Schematic diagram illustrating the iterative modelling process of multiscale mod-

ellings. Adopted from [1]

In what follows, we give an overview of multiscale models that have been developed in attempt-

ing to study multiscale dynamics of environmentally-transmitted diseases at various hierarchical

levels of biological organization of an infectious disease system.
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1.5.2 Multiscale Modeling and Environmentally-Transmitted Disease Sys-
tems

This subsection provides an overview of some of the existing multiscale models that have been

developed to describe the multiscale dynamics of environmentally-transmitted diseases in any

given population. In the context of environmentally-transmitted diseases, various multiscale

models within the five categories of infectious disease systems established in [19, 20] have been

developed and analyzed at various scales of biological organization of an infectious disease sys-

tem. The most studied categories of multiscale models for environmentally-transmitted diseases

are the hybrid and the individual based multiscale models as opposed to the other three cate-

gories which are nested, embedded and coupled multiscale models. However, since the scope

of this study is centered in investigating which between a nested multiscale model an embedded

multiscale modelling is appropriate category of multiscale models to characterize the multiscale

dynamics of an environmentally-transmitted disease system with different scenarios, we there-

fore restrict ourselves to those studies that focused on the application of either embedded or

nested multiscale models in attempting to broaden our understanding about the complex trans-

mission dynamics of environmentally-transmitted disease systems. In the case of nested multi-

scale models for environmentally-transmitted disease systems, there has been little progress in

their development. To the best of our knowledge, we are only aware of one publication [15],

which addresses the development of nested multiscale models for environmentally-transmitted

disease systems in the context of ruminant paratuberculosis at the between-pen scale and within

within-pen scale dynamics. The authors use nested multiscale model to explore the best com-

bination of control and preventive measures that can minimize the prevalence and incidence of

parauberculosis in ruminants as well as the risk of the disease-causing bacteria occurrence in

each pen environment and possible in the entire dairy. The study suggests that a combination of

test and cull with more frequent manure removal is the most effective method in reducing inci-

dence, prevalence and the risk of the bacteria occurrence as opposed to control measures such as

limiting calf-adult cow contacts, raising calves in a disease-free herd or colostrum management.

In the context of embedded multiscale models for environmentally-transmitted disease systems

on the other hand, there has been also few multiscale models of this types that have been de-

veloped and of these few the majority of them have been restricted to studying the transmission

dynamics of environmentally transmitted infectious diseases at the host level [9–14]. In partic-

ular, the paper by Feng et al. [11], presents a BIDI-EMSM for the transmission dynamics of

Toxoplasma gondii (a typical example of type II environmentally transmitted infectious disease

system) that integrate within-host sub-model and the between-host sub-model dynamics through

the free-living parasite in the environment. Furthermore, the authors simplified BIDI-EMSM into
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a SIMP-EMSM based on a singular perturbation argument, which allows for decoupling of the

full model by separating the fast- and slow-systems two independent single scale models (i.e., the

within-host scale and the between-host scale). In [11], the authors carefully analyzed the within-

host scale sub-model and between-host scale sub-model separately and defined new reproductive

numbers associated with these two sub-models. In addition, the study established that the repro-

duction number for the between-host (slow) system dependent on the parameters associated with

the within-host (fast) system in a very natural way. In [12, 13], analysis of the multiscale model

established in [11] was further carried out using different modifications. The major findings from

these studies is that infection may persist at population level even if the isolated between-host

reproduction number is less than a unity. Another good examples of BIDI-EMSM are given

in [9, 10]. In [9], the authors introduced a superinfection/pathogen-replication approach (i.e.,

down-scaling and up-scaling method) for development of multiscale models of environmentally-

transmitted disease systems at host level (i.e. linking within-host scale and between-host scale)

using human schistosomiasis (a type I environmentally-transmitted disease system) as an exam-

ple. The paper demonstrated in a practical way the idea of scaling up and down in linking scales

of an infectious disease system by identifying within-host scale and between-host scale vari-

ables and parameters and design a reciprocal influence of these variables and parameters through

downscaling and upscaling across the within-host scale and the between-host scale. In [10], the

authors followed the method introduced in [9] to Guinea worm disease as a paradigm, which is

also a type I environmentally-transmitted disease system. The major findings in these studies is

that expressions such as disease reproductive numbers and endemic equilibrium states as well as

numerical simulations of the full models all are adequately account for the reciprocal influence

of the linked within-host and between-host sub-models. Further example of the development

of BIDI-EMSM at the host level is given in [14] in the context of cholera transmission (a type

III environmentally-transmitted disease systems). The BIDI-EMSM of this study concurrently

study the within-host scale and between-host scale dynamics of cholera, taking into account

both direct and environment transmission. Additionally, its development was achieved through

presuming a general representation for both the direct transmission and the pathogen shedding,

and the interaction between environmental vibrios at between-host scale and human vibrios at

within-host scale. Further, the authors simplified BIDI-EMSM into a SIMP-EMSM based using

fast- and slow-time scale analysis. Using SIMP-EMSM, the major finding of the study is that

the between-host scale sub-model was shown to undergo a backward bifurcation as a result of

coupling the within-host scale and between-host scale cholera dynamics.
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1.6 Outline of the thesis

The structure of this thesis is as follows.

In Chapter 2, we develop a single-scale model for environmentally-transmitted disease systems

at the host-level that we progressively extend to develop the different categories of multiscale

models.

In Chapter 3, we investigate if nested multiscale models are an appropriate category of mul-

tiscale models to characterize the multiscale dynamics of infectious diseases with a replication

cycle at microscale using paratuberculosis as an example.

In Chapter 4, we investigate if embedded multiscale models are an appropriate category of

multiscale models to characterize the multiscale dynamics of infectious diseases with a replica-

tion cycle at microscale using paratuberculosis as an example.

In Chapter 5, we compare between nested and embedded multiscale models and identify the

most appropriate category of multiscale models to characterize the multiscale dynamics of infec-

tious diseases with a replication cycle at microscale using paratuberculosis as an example.

In Chapter 6, we compare between nested and embedded multiscale models and identify the

most appropriate category of multiscale models to characterize the multiscale dynamics of infec-

tious diseases without a replication cycle at microscale using human ascariasis as an example.

Finally, Chapter 7 provides conclusions and some recommendations for future research direc-

tions.
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Single-Scale Model for Environmentally
Transmitted Disease Dynamics at the
Host-level

2.1 Introduction

In the study of infectious disease systems at any level of their organization, single-scale models

have a long history of being used to understanding and interpreting as well as predicting dy-

namics of many infectious diseases (see [7, 49–51] for and references therein). They have and

continue to play a crucial role in guiding control and eliminating burdens imposed by various

infectious diseases either at the local or global level. In the context of infectious disease systems,

we know that at any level of organization single-scale models describe or characterize dynamics

of an infection disease problem only at a single scale. Unlike, multiscale models that describe

or characterize an infectious disease problem at more than one scale [1]. In this chapter, we

present a single-scale modeling framework for environmentally-transmitted disease systems at

the host-level that will be progressively extended to develop different categories of multiscale

models. The development of this single-scale model is carried out to examine or test the quality

of single-scale models in predicting the dynamics of environmentally-transmitted diseases us-

ing Paratuberculosis infection in ruminants as a case study. Paratuberculosis (PTB) infection,
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also known as Johnes’ disease, is an environmentally-transmitted and important disease in ru-

minants (e.g., ruminants, goat and sheep) (see [52–54] and references therein) that has been

locally and globally reported throughout the world, more especially in countries with temperate

climates. The single-scale model will be extended in the chapters that follow to develop the dif-

ferent categories of multiscale models that are compared based on the replication-transmission

relativity theory [8], which states that at every level of organization of an infectious disease sys-

tem, there is no privileged/absolute scale which would determine disease dynamics. However,

at every level of organization of an infectious disease system, single scale modelling privileges

the macroscale. In the same way, the single-scale model for paratuberculosis developed in this

chapter which is developed at the host level privileges the macroscale (i.e. between-host scale)

in disease dyanmics. PTB is caused by bacteria called Mycobacterium avium subspecies paratu-

berculosis (MAP) which often infects intestines of many ruminants [53]. This organism is most

commonly widespread in dairy ruminants and can lead to a serious economic burdens in livestock

industries due to the reduction of milk production and the productive life of ruminants as well

[48]. The main clinical outcomes of PTB infection in ruminants are failure growth, increases in

weight loss, and chronic diarrhea. Although PTB has not been classified as a zoonotic disease,

clinical studies show that most patients with Crohn’s disease are found with MAP [55]. Crohn’s

disease is an inflammatory bowel disease characterized by a persisting, painful, and diarrheal

inflammatory disease of the intestinal tract in human [53]. Ruminants in the PTB endemic herd

acquire PTB through ingestion of the infective bacteria in colostrum, and from the faeces of in-

fected ruminants contaminating food and surface water/water troughs. The disease can also be

transmitted vertically from an infected pregnant ruminant to its foetus. Following the ingestion of

MAP bacteria contained in faecal material, and reach the gut of an infected ruminants, MAP are

engulfed by macrophages in the submucosal of the ruminant, and the submucosal macrophages

become infected [53]. However, the dynamics of MAP among submucosal macrophages within

an infected ruminant can be controlled by the ruminant immune response cells (such as T-helper

cells). Yet, currently there is no meaningful treatment that has been made available for PTB in

ruminant, and control programs implemented in many countries have had limited success [56].

Besides, very few ruminants can resist the infection; and it takes a long time to notice that ru-

minant has PTB disease because of a long incubation period, and clinical disease is not usually

apparent until three to five years-old. Furthermore, clinical studies have reported that infected

animals may shed bacteria in the environment through faeces for over a year before clinical signs

appear.



Chapter 2 26

2.2 Mathematical Model for Ruminant Paratuberculosis Dy-

namics at the Host-level

In this section, we present the single-scale model for PTB disease transmission dynamics devel-

oped at the host population-level, with the aim of pin-pointing weakness of single-scale models in

modelling infectious disease systems. For any infectious disease system, the standard approach

for developing single-scale models that describe the dynamics of the infectious disease at the

between-host scale is to classify the host population into compartments such as susceptible, in-

fected and recovered (SIR) and variation of this paradigm within which individuals are assumed

to behave homogeneously (see [4]). For instance, a paper by Magombedze et al. [52] which

investigates the PTB disease dynamics in ruminants is based on the susceptible-exposed-infected

framework (SEI) coupled with the environmental dynamics that depict the evolution of MAP

bacteria (B) in the environment. The single scale model in [52] divides the class of infected

ruminants into three stages: exposed or silent stage, sub-clinical stage and clinical stage. In this

case, we only incorporate a single infected class into the between-host scale sub-model. The dif-

ferent classes that the infected ruminant progresses through are accounted for by the within-host

scale sub-model. In developing the single scale model at between-host scale for PTB dynamics,

we make the following assumptions:

a. The transmission of the infection is only through contact with MAP bacterial load (BC) in

the physical environment. However, if there is any direct transmission, it can be estimated

by indirect transmission in terms of environmental MAP bacterial load (BC).

b. The average extracellular MAP bacteria in each infected ruminant is modelled phenomeno-

logically by N̂c, which is a proxy for individual ruminant infectiousness.

c. The environmental MAP bacterial (BC) do not replicate in the environment (outside-host).

From these assumptions, the single scale model for PTB dynamics at between-host scale be-

comes:



(i)
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

(ii)
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

(iii)
dBC(t)

dt
= N̂cαcIC(t)− αCBC(t),

(2.2.1)
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The single-scale model given by equation (2.2.1), which is later used as a between-host submodel

of the nested multiscale model in Chapter (4), is based on monitoring the dynamics of three pop-

ulations which are susceptible ruminants (SC), infected ruminants IC , and MAP bacterial load

(BC) in the physical environment. The first equation of the model system (2.2.1) describes the

dynamics of susceptible ruminants. At any time t, new recruits of susceptible ruminants enter

the ruminant population through birth and incoming ruminants from other farms at a constant

rate ΛC and this population losses individuals due to natural death at a constant rate µC . The sus-

ceptible ruminant population also decreases through infection at a rate βCBC(t)/(B0 + BC(t))

with βC being the exposure rate to infective MAP bacterial load (BC) in the environment and

B0 is the saturation parameter of the bacteria that yield 50 percent chance of a ruminant getting

infected with PTB infection after ingesting the bacteria. The infection happens when suscep-

tible ruminants feed from contaminated pasture with faecal material containing infective MAP,

or drink from contaminated surface water/water troughs with the bacteria. The second equation

in the model system (2.2.1) describes the dynamics of PTB infected ruminants. This population

increases through infection of susceptible ruminants and decreases through natural death at a con-

stant rate µC . There is additional death at a rate δC in the population of infected ruminants due to

disease, so that an average lifespan of PTB infected ruminant in the population is 1/(δC + µC).

We assume that infected ruminants spread the disease through contaminating the environment

at a rate N̂cαcIC , where N̂c models phenomenologically the average number of the within-host

scale MAP bacterial load available for excretion into the environment by each infected ruminants

at a rate αc. Therefore, the population dynamics of MAP bacilli in the environment, described

by the last equation of the model system (2.2.1), increases following excretion of MAP bacteria

by infected ruminant hosts in faecal material into the environment at a net rate N̂cαcIC . This

population of MAP bacilli in the environment is assumed to decrease due to natural death at a

rate αC . The model state variables and parameters are summarized in Table (2.1) and Table (2.2),

respectively.
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State variables Description values

SC(t) The susceptible ruminant population size in the behavioral ruminants

environment.

IC(t) The infected ruminant population size in the behavioral ruminants

environment.

BC(t) The population size of PTB disease-causing bacteria

in the physical environment.

Table 2.1: Description of the state variables of the model system (3.1)

Figure 2.1: A schematic representation of the transmission-cycle of the Johne’s disease in a Herd
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2.3 Mathematical Model Analysis

2.3.1 Basic Properties

In this section, we study mathematical properties of the model system (2.2.1). We start by show-

ing that all the solutions of the model system (2.2.1) will remain positive for all t ≥ 0. This

is followed by showing that the model system (2.2.1) is mathematically and epidemiologically

well-posed.

2.3.1.1 Positivity of Solutions

We now consider the positivity of the model system (2.2.1) by showing that if the system starts

with non-negative initial conditions (SC(0), IC(0), BC(0)), the solutions/trajectories (SC(t),

IC(t), BC(t)) of the model system (2.2.1) will remain positive for all t ≥ 0, so that they should

be in consistence with the basic aspect of the biological reality. This is summarized in following

theorem.

Theorem 2.1. Given that the initial conditions of the model system (2.2.1) remain non-negative

(i.e., SC(0) ≥ 0, IC(0) ≥ 0, BC(0) ≥ 0), the resulting solutions (SC(t), IC(t), BC(t)) are all

positive for all t ≥ 0.

Proof : From the first equation of the model system (2.2.1), a differential inequality which de-

scribes the dynamics of susceptible ruminant population in time is given by

dSC(t)

dt
≥ −(λC(t) + µC)SC(t). (2.3.1.1.1)

Therefore, the expression of the differential inequality in equation (2.3.1.1.1) can be solved by

the separation of variables as follows

dSC(t)

SC(t)
≥ −(λC(t) + µC)dt. (2.3.1.1.2)

Now, letting

t̂ = sup{t > 0 : SC > 0, IC > 0, BC > 0} ∈ [0, t],

and integrating equation (2.3.1.1.2), we thus have

ln(SC(t)) ≥ −
(
µCt+

∫ t

0

λC(t̂)dt̂

)
+ ln(SC(0)). (2.3.1.1.3)
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Thus, the solution of the differential inequality for the susceptible ruminants population is given

by

SC(t) ≥ SC(0). exp

{
−
(
µCt+

∫ t

0

λC(t̂)dt̂

)}
> 0. (2.3.1.1.4)

This implies that

lim
t→∞

inf(SC(t)) ≥ 0. (2.3.1.1.5)

Using the same principle, it can be shown that

lim
t→∞

inf(IC(t)) ≥ 0. (2.3.1.1.6)

Now, using the second equation of the model system (2.2.1) that describes the evolution of the

population of the MAP bacteria in the physical environment, we can have the following differ-

ential inequality given as

dBC(t)

dt
≥ −αCBC(t). (2.3.1.1.7)

Therefore, by the separation of variables we obtain

BC(t) ≥ BC(0). exp {−αCt} > 0. (2.3.1.1.8)

This implies that

lim
t→∞

inf(BC(t)) ≥ 0. (2.3.1.1.9)

Thus, when starting with non-negative initial value conditions in the model system (2.2.1), the

solutions of the model will remain non-negative for all t ≥ 0, and this completes the proof.

2.3.1.2 Feasible Region

Letting NC(t) denotes the total number of ruminant population and adding the first and second

equation of the model system (2.2.1), we obtain

dNC(t)

dt
= ΛC − µCNC(t)− δCIC(t), (2.3.1.2.1)
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so that

dNC(t)

dt
≤ ΛC − µCNC(t). (2.3.1.2.2)

This implies that

lim
t→∞

sup(NC(t)) ≤ ΛC

µC
. (2.3.1.2.3)

Since NC(t) is the sum of the state variables for susceptible humans and infected humans, then

each of the individual state variables is less or equal to
ΛC

µC
. Now, using the third equation of

model system (2.2.1) we obtain the following inequality

dBC(t)

dt
≤ N̂cαc

ΛC

µC
− αCBC , (2.3.1.2.4)

since IC(t) ≤ ΛC

µC
. Therefore, the solution of equation (2.3.1.2.4) can be obtained by using a

suitable integrating factor (eαCt), to obtain

BC(t) ≤ N̂cαcΛC

αCµC
+ C2e

−αCt. (2.3.1.2.5)

This implies that

lim
t→∞

sup(BC(t)) ≤ N̂cαcΛC

αCµC
. (2.3.1.2.6)

We let {
Ω = {(SC(t), IH(t), PE(t))| 0 ≤ SC(t) + IC(t) ≤ Z1,

0 ≤ BC(t) ≤ Z2},
(2.3.1.2.7)

be an invariant region of the model system (2.2.1), where
Z1 =

ΛC

µC
,

Z2 =
N̂cαcΛC

αCµC
> 0.

(2.3.1.2.8)

Thus, Ω is a positively invariant and attracting region, since all the solutions/trajectories that

start in Ω will remain in Ω for all t ≥ 0. As a result, we can easily conclude that the model
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system (2.2.1) is mathematically and epidemiologically well-posed [4]. Therefore it is sufficient

to consider the dynamics of the flow generated by model system in Ω.

2.3.2 Disease-free Equilibrium (DFE) and Reproductive Number

The disease-free equilibrium of the model system (2.2.1) was obtained by setting the left-hand

side of the model to zero and further assume that IC = BC = 0 to get

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
, (2.3.2.1)

where E0 denotes the disease-free equilibrium of the baseline single-scale model system (2.2.1).

In this study, the basic reproductive number of the baseline single-scale model system (2.2.1)

was also computed by using the next generation operator approach in [5] to be

R0 =
βCΛCN̂cαc

µC(µC + δC)B0αC
, (2.3.2.2)

which can be re-written as

R0 = R0ECR0CE , (2.3.2.3)

where the quantity R0EC of the above is explained as follows. Consider a single newly infected

ruminants entering a contaminated-free environment at an equilibrium point. The expected num-

ber of bacteria cells produced by each infected ruminants and contaminate the environment is

approximately

R0CE =
N̂bαc

µC(µC + δC)
. (2.3.2.4)

Similarly, the quantity R0EC can be interpreted as follows. Consider newly bacterial infectious

dose of bacilli cells entering a disease-free population of ruminants at an equilibrium point. The

expected number of ruminants infected by this bacteria cells is approximately

R0EC =
βCΛC

αCB0

. (2.3.2.5)

Based on the two expressionsR0EC andR0CE , we can conclude that the epidemiological (between-

host) transmission parameters and the immunological (within-host) parameters all contribute to

the transmission of ruminant paratuberculosis disease.
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2.3.2.1 Local stability of the disease-free equilibrium

In this subsection, we determine the local stability of DFE for the model system (2.2.1) by lin-

earizing the three equations of the model system (2.2.1) to obtain the following Jacobian matrix

given as,

J(E0) =



−µC 0 −βCΛC

B0µC

0 −(µC + δC)
βCΛC

B0µC

0 N̂cαc −αC


. (2.3.2.1.1)

We test for stability of DFE by calculating the eigenvalues (λs) of the above Jacobian matrix at

the DFE. The characteristic equation for the eigenvalues is given by

(−µH − λ)[λ2 + φ1λ+ φ2] = 0, (2.3.2.1.2)

where 
φ1 = µC + δC + αC ,

φ2 = (µC + δC)αC(1−R0).

(2.3.2.1.3)

It is clear from equation (2.3.2.1.2) that one of the eigenvalues is equal to λ = −µC . Now, to

determine the remaining eigenvalues of the polynomial

P (λ) = λ2 + φ1λ+ φ2 = 0, (2.3.2.1.4)

we use the Routh-Hurwitz Criteria. In this case, we define the following matrices whose elements

are the coefficients (φS) of the characteristic polynomial P (λ) in equation (2.3.2.1.4):

H1 =
(
φ1

)
, H2 =

(
φ1 1

0 φ2

)
. (2.3.2.1.5)
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Evaluating the determinant of H1, we obtain
det(H1) =

∣∣∣ φ1

∣∣∣ ,
= φ1,

= µC + δC + αC > 0.

(2.3.2.1.6)

The determinant of H2 is given by:
det(H2) =

∣∣∣∣∣ φ1 1

0 φ2

∣∣∣∣∣ ,
= φ1φ2,

= ξC(1−R0) > 0, whenever R0 < 1.

(2.3.2.1.7)

Where

ξC = (µC + δC + αC)(µC + δC)αC . (2.3.2.1.8)

It can be noted that all the coefficients φ1 and φ2 of the polynomial P (λ) in equation (2.3.2.1.4)

are greater than zero whenever R0 < 1. And also all the determinants of matrices H1 and H2 are

positive if and only if R0 < 1. Hence, all the roots of the polynomial P (λ) are either negative or

have negative real parts. These results are summarized by the following theorem.

Theorem 2.2. The Disease-free equilibrium point of the model system (2.2.1) is locally asymp-

totically stable if R0 < 1.

2.3.2.2 Global stability of the disease-free equilibrium

We determine the global stability of DFE of the model system (2.2.1) by using the next generation

operator [5]. Thus the system (2.2.1) can be re-written in the form
dX

dt
= F (X,Z),

dZ

dt
= G(X,Z),

(2.3.2.2.1)

where

• X = SC represent a compartment of uninfected ruminants, and

• Z = (IC , BC) represent compartments of infected ruminants and Infective MAP bacilli

bacteria in the physical environment.
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We let

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
, (2.3.2.2.2)

denote the disease-free equilibrium (DFE) of the model system (2.2.1). For X∗ to be globally

asymptotically stable, the following conditions (H1) and (H2) must be satisfied.

H1.
dX

dt
= F (X, 0) is globally asymptotically stable (g.a.s),

H2. G(X,Z) = AZ− Ĝ(X,Z), Ĝ((X,Z)≥ 0 for (X,Z) ∈ R3
+ where A = DZG(X∗, 0) is an

M-matrix and R3
+is the region where the model makes biological sense.

In this case

F (X, 0) =
[

ΛC − µCSC
]
, (2.3.2.2.3)

and the matrix A is given by

A =


−(µC + δC)

βCΛC

µCB0

N̂cαc −αC

 , (2.3.2.2.4)

and

Ĝ(X,Z) =


(

ΛC

µCB0

− SC
B0 +BC

)
βCBC

0

 . (2.3.2.2.5)

Since S0
C =ΛC/(µCB0) ≥ SC/(B0 +BC), it is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R3

+. It is

also clear that A is a M-matrix, since the off diagonal elements of A are non-negative. We state

a theorem which summarizes the above results.

Theorem 2.3. The fixed point

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
of the model system (2.2.1) is global asymptotically stable (GAS) if R0 ≤ 1 and the assumptions

(H1) and (H2) are satisfied.
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2.3.3 Endemic Equilibrium and its Global Stability

For the endemic equilibrium point, we let

E∗ = (S∗C , I
∗
C , B

∗
C), (2.3.3.1)

denote the endemic equilibrium point of the system of equations (2.2.1). At the endemic equi-

librium point, each of the population variables is constant such that the rate of change of each of

the model variables is zero. Thus, we set the left-hand side of the equations of the model system

(2.2.1) equal to zero to obtain

0 = ΛC − λ∗CS∗C − µCS∗C , (2.3.3.2)

0 = λ∗CS
∗
C − (µC + δC)I∗C , (2.3.3.3)

0 = N̂cαcI
∗
C − αCB∗C , (2.3.3.4)

where

λ∗C =
βCB

∗
C

B0 +B∗C
. (2.3.3.5)

From (2.3.3.2), the endemic value of susceptible ruminants is given by

S∗C =
ΛC

λ∗C + µC
. (2.3.3.6)

From the expression in equation (2.3.3.6) we note that the susceptible ruminants population at

endemic equilibrium is equal to the average time of stay in susceptible class and the rate at

which new susceptible ruminants are recruited into the susceptible class through natural birth.

The population of susceptible ruminants leave the susceptible class when infected with MAP

bacilli in the environment at a rate λC , or through natural death at a rate µC . The endemic value

of infected humans in equation (2.3.3.3) is given by

I∗C =
λ∗CS

∗
C

αC + δC
. (2.3.3.7)

We note from equation (2.3.3.7)) that infected ruminants population at the endemic equilibrium

point is equal to the average time of stay in the infected class and the rate at which susceptible

ruminants become infected and the density of susceptible ruminants. The endemic value of MAP
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bacilli population in the physical environment is given by

B∗C =
N̂cαcI

∗
C

αC
. (2.3.3.8)

We deduce from equation (2.3.3.8) that the average population of MAP bacilli in the environment

at the equilibrium point is determined by the rate at which infected ruminants population excretes

an average number of the within-ruminants-host MAP bacilli into the physical environment and

the average time of stay in the class of MAP bacilli in the physical environment.

2.3.3.1 Existence and uniqueness of the endemic equilibrium state

In this section, we provide some results concerning the existence and uniqueness of an endemic

equilibrium point (EEP), E∗ = (S∗C , I
∗
C , B

∗
C), for model system (2.2.1). We determine the exis-

tence and uniqueness of the endemic equilibrium point, E∗, by expressing S∗C and I∗C in terms of

B∗C in the form:
S∗C(B∗C) =

ΛC(B0 +B∗C)

(βC + µC)B∗C + µCB0

,

I∗C(B∗C) =
βCΛCB

∗
C

(δC + µC)(βC + µC)B∗C + µCB0(δC + µC)
.

(2.3.3.1.1)

Substituting the expressions in equation (2.3.3.1.1) into the equation for B∗C which is given by

dBC(t)

dt
= N̂cαcIC(t)− αCBC(t),

at the endemic equilibrium, we obtain:

B∗C [αCµCB0(δC + µC)(R0 − 1)− αC(δC + µC)(βC + µC)B∗C ] = 0. (2.3.3.1.2)

From equation (2.3.3.1.2), we can either get B∗C = 0, which correspond to disease-free equilib-

rium point or

B∗C =
µCB0(δC + µC)

(δC + µC)(βC + µC)
[R0 − 1], (2.3.3.1.3)

for the endemic equilibrium point. Since AC > 0 and BC > 0, we can easily deduce from

equation (2.3.3.1.2) that only a single positive endemic equilibrium point exists for R0 > 1.

Therefore, we can conclude that there exists only one unique endemic equilibrium point for

model system (2.2.1) whenever R0 > 1.
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2.3.3.2 Local stability of the endemic equilibrium

The local stability of the endemic steady state of the model system (2.2.1) is determined by the

use of Center Manifold Theory described in [10]. Center Manifold Theory has been used to

determine the local stability of a non-hyperbolic equilibrium point. For convenience of interpre-

tation of the stability we state the theorem (see also [57]).

Theorem 2.4. Consider the following general system of ordinary differential equations with

parameter φ:
dx

dt
= f(x, φ), f : Rn −→ R, f : C2(R2 × R), (2.3.3.2.1)

where 0 is an equilibrium point of the system (2.3.3.2.1), i.e., f(0, φ) = 0, ∀ φ , and assume

that

(1) A = Dxf(0, 0) =
(
∂fi(0, 0)

∂xi

)
is a linearization of the system around the equilibrium 0

with φ evaluated at 0;

(2) Zero is a simple eigenvalue of A and other eigenvalues of A have negative real part;

(3) Matrix A has a left eigenvector denoted by u and a right eigenvector denoted by v, corre-

sponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkuiuj
∂2fk
∂xi∂xj

(0, 0), (2.3.3.2.2)

b =
n∑

k,i,j=1

vkui
∂2fk
∂xi∂φ

(0, 0). (2.3.3.2.3)

The local dynamics of the system around the equilibrium point 0 is totally governed by the signs

of a and b.

(i) a > 0, b >0, when φ < 0 with | φ | � 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

(ii) a < 0 , b < 0, when φ < 0 with | φ | � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium point.

(iii) a > 0, b < 0, when φ < 0 with | φ | � 1, 0 is unstable and there exists a locally asymp-

totically stable negative equilibrium; when 0 < φ� 1, 0 is stable and a positive unstable

equilibrium appear.
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(iv) a< 0, b> 0, when φ changes from negative to positive, 0 changes its stability from stable to

unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally

asymptotically stable.

In our case:

Let SC = x1, IC = x2, BC = x3 and βC = β∗ where β∗ is considered as the bifurcation

parameter. If we consider R0 = 1 ;and solve for β∗, we obtain

1 =
N̂cαcβ

∗ΛC

B0µC(µC + δC)αC
, (2.3.3.2.4)

so that

β∗ =
B0µC(µC + δC)αC

N̂cαcΛC

. (2.3.3.2.5)

We also use the vector notation x̄ = (x1, x2, x3)T so that the model system (3.1.3) can be written

in the form
dx̄

dt
= F̄ (x̄, β∗), (2.3.3.2.6)

where

F̄ = (f1, f2, f3). (2.3.3.2.7)

So that 

ẋ1 = f1 = ΛC −
β∗x1x3

B0 + x3

− µCx1,

ẋ2 = f2 =
β∗x1x3

B0 + x3

− (µC + δC)x2,

ẋ3 = f3 = N̂cαcx2 − αCx3.

(2.3.3.2.8)

The Jacobian matrix of the model system (2.3.3.2.8) is given by



Chapter 2 40

A =



−µC 0 −β
∗ΛC

µCB0

0 −(µC + δC)
β∗Λc

µCB0

0 N̂cαc −αC


. (2.3.3.2.9)

The Jacobian matrix of the model system (2.3.3.2.9) has the left eigenvector u = (u1, u2, u3)T ,

where



u1 = − β∗ΛC

µ3
CB

2
0(µc + δC)

,

u2 =
β∗ΛC

B0(µC + δC)µC
,

u3 = 1

(2.3.3.2.10)

and the right eigenvector given by v = (v1, v2, v3), where



v1 = 0,

v2 =
N̂cαc

(µC + δC)
,

v3 = 1.

(2.3.3.2.11)

The non-zero second order mixed derivatives of F with respect to each variables, used to deter-

mine the sign of a, are given by
∂2f1

∂x2
3

=
2β∗ΛC

B2
0µC

,

∂2f2

∂x2
3

= − 2β∗ΛC

B2
0µC

.

(2.3.3.2.12)
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The non-zero partial derivatives with respect to variables and β∗, used to determine the sign of b,

are given by 
∂2f1

∂x3∂β∗
= − ΛC

µCB0

,

∂2f2

∂x3∂β∗
=

ΛC

µCB0

.

(2.3.3.2.13)

Substituting expressions (2.3.3.2.10), (2.3.3.2.11), (2.3.3.2.12) and (2.3.3.2.13) into equation

(2.3.3.2.2) and (2.3.3.2.3), respectively, we get



a = u1(v3)2

(
∂2f1

∂x2
3

)
+ u2(v3)2

(
∂2f2

∂x2
3

)
,

=

[
2β∗ΛC

B2
0µC

]
.u1.v

2
3 +

[
−2β∗ΛC

B2
0µC

]
.u2.v

2
3,

=

[
2β∗ΛC

B2
0µC

]
.v2

3.[u1 − u2] < 0,

(2.3.3.2.14)

since u1 − u2 < 0, and

b = u1v3

(
∂2f1

∂x3∂β∗

)
+ u2v3

(
∂2f2

∂x3∂β∗

)
,

=

[
− ΛC

B0µC

]
.u1.v3 +

[
2ΛC

B0µC

]
.u2.v3,

=

[
2β∗ΛC

B2
0µC

]
.v3.[u2 − u1] > 0

(2.3.3.2.15)

since u2 − u1 > 0. Thus, a < 0 and b > 0. Using Theorem 2.4, item (iv), we can conclude that

the endemic steady state of the model system (2.2.1) is locally asymptotically stable which holds

for R0 > 1 but close to 1. These results are therefore summarized by the following theorem.

Theorem 2.5. The paratuberculosis endemic steady state of model system (2.2.1) guaranteed by

Theorem 3.4 is locally asymptotically stable for R0 > 1 near 1.
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2.3.3.3 Global stability of the endemic equilibrium

To prove that the endemic equilibrium E∗ of the model system (2.2.1) is globally asymptotically

stable, we state the following theorem:

Theorem 2.6. The Endemic Equilibrium E∗ of the model system (2.2.1) is global asymptotically

stable (GAS) whenever R0 > 1.

Proof : Let’s consider a Volterra-type Lyapunov function given by

L1 = L(SC , IC , BC),

= ν1S
∗
Cg

(
SC
S∗C

)
+ ν2I

∗
Cg

(
IC
I∗C

)
+ ν3B

∗
Cg

(
BC

B∗C

)
,

(2.3.3.3.1)

where ν2, ν2 and ν3 are positive constants to be determined, and we take advantage of the prop-

erties of the function

g(x) = x− 1− ln(x) (2.3.3.3.2)

which is positive in (0, ∞) except at x = 1 where it vanishes. We note that L1 is non-negative

in the interior of Ω and attain zero at E∗. We now need to show that L̇1 is negative definite.

Differentiating L1 along the trajectories of the model system (2.2.1), we obtain

L̇1 = ν1
dSC
dt

[
1− S∗C

SC

]
+ ν2

dIC
dt

[
1− I∗C

IC

]
+ ν3

dBC

dt

[
1− B∗C

BC

]
,

= ν1

[
1− S∗C

SC

]
[ΛC − λCSC − µCSC ]

+ ν2

[
1− I∗C

IC

]
[λCSC − (µC + δC)IC ]

+ ν3

[
1− B∗C

BC

]
[N̂cαcIC − αCBC ].

(2.3.3.3.3)

Since E∗ is an equilibrium point, the following relations hold
ΛC = λ∗CS

∗
C + µCS

∗
C , (µC + δC) =

λ∗CS
∗
C

I∗C
,

αC =
N̂cαcI

∗
C

B∗C
.

(2.3.3.3.4)
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Using the relations in (2.3.3.3.4), L̇1 becomes

L̇1 = ν1

[
1− S∗C

SC

]
[λ∗CS

∗
C + µCS

∗
C − λCSC − µCSC ]

+ ν2

[
1− I∗C

IC

] [
λCSC −

λ∗CS
∗
CIC
I∗C

]

+ ν3

[
1− B∗C

BC

][
N̂cαcIC −

N̂cαcI
∗
CBC

B∗C

]
,

= −ν1µC
SC

(SC − S∗C)2 − ν1λ
∗
CS
∗2
C

SC

− ν2λCSCI
∗
C

IC
− ν3N̂cαcI

∗
C

BC

B∗C
− ν3N̂cαcIC

B∗C
BC

+

[
ν3Ncαc − ν2

λ∗CS
∗
C

I∗C

]
IC + [ν1 + ν2]λ∗CS

∗
C

+ [ν2 − ν1]λCSC + ν1λCS
∗
C + ν3N̂cαcI

∗
C .

(2.3.3.3.5)

Choose the value of ν1, ν2 and ν3 such that
ν1 = ν2 = 1,

ν3N̂cαc − ν2
λ∗CS

∗
C

I∗C
= 0,

(2.3.3.3.6)

from which we get

ν3 =
λ∗CS

∗
C

N̂cαcI∗C
. (2.3.3.3.7)
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Substituting the value of ν1, ν2 and ν3 into equation (2.3.3.3.5), such that

L̇1 =

[
1− S∗C

SC

]
[λ∗CS

∗
C + µCS

∗
C − λCSC − µCSC ]

+

[
1− I∗C

IC

] [
λCSC −

λ∗CS
∗
CIC
I∗C

]

+
λ∗CS

∗
C

N̂cαcI∗C

[
1− B∗C

BC

][
N̂cαcIC −

N̂cαcI
∗
CBC

B∗C

]
.

(2.3.3.3.8)

By direct calculations from equation (2.3.3.3.8), we have that[
1− S∗C

SC

]
(λ∗CS

∗
C + µCS

∗
C − λCSC − µCSC) =

[
1− S∗C

SC

]
(λ∗CS

∗
C − λCSC)

+

[
1− S∗C

SC

]
(µCS

∗
C − µCSC) = −µCSC

[
1− S∗C

SC

]2

+ λ∗CS
∗
C

[
1− S∗C

SC

] [
1− λCSC

λ∗CS
∗
C

]
,

≤ λ∗CS
∗
C

[
1− S∗C

SC

] [
1− λCSC

λ∗CS
∗
C

]
;

[
1− I∗C

IC

] [
λCSC −

λ∗CS
∗
CIC
I∗C

]
= λ∗CS

∗
C

[
1− I∗C

IC

] [
λCSC
λ∗CS

∗
C

− IC
I∗C

]
;

(2.3.3.3.9)

and

λ∗CS
∗
C

N̂cαcI∗C

[
1− B∗C

BC

][
N̂cαcIC −

N̂cαcI
∗
CBC

B∗C

]
= λ∗CS

∗
C

[
1− B∗C

BC

] [
IC
I∗C
− BC

B∗C

]
.(2.3.3.3.10)

Therefore,

L̇1 ≤ λ∗CS
∗
C

[
1− S∗C

SC

] [
1− λCSC

λ∗CS
∗
C

]
+ λ∗CS

∗
C

[
1− I∗C

IC

] [
λCSC
λ∗CS

∗
C

− IC
I∗C

]

+ λ∗CS
∗
C

[
1− B∗C

BC

] [
IC
I∗C
− BC

B∗C

]
,

≤ λ∗CS
∗
C

[
2− λCSCI

∗
C

λ∗CS
∗
CIC

+
λC
λ∗C
− S∗C
SC
− IC
I∗C

]
+ λ∗CS

∗
C

[
1− ICB

∗
C

I∗CBC

+
IC
I∗C
− BC

B∗C

]
(2.3.3.3.11)

By using the function g(x) defined in (2.3.3.3.2), we get
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L̇1 ≤ λ∗CS
∗
C

[
−g
(
S∗C
SC

)
− g

(
λCSCI

∗
C

λ∗CS
∗
CIC

)
+
λC
λ∗C
− ln

(
BC

B∗C

)
− IC
I∗C

+ ln

(
IC
I∗C

)
+ ln

(
B0 +BC

B0 +B∗C

)]

+ λ∗CS
∗
C

[
−g
(
ICB

∗
C

I∗CBC

)
− ln

(
IC
I∗C

)
+
IC
I∗C

+ ln

(
BC

B∗C

)
− BC

B∗C

]
,

≤ λ∗CS
∗
C

[
−g
(
S∗C
SC

)
− g

(
λCSCI

∗
C

λ∗CS
∗
CIC

)
+
BC

B∗C
− ln

(
BC

B∗C

)
− IC
I∗C

+ ln

(
IC
I∗C

)]

+ λ∗CS
∗
C

[
BC(B0 +B∗C)

B∗C(B0 +BC)
− B0 +BC

B0 +B∗C
− g

(
B0 +BC

B0 +B∗C

)
− BC

B∗C
− 1

]

+ λ∗CS
∗
C

[
−g
(
ICB

∗
C

I∗CBC

)
− ln

(
IC
I∗C

)
+
IC
I∗C

+ ln

(
BC

B∗C

)
− BC

B∗C

]
,

≤ λ∗CS
∗
C

[
BC

B∗C
− ln

(
BC

B∗C

)
− IC
I∗C

+ ln

(
IC
I∗C

)]

+ λ∗CS
∗
C

[
IC
I∗C
− ln

(
IC
I∗C

)
+ ln

(
BC

B∗C

)
− BC

B∗C

]
= 0

(2.3.3.3.12)

From (2.3.3.3.12), we have that the largest invariant subset, where L̇1 = 0, is E∗. Therefore, we

conclude from the LaSelle’s Invariance Principle that E∗ is globally asymptotically stable (GAS)

when R0 > 1.

2.4 Numerical analysis

Experimental simulations of the baseline single-scale model system (2.2.1)’s behaviour was done

using a Python program version V 2.6 which typically uses a package odeint function in the

scipy.integrate for solving any nature of system of differential equations. These numerical sim-

ulations of the model system (2.2.1) was carried out to illustrate some of the analytical results

that we obtained within this chapter. We use the estimated parameter values presented in Table

(2.2) for sensitivity and numerical analysis. It is important to mention that parameter values used

for numerical simulations, some are from published literature and some were assumed as val-

ues of some parameters are generally not reported in literature. The initial conditions used for

simulation are given by SC(0) = 2000, IC(0) = 0, BC(0) = 10000.
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Parameter Description Unit Initial Source

values

ΛC Cattle birth rate day−1 0.27 [52, 54]

βC Ruminant infection rate day−1 0.00027 Assumed

µC Death rate of Ruminants day−1 0.0001 [52]

δC Ruminant removal rate due day−1 0.0008 Assumed

to PTB infection

αC Environmentally bacteria day−1 0.0018 [52]

death rate

B0 Saturation rate of bacteria day−1 10000 [54]

N̂c Number of MAP bacteria day−1 1000 Assumed

available for excretion

αc Excretion rate day−1 0.01 [54]

Table 2.2: Model parameter values associated with the transmission dynamics of Paratuberculo-

sis

2.4.1 Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of the two PTB transmission metrics derived

from the baseline PTB dynamics single-scale model system (2.2.1). The two PTB transmission

metrics derived from the baseline PTB single-scale model system (2.2.1) are: the reproduction

number, R0, which generally describes the dynamics of a disease at the beginning of an infection

and the endemic value of the environmental bacteria load, B∗C , which generally describes the

dynamics of a disease at the epidemic level. For any epidemic model that describe the dynamics

of any diseases in a population, a sensitivity analysis study is essential to perform as it helps

to identify model’s parameters which can be targeted for disease control, elimination or even

eradication, and also be monitored and controlled during an outbreak of the disease. In this

case, sensitivity analysis of both the PTB transmission metrics (R0 and B∗C), with respect to

the variation of the baseline PTB single-scale model system (2.2.1)’s parameters is conducted

using Latin Hypercube Sampling and partial rank correlation coefficients (PRCCs). We use

1000 simulations per run to investigate the impact of each model parameters on both the basic

reproduction numbers (R0) and the endemic value of the environmental bacteria load (B∗C). The

sensitivity results of R0 and B∗C on the model parameters when they changes are given in the

Tornado plots, Figure (2.2) and Figure (2.3), respectively.
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Figure 2.2: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric R0.

Figure 2.3: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric B∗C .



Chapter 2 48

From the sensitivity analysis results of both R0 and B∗C to all the baseline model (2.2.1)’s param-

eters in Figure (2.3), we deduce the following results:

(a) Some of the baseline PTB single-scale model (2.2.1)’s parameters have positive PRCCs

and some have negative PRCCs. This indicates that, parameters with positive PRCCs will

increase the values for both R0 and B∗C when they are increased, while parameters with

negative PRCCs will decrease the values for both R0 and B∗C when they are increased. For

instance, increasing parameter like bacteria transmission rate βC at the between-host level

will eventually increase the value of R0 as well as the value of B∗C , and also increasing

parameters like decay rate of bacteria in the environment αC will the lead to a reduction in

the value of R0 as well as the value of B∗C .

(b) The PTB transmission metric R0 is highly sensitive to the six of the disease parameters

(βC , B0, N̂c, αc, αC , ΛC) is relatively high, but more highly and approximately equal sen-

sitive to βC , B0, N̂c, and αc. However, the sensitivity of B∗C to the same parameters is

variable, with B∗C being least sensitive to βC and B0 while remaining highly sensitive and

having approximately the same sensitivity to N̂c and αc as for R0. Since R0 characterizes

transmission of PTB disease at the start of the epidemic while B∗C characterizes transmis-

sion of the disease when the disease has reach an endemic level. We make the following

conclusions regarding the sensitivity of R0 and B∗C to the PTB model system (2.2.1)’s

parameters.

(i) Since both R0 and B∗C are significantly sensitive to (βC , B0, N̂c, αc, αC , ΛC), this

implies that care must be taken to the accuracy of these six PTB transmission model

(2.2.1)’s parameters during the data collection if the validity and utility of the model

system (2.2.1) is to be improved.

(ii) Since B∗C is less sensitive to βC and B0 while R0 is significantly sensitive to βC and

B0, this implies that PTB interventions such as environmental-hygiene management

(which reduce MAP concentration in the environment through cleaning as we as

preventing contact of ruminant with the MAP in the environment) and vaccination

(which reduce susceptibility of ruminants to infection) would have more effect in

controlling the transmission of PTB infection at the start of the epidemic than when

the disease is already endemic in the herd.

(iii) Since both R0 and B∗C are significantly sensitive to N̂c, we note that N̂c phenomeno-

logically model the within-host dynamics of the infection which can be modified by

the within-host health intervention mechanisims such as drugs that kill MAP bacterial

cells at the ruminant individual level.
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2.4.2 Numerical simulations of the basiline PTB model transmission dy-
namics

In this subsection, we use numerical simulations to verify some results we have obtained from

the sensitivity analysis for both R0 and B∗C and analytical results of the model. The numerical

simulations are conducted using the baseline parameter values given in Table (2.2). We illustrate

the influence of four PTB transmission parameters (βC , B0, N̂c, αC) on the model variables (SC ,

IC , BC). These parameters were only chosen partly because they are significantly sensitive to

both R0 and B∗C .

Figure 2.4: Graphs of numerical solutions of the model system (2.2.1) showing evolution in

time of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC),

and (c) population of environmental MAP bacterial load (BC) for different values of ruminant

infection rate βC: βC = 0.00027, βC = 0.0027, and βC = 0.027.

Figure (2.4) shows changes in (a) population of susceptible ruminants (SC), (b) population of

infected ruminants (IC), and (c) population of environmental MAP bacteria load (BC) for differ-

ent values of the rate at which ruminants became infected with PTB infection: βC : βC = 0.3,
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βC = 0.03, and βC = 0.003. The results in Figure (2.4) show that higher rates of infection at the

ruminant population level result in increased population of environmental MAP bacteria BC and

infected ruminants IC and a significant noticeable increase in the population of susceptible rumi-

nants SC . Therefore, environmental-hygiene management measures practiced by farmers which

prevent ruminants from contact with MAP bacteria in the environment reduce the transmission

risk of the disease at the ruminant population/herd level.

Figure 2.5: Graphs of numerical solutions of the model system (2.2.1) illustrating the variation

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) between-host MAP bacterial load (BC) for different values of natural death rate of the MAP

bacterial load in the physical environmental domains αC: αC = 0.18, αC = 0.00018, and

αC = 0.000018.

Figure (2.5) also shows graphs of numerical solutions of the between-host scale model system

(2.2.1) illustrating dynamics of (a) population of susceptible ruminants (SC), (b) population of

infected ruminants (IC), and (c) environmental MAP bacteria load (BC) for different values of

natural death rate of the MAP bacilli in the environmental domains αC : αC = 0.18, αC = 0.0018,

and αC = 0.00018. The results also show the environmental conditions which enhance death of
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MAP bacteria in the environment affect transmission of PTB disease in the ruminant population.

This imply that increasing death of MAP bacteria population in the environment will reduce

transmission risk of the disease at the ruminant population level. Therefore, environmental-

hygiene management which enhance the killing of MAP bacteria in the physical environment

reduces transmission risk of the disease among ruminants in the herd.

Figure 2.6: Graph of numerical solutions of model system (2.2.1) further showing propagation

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) environmental MAP bacteria load (BC) for different values of disease induce death rate B0:

B0 = 1000, B0 = 10000, and B0 = 100000.

Figure (2.6) further shows changes in (a) population of susceptible ruminants (SC), (b) popula-

tion of infected ruminants (IC), and (c) population of environmental MAP bacteria load (BC)

for different values of natural decay rate of the within-host MAP bacilli bacteria cells: B0:

B0 = 1000, B0 = 10000, and B0 = 100000. The results in Figure (2.6) show that as the

death rate of the within-host bacterial load increases, there is a noticeable reduction in the popu-

lation of environmental MAP bacteria BC and the population of infected ruminants IC as well as

an increase in the population of susceptible ruminants SC . Therefore, vaccination interventions
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that reduces susceptibility of ruminants to infection would have a significant impact on reducing

transmission risk of PTB infections at the ruminant population/herd level.

Figure 2.7: Graphs of numerical solutions of the model system (2.2.1) showing dynamics in

(a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and (c)

population of environmental MAP bacterial load (BC) for different values of the average number

of within-host MAP bacteria produced per bursting infected macrophage cell Nc:N̂c = 900,

N̂c = 9000, N̂c = 90000.

Figure (2.7) shows dynamics in the (a) population of susceptible ruminants (SC), (b) population

of infected ruminants (IC), and (c) population of environmental MAP bacterial load (BC) for

different values of the average number of within-host MAP bacteria excreted in the environment

by each infected ruminants Nc: N̂c = 900, N̂c = 9000, N̂c = 90000. The numerical results

in Figure (2.7) show that the within-host process that enhance killing of MAP bacteria load

at the site of PTB infection within an infected ruminant affect transmission of the disease at

the ruminant population level. Therefore, any mechanism that intend to kill within-host MAP

bacteria load at the ruminant individual level would have an influence on the transmission risk of

PTB infection among ruminants in the herd.
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2.5 Summary

In this chapter, we presented a single-scale model that describes the intrinsic dynamics of a given

environmentally-transmitted disease that can be modeled at the host level using paratuberculosis

in ruminants as paradigm. The model was formulated based on the susceptible-infected endemic

framework coupled with the compartment of free-living pathogen in the environment (SIP )

which describes the population dynamics of susceptible ruminants SC , infected ruminants IC ,

and MAP bacteria BC at any time t. We study the mathematical properties of the model system

(2.2.1) and established that the model is mathematically and epidemiologically well-posed. This

has been achieved by establishing the positiveness and boundedness of the model system (2.2.1)

solutions and determining the basic reproductive number for the model and the two equilibrium

states which are the disease-free equilibrium state (E0) and the endemic equilibrium state (E∗).

The basic reproductive number, R0, of the model system (2.2.1) was then used to prove both

local and global stability of E0 as well as the existence and uniqueness of E∗ along with lo-

cal and global stability of E∗. Additionally, we noted that when the basic reproductive number

of the model is less than a unity the disease-free equilibrium state is asymptotically stable and

globally attracting. However, when the basic reproductive number of the model is greater than

a unity there exist a unique endemic equilibrium state which is locally and globally asymptot-

ically stable. Sensitivity analysis of the basic reproductive number and the endemic value of

the infective MAP bacteria in the physical environment as the two main disease transmission

metrics which generally characterize the dynamics of the disease at the start of infection and

when it has already at an endemic level has been conducted. We further carried out numeri-

cal simulations of the model with the aim of verifying mathematical analysis derived from the

model. Although both the mathematical and numerical analysis of this single-scale model of

the dynamics of ruminant paratuberculosis was easy, a major weakness of this model is that it

describes the replication dynamics of the MAP bacteria within an infected ruminant host in a

phenomenological manner which makes the model unrealistic in predicting the dynamics of the

disease. We anticipated that this kind of limitation of single-scale models in predicting dynamics

of environmentally-transmitted diseases can be overcome by extending the single-scale model to

a multiscale model.
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A Nested Multiscale Modelling of
Paratuberculosis Dynamics in Ruminants

3.1 Introduction

It is widely appreciated that infectious diseases are typical example of complex systems because

of their multilevel and multiscale nature [1]. Due to this common key feature of multilevel and

multiscale in infectious disease systems, several authors in the field of mathematical biology have

turned their attention to multiscale modelling as a scientific method for studying the dynamics of

infectious diseases at different levels of their organizations. Multiscale models facilitate integra-

tion of more than one scale that are involved in the dynamics of an infectious disease systems. In

this chapter, we present a nested multiscale model that integrates microscale and macroscale at a

host level of an infectious disease system that has a pathogen replication-cycle at the microscale

with application to paratuberculosis in ruminants. The most important feature of nested multi-

scale models at any level of organization of an infectious disease system [1, 8]: cell level, tissue

level, organ level, microecosystem level, host level, community and macroecosystem level is that

the macroscale influences the microscale through the initial infective inoculum. Our objective in

this chapter is to investigate how the initial inoculum influences disease dynamics for a pathogen

with a replication-cycle at the microscale. Therefore, we investigate the impact of the variation in

size of initial inoculum on the dynamics of the disease. This is unlike embedded multiscale mod-

els in which the macroscale influences the microscale through super-infection [1]. We use this
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key feature of nested multiscale models to investigate if they are an appropriate category of mul-

tiscale models to characterize the multiscale dynamics of environmentally-transmitted infectious

diseases with a replication-cycle at microscales using Paratuberculosis (PTB) in ruminants as an

example. In the subsequent chapters of this research, we will further compare this key feature of

nested multiscale models with the features of embedded multiscale models of infectious diseases

systems. In the context of an environmentally-transmitted disease system at the host level, the

within-host scale and the between-host scale serve as building blocks in the development of mul-

tiscale models. In the case of PTB infection in dairy ruminants as an environmentally-transmitted

disease system, the within-host scale on one hand is associated with the interaction of MAP with

ruminant macrophages (target cells) and other immune response cells that happens inside an

infected ruminant. It is at this scale where the process outcomes of infection within a single

infected ruminant level determine if, when and how much the ruminant will further transmit the

bacteria into the environment, and in turn affecting the spread of the disease at the ruminant

population-level. The processes of PTB infection at the within-host scale can be modified by

the within-host conditions and medical interventions. The between-host scale on other hand,

however, is associated with the transmission dynamics of MAP bacteria that typically occurs be-

tween ruminants and their physical environment domains. This takes place when ruminants feed

from contaminated pasture with fecal material containing infective MAP or drink from contami-

nated surface water/water troughs with the bacteria. The processes at the between-ruminant-host

scale can be modified by control measures such as reducing fecal contamination of food, water

and pasture (which can be achieved by raising feed and water troughs, strip grazing, or use of

mains/piped water rather than surface/pond water); avoid spreading yard manure on pasture; and

maintain proper hygiene practices particularly in buildings/yards and calving boxes [58].

To date, most of PTB disease dynamics models in the literature have been devoted to study

the dynamics of PTB infection in ruminants and evaluating the effect of control measures aim

at controlling, eliminating and even eradicating this disease using a single-scale modelling ap-

proach (see [52, 59, 60] and references therein). This is despite the fact that PTB infection is a

complex and multiscale disease system. However, we have to date, witnessed the development of

few models in the literature that consider the complexity and multiscale nature of PTB infection

in attempting to study its dynamics [54, 61–63]. The multiscale models in [54, 61] use the time-

since-infection approach to link the within-host sub-model with the between-host sub-model for

PTB infection as well as the dependence of some epidemiological parameters on the within-host

MAP bacteria load. This coupling principle employed in [54, 61] was suggested for the first time

by Gilchrist and Sasaki [35]. In addition, it is also worthy to note that the multiscale models in
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[54, 61] are categorized as hybrid multiscale models (see [19, 20]). To the best of our knowl-

edge the nested multiscale in this study is the first of its kind to be developed to characterize the

dynamics of PTB in ruminants. Moreover, although the multiscale models in [54, 61] and the

multiscale model developed in this study all characterize the reciprocal influence between the

within-host scale and the between-host scale disease dynamics, there are important differences

between these multiscale models. Specifically, in the current nested multiscale model, both the

within-host scale and the between-host scale sub-models are all described by the same formal-

ism or mathematical representation (i.e. a system of ODEs). However, the multiscale models

in [54, 61] are hybrid multiscale models, where only the within-host scale sub-models are rep-

resented by ODEs, while their between-host sub-models are represented by partial differential

equations (PDEs).

.

3.2 Derivation of Nested Multiscale Model for the Dynamics

of Ruminant Paratuberculosis (PTB)

As mentioned previously, for infectious disease systems at host level, the between-host scale sub-

model and the within-host scale sub-model are the building blocks upon which multiscale models

are developed. In this case, we derive a nested multiscale model that integrates the between-host

sub-model associated with the transmission dynamics of PTB disease and the within-host sub-

model associated with the replication dynamics of MAP bacteria within an infected ruminant at

the site of infection. In the following sections, we begin by presenting two independent sub-

models for PTB transmission dynamics at two distinct scales, one at the between-host scale and

other at the within-host scale and then integrate them into a single multiscale model in sec 3.2.3.

3.2.1 The between-host scale submodel for the PTB multiscale model dy-
namics

The between-host scale submodel for the multiscale dynamics of PTB in ruminants is described

by the system of ordinary differential equations given in Chapter 2, which we can re-write here

for quick reference as:
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

i.
dSC(t)

dt
= ΛC −

βCBC(t)SC(t)

B0 +BC(t)
− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)SC(t)

B0 +BC(t)
− (µC + δC)IC(t),

iii.
dBC(t)

dt
= N̂cαcIC(t)− αCBC(t).

(3.2.1.1)

From the model system (3.2.1.1), we make the following assumption that the dynamics of SC ,

IC and BC occur at a slow time scale, t, compared to the within-host scale PTB transmission

dynamics variables, so that SC = SC(t), IC = IC(t) and BC = BC(t). It is also important to

note from the model system (3.2.1.1), that N̂c is treated as a single value parameter whereas N̂c

is a composite parameter that summarize the disease dynamics within an infected individual host

and this make the model system (3.2.1.1) being unrealistic. We shall also urge that it is note easy

to estimate N̂c using a single-scale models. However, an alternative approach for estimating N̂c

is to use a nested multiscale model based on the within-host disease dynamics. In section 3.3,

we simplified a full nested multiscale model nested multiscale in order to estimate N̂c.

3.2.2 The within-host scale submodel for the PTB multiscale model dy-
namics

Further, for the derivation of the current nested multiscale model for PTB in ruminants considered

in this study, the within-host submodel dynamics is adopted from a more elaborative single-scale

model framework from the work by Magombedze et al. [53] with minor modifications which are

based on multiscale considerations. However, the main multiscale consideration incorporated

into the model in [53] is the excretion/shedding rate αc, which is an important multiscle con-

sideration since in general the within-host scale sub-model is linked to the between-host scale

sub-model through pathogen shedding/excretion [19]. The resulting within-host model describes

the interactions of six population: susceptible macrophages, Mφ which are target cells, infected

macrophages, Im which are macrophages which have internalized extracellular MAP bacteria

cells, MAP bacterial load, Bc at the extracellular environment, specific naive CD4+ T cells T0,

Th1 immune response cells, T1, and Th2 phenotype immune response cells, T2 (see the work in

[53]). We also modify the model in [53] by making the following assumptions:
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a. Transmission of the infection between cells is only through contact with the extracellular

MAP bacterial load Bc in the extracellular environment at the site of infection.

b. The within-host scale disease processes happen at fast time scale, τ , compared to the

between-host scale PTB submodel variable so that Mφ = Mφ(τ), Im = Im(τ), Bc =

Bc(τ), T0 = T0(τ), T1 = T1(τ) and T2 = T2(τ).

c. The extracellular MAP bacterial load modelled mechanistically by Bc = Bc(τ) is a proxy

for individual ruminant infectiousness.

d. The extracellular MAP bacteria cannot replicate outside the macrophage cells of an indi-

vidual ruminant.

e. The depletion of MAP bacteria in the extracellular environment through engulfment by

macrophages is negligible.

These assumptions lead to the following submodel of ordinary differential equations for the

within-host scale PTB transmission dynamics:



i.
dMφ(τ)

dτ
= Λφ − βφMφ(τ)Bc(τ)− µφMφ(τ),

ii.
dIm(τ)

dτ
= βφMφ(τ)Bc(τ)− γmT1(τ)Im(τ)

−(km + µφ)Im(τ),

iii.
dBc(τ)

dτ
= NmkmIm(τ)− (µc + αc)Bc(τ),

iv.
dT0(τ)

dτ
= Λ0 − (δmIm(τ) + δbBc(τ))T0(τ)

−µ0T0(τ),

v.
dT1(τ)

dτ
= θ1δmIm(τ)T0(τ)− µ1T1(τ),

vi.
dT2(τ)

dτ
= θ2δbBc(τ)T0(τ)− µ2T2(τ).

(3.2.2.1)

In the within-host scale sub-model (3.2.2.1), the first two equations describe the dynamics of the

within-ruminant-host macrophage population which is divided into two groups. The first group is
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of susceptible macrophage cellsMφ(τ) (these are macrophages which are healthy and are suscep-

tible to the Paratuberculosis at the site of infection). The second group is of infected macrophage

cells Im(t) (these are macrophages which are infected by the MAP bacteria). We assume that, at

any time τ , new macrophage recruits enter the population of susceptible macrophages through

the supply of macrophage cells from progenitor monocytes that are recruited from the blood

to the site of infection at a constant rate Λφ and this population losses individuals due to nat-

ural death at a constant rate µφ. Susceptible macrophages acquire infection through engulfing

extracellular MAP bacilli bacteria at a rate βφ. We assume that in the population of infected

macrophages there is an additional death due to bursting of infected cells at a rate km and due

to cell removal by T1 immune response at a rate γm. In addition, when infected macrophages

burst at constant rate km, they are assumed to release an average number of intracellular MAP

bacilli Nm into the extracellular environment, so that the total number of intracellular bacteria

released into the extracellular environment is NmkmIm. The third equation of the model system

(3.2.2.1) describes the changes in time of the population size of MAP bacteria in the extracellular

environment which is generated following the release of the intracellular MAP bacilli into the

extracellular environment when each infected macrophage bursts. We assume that the population

of MAP bacteria in the extracellular environment decays naturally at a constant rate µc and are

excreted out of the body of infected ruminant into the physical environment through feces at a

constant rate αc. The last three equations of the model system (3.2.2.1) describe the evolution

in time of the population of ruminant immune response cells at the site of infection in the gut

which are specific naive CD4+ T cells (T0), and the two subsets of the MAP specific immune

response, Th1 (T1) and Th2 (T2) cells (see [53] and reference therein). The population of specific

naive CD4+ T cells (T0) for MAP bacilli are produced at a constant rate Λ0 from the thymus. We

assume that these specific naive CD4+ T cells decay naturally at a rate µ0. Following the work

in [53], we assume that T0 cells become T1 or T2 immune response cells at per capita rates δm
and δb, respectively. Thus, the population of T1 and T2 immune response cells are proliferated at

a rate θ1δmImT0 and θ1δbBmT0, respectively. We assume that both the population of T1 and T2

immune response cells decay naturally at rates µ1 and µ2, respectively.

3.2.3 Integration of the between-host and within-host submodels of PTB
dynamics into a nested multiscale model

In the previous sections we presented the two submodels for the dynamics of PTB infection

(between-host submodel (3.2.1.1) and within-host submodel (3.2.2.1)) that separately describe

the two key processes of PTB disease dynamics (transmission and replication of MAP bacteria

processes) which occur at two distinct scales (within-host scale and between-host scale). We
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now integrate them into a single multiscale model as shown in flow diagram in Fig. 3.1. We

achieve this by replacing the parameter N̂c which phenomenologically models within-host scale

pathogen replication by a variable Bc(τ) which mechanistically models the within-host scale

pathogen replication to get:

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= αcBc(τ)IC(t)− αCBC(t),

iv.
dMφ(τ)

dτ
= Λφ − βφMφ(τ)Bc(τ)− µφMφ(τ),

v.
dIm(τ)

dτ
= βφMφ(τ)Bc(τ)− γmT1(τ)Im(τ)

−(km + µφ)Im(τ),

vi.
dBc(τ)

dτ
= NmkmIm(τ)− (µc + αc)Bc(τ),

vii.
dT0(τ)

dτ
= Λ0 − (δmIm(τ) + δbBc(τ))T0(τ)

−µ0T0(τ),

viii.
dT1(τ)

dτ
= θ1δmIm(τ)T0(τ)− µ1T1(τ),

ix.
dT2(τ)

dτ
= θ2δbBc(τ)T0(τ)− µ2T2(τ).

(3.2.3.1)

Based on the categorization of multiscale models of infectious disease systems presented in [19,

20], the multiscale model for PTB disease dynamics given by (3.2.3.1) falls in the category of

nested multiscale models of class 2.
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Figure 3.1: A schematic representation of the nested multiscale model of Johne’s disease in a

herd

3.2.4 Analysis of the multiscale model using fast-low time-scale analysis

We note from the full nested multiscale model system given by (3.2.3.1) has two different time

scales involved which are the between-host time scale (t) associated with the transmission dy-

namics of PTB at the population level and the within-host time scale (τ ) associated with the

replication dynamics of PTB infectious agent at an individual ruminant level. This makes the

analysis of the full nested multiscale model system (3.2.3.1) more difficult to perform. However,

the analysis of the multiscale model system (3.2.3.1) can be simplified by expressing the slow



Chapter 3 62

time-scale and the fast time-scale in terms of each other by using the relationship t = ετ , where

0 < ε << 1 and ε being a constant highlighting the fast time-scale dynamics of the within-

host model compared to the slow time-scale of the between-host scale dynamics, so that the full

nested multiscale model system (3.2.3.1) becomes:

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= αcBc(t)IC(t)− αCBC(t),

iv. ε
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t)

v. ε
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)

−(km + µφ)Im(t)

vi. ε
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t)

vii. ε
dT0(t)

dt
= Λ0 − (δmIm(t) + δbBc(t))T0(t)

−µ0T0(t)

viii. ε
dT1(t)

dt
= θ1δmIm(τ)T0(τ)− µ1T1(t)

ix. ε
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(3.2.4.1)

In the next two sub-sections, we assessed through numerical simulations of the full nested multi-

scale model system given by equation (3.2.4.1) the reciprocal influence between the between-host

scale and the within-host scale dynamics of PTB infection. We achieved this by demonstrating

(i) the influence of the between-host scale on the within-host scale through the initial infective

inoculum that susceptible ruminants may acquire by interacting with MAP bacteria in contami-

nated environment, and (ii) the influence of the within-host scale parameters on the between-host
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disease dynamics. The parameter values used for simulations are tabulated in Table 3.1. In ad-

dition, initial values used for simulations for the full nested multiscale model system (3.2.4.1)

are as follows: SC(0) = 2000, IC(0) = 5, Bc(0) = 10, Mφ(0) = 500, Im(0) = 0, T0(0) = 0,

T1(0) = 0, T2(0) = 0, BC(0) = 1000.

Parameter Description Unit Initial Source

value

ΛC Ruminants birth rate day−1 0.27 [52, 54]

βC Ruminant infection rate day−1 0.00027 Assumed

µC Death rate of Ruminants day−1 0.0001 [52]

δC Ruminant removal rate due to PTB day−1 0.0008 Assumed

infection

αC Environmentally bacteria death rate day−1 0.0018 [52]

B0 Saturation rate of Bacteria day−1 1000 [54]

Λφ Macrophages supply rate day−1 10 [53]

βφ Macrophages infection rate day−1 0.002 [53]

µφ Macrophages natural death rate day−1 0.02 [53]

Nm Burst size of intracellular MAP bacteria day−1 100 [53]

km Burst rate of infected macrophages day−1 0.00075 [53]

γm T1 lytic effect day−1 0.01 [53]

µc Bacteria’s death rate day−1 0.03 [53]

αc Excretion rate of extracellular MAP day−1 0.01 [54]

bacteria

Λ0 T0 supply rate day−1 0.001 [53]

µ0 T0 death rate day−1 0.01 [53]

µ1 T1 death rate day−1 0.03 [53]

µ2 T2 death rate day−1 0.02 [53]

δm T0 differentiation into T1 cells day−1 0.01 [53]

δb T0 differentiation into T2 cells day−1 0.01 [53]

θ1 T1 cells clonal expansion day−1 9000 [53]

θ2 T2 cells clonal expansion day−1 9000 [53]

Table 3.1: Model parameter values associated with the within-host scale and between-host scale

dynamics of Paratuberculosis
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3.2.4.1 The influence of initial inoculum on the within-host scale of PTB infection dynam-
ics

In this subsection, we demonstrate through numerical simulations of the full nested multiscale

model system (3.2.4.1) the influence of between-host scale dynamics on within-host scale vari-

ables for PTB infection dynamics. This is achieved by varying the initial value condition of

the infective inoculum Bc(0) that susceptible ruminants may acquire by interacting with MAP

bacteria in contaminated environment for different values and assess its impact on the dynam-

ics of four selected key within-host variables, Im, Bc, T1 and T2. The results of the influence

of between-host scale dynamics on the within-host scale variables for the PTB infection are as

follows:

a. Fig. 3.2 shows the effect of varying Bc(0) for different values on the within-host variables

(Im, Bc, T1, T2). Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000.

b. Fig 3.3 also shows the effect of varying Bc(0) for different values on the within-host vari-

ables (Im, Bc, T1, T2). Bc(0): Bc(0) = 1000, Bc(0) = 10000, and Bc(0) = 100000.

c. Fig 3.4 further shows the effect of varying Bc(0) for different values on the within-host

variables (Im, Bc, T1, T2). Bc(0): Bc(0) = 1000000, Bc(0) = 10000000, and Bc(0) =

100000000.

Collectively, from all these three sets of numerical results in Fig. 3.2, Fig. 3.3, and Fig. 3.4,

we notice that as the initial infective inoculum Bc(0) increases beyond the minimum infectious

dose (MID), there is a noticeable but minimal changes in the dynamics of the within-host scale

variables Im, Bc, T1, T2. This is because, once the host is infected, the replication of the MAP

bacteria at the within-host scale sustains the disease dynamics at this scale.
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Figure 3.2: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

evolution of (a) infected macrophage population (Im), (b) within-host MAP bacteria population

(Bc), (c) MAP-Specific Th1 response cells (T1), and (d) MAP-Specific Th2 response cells (T2) for

different values of initial value condition of the within-host MAP bacterial load Bc(0): Bc(0) =

10, Bc(0) = 100, and Bc(0) = 1000.

Fig. 3.2 shows the solution profile of the population of (a) infected macrophage population (Im),

(b) within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells (T1), and

(d) MAP-Specific Th2 response cells for different initial values of the within-host MAP bacterial

load Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000. The results in Fig. 3.2 illustrate that

when the initial inoculum vary from Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000 this only

affect the dynamics of the disease at the within-host scale within the first 20 days. However,

after that there is no different in the dynamics of the disease. This implies that different initial

inoculum values converge to the same endemic state after a period of about 20 days. Therefore,

these results confirm that once the minimum infectious dose is consumed, the long term disease

dynamics is independent of the initial inoculum.
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Figure 3.3: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

propagation of (a) infected macrophage population (Im), (b) within-host MAP bacteria popula-

tion (Bc), (c) MAP-Specific Th1 response cells (T1), and (d) MAP-Specific Th2 response cells

(T2) for different values of initial value condition of the within-host MAP bacterial load Bc(0):

Bc(0) = 1000, Bc(0) = 10000, and Bc(0) = 100000.

Fig. 3.3 shows the solution profile of the population of (a) infected macrophage population (Im),

(b) within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells (T1), and

(d) MAP-Specific Th2 response cells for different values of initial value condition of the within-

host MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000. The results in

Fig. 3.3 illustrate that when the initial inoculum vary from Bc(0) = 1000, Bc(0) = 10000, and

Bc(0) = 100000 this only affects the dynamics of the disease at the within-host scale within

the first 30 days. However, after that there is also no different in the dynamics of the disease.

This also implies that different initial inoculum values converge to the same endemic state after a

period of about 30 days. Therefore, these results also confirm that once the minimum infectious

dose is consumed, the long term disease dynamics is independent of the initial inoculum.
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Figure 3.4: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

changes of (a) infected macrophage population (Im), (b) within-host MAP bacteria population

(Bc), (c) MAP-Specific Th1 response cells (T1), and (d) MAP-Specific Th2 response cells (T2) for

different values of initial value condition of the within-host MAP bacterial load Bc(0): Bc(0) =

1000000, Bc(0) = 10000000, and Bc(0) = 100000000.

Fig 3.4 shows the solution profiles of the population of (a) infected macrophage population (Im),

(b) within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells (T1), and

(d) MAP-Specific Th2 response cells for different values of initial inoculum of MAP bacterial

load Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000 at within-host scale. The results

in Figure (3.4) also illustrate that the variation in the initial inculom from Bc(0) = 1000000,

Bc(0) = 10000000, and Bc(0) = 100000000 influence with the dynamics of the disease at the

within-host scale between 20 and 50 days. However, after that the dynamics of the disease reach

an endemic level. Similarly, this also implies that different initial inoculum values converge to

the same endemic state after a period of about 50 days. In the same way as the results in Fig. 3.2

and Fig. 3.3, these results also confirm that once the minimum infectious dose is consumed, the

long term disease dynamics is independent of the initial inoculum. However, the all the three
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figures confirm (i.e. Fig. 3.2, Fig. 3.3 and Fig. 3.4 ) that as the initial inoculum increases, the

time to reach the endemic state also increases.

3.2.4.2 The influence of initial inoculum on the between-host scale of PTB infection dy-
namics

In this subsection, we investigated through numerical simulations of the full nested multiscale

model system (3.2.4.1) the influence of initial inoculum on between-host scale variables for

PTB infection dynamics. This is achieved by varying the initial value condition of the infective

inoculum Bc(0) that susceptible ruminants may acquire by interacting with MAP bacteria in

contaminated environment for different values and assess its impact on the dynamics of all the

three between-host variables: SC , IC , and BC . The results of the influence of initial inoculum on

the between-host scale variables for the PTB infection are as follows:

a. Fig. 3.5 shows the effect of varyingBc(0) for different values on the between-host variables

(SC , IC , BC). Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000.

b. Fig. 3.6 also shows the effect of varying Bc(0) for different values on the between-host

variables (SC , IC , BC). Bc(0): Bc(0) = 1000, Bc(0) = 10000, and Bc(0) = 100000.

c. Fig. 3.7 again shows the effect of varying Bc(0) for different values on the between-host

variables (SC , IC , BC). Bc(0): Bc(0) = 1000000, Bc(0) = 10000000, and Bc(0) =

100000000.

Collectively, from all these three sets of numerical results in Fig. 3.5, Fig. 3.6, and Fig. 3.7, we

notice the same trends that as the initial value of the infective inoculum Bc(0) increases beyond

the minimum infectious dose (MID), there is a noticeable but minimal changes in the dynamic

of the between-host scale variables SC , IC , BC .
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Figure 3.5: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

evolution of (a) population of susceptible ruminants (SC), (b) population of infected ruminants

(IC), and (c) between-host MAP bacterial load (BC) for different values of initial value of the

within-host MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000.

Fig. 3.5 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) environmental MAP bacteria load (BC) for different values of initial value of the within-

host MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 100, and Bc(0) = 1000. The results

in Fig. 3.5 show that an increase in the initial inoculum from Bc(0) = 10 to Bc(0) = 1000

makes no different in the transmission dynamics of the disease at the between-host scale as the

between-host scale variables (SC , IC , BC) remain constant as the initial inoculum changes.
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Figure 3.6: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

propagation of (a) population of susceptible ruminants (SC), (b) population of infected ruminants

(IC), and (c) between-host MAP bacterial load (BC) for different values of initial value of the

within-host MAP bacterial load Bc(0): Bc(0) = 1000, Bc(0) = 10000, and Bc(0) = 100000.

Fig. 3.6 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) environmental MAP bacteria load (BC) for different values of initial value condition of the

within-host MAP bacterial load Bc(0): Bc(0) = 1000, Bc(0) = 10000, and Bc(0) = 100000.

The results in Fig. 3.6 show that an increase in the initial inculum fromBc(0) = 1000 toBc(0) =

100000 also makes no different in the transmission dynamics of the disease at the between-host

scale as the between-host scale variables (SC , IC , BC) remain constant as the initial inoculum

changes.
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Figure 3.7: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

changes of (a) population of susceptible ruminants (SC), (b) population of infected ruminants

(IC), and (c) between-host MAP bacterial load (BC) for different values of initial value of the

within-host MAP bacterial load Bc(0): Bc(0) = 1000000, Bc(0) = 10000000, and Bc(0) =

100000000.

Fig. 3.7 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) environmental MAP bacteria load (BC) for different values of initial value of the within-host

MAP bacterial load Bc(0) = 1000000, Bc(0) = 10000000, and Bc(0) = 100000000. The results

in Fig. 3.7 show that an increase in the initial inculum from Bc(0) = 1000 to Bc(0) = 100000

only associated with the increase in the between-host scale MAP bacteria within the first 2500

days as both the susceptable and infected ruminants remain constant with the increase in the

initial inoculum.
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3.2.4.3 The influence of within-host scale parameters on the between-host scale PTB in-
fection dynamics

In this subsection, we illustrate through numerical simulations of the full nested multiscale model

system (3.2.4.1) the influence of within-host scale parameters on between-host scale variables for

PTB infection dynamics. We vary the within-host scale parameters, αc, µc and Nm and assess

their impact on the dynamics of the between-host scale variables.

Figure 3.8: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing the

evolution in time of (a) population of susceptible ruminants (SC), (b) population of infected

ruminants (IC), and (c) between-host MAP bacterial load (BC) for different values of excretion

rate of the within-host MAP bacterial load into the environment αc: αc = 0.1, αc = 0.01, and

αc = 0.001.

Fig. 3.8 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) environmental MAP bacteria load (BC) for different values of excretion rate of the within-

host scale MAP bacilli into the environment αc: αc = 0.1, αc = 0.01, and αc = 0.001. The
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results show that an increase in the excretion rate of the within-host scale bacterial load into the

physical environment by each infected ruminant individual has important public health effects

at the between-host scale dynamics of PTB infection as there is a noticeable increase in the

population of environmental MAP bacteria BC and the population of infected ruminants IC as

well as a decrease in the population of susceptible ruminants SC .

Figure 3.9: Graphs of numerical solutions of the multiscale model system(3.2.4.1) showing

changes in (a) population of susceptible ruminants (SC), (b) population of infected ruminants

(IC), and (c) population of environmental MAP bacterial load (BC) for different values of death

rate of the within-host MAP bacterial load µb: µc = 0.3, µc = 0.03, and µc = 0.003.

Fig. 3.9 shows changes in (a) population of susceptible ruminants (SC), (b) population of infected

ruminants (IC), and (c) population of environmental MAP bacteria load (BC) for different values

of natural decay rate of the within-host scale MAP bacteria cells: µc: µc = 0.3, µc = 0.03,

and µc = 0.003. The results in Fig. 3.9 show that as the death rate of the within-host scale

bacterial load increases, there is also noticeable reduction in the population of environmental

MAP bacteria BC and the population of infected ruminants IC as well as an increase in the

population of susceptible ruminants SC at between-host scale. Therefore, any treatment measures
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that kills the MAP bacteria at within-host scale are equally good for both the individual ruminant

and the population because a single infected ruminant will no longer pose a threat for transmitting

infection in the population/herd which consequently reduces the transmission risk of the disease

among the ruminants in the population/herd.

Figure 3.10: Graphs of numerical solutions of the multiscale model system(3.2.4.1) showing

dynamics in (a) population of susceptible ruminants (SC), (b) population of infected ruminants

(IC), and (c) population of environmental MAP bacterial load (BC) for different values of within-

host scale MAP bacteria produced per bursting infected macrophage cell Nm: Nm = 100,

Nm = 1000, Nm = 10000.

Fig. 3.10 shows the dynamics in the (a) population of susceptible ruminants (SC), (b) popula-

tion of infected ruminants (IC), and (c) population of environmental MAP bacterial load (BC)

for different values of within-host scale bursting size of each infected macrophage cell Nm:

Nm = 100, Nm = 1000, Nm = 10000. The numerical results in Fig. 3.10 show that as an aver-

age replication rate of the within-host MAP bacteria within infected macrophage cells at the site

of infection increases, transmission of PTB infection at the population/herd level of ruminants

also increases. Therefore, these results demonstrate the benefit of treatment that can restrict the
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replication of MAP bacteria at individual ruminant level on the transmission of the disease at the

population/herd level of ruminants. Collectively, we note from the results in Fig. 3.8 - Fig. 3.10,

that the between-host scale variables (SC , IC , BC) are significantly sensitive to the variation of

the three selected within-host scale parameters (αc, µc and Nm), particularly the decay rate µc of

the within-host scale MAP bacteria.

Overall, the results in Fig. 3.5 - Fig. 3.10 show that:

a. The between-host scale influences the within-host scale through the initial inoculum of the

infectious agent.

b. Once the initial inoculum has been introduced from the between-host scale, then the infec-

tion at within-host scale is sustained by pathogen replication.

c. As the initial inoculum acquired from the between-host scale increases beyond the MID,

the time taken for the infection at within-host scale to reach equilibrium increases.

d. The between-host scale variables (SC , IC , BC) are significantly sensitive to the variation

of the three selected within-host scale parameters (αc, µc and Nm), particularly the decay

rate µc of the within-host scale MAP bacteria.

This indeed indicates that during the dynamics for PTB infection in ruminants once the infection

has successfully established at the within-host scale, the contribution of initial infective inoculum

to the total pathogen load becomes negligible compared to the contribution of the replication-

cycle.

3.3 Estimation of N̂c from the Full Nested Multiscale Model

In this section, we estimate N̂c parameter in the single scale model for the dynamics of PTB

infection using the nested multiscale model system (3.2.4.1). This is achieved by assumming

that 0 < ε << 1, so that to reasonable approximation we can set ε = 0 in the the full nested mul-

tiscale model system (3.2.4.1). Thus, we consider the last six equations of the PTB transmission

dynamics multiscale model system (3.2.4.1) re-written here as a quick reference
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

i. ε
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t),

ii. ε
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)

−(km + µφ)Im(t),

ii. ε
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t),

iv. ε
dT0(t)

dt
= Λ0 − (δmIm(t) + δbBc(t))T0(t)

−µ0T0(t),

v. ε
dT1(t)

dt
= θ1δmIm(τ)T0(τ)− µ1T1(t),

vi. ε
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(3.3.1)

Since 0 < ε << 1, we can set ε to zero so that the within-host scale PTB replication dynamics

submodel becomes independent of time and we obtain:

i. Λφ − βφM∗
φB
∗
c − µφM∗

φ = 0,

ii. βφM
∗
φB
∗
c − γmT ∗1 I∗m − (km + µφ)I∗m = 0,

iii. NmkmI
∗
m − (µc + αc)B

∗
c = 0,

iv. Λ0 − (δmI
∗
m + δbB

∗
c )T

∗
0 − µ0T

∗
0 = 0,

v. θ1δmI
∗
mT
∗
0 − µ1T

∗
1 = 0,

vi. θ2δbB
∗
cT
∗
0 − µ2T

∗
2 = 0.

(3.3.2)
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From (3.3.2) we get

i. M∗
φ =

2Λφ(µc + αc)

βφNmkmM + 2µφ(µc + αc)
,

ii. I∗m =
M

2
,

iii. B∗c =
NmkmM

2(µc + αc)
,

iv. T ∗0 =
2Λ0(µc + αc)

2µ0(µc + αc) + [δm(µc + αc) + δbNmkm]M
,

v. T ∗1 =
θ1δmΛ0(µc + αc)M

2µ0µ1(µc + αc) + µ1[δm(µc + αc) + δbNmkm]M
,

vi. T ∗1 =
θ2δbΛ0NmkmM

2µ2µ0(µc + αc) + µ2[δm(µc + αc) + δbNmkm]M
.

(3.3.3)

In the expression (3.3.3), 

M = −φ1 +
√
φ2

1 + 4φ2

φ1 =
k3 + µ1µ0k2 − k1Q

k2k1

,

φ2 =
µ1µ0Q

k2k1

,

(3.3.4)
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with 

Q = µφ(µφ + δφ)(R0W − 1),

k1 =
µ1δm(µc + αc) + µ1δbNmkm

(µc + αc)
,

k2 =
βφNmkm(µφ + km)

(µc + αc)
,

k3 = k0 + µφγmθ1δmΛ0,

k0 =
βφNmkmγmθ1δmΛ0

(µc + αc)
,

R0W =
βφΛφNmkm

µφ(µφ + km)(µc + αc)
.

(3.3.5)

Further, in the expression (3.3.5) the quantity

R0W =
βφΛφNmkm

µφ(µφ + δφ)(µc + αc)
,

is the within-host scale basic reproductive number. Therefore, the fast-slow analysis reduces the

within-host scale submodel system (3.2.2.1) to the algebraic equations given in (3.3.3) which can

be fed into the parameters of the between-host scale submodel and become

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= αcB

∗
c IC(t)− αCBC(t).

(3.3.6)

We note that from the model system given by (3.3.6) that the total number of extracellular MAP

bacilli excreted by each infected ruminant into the physical environment BcIC is now approxi-

mated by B∗c IC . Using the notation that Nc = B∗c , a composite parameter which can be inter-

preted as the average number of the within-host scale MAP bacterial load (Bc) at the endemic

equilibrium that is available for excretion into the environment by each infected ruminant, the
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full multiscale model (3.2.3.1) of PTB transmission dynamics is simplified to become

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= NcαcIC(t)− αCBC(t)

(3.3.7)

where the composite parameter Nc which estimates N̂c is given by

Nc =
Nmkm

2(µc + αc)

[
−φ1 +

√
φ2

1 + 4φ2

]
. (3.3.8)

In the expression for Nc given by equation (3.3.8),
φ1 =

k3 + µ1µ0k2 − k1Q

k2k1

,

φ2 =
µ1µ0Q

k2k1

(3.3.9)

with 

Q = µφ(µφ + δφ)(R0W − 1),

k1 =
µ1δm(µc + αc) + µ1δbNmkm

(µc + αc)
,

k2 =
βφNmkm(µφ + km)

(µc + αc)
,

k3 = k0 + µφγmθ1δmΛ0,

k0 =
βφNmkmγmθ1δmΛ0

(µc + αc)
,

R0W =
βφΛφNmkm

µφ(µφ + km)(µc + αc)
.

(3.3.10)

Based on the categorization of the multiscale models of infectious disease systems in [19, 20],

the multiscale model system given by (3.3.7) is a nested multiscale model of class 3. After



Chapter 3 80

estimating N̂c as well as establishing the simplified nested multiscale model system given by

(3.3.7), we now analyze the behavior of this nested multiscale model system (3.3.7). In the next

section we present some results from mathematical analysis and numerical simulations of the

behaviour of the simplified nested multiscale model (3.3.7).

3.4 Mathematical Analysis of the Simplified Nested Multiscale

Model For PTB Infection in Ruminants

The PTB dynamics multiscale model system (3.3.7) can be analyzed in a region Γ ⊂ R3
+ of

biological interest, which is given by

Γ = {(SC ; IC ;BC) ∈ R3
+ :

0 ≤ SC + IC ≤ S1, 0 ≤ BC ≤ S2}
(3.4.1)

where the constant S1 and S2 are such that
S1 =

ΛC

µC
,

S2 =
NcαcΛC

αCµC
.

(3.4.2)

It can be easily shown that all solutions for the simplified multiscale model system (3.3.7) with

positive initial conditions remain bounded within the invariant region Γ given by (3.4.1). There-

fore, it is sufficient to consider the dynamics of the flow generated by the simplified nested model

system (3.3.7) in Γ.

In the following three subsections, we evaluate global stability of both the disease-free and

endemic equilibrium states for the PTB dynamics multiscale model system (3.3.7) as well as

evaluating sensitivity of the two main between-host transmission metrics which are the basic

reproductive number (R0) and the endemic value of the nested multiscale model (3.3.7) MAP

bacteria (B∗C).
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3.4.1 Disease-free equilibrium and reproductive number of the simplified
nested multiscale model for PTB infection in ruminants

The disease-free equilibrium of the nested multiscale model system (3.3.7) was obtained by

setting the left-hand side of the model to zero and further assume that IC = BC = 0 to get

Ê0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
, (3.4.1.1)

where Ê0 denotes the disease-free equilibrium of the nested multiscale model system (3.3.7).

3.4.1.1 Derivation of the reproductive number of the simplified multiscale model for PTB
infection in ruminants

The basic reproduction number denoted by R0, is a threshold value that is often used as a public

health measure to determine whether a disease will persist or die out. In this study, we computed

the basic reproductive number of the simplified multiscale model system (3.3.7) by using the

next generation operator approach in [5] to obtain

R0 =
βCΛCNcαc

µC(µC + δC)B0αC
(3.4.1.1.1)

which can be re-written as

R0 = R0aR0b (3.4.1.1.2)

where the quantity R0a is explained as follows:

a. Consider a single newly infected ruminant entering a contaminated-free environment at an

equilibrium point. The expected number of bacteria cells produced by this ruminant and

contaminate the environment is approximately

R0a =
Ncαc

µC(µC + δC)
. (3.4.1.1.3)

From the expression (3.4.1.1.3) we deduce that the quantity R0a depends on the average

MAP bacterial load within an infected ruminant Nc which is excreted into the physical

environment at a rate αc , where it becomes infectious to other ruminants during feeding

from contaminated food or water with MAP bacterial load. In this study, we consider

Nc as a composite parameter which is interpreted as the endemic value of the within-host
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scale MAP bacterial load B∗c which we have already determined from the within-host PTB

disease dynamics sub-model as given in equation (3.3.8). Therefore, the quantity R0a

quantifies how much an infected ruminant can contribute to the spread of the disease in the

herd during its entire period of infectiousness, with 1/(µC + δC) describes the average life

span of an infected ruminant.

b. Similarly, consider a newly bacterial infectious dose of MAP bacilli cells entering a disease-

free population of a ruminant population at an equilibrium point. The expected number of

ruminants infected by this dose of bacteria cells is approximately

R0b =
βCΛC

αCB0

. (3.4.1.1.4)

We can also deduce that the quantity R0b in (3.4.1.1.4) depends on the supply rate of

susceptible ruminants ΛC , the rate at which susceptible ruminants contract MAP bacteria

in the physical environment domains during feeding βC , the average life span of each

susceptible ruminant host 1/µC , the average life span of MAP bacteria load in the physical

environment domains and the susceptibility coefficient to PTB infection in the ruminant

community/herd, where B0 is the bacterial load that results in 50% chance of the people

being infected.

Collectively, based on the two expressions R0a and R0b , we conclude that the epidemiological

(between-host scale) transmission parameters and the immunological (within-host scale) param-

eters all contribute to the transmission of ruminant paratuberculosis disease.

3.4.1.2 Global stability of the disease-free equilibrium

In this subsection, we determine the global stability of DFE of the simplified multiscale model

system (3.3.7) by using a next generation operator [5] as in Chapter 2. Thus the system (3.3.7)

can be re-written in the form 
dX

dt
= F (X,Z),

dZ

dt
= G(X,Z),

(3.4.1.2.1)

where

• X = SC represents a compartment of uninfected ruminants, and
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• Z = (IC , BC) represents compartments of infected ruminants and Infective MAP bacteria

in the physical environment.

We let

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
, (3.4.1.2.2)

denote the disease-free equilibrium (DFE) of the model system (3.3.7). For X∗ to be globally

asymptotically stable, the following conditions (H1) and (H2) must be satisfied.

H1.
dX

dt
= F (X, 0) is globally asymptotically stable (g.a.s),

H2. G(X,Z) = AZ− Ĝ(X,Z), Ĝ((X,Z)≥ 0 for (X,Z) ∈ R3
+ where A = DZG(X∗, 0) is an

M-matrix and R3
+is the region where the model makes biological sense.

In this case,

F (X, 0) =
[

ΛC − µCSC
]
, (3.4.1.2.3)

and the matrix A is given by

A =


−(µC + δC)

βCΛC

µCB0

Ncαc −αC

 (3.4.1.2.4)

and

Ĝ(X,Z) =


(

ΛC

µCB0

− SC
B0 +BC

)
βCBC

0

 . (3.4.1.2.5)

Since S0
C =

ΛC

µCB0

≥ SC
B0 +BC

, it is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R3
+. It is also clear

that A is a M-matrix, since the off diagonal elements of A are non-negative. We state a theorem

which summarizes the above results.

Theorem 3.1. The fixed point

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0

)
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of the multiscale model system (3.3.7) is globally asymptotically stable (GAS) if R0 ≤ 1 and the

assumptions (H1) and (H2) are satisfied.

3.4.2 Endemic Equilibrium and its Global Stability

In ths subsection, we determine the endemic equilibrium state of the simplified nested multiscale

model system (3.3.7) by setting the left-hand side of the simplified nested multiscale model

system (3.3.7) to zero but assuming that IC and BC are non-zero, so that

E∗ = (S∗C , I
∗
C , B

∗
C) (3.4.2.1)

where 

S∗C =
ΛC(µC [R0 − 1] + (βC + µC))

(βC + µC)µCR0

,

I∗C =
βCΛC [R0 − 1]

(µC + δC)(βC + µC)R0

,

B∗C =
µCB0

βC + µC
[R0 − 1],

R0 =
βCΛCNcαc

µC(µC + δC)B0αC
.

(3.4.2.2)

We deduce that only a single positive endemic equilibrium point exists wheneverR0 > 1. To this

effect, we conclude that there exists only one unique endemic equilibrium point for model system

(3.3.7) whenever R0 > 1. We can then further determine the global stability of the endemic

equilibrium for the simplified multiscale model system (3.3.7) since we have established the

existence of E∗ without providing any information about its stability. The global stability of the

endemic equilibrium E∗ of the multiscale model system (3.3.7) is summarized in the following

theorem:

Theorem 3.2. The Endemic Equilibrium E∗ of the multiscale model system (3.3.7) is globally

asymptotically stable (GAS) whenever R0 > 1.

Proof : The proof is not needed since the global stability of the endemic equilibrium is a conse-

quence of Theorem 2.6 in Chapter 2.
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3.4.3 Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of the two PTB transmission metrics derived

from the simplified nested multiscale model given by (3.3.7) to the parameters of the model. As

mentioned previously, the two PTB transmission metrics derived from the baseline PTB mul-

tiscale model system (3.3.7) are: the reproduction number, R0, which generally describes the

dynamics of a disease at the beginning of an infection and the endemic value of the environmen-

tal bacteria load, B∗C , which generally describes the dynamics of a disease at the endemic level.

For any epidemic model that describes the dynamics of any diseases in a population, a sensi-

tivity analysis study is an essential to perform as it helps to identify model’s parameters which

can be targeted for disease control, elimination or even eradication, and also be monitored and

controlled during an outbreak of the disease. In this case, sensitivity analysis of both the PTB

multiscale transmission metrics (R0 and B∗C), with respect to the variation of the baseline PTB

multiscale model system (3.3.7)’s parameters is conducted using Latin Hypercube Sampling and

partial rank correlation coefficients (PRCCs). We used 1000 simulations per run to investigate

the impact of each model parameter on both the basic reproduction numbers (R0) and the en-

demic value of the environmental bacteria load (B∗C). The sensitivity results of R0 and B∗C to the

model parameters are given in the Tornado plots, Fig. 3.11 and Fig. 3.12, respectively.

Figure 3.11: Tornado plot of partial rank correlation coefficients (PRCCs) of the model parame-

ters that influence the PTB transmission metric R0.
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Figure 3.12: Tornado plot of partial rank correlation coefficients (PRCCs) of the model parame-

ters that influence the PTB transmission metric B∗C .

Fig. 3.11 and Fig. 3.12 show the results of the evaluating the sensitivity of the two PTB trans-

mission metrics derived from the PTB simplified multiscale model (3.3.7). From the sensitivity

analysis results of both R0 and B∗C to baseline PTB multiscale model (3.3.7)’s parameters in

Fig. 3.11 and Fig. 3.12, we deduce that some of the baseline PTB multiscale model (3.3.7)’s pa-

rameters have positive PRCCs and some have negative PRCCs. This indicates that, parameters

with positive PRCCs will increase the value of both R0 and B∗C when they are increased, while

parameters with negative PRCCs will decrease the value of R0 and B∗C when they are increased.

For instance, increasing a parameter like bacteria transmission rate βC at the between-host scale

eventually increases the value of R0 and B∗C , and also increasing parameters like B0 will lead to

a reduction in the value of both R0 and B∗C . Therefore, since R0 characterizes transmission of

PTB infection at the start of the epidemic while B∗C characterizes transmission of PTB when the

disease is now endemic in a herd, we make the following conclusions regarding the sensitivity of

both R0 and B∗C :

a. The PTB transmission metric R0 is relatively sensitive to the variation of the within-host

scale and between-host scale parameters of the multiscale model system (3.3.7), but more

highly sensitive to the five within-host scale parameters (µc, Nm, µφ, βφ, km). From the

results of the sensitivity analysis of R0, we can easily notice that the influence of the

between-host scale parameters on the changes of R0 is negligible. This is contrary to
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the results of sensitivity analysis of the single-scale model basic reproductive number in

Chapter 2 which indicate that the between-host parameters such as βC and B0 have the

higher sensitive PRCC indexes of about more than 0.4. This might be due to the fact

that single-scale models characterize the dynamics of an infection at the microscale of

organization.

b. Similarly, the PTB transmission metric B∗C is also relatively sensitive to the variation of

the within-host scale and between-host scale parameters of the multiscale model system

(3.3.7), but highly sensitive to only three within-host scale parameters (µc, Nm, km) and

two between-host scale parameters (βC , B0). This means that when PTB is at the endemic

level, interventions such as (a) vaccination that reduces susceptibility of ruminant to infec-

tion, (b) drug treatments if available that would reduce the population of the within-host

MAP bacterial cells, and (c) environmental hygiene management that reduces the risk of

a ruminant to interact with environmental MAP bacterial cells in the environment need to

be highly considered as they are likely to have the highest benefits in reducing the trans-

mission of PTB among ruminants in the herd. This is also contrary to the output of results

of sensitivity analysis of the single-scale model basic reproductive number in Chapter 2

which indicate that the two between-host parameters βC and B0 have the least sensitive

PRCC indexes of about less than 0.1. This also can be due to the fact that single-scale

models phenomenologically characterize the dynamics of an infection at the microscale of

organization.

3.5 Summary

The major innovation in this chapter to scientific knowledge is the use of a nested multiscale

model to investigate if the initial infective inoculum increases beyond the minimum infectious

dose (MID) has an impact on the dynamics of an infectious disease system in which the pathogen

replication-cycle occurs only at the microscale. The numerical results in this chapter demonstrate

that once the minimum infectious dose is consumed, then the infection at the within-host scale is

sustained by pathogen replication. These results also show that as the initial inoculum increases,

the time to reach the endemic state also increases at this scale domain. However, at the between-

host scale, the results further show that when initial inoculum increases beyond the MID makes

no different in the transmission dynamics of the disease in the ruminant population. From these

results it seem like superinfection might have an insignificant effect on the dynamics of PTB in

ruminants. However, at this stage we cannot precisely conclude if superinfection does not effect
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on the dynamics of the disease. This would be investigated in the next chapter (i.e. Chapter 4) us-

ing an embedded multiscale model. Furthermore, through the reduction of the dimension in order

of full nested multiscale model enable us to estimate a composite parameter, N̂c, that is difficult

to estimate using single-scale models. The estimation of N̂c facilitate in enhancing single-scale

model framework that can be developed at host level to predict the dynamics of paratuberculosis

in ruminants. This is largely because single-scale models consider pathogen transmission as the

only major disease process, while multiscale models consider both pathogen transmission and

pathogen replication as the two major disease processes. We also perform a sensitivity analy-

sis to the two main disease dynamics metrics of the simplified nested multiscale model, namely

the basic reproductive number and the endemic value of the MAP bacteria in the environment

to determine important parameters of paratuberculosis disease dynamics. The sensitive analysis

results show that at the start of PTB infection and when it has reach at the endemic level, the

two key within-host parameters (µc and Nm) are relatively sensitive to PTB disease dynamics.

This is unlike the sensitivity results of the basic reproductive number and the endemic value of

the MAP bacteria in the environment in the single-scale model for PTB developed in Chapter 2

which only provide a general indication about the influential of the within-host dynamics signifi-

cantly influence the dynamics of the PTB disease, but not specifically indicating parameters that

have potential influence on the disease dynamics.
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An Embedded Multiscale Model to Study
Paratuberculosis Dynamics in Ruminants

4.1 Introduction

In the previous chapter, we developed a nested multiscale model for ruminant paratuberculosis.

We used the nested multiscale model to investigate the influence of initial inoculum on ruminant

paratuberculosis disease dynamics. What we do not know is whether an embedded multiscale

model can be used to model the same disease system with comparable accuracy. The most defin-

ing feature of an embedded multiscale model is that at any level of organization of a disease

the macroscale influences the microscale through super-infection [1]. This is unlike the nested

multiscale model in which the macroscale influences the microscale through initial infective in-

oculum. In this chapter, we presented an embedded multiscale model to investigate the influence

of super-infection on the dynamics of infectious diseases that has a pathogen replication-cycle at

microscale using Paratuberculosis in ruminants as a case study. Therefore, the objective in this

chapter was to investigate how the super-infection influences disease dynamics for a pathogen

with a replication cycle at the microscale. In the next chapter we compare the suitability of the

embedded multiscale model in prediction of PTB transmission dynamics with the nested multi-

scale model described in the previous chapter. To the best of our knowledge, there is no embed-

ded multiscale models in the literature that we are aware of which characterize the dynamics of

infectious diseases that have a pathogen replication-cycle at the microscale of organization of an
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infectious disease system. The embedded multiscale model presented in this study is the first of

its kind to be developed to characterize infectious disease dynamics with a pathogen replication-

cycle at the microscale. However, the only application of the embedded multiscale models that

we aware of is that of hookworm infection [8] which is an environmentally-transmitted disease

systems of type II in which there is no pathogen replication-cycle at the microscale. Moreover,

the multiscale models such as in [9] and [10] use embedded multiscale models as sub-models

in the context of schistosomiasis and guinea worm infection, respectively. Unlike hookworm

infection in [8] and schistosomiosis in [9] as well as guinea worm infection in [10] in which

their disease-causing agents have no replication-cycle inside a host, paratuberculosis (PTB) in

ruminant considered in this study is caused by the bacteria that has a replication-cycle that oc-

cur inside a host. The bacteria which is responsible for PTB infection in ruminants is called

Mycobacterium Avium Subspecies Paratuberculosis (MAP) [52–54] which is the most notori-

ous obligate pathogen affecting domestic ruminants and wild animals throughout the world. As

previously mentioned, MAP is commonly widespread in dairy cattle and can significantly pose

a serious economic burdens in dairy cattle industries due to the reduction of milk production,

increased cattle mortality and premature culling of infected cattle as well as reduction of sale

price for cattle in regions with high PTB prevalence [48]. Additionally, in the dairy cattle, PTB

is manifested by cattle’s failure to grow, increases in weight loss and chronic diarrhea.

For the transmission-replication dynamics of PTB in the dairy ruminants at the host level, there

are two important disease processes that usually occur at different scales of PTB infection. One is

the outside-host (i.e., within-host scale) disease process which is associated with the transmission

of MAP at the ruminant population-level. The other is the inside-host (i.e., between-host scale)

disease process which is associated with the replication of MAP at the ruminant individual-level.

It is worthy to mentioning that there is a reciprocal influence between these two disease pro-

cesses on the dynamics of PTB in the dairy ruminants. Mathematical models that integrate these

two disease processes of PTB in dairy ruminants into multiscale modelling have been devel-

oped using either individual-based multiscale such as [62] or hybrid multiscale modelling such

as [54, 61]. It is also worth mentioning that although an IMSM in [62] and a HMSM in [54] both

have respectively shed some lights into the multiscale nature of PTB infection and the impact

of health interventions against the disease, there are important differences between them and the

current embedded multiscale model presented in this research study. Therefore, the following

differentiate our model from the models in [54], our model uses pathogen load as a common

metric for infectiousness and disease transmission potential, whereas in [54] different metrics

were used for disease transmission across scales. Additionally, the within-host scale model in

[54] use pathogen load as the metric for disease transmission while at between-host scale disease
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class (i.e. infected class or prevalence) is used as the metric for disease transmission.

4.2 Embedded Multiscale Model for the PTB Transmission-

Replication Dynamics in Ruminants

To investigate explicitly if superinfection has an influence on the dynamics of infectious diseases

with a pathogen replication-cycle at the microscale of their organizations using ruminant paratu-

berculosis as an example, we developed a multiscale model which takes into account the recipro-

cal influence of the macroscale on the microscale through superinfection on the disease dynam-

ics. For the PTB in ruminants, the within-host sub-model that characterize the dynamics of the

disease at the microscale was adopted with minor modifications from a single-scale model frame-

work in Magombedze et al. [53]. However, the only minor extension to the model in [53] is the

addition of the excretion/shedding rate parameter αc. While the between-host sub-model that de-

scribes the dynamics of the disease at the microscale is based on a susceptible-infected-pathogen

(SIP ) epidemic framework as described in Chapter 2. Therefore, integrating the between-host

epidemic framework developed in Chapter 2) and the adopted within-host model in [53] through

super-infection and pathogen replication method introduced in [9] result to embedded multiscale

model for ruminant paratuberculosis transmission-replication dynamics which is consequently

based on monitoring the dynamics of nine populations: susceptible ruminant (SC), infected ru-

minant (IC) and the between-host MAP bacilli bacterial load (BC) in the environment at the

between-host scale; and susceptible macrophages (MΦ), infected macrophages (Im), within-host

MAP bacilli bacterial load (Bc) at the extracellular environment, specific naive CD4+ T cells

(T0), Th1 response cells (T1), and Th2 phenotype response cells (T2) at the within-host scale

within an infected ruminant-host level. We made the following assumption for this model:

(i) Infected ruminants do not naturally recover from MAP infection,

(ii) Transmission of infection is only through indirect means and if there is any direct trans-

mission, it will be estimated by an indirect expression,

(iii) There is no vertical transmission, and ruminant hosts are not vaccinated or treated and

so the infection state of the ruminant hosts (exposed, subclinical, clinical, etc.) is only

determined by the level of immune response in each ruminant host.

(iv) The recruitment of ruminants in the herd is through birth and incoming ruminant from

other farms.
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(v) All the new recruited ruminants are assumed to be healthy and have not been previously

exposed to the disease.

(vi) The extracellular MAP bacterial load Bc = Bc(t) is a proxy for individual ruminant infec-

tiousness and is excreted out of the body of an individual ruminant through feces.

(vii) There is no bacteria replication in the physical environment, and the loss of MAP bacteria

in the environment due to uptake by susceptible ruminant hosts is negligible,

(viii) The depletion of MAP bacteria in the extracellular environment through engulfment by

macrophages is negligible.

(ix) Clonal expansion of the T0 cells into T1 is only due to infected macrophages while clonal

expansion of the T2 is only due to MAP bacteria in the infected ruminant host.

Based on the above mentioned assumptions and the diagram presented in Fig. 4.1, the embedded

multiscale model for PTB transmission dynamics is given by the following system of ordinary

differential equations:
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

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− [µC + δC ]IC(t),

iii.
dBC(t)

dt
= αc[IC(t) + 1]Bc(t)− αCBC(t),

iv.
dBc(t)

dt
=

βCBC(t)[SC(t)− 1]

[B0 +BC(t)]ΦC [IC(t) + 1]
+NmkmIm(t)− [µc + αc]Bc(t),

v.
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t),

vi.
dIm(t)

dt
= βφMφ(t)Bc(t)− [km + µφ]Im(t)− γmT1(t)Im(t),

vii.
dT0(t)

dt
= Λ0 − [δmIm(t) + δbBc(t)]T0(t)− µ0T0(t),

viii.
dT1(t)

dt
= θ1δmIm(t)T0(t)− µ1T1(t),

ix.
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(4.2.1)

The first two equations of the model system (4.2.1), equations (1) and (2), describe the dynamics

of susceptible and infected ruminant hosts respectively. At any time t, new recruits susceptible

ruminant enter the ruminant population through birth and incoming ruminant from other farms

at a constant rate ΛC . Susceptible ruminant population losses its individuals due to natural death

at a constant rate µC and through infection at a rate variable λC(t)SC(t). Susceptible ruminants

acquire PTB infection when feed from contaminated pasture with fecal material containing infec-

tive MAP, or drink from contaminated surface water/water troughs with MAP bacilli cells. The

infected ruminant is generated when susceptible ruminants become infected and join the group

at a rate variable λC(t)SC(t). The infected group decreases due to natural death at a constant

rate µC or through death induced removal rate at δC , so that an average lifespan of PTB infected

ruminant in the population is determined by 1/(δC + µC). We assume that infected ruminant

spread the disease in the population through contaminating the environment with fecal material

containing the MAP bacteria cells at a variable rate αcBc(t)(IC(t) + 1) as shown in Fig. (4.1).
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Therefore, the population dynamics of MAP bacilli in the physical environment, described by

equation (3) of the model system (4.2.1) is generated through excretion of fecal material con-

taining the MAP bacteria cells by each infected ruminant individual host at a rate αcBc(t)Ic(t).

We assume that the population of MAP bacteria in the physical environment decreases due to

natural death at a rate αC . Equation (4) of the model system (4.2.1) describes the changes in time

of the within-host MAP bacteria cells at the site of infection within a single infected ruminant

host. The within-host MAP bacteria cells at the site of infection within an infected ruminant host

are generated following uptake of average between-host MAP bacteria cells in the physical envi-

ronment through ingesting contaminated food or water and the release of the intracellular MAP

bacilli into the extracellular environment when each infected macrophage burst. Generally, in

the ruminant population, the uptake of contaminated food or water which contain between-host

MAP bacterial cells, is the transmission of the MAP bacteria from the physical environment to

susceptible ruminant and become infected ruminant. Following the methodology as described

in [8–10] for modelling re-infection (superinfection) for environmentally-transmitted infectious

disease systems, we model the average rate at which a single susceptible ruminant host uptake

MAP bacterial cells in the physical environment through ingesting contaminated food or water

and become an infected ruminant host by the expression

λc(t)Sc(t) =
λC(t)[SC(t)− 1]

ΦC [IC(t) + 1]
, (4.2.2)

where λC(t), SC(t) and IC(t) are as defined previously, and

(SC(t), IC(t), BC(t))→ (SC(t)− 1, IC(t) + 1, BC(t)). (4.2.3)

being a single transition used for down-scaling and up-scaling between PTB transmission dynam-

ics at the population level and at the within ruminant host level. Moreover, this term λc(t)Sc(t)

models increases of the within-host MAP bacteria at the within-host scale through super-infection,

and thus downscaling population infectiousness into and individual infectiousness. Furthermore,

in the within ruminant level, the burst of infected macrophages to release an average number of

intracellular MAP bacteria cells into the extracellular environment is modeled phenomenolog-

ical. The burst rate represents the transmission of the MAP bacteria between cells at the site

of infection within an infected ruminant host. Infected macrophages burst at constant rate km to

release an average number of intracellular MAP bacilliNm into the extracellular environment, so

that the total number of intracellular bacteria released into the extracellular environment is deter-

mined by NmkmIm. Therefore, the average number of within-host MAP bacterial cells at the site

of infection, Bc(t) within a single infected ruminant host increases at a mean rate λh(t)Sh(t) and

NmkmIm. We assume that the population of MAP bacilli in the extracellular environment decay
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naturally at a constant rate µc and excreted out of the body of an infected ruminant into the phys-

ical environment through fecal material at a constant rate αc. Equations (5) and (6) of the model

system (4.2.1) describe the dynamics of the susceptible macrophage cells Mφ(t) and infected

macrophage cells Im(t) at the site of infection within a single infected ruminant host. Similarly,

at any time t, new susceptible macrophages are recruited through the supply of macrophage cells

from progenitor monocytes that are recruited from the blood to the site of infection at a constant

rate Λφ and the population losses individuals due to natural death at a constant rate µφ. In that

way an average lifespan of each susceptible macrophages cells in the site of infection within an

infected ruminant is 1/µφ. Susceptible macrophages acquire infection through engulfing extra-

cellular MAP bacilli bacteria at a rate βφ. The infected macrophage cells at a site of infection

within an infected ruminant host is generated when susceptible macrophages become infected

and join the group of infected macrophages at a rate βφ. We assume that in the population of

infected macrophages there is an additional death rate related to infection and due to removal by

T1 response at a rate km and γm, respectively, so that the lifespan in the population of infected

macrophages is 1/(km + µφ + γmT1). The last three equations of the model system (4.2.1),

equations (7) - (9) describe the evolution in time of the population of ruminant response cells at

a site of infection in the gut which are specific naive CD4+ T cells (T0), and the two subsets of

the MAP specific immune response, Th1 (T1) and Th2 (T2) cells (see [53] and reference therein).

The population of specific naive CD4+ T cells (T0) for MAP bacilli are produced at a constant

rate Λ0 from the thymus. We assume that these specific naive CD4+ T cells decay naturally at

a rate µ0, so that their average lifespan is 1/µ0. Following the work in (4.2.1), we also assume

that T0 cells become T1 and T2 immune response cells at per capita rates δm and δb, respectively.

Thus, the population of T1 and T2 immune response cells are proliferated at a rate θ1δmImT0 and

θ1δbBmT0, respectively. We also assume that both the population of T1 and T2 immune response

cells decay naturally at a rate µ1 and µ2, respectively.
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Figure 4.1: A conceptual diagram of the multiscale model of PTB transmission dynamics in

ruminant population.

4.3 Mathematical Analysis of the Embedded Multiscale Model

for PTB Transmission-Replication Dynamics in Ruminants

4.3.1 Feasible Region of the Equilibria of the Model

The embedded multiscale model system (4.2.1) for PTB transmission dynamics can be analyzed

in a region Γ ∈ R+ of biological interest. Now assuming that all parameters and state variables

for model system (4.2.1) are positive for all t > 0, it can be shown that all solutions for the
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model system (4.2.1) with positive initial conditions remain bounded. Letting NC = SC + IC

and Nφ = Mφ + Im, and further add the 1st and 2nd, and 5th and 6th equations of the model

system (4.2.1), respectively, we obtain


1.
dNC(t)

dt
= ΛC − µCNC − δCIC ,

2.
dNφ(t)

dt
= Λφ − µφNφ − [γmT1 + km]Im.

(4.3.1)

It follows that 
1.
dNC(t)

dt
≤ ΛC − µCNC ,

2.
dNφ(t)

dt
≤ Λφ − µφNΦ.

(4.3.2)

From which we get
1. NC(t) ≤ NC(0)e−µCt +

ΛC

µC

[
1− e−µCt

]
,

2. Nφ(t) ≤ Nφ(0)e−µφt +
Λφ

µφ

[
1− e−µφt

] (4.3.3)

where NC(0) represents the value of total ruminant population at the between-host scale in the

population-host level and Nφ(0) represents the value of total macrophage cell population at the

within-host scale within a single infected ruminant-host level evaluated at the initial values of the

respective variables. Taking the limits of both NC(t) and Nφ(t) in (4.3.3) as time gets larger, we

get the following expressions


1. lim

t→∞
sup(NC(t)) ≤ ΛC

µC
,

2. lim
t→∞

sup(Nφ(t)) ≤ Λφ

µφ
.

(4.3.4)

Now, considering the 7th equation of the model system (4.2.1) given by

dT0(t)

dt
= Λ0 − [δmIm(t) + δbBc(t)]T0(t)− µ0T0(t), (4.3.5)
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it is true that

dT0

dt
≤ Λ0 − µ0T0, (4.3.6)

from which we get

T0(t) ≤ T0(0)e−µ0t +
Λ0

µ0

[
1− e−µ0t

]
, (4.3.7)

where T0(0) denoting the value of total naı̈ve immune response cell population at the within-host

scale within an infected ruminant-host level evaluated at the initial values of T0. Taking the limits

of T0(t) as time gets larger, we get the following

lim
t→∞

sup(T0(t)) ≤ Λ0

µ0

. (4.3.8)

From the 8th equation of the of the model system (4.2.1), we get

dT1

dt
≤ θ1δmΛ0Λφ

µφµ0

− µ1T1. (4.3.9)

From which we get

T1(t) ≤ T1(0)e−µ1t +
θ1δmΛ0Λφ

µφµ1µ0

[
1− e−µ1t

]
, (4.3.10)

with T1(0) being the value of total Th1 immune response cell population at the within-host scale

within a single infected ruminant-host level evaluated at the initial values of T1. This implies that

lim
t→∞

sup(T1(t)) ≤ θ1δmΛ0Λφ

µφµ1µ0

. (4.3.11)

Therefore, substituting NC ≤
ΛC

µC
, Nφ ≤

Λφ

µφ
and T1 ≤

θ1δmΛ0Λφ

µφµ1µ0

into the 3rd, 4th and 9th

equations of the model system (4.2.1), we obtain the following



1.
dBC(t)

dt
≤ αc(ΛC + µC)

µC
Bc − αCBC ,

2.
dBc(t)

dt
≤ βC(ΛC − µC)BC

ΦC(ΛC + µC)(B0 +BC)
+
NmkmΛφ

µφ
− (µc + αc)Bc,

3.
dT2(t)

dt
≤ θ2δbΛ0

µ0

Bc − µ2T2,

(4.3.12)
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with

a1 = (µc + αc). (4.3.13)

From which we get

1. BC ≤ αc(ΛC + µC)

µCαC
Bc,

2. Bc ≤ βC(ΛC − µC)BC

ΦC(ΛC + µC)(B0 +BC)(µc + αc)
+

NmkmΛφ

µφ(µc + αc)
,

3. T2 ≤ θ2δbΛ0

µ0µ2

Bc.

(4.3.14)

Following some algebraic solving we obtain

1. BC ≤ αc(ΛC + µC)

2µCαC

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

2. Bc ≤ 1

2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

3. T2 ≤ θ2δbΛ0

2µ0µ2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

(4.3.15)

where the constants ξ1 and ξ2 are as follows
ξ1 = ν0(ν1 + ν2)−B0,

ξ2 = ν0ν2B0,

(4.3.16)
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with 

ν0 =
αc(ΛC + µC)

µCαC
,

ν1 =
βC(ΛC − µC)

ΦC(ΛC + µC)(µc + αc)
,

ν2 =
NmkmΛφ

µφ(µc + αc)
,

(4.3.17)

This implies that

1. lim
t→∞

sup(BC(t)) ≤ αc(ΛC + µC)

2µCαC

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

2. lim
t→∞

sup(Bc(t)) ≤ 1

2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

3. lim
t→∞

sup(T2(t)) ≤ θ2δbΛ0

2µ0µ2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
.

(4.3.18)

Therefore, all feasible solutions of the model system (4.2.1) are positive and enter a region de-

fined by


Γ = {(SC , IC , BC , Bc,Mφ, Im, T0, T1, T2) ∈ R9

+ :

0 ≤ SC + IC ≤ S1, 0 ≤Mφ + Im ≤ S2, 0 ≤ BC ≤ S3,

0 ≤ Bc ≤ S4, 0 ≤ T0 ≤ S5, 0 ≤ T1 ≤ S6, 0 ≤ T2 ≤ S7},
(4.3.19)
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which is positively invariant and attracting for all t > 0, where

S1 =
ΛC

µC
,

S2 =
Λφ

µφ
,

S3 =
αc(ΛC + µC)

2µCαC

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

S4 =
1

2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

S5 =
Λ0

µ0

,

S6 =
θ1δmΛ0Λφ

µφµ1µ0

,

S7 =
θ2δbΛ0

2µ0µ2

[
ξ1 +

√
ξ2

1 + 4ξ2

]
,

ξ1 = ν0(ν1 + ν2)−B0,

ξ2 = ν0ν2B0.

(4.3.20)

Therefore, it is sufficient to consider solutions of the model system (4.2.1) in Ω, since all so-

lutions starting in Ω remain there for all t ≥ 0. Hence, the multiscale model system (4.2.1) is

mathematically and epidemiologically well-posed. It is sufficient to consider the dynamics of

the flow generated by model system (4.2.1) in Ω whenever ΛC > µC and ν0(ν1 + ν2) > B0. We

shall assume in all that follows (unless stated otherwise) that ΛC > µC and ν0(ν1 + ν2) > B0.

In the next two subsections, we provide some results concerning the equilibrium states of the

multiscale model system (4.2.1) and their stabilities. The multiscale model system (4.2.1) has

two equilibrium states: the disease-free equilibrium state (DFE) and the endemic equilibrium

state (EPP).



Chapter 4 102

4.3.2 Disease-Free Equilibrium and Reproduction Number

We obtained the disease-free equilibrium point of the model system (4.2.1) by setting the left-

hand side of the equations of model system (4.2.1) equal to zero and also assuming that IC =

BC = Bc = Im = T1 = T2 = 0. Thus, we let

E0 =

(
ΛC

µC
, 0, 0, 0,

Λφ

µφ
, 0,

Λ0

µ0

, 0, 0

)
, (4.3.2.1)

denote the disease-free equilibrium of the model system (4.2.1). For the purpose of analyzing

the stability of the DFE, we make use of the basic reproductive number, R0. We employed the

next generation operator approach described in [5] to compute the basic reproduction number of

the embedded multiscale model (4.2.1). Therefore, the model system (4.2.1) can also be written

in the form 

dX

dt
= f(X, Y, Z),

dY

dt
= g(X, Y, Z),

dZ

dt
= h(X, Y, Z),

(4.3.2.2)

where

i. X = (SC ,Mφ, T0, T1, T2) represents all compartments of individuals who are not infected,

ii. Y = (IC , Im) represents all compartments of infected individuals who are not capable of

infecting others,

iii. Z = (BC , Bc) represents all compartments of infected individuals who are capable of

infecting.

In this case, we let the disease free-equilibrium of the model (4.2.1) be denoted by the following

expression

Ū0 =

(
ΛC

µC
, 0, 0, 0,

Λφ

µφ
, 0,

Λ0

µ0

, 0, 0

)
. (4.3.2.3)

Following [5], we let
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g̃(X∗, Z) = (g̃1(X∗, Z), g̃2(X∗, Z)) (4.3.2.4)

with


g̃1(X∗, Z) =

βCΛCBC

µC(µC + δC)(B0 +BC)
,

g̃2(X∗, Z) =
βφΛφBc

µφ(µφ + δφ)
.

(4.3.2.5)

We deduce that

h(X, Y, Z) = (h1(X, Y, Z), h2(X, Y, Z)), (4.3.2.6)

with 
h1(X, Y, Z) =

K0BCBm

(B0 +Bm)
+ αcBc − αCBC ,

h2(X, Y, Z) =
K1BC

(K3 +K2BC)
+K4Bc − (µc + αc)Bc,

(4.3.2.7)

where 

K0 =
βCΛCαc

µC(µC + δC)
,

K1 =
βC(ΛC − µC)(µC + δC)

ΦC

,

K2 = βCΛC + µC(µC + δC),

K3 = µC(µC + δC)B0,

K4 =
βφΛφNmkm
µφ(µφ + km)

.

(4.3.2.8)
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A matrix

A = DZh(X∗, g̃(X∗, 0), 0) =


−αC αc

K1

K3

K4 − (µc + αc)

 (4.3.2.9)

can be written in the form A = M −D, so that

M =


0 αc

K1

K3

K4

 (4.3.2.10)

and

D =


αC 0

0 (µc + αc)

 . (4.3.2.11)

The basic reproductive number is the spectral radius (dominant eigenvalue) of the matrix T =

MD−1, that is,

R0 = ρ(T ). (4.3.2.12)

Hence, in this case, the basic reproductive number of the embedded multiscale model (4.2.1) is

expressed by the following quantity

R0 =
1

2

[
R0c +

√
R2

0c + 4R0C

]
(4.3.2.13)

where

R0c =
βφΛφNmkm

µφ(µφ + km)(µc + αc)
(4.3.2.14)

characterizes a partial within-host basic reproductive number and

R0C =
βC(ΛC − µC)αc
αCµCΦC(µc + αc)

(4.3.2.15)

characterizes a partial between-host basic reproduction number. However, we can conclude from

the expression (4.3.2.13) of the reproductive number that it is a function of both the within-host
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scale parameters and the between-host scale parameters. Therefore, the obtained results here

show that the within-host scale and the between-host scale influence each other in a reciprocal

way. We further made use of the basic reproductive number (4.3.2.13) to test both the local and

global stability of the disease-free equilibrium (E0) of the multiscale model system (4.2.1). We

then established that if the basic reproductive number is less than a unity, then E0 is locally and

globally stability asymptotically stable. Details of the local and global stability of E0 are given

in the next two subsections.

4.3.3 Stability Analysis of the Embedded Multiscale Model Disease-Free
Equilibrium State

4.3.3.1 Local stability analysis of analysis of the embedded multiscale disease-free equi-
librium state

In this subsection, we determined the local stability of DFE of the model system (4.2.1) by

linearizing all the equations of the model system (4.2.1) to obtain a Jacobian matrix. Then we

evaluate the Jacobian matrix of the system at the disease-free equilibrium

E0 =

(
ΛC

µC
, 0, 0, 0,

Λφ

µφ
, 0,

Λ0

µ0

, 0, 0

)
. (4.3.3.1.1)

Evaluating the Jacobian matrix of the model system (4.2.1) at the disease-free equilibrium state

(DFE), we get
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J(E0) =



−µC 0 −βCΛC

µCB0

0 0 0 0 0 0

0 −a0
βCΛC

µCB0

0 0 0 0 0 0

0 0 −αC αc 0 0 0 0 0

0 0 A1 −a1 0 Nmkm 0 0 0

0 0 0 −βφΛφ

µφ
−µφ 0 0 0 0

0 0 0
βΦΛφ

µφ
0 −a2 0 0 0

0 0 0 −δbΛ0

µ0

0 −δmΛ0

µ0

−µ0 0 0

0 0 0 0 0
θ1δmΛ0

µ0

0 −µ1 0

0 0 0
θ2δbΛ0

µ0

0 0 0 0 −µ2



(4.3.3.1.2)

where 

a0 = (µC + δC),

a1 = (µc + αc),

a2 = (µφ + km),

A1 =
βC(ΛC − µC)

ΦCµCB0

.

(4.3.3.1.3)

Now, considering stability of DFE by calculating the eigenvalues (λs) of the Jacobian matrix

given by equation (4.3.3.1.2), characteristic equation for the eigenvalues is given by
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Q0[λ3 + Φ1λ
2 + Φ2λ+ Φ3] = 0, (4.3.3.1.4)

where the coefficient Q0 is as follows

Q0 = (−µC − λ)(−µφ − λ)(−µ0 − λ)(−µ1 − λ)(−µ2 − λ)(−a0 − λ). (4.3.3.1.5)

We noticed from equation (4.3.3.1.4), that there are six negative eigenvalues (-µC ,-µφ, -µ0, -a0,-

µ1 and -µ2). The stability of the DFE can be concluded by using the Routh-Hurwitz criteria to

determine the sign of the remaining eigenvalues of the polynomial

λ3 + Φ1λ
2 + Φ2λ+ Φ3 = 0 (4.3.3.1.6)

where 

Φ1 = αC + a1 + a2,

Φ2 = (αC + a2)a1 + αCa2(1−R0C ),

Φ3 = a1a2[R0c + αC(1−R0C )].

(4.3.3.1.7)

Employing the Routh-Hurwitz stability criterion, we can deduce that the equilibrium state asso-

ciated with the model system (4.2.1) would be stable if and only if the determinants of all the

Hurwitz matrices associated with the characteristic equation (4.3.3.1.6) are positive, that is

Det(Hj) > 0; j = 1, 2, ...., 6 (4.3.3.1.8)
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where 

H1 =
(

Φ1

)
; H2 =


Φ1 1

Φ3 Φ2

 ;

H3 =



Φ1 1 0

Φ3 Φ2 Φ1

0 0 Φ3


.

(4.3.3.1.9)

The Routh-Huiwitz criterion applied to expressions in equation (4.3.3.1.9) requires that the fol-

lowing conditions C1 and C2 be satisfied, in order to guarantee the local stability of the disease-

free equilibrium point of the model system (4.2.1).


C1. Φ1, Φ2, Φ3 > 0,

C2. Φ1Φ2 − Φ3 > 0,

(4.3.3.1.10)

From equations (4.3.3.1.6) and (4.3.3.1.9) we noted that all the coefficients Φ1, Φ2, and Φ3 of the

polynomial P (λ) are greater than zero whenever R0 < 1. And we also noted that the conditions

above are satisfied if and only if the basic reproductive number of the model system (4.2.1) is

less than a unit (i.e., R0 < 1). Hence all the roots of the polynomial P (λ) are either negative or

have negative real parts. The results are summarized in the following theorem.

Theorem 4.1. The Disease-free equilibrium point of the model system (4.2.1) is locally asymp-

totically stable whenever R0 < 1.
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4.3.3.2 Global stability analysis of the embedded multiscale disease-free equilibrium state

We determined the global stability of DFE of the embedded multiscale model system (4.2.1) by

using a next generation operator [5]. Thus the system (4.2.1) can be re-written in the form
dX

dt
= F (X,Z),

dY

dt
= G(X,Z)

(4.3.3.2.1)

where

• X = SC ,Mφ, T0, T1, T2 represents compartment of uninfected ruminant, and

• Z = (IC , BC , Bc, Im) represents compartments of infected ruminant and Infective MAP

bacilli bacteria in the physical environment.

We let

E0 = (X∗, 0) =

(
ΛC

µC
, 0, 0, 0,

Λφ

µφ
, 0,

Λ0

µ0

, 0, 0

)
, (4.3.3.2.2)

denote the disease-free equilibrium (DFE) of the embedded multiscale model system (4.2.1).

For X∗ to be globally asymptotically stable, the following conditions (H1) and (H2) must be

satisfied.

H1.
dX

dt
= F (X, 0) is globally asymptotically stable (g.a.s),

H2. G(X,Z) = AZ − Ĝ(X,Z), Ĝ((X,Z) ≥ 0 for (X,Z) ∈ R9
+ where A = DZG(X∗, 0) is

an M-matrix and R9
+ is the region where the model makes biological sense.

In this case,

F (X, 0) =


ΛC − µCSC
Λφ − µφMφ

0

0

 (4.3.3.2.3)
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and the matrix A is given by

A =



−(µC + δC)
βCΛC

B0µC
0 0

0 −αC αc 0

0
βC(ΛC − µC)

B0ΦCµC
−(αc + µc) Nmkm

0 0
βφΛφ

µφ
−(µφ + km)


(4.3.3.2.4)

with Ĝ(X,Z) given by

Ĝ(X,Z) =



(
ΛC

B0µC
− SC
B0 +BC

)
βCBC

0

0

(
Λφ

µφ
−Mφ

)
βφBc + γmT1Im


. (4.3.3.2.5)

It is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R9
+, since

ΛC

µCB0

≥ SC
B0 +BC

and
Λφ

µφ
≥ Mφ. It is

also clear that A is an M-matrix, since the off diagonal elements of A are non-negative. We state

a theorem which summarizes the above result.

Theorem 4.2. The disease-free equilibrium of model system (4.2.1) is globally asymptotically

stable if R0 ≤ 1 and the assumptions (H1) and (H2) are satisfied.

4.3.4 Endemic Equilibrium State of the embedded multiscale model

The endemic equilibrium state of the multiscale model system (4.2.1) is given by

E∗ =
(
S∗C , I

∗
C , B

∗
C , B

∗
c ,M

∗
φ, I

∗
mT
∗
0 T
∗
1 , T

∗
2

)
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satisfies 

0 = ΛC − λC(t)SC(t)− µCSC(t),

0 = λC(t)SC(t)− [µC + δC ]IC(t),

0 = αcBc(t)Ic(t)− µBBC(t),

0 = λcSc +NmkmIm(t)− [µc + αc]Bc(t),

0 = Λφ − βφMφ(t)Bc(t)− µφMφ(t),

0 = βΦMφ(t)Bc(t)− γmT1(t)Im(t)− [km + µφ]Im(t),

0 = Λ0 − [δmIm(t) + δbBc(t)]T0(t)− µ0T0(t),

0 = θ1δmIm(t)T0(t)− µ1T1(t),

0 = θ2δbBc(t)T0(t)− µ2T2(t)

(4.3.4.1)

where 
λC =

βCBC

B0 +BC

,

λc =
βCBC(SC − 1)

(B0 +BC)ΦC(IC + 1)

(4.3.4.2)

for all S∗C , I
∗
C , B

∗
C , B

∗
c ,M

∗
φ, I

∗
m, T

∗
0 , T

∗
1 , T

∗
2 > 0.

Based on the expressions in (4.3.4.1), we can therefore estimate the disease burden of PTB in

ruminants. We achieved this by estimating the endemic values of the PTB disease variables

S∗C , I
∗
C , B

∗
C , B

∗
c ,M

∗
φ, I

∗
m, T

∗
0 , T

∗
1 , T

∗
2 . The endemic value of susceptible ruminants is given by

S∗C =
ΛC

λ∗C + µC
. (4.3.4.3)

From Eqn. (4.3.4.3) the susceptible ruminant population at endemic equilibrium is given by
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the rate at which new susceptible ruminant individuals entering into the susceptible class at a

constant rate ΛC and the average time of stay in the susceptible class. Susceptible ruminants

leave the susceptible class either through infection or death. The endemic value of infected

ruminants is given by

I∗C =
λ∗CS

∗
C

µC + δC
. (4.3.4.4)

From Eqn. (4.3.4.4) the population of infected ruminants at the endemic equilibrium steady

state is determined by the rate at which susceptible ruminants become infected and the density

of susceptible ruminants and the average time of stay in the infected class. The endemic value

of between-host scale MAP bacterial load in the environment at the equilibrium steady state is

given by

B∗C =
αcB

∗
c (I
∗
C + 1)

αC
. (4.3.4.5)

From Eqn. (4.3.4.5) the between-host MAP bacterial load in the environment at the equilibrium

steady state is given by the rate of excretion of the average number of the within-host MAP

bacterial load by each infected ruminant individual into the environment and the average life-

span of the bacteria in the environment. It should be noted that this expression provides a link

between the dynamics of the within-host MAP bacterial load and the transmission dynamics

of the disease at the ruminant population level. The endemic value of within-host scale MAP

bacterial load within a single infected ruminant is given by

B∗c =
λ∗cS

∗
c +NmkmI

∗
m

(αc + µc)
. (4.3.4.6)

From Eqn. (4.3.4.6) the population of within-host MAP bacteria within a single infected rumi-

nant at endemic equilibrium steady state is determined by the average dose of the between-host

bacterial load in the environment are ingested and the average life-span of within-host bacte-

rial load at the site of infection within an infected ruminant and the average number rate of the

within-host MAP bacilli bacteria produced by bursting infected macrophage cells at a site of

infection. It should also be noted that this expression provides a link between the dynamics of

the between-host MAP bacterial load in the environment and the within-host infection dynam-

ics within a single infected ruminant. The value of susceptible macrophage population within a

single infected ruminant at equilibrium steady state is given by

M∗
φ =

Λφ

βφB∗c + µφ
. (4.3.4.7)
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From Eqn. (4.3.4.7) the susceptible macrophage population at endemic equilibrium within an in-

fected ruminant host is proportional to the average time of stay in susceptible macrophage class

and the rate at which new susceptible macrophage are supplied into the susceptible macrophage

class at the site of infection within this infected ruminant. The endemic value of infected

macrophage population is given by

I∗m =
βφB

∗
cM

∗
φ

km + µφ + γmT ∗1
. (4.3.4.8)

From Eqn. (4.3.4.8) the infected macrophage population at the endemic equilibrium steady state

is proportional to the average time of stay in the infected macrophage class at the site of infec-

tion, the rate at which susceptible macrophages become infected and the density of susceptible

macrophages. The endemic value of naı̈ve CD4 T cell population within a single infected rumi-

nant at the site of infection is given by

T ∗0 =
Λ0

δmI∗m + δbB∗c + µ0

. (4.3.4.9)

The average population of naı̈ve immune response cells at a site of infection within an infected

human at endemic equilibrium point is equal to the average life-span of naı̈ve CD4 T cells and

the supply rate of naı̈ve CD4 T cells into a site of infection from the source within an infected

ruminant body. The endemic value of a single ruminant MAP-specific immune response Th1

effector cells within a single infected ruminant at the site of infection is given by

T ∗1 =
θ1δmI

∗
mT
∗
0

µ1

, (4.3.4.10)

The average population of MAP-specific immune response Th1 effector cells within an infected

ruminant is proportional to the differential rate of naı̈ve CD4 T cells into the class of MAP-

specific immune response cell Th1 effector population after a detection of infected macrophage

cells at the site of infection. The endemic value of a single ruminant MAP-specific immune

response Th2 effector cell within a single infected ruminant at the site of infection is given by

T ∗2 =
θ2δbB

∗
cT
∗
0

µ2

. (4.3.4.11)

From Eqn. (4.3.4.11) that the MAP-specific immune response Th1 effector cell population within

a single infected ruminant at equilibrium point is proportional to the differential rate of naı̈ve CD4

T cells into the class of MAP-specific immune response Th2 effector population after a detection

of the within-host MAP bacterial load at the site of infection.
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From the endemic equilibrium values of the model system (4.2.1) given by expressions (4.3.4.3)-

(4.3.4.11), we deduce that the between-host scale expressionB∗C depends on both the within-host

and the between-host disease variables, while the within-host scale expression B∗c is determined

by both the within-host and the between-host disease variables. Therefore, the obtained results

here show that the within-host scale and the between-host scale dynamics influence each other

in a reciprocal way.

4.3.5 Stability Analysis of the Embedded Multiscale Model Endemic Equi-
librium State

In this sub-section, we evaluated the local stability of the endemic steady state of the model

system (4.2.1) by using the center manifold theory in [57] as in the previous chapters. In this case,

we employed Center Manifold Theory by making the following changes of variables: letting

SC = x1, IC = x2, BC = x3, Bc = x4, Mφ = x5, Im = x6, T0 = x7, T1 = x8 and T2 = x9. We

used the vector notation x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)T so that the model system (4.2.1)

can be written in the form
dx
dt

= f(x, β∗) (4.3.5.1)

where

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9). (4.3.5.2)



Chapter 4 115

Therefore, model system (4.2.1) can be re-written as:

i. ẋ1 = ΛC −
βCx3(t)

B0 + x3(t)
x1(t)− µCx1(t),

ii. ẋ2 =
βCx3(t)

B0 + x3(t)
x1(t)− [µC + δC ]x2(t),

iii. ẋ3 = αcx4(t)(x2(t) + 1)− αCx3(t),

iv. ẋ4 =
βCx3(t)(x1(t)− 1)

(B0 + x3(t))ΦC(x2 + 1)
+Nmkmx6(t)− [µc + αc]x4(t),

v. ẋ5 = Λφ − βφx5(t)x4(t)− µφx5(t),

vi. ẋ6 = βφx5(t)x4(t)− γmx8(t)x6(t)− [km + µφ]x6(t),

vii. ẋ7 = Λ0 − [δmx6(t) + δbx4(t)]x7(t)− µ0x7(t),

viii. ẋ8 = θ1δmx6(t)x7(t)− µ1x8(t),

ix. ẋ9 = θ2δbx4(t)x7(t)− µ2x9(t).

(4.3.5.3)

The Jacobian matrix associated with the system of equations (4.3.5.3) evaluated at the disease-

free equilibrium (E0) is given by
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J(E0) =



−µC 0 −βCΛC

µCB0

0 0 0 0 0 0

0 −z0
βCΛC

µCB0

0 0 0 0 0 0

0 0 −αC αc 0 0 0 0 0

0 0 q1 −z1 0 Nmkm 0 0 0

0 0 0 −βφΛφ

µφ
−µφ 0 0 0 0

0 0 0
βφΛφ

µφ
0 −z2 0 0 0

0 0 0 −δbΛ0

µ0

0 −δmΛ0

µ0

−µ0 0 0

0 0 0 0 0
θ1δmΛ0

µ0

0 −µ1 0

0 0 0
θ2δbΛ0

µ0

0 0 0 0 −µ2



(4.3.5.4)

where 

z0 = (µC + δC),

z1 = (µc + αc),

z2 = (µφ + km),

q1 =
βC(ΛC − µC)

ΦCµCB0

.

(4.3.5.5)
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Using the similar approach as in the previous Chapters, the basic reproductive number of model

system (4.3.5.3) is

R0 =
1

2

[
R0c +

√
R2

0c + 4R0C

]
(4.3.5.6)

where

R0c =
βφΛφNkkm

µφ(µΦ + δφ)(µc + σc + αc)
(4.3.5.7)

and

R0C =
βC(ΛC − µC)αc

µBB0µC(µc + αc)ΦC

. (4.3.5.8)

Now, let us consider βφ = kβC , regardless of whether k ∈ (0, 1) or k ≥ 1 and let βC = β∗ be

a bifurcation parameter of the model system (4.3.5.3). Considering R0 = 1, and solve for β∗ in

equation (4.3.5.6), we obtain:

β∗ =
(µc + αc)µφ(µφ + δφ)αCB0µCΦC

kΛφNmkmαCµCB0µCΦC + αc(ΛC − µC)µφ(µφ + km)
. (4.3.5.9)

We noted that the linearized system of the transformed equations (4.3.5.3) with bifurcation point

β∗ has a simple zero eigenvalue. Hence, the Center Manifold Theory [57] can be used to analyze

the dynamics of (4.3.5.3) near βC = β∗. We, therefore, apply Theorem 4.1 in Castillo-Chavez

and Song [5] stated below as Theorem 4.3 for convenience, to show the local asymptotic stability

of the endemic equilibrium point of (4.3.5.3) (which is the same as the endemic equilibrium point

of the original system (4.2.1) for βC = β∗ ).

Theorem 4.3. Consider the following general system of ordinary differential equations with

parameter φ:

dx

dt
= f(x, φ), f : Rn ×R −→ R, f : C2(R2 ×R), (4.3.5.10)

where 0 is an equilibrium of the system, that is f(0, φ) = 0 for all φ, and assume that

A1. A = Dxf(0, 0) = ((∂fi/∂xj)(0, 0)) is a linearization matrix of the model system (4.3.5.10)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and other

eigenvalues of A have negative real parts,
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A2. matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero

eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

ukvivj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

ukvi
∂2fk
∂xi∂φ

(0, 0). (4.3.5.11)

The local dynamics of (4.3.5.10) around 0 are totally governed by a and b and are summarized

as follows.

1. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable and there exists

a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

2. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable and a positive

unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive

and locally asymptotically stable.

In order to apply Theorem 4.3, the following computations are necessary (it should be noted that

we are using β∗ as the bifurcation parameter, in place of φ in Theorem 4.3).

Eigenvectors of Jβ∗: For the case when R0 = 1, it can be shown that the Jacobian matrix of

(4.3.5.4) at βC = β∗ (denoted by Jβ∗ ) has a right eigenvector associated with the zero eigenvalue

given by

u = [u1, u2, u3, u4, u5, u6, u7, u8, u9]T (4.3.5.12)
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where 

u1 = − β∗ΛC

µ2
CB0αC

,

u2 =
αcβ

∗ΛC

B0µC(µC + δC)αC
,

u3 =
αc
αC

,

u4 = 1,

u5 = − kβ∗Λφ

µ2
φ

,

u6 =
kβ∗ΛΦ

µφ(µφ + δφ)
,

u7 = −
[
δbΛ0

µ2
0

+
δmΛ0kβ

∗ΛΦ

µ2
0(µφ + km)µφ

]
,

u8 =
θ1δmΛ0kβ

∗Λφ

µ0(µφ + km)µφµ1

,

u9 =
θ2δbΛ0

µ0µ2

.

(4.3.5.13)

In addition, the left eigenvector of the Jacobian matrix in (4.3.5.4) associated with the zero eigen-

value at βC = β∗ is given by

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9]T , (4.3.5.14)

where
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

v1 = 0,

v2 = 0,

v3 =
β∗(ΛC − µC)

αCµCΦCB0

,

v4 = 1,

v5 = 0,

v6 =
Nmkm

(µφ + km)
,

v7 = 0,

v8 = 0,

v9 = 0.

(4.3.5.15)

Computation of bifurcation parameters a and b:

We evaluated the non-zero second order mixed derivatives of f with respect to the variables and

β∗ in order to determine the signs of a and b. The sign of a is associated with the following

non-vanishing partial derivatives of f:



∂2f1

∂x2
3

=
2β∗ΛC

B2
0µC

,

∂2f2

∂x2
3

= − 2β∗ΛC

B2
0µC

,

∂2f3

∂x2
3

= − 2β∗(ΛC − µC)

B2
0µCΦC

.

(4.3.5.16)
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The sign of b is associated with the following non-vanishing partial derivatives of f:

∂2f1

∂x3∂β∗
= − ΛC

µCB0

,

∂2f2

∂x3∂β∗
=

ΛC

µCB0

,

∂2f4

∂x3∂β∗
=

(ΛC − µC)

µCB0ΦC

,

∂2f5

∂x4∂β∗
= − Λφ

µφ
,

∂2f6

∂x4∂β∗
=

kΛφ

µφ
.

(4.3.5.17)

Substituting expressions (4.3.5.13), (4.3.5.15) and (4.3.5.16) into equation (4.3.5.11), we get



a = u1v
2
3

∂2f1

∂x2
3

+ u2v
2
3

∂2f2

∂x2
3

+ u4v
2
3

∂2f4

∂x2
3

+

= u1v
2
3

[
2β∗ΛC

B2
0µC

]
+ u2v

2
3

[
−2β∗ΛC

B2
0µC

]
+ u4v

2
3

[
−2β∗(ΛC − µC)

ΦCB2
0µC

]

=
2β∗ΛC

B2
0µC

.v2
3 [u1 − u2]− u4v

2
3

[
2β∗(ΛC − µC)

ΦCB2
0µC

]
< 0

(4.3.5.18)

since (u1 − u2) < 0, u4 > 0, and v3 > 0.

Similarly, substituting expressions (4.3.5.13) (4.3.5.15) and (4.3.5.17) into equation (4.3.5.11),

we get



b = u1v3
∂2f1

∂x3∂β∗
+ u2v3

∂2f2

∂x3∂β∗
+ u4v3

∂2f4

∂x3∂β∗
+ u5v4

∂2f4

∂x10∂β∗
+ u6v4

∂2f6

∂x4∂β∗
,

= v3

[
ΛC

B0µC
.u2 −

ΛC

B0µC
.u1 +

(ΛC − µC)

ΦCB0µC
.u4

]
+ v4

[
kΛφ

µφ
.u6 −

kΛφ

µφ
.u5

]
,

=
ΛC

B0µC
.v3 [u2 − u1] +

(ΛC − µC)

ΦCB0µC
.v3u4 +

kΛφ

µφ
.v4 [u6 − u5] > 0

(4.3.5.19)
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since (u2 − u1) > 0, (u6 − u5) > 0, u4 > 0, and v3 > 0.

Thus, a < 0 and b > 0. Using Theorem 4.3, item (iv), we have established the following result

which only holds for R0 > 1 but close to 1:

Theorem 4.4. The endemic equilibrium guaranteed by the Center Manifold Theorem 4.3 is lo-

cally asymptotically stable for R0 > 1 near 1.

4.3.6 Sensitivity Analysis

In this section, we conducted sensitivity analysis to evaluate the relative change in a proposed

PTB health intervention metric when the within-host and between-host parameters of the mul-

tiscale model system (4.2.1) changes. We achieved this by using Latin Hypercube Sampling

(LHS) and Partial Rank Correlation Coefficients (PRCCs). The proposed PTB health interven-

tion metric in this study is the basic reproductive number obtained from the multiscale model

(4.2.1). Therefore, we used 1000 simulations per run to investigate the impact of each of the

multiscale model system (4.2.1)’s parameters on the proposed PTB dynamics metric. The results

of the evaluation of the sensitivity of the PTB dynamic metric to the baseline PTB multiscale

model system (4.2.1)’s parameters are shown in the Tornado plots in Fig 4.2. Therefore, based

on Fig.4.2, it can be note that some of the model parameters have positive PRCCs and some have

negative PRCCs. Thus, parameters with positive PRCCs will increase the PTB dynamics metric,

R0, when they are increased, whereas parameters with negative PRCCs will decrease R0 when

they are increased. For instance, increasing parameter like Nm increases the value of R0 and also

increasing parameters like µc reduces the value of R0.
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Figure 4.2: Tornado plots of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric R0

Therefore, from Fig. 4.2, we make the following deductions:

(i) The most sensitive parameters to the PTB embedded multiscale model disease metric R0

are Nm, km, µφ, µc and βφ, with all being the within-host scale PTB parameters. This is in

agreement with sensitive results of the nested multiscale model in Chapter 3 which show

that the impact of the within-host scale on the dynamics of the disease is vital compare to

the between-host scale parameters. This implies that care should be taken in improving

the accuracy of these five within-host scale parameters during data collection if the valid-

ity and utility of both the nested and embedded multiscale models of PTB transmission

given by (4.2.1) are to be improved. From the assessment of the sensitivity of R0 to two

additional parameters that we can have the most control over (Nm and µc), we note that R0

is also significantly sensitive to these two within-host scale parameters while having the

highest sensitivity to Nm. We conclude that administration of PTB drug treatment that kill

and restrict the reproduction of the within-host bacteria cells will likely yield the highest

benefits in reducing the transmission of PTB at the herd level.

(ii) The sensitivity output results of the embedded multiscale model metric in Fig. 4.2 show

the similar trends as to the sensitive output results of the nested multiscale model in Chap-

ter 3 which show that the threshold R0 is less sensitive to the all three between-host scale
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parameters (βC , αC , B0) that we can have a significant control over through some preven-

tive and control intervention measures such as environmentally-hygiene management and

vaccinations.

4.4 Numerical Analysis of the baseline multiscale model of ru-

minant PTB transmission-replication dynamics

This section presented evidence about the reciprocal influence between the immunology and the

epidemiology of PTB infection which we get from the numerical simulations of the embedded

multiscale model that describes the dynamics of the disease. The numerical values of the param-

eters used in the numerical simulations are given in Table (4.1).
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Parameter Description Unit Initial Source

values

ΛC Ruminants birth rate day−1 0.27 [52, 54]

βC Ruminants infection rate day−1 0.00027

µC Natural death rate of Ruminant population day−1 0.0001 [52]

δC Ruminants removal rate due day−1 0.0008 Assumed

to PTB infection

αC Environmentally bacteria day−1 0.0018 [52]

death rate

B0 Saturation rate of bacteria day−1 1000 [54]

ΦC Down-scaling parameter day−1 0.03 Assumed

Λφ Macrophages supply rate day−1 10 [53]

βφ Macrophages infection rate day−1 0.002 [53]

µφ Macrophages natural death rate day−1 0.02 [53]

Nm Burst size of intracellular MAP day−1 100 [53]

km Burst rate of infected macrophages day−1 0.00075 [53]

γm T1 lytic effect day−1 0.01 [53]

µc Bacteria’s death rate day−1 0.03 [53]

αc Excretion rate of extracellular MAP day−1 0.01 [54]

Λ0 T0 supply rate day−1 0.001 [53]

µ0 T0 death rate day−1 0.01 [53]

µ1 T1 death rate day−1 0.03 [53]

µ2 T2 death rate day−1 0.02 [53]

δm T0 differentiation into T1 cells day−1 0.01 [53]

δb T0 differentiation into T2 cells day−1 0.01 [53]

θ1 T1 cells clonal expansion day−1 9000 [53]

θ2 T2 cells clonal expansion day−1 9000 [53]

Table 4.1: Model parameter values used for Simulations

4.4.1 The influence of between-host scale on the within-host PTB disease
dynamics

In this sub-section, we assessed numerically the effect of the between-host submodel parameters

on the within-host submodel PTB pathogen-cell interactions within a single infected ruminant.
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Fig. 4.3) - Fig. 4.5 show the impact in the variation of four between-host parameters (βC , αC ,

B0) on the dynamics of four selected with-host scale variables (Im, Bc, T1, T2).

Figure 4.3: Graph of numerical solutions of model system (4.2.1) showing the evolution in time

of (a) infected macrophage population (Im), (b) within-host MAP bacteria population (Bc), (c)

MAP-Specific Th1 response cells (T1), and (d) MAP-Specific Th2 response cells for different

values of between-host transmission rate βC: βC = 0.00027, βC = 0.0027, and βC = 0.027.

In Fig. 4.3, we showed the effects of the variation of the infection rate parameter βC : βC =

0.00027, βC = 0.0027, and βC = 0.027 associated with the between-host scale dynamics on

the within-host scale selected variable (a) infected macrophage population (Im), (b) top right:

within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells (T1), and (d)

MAP-Specific Th2 response cells. The results showed that the increase in infection rate at the

population level of ruminants will only influence the within-host disease dynamics at the start of

an infection within 100 days. But after that there is no difference in the population dynamics of

the within-scale MAP bacterial (Bc), MAP-Specific Th2 response cells (T2), MAP Specific Th1

response cells (T1), and infected macrophages (Im) in the long run. This also implies that the

variation of infection rate for different values influence the within-host scale disease dynamics



Chapter 4 127

only at the start of infection of about 100 days, after that then converge to the same endemic state.

Therefore, these results further confirm that once the minimum infectious dose is consumed, the

long term disease dynamics is independent to superinfection.

Figure 4.4: Simulations of model system (4.2.1) showing propagation of (a) infected macrophage

population (Im), (b) within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response

cells (T1), and (d) bottom right: MAP-Specific Th2 response cells for different values of environ-

mentally MAP bacilli death rate αC: αC = 0.18, αC = 0.018, and αC = 0.0018.

In Fig. 4.4, we also illustrated the effects of the variation of natural death rate of MAP bacilli

in the environment αC : αC = 0.18, αC = 0.018, and αC = 0.0018 at the between-host scale on

the within-host scale selected variable (a) top left: infected macrophage population (Im), (b)

within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells (T1), and (d)

MAP-Specific Th2 response cells for different values. The results also indicated that increasing

the environmentally MAP bacilli death rate will only influence the within-host disease dynamics

at the start of an infection within 100 days. However after that there would be no difference in the

population dynamics of the within-scale MAP bacterial load (Bc), MAP-Specific Th2 response

cells (T2), MAP Specific Th1 response cells (T1), and infected macrophages (Im) in the long run.
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This also implies that the variation of infection rate for different values influence the within-host

scale disease dynamics only at the start of infection of about 100 days, after that then converge to

the same endemic state. Therefore, these results confirm that once the minimum infectious dose

is consumed, the long term disease dynamics is independent to superinfection.

Figure 4.5: Graph of numerical solutions of model system (4.2.1) showing propagation of (a)

infected macrophage population (Im), (b) top right: within-host MAP bacteria population (Bc),

(c) MAP-Specific Th1 response cells (T1), and (d) MAP-Specific Th2 response cells population

for different values of disease induce death rate B0: B0 = 1000, B0 = 10000, and B0 =

100000.

In Fig. 4.5, we further showed the effects of variation of the bacteria half saturation constant

B0: B0 = 1000, B0 = 10000, and B0 = 100000 associated with infection of ruminants at the

between-host scale on the within-host scale selected variables (a)infected macrophage popula-

tion (Im), (b) within-host MAP bacteria population (Bc), (c) MAP-Specific Th1 response cells

(T1), and (d) MAP-Specific Th2 response cells for different values of. Fig. 4.5 show that the

health mechanisms that reduce the susceptibility of ruminants to the disease (e.g. administration

of vaccine) again will only have a considerable effect on the within-host disease dynamics at
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the start of an infection within 100 days. But after that there is no difference in the population

dynamics of the within-scale MAP bacterial load (Bc), MAP-Specific Th2 response cells (T2),

MAP Specific Th1 response cells (T1), and infected macrophages (Im) in the long run. This

again implies that the variation of infection rate for different values influence the within-host

scale disease dynamics only at the start of infection of about 100 days, after that then converge to

the same endemic state. Therefore, these results again confirm that once the minimum infectious

dose is consumed, the long term disease dynamics is independent to superinfection.

Collectively, based on the numerical results in Fig. 4.3 - Fig. 4.3, we noticed that the when

the between-host scale parameters are varied, there is a noticeable but minimal changes in the

dynamics of the within-host scale variables: Im, Bc, T1, T2. This is because, once the host is

infected, superinfection becomes irrelevant as the replication of the MAP bacterial load at the

within-host scale sustains the disease dynamics at this scale.

4.4.2 The influence of within-host scale on the between-host PTB disease
dynamics

This sub-subsection highlights some numerical assessment results of the influence of the within-

host submodel parameters on the between-host submodel PTB transmission dynamics. Fig. 4.6

- Fig. 4.8 show the impact in the variation of three within-host parameters (αc, Nc, µc) on the

dynamics of three key between-host scale variables (SC , IC , BC).
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Figure 4.6: Graph of numerical solutions of the model system (4.2.1) showing the evolution in

time of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC),

and (c) between-host MAP bacterial load (BC) for different values of excretion rate of within-

host MAP bacterial load, Bc, αc: αc = 0.001, αc = 0.01, and αc = 0.1.

Fig. 4.6 shows graphs of numerical solutions of the model system (4.2.1) showing propagation

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) between-host MAP bacterial load (BC) for different values of excretion rate of within-host

MAP MAP bacilli into the environment αc: αc = 0.001, αc = 0.01, and αc = 0.1. The

results Fig. 4.6 showed that an increase of excretion rate of the within-host bacterial load into

the physical environment by each infected ruminant individual has important public health effect

at the ruminant population-level in that there is a noticeable increase in the between-host MAP

bacteria BC and population of infected ruminant IC as well as decrease in the population of

susceptible ruminant SC .
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Figure 4.7: Graphs showing changes in (a) population of susceptible ruminants (SC), (b) pop-

ulation of infected ruminants (IC), and (c) between-host MAP bacterial load (BC) for differ-

ent values of within-host MAP bacteria produced per bursting infected macrophage cell Nm:

Nm = 10, Nm = 100, Nm = 1000.

Fig. 4.7 shows graphs of numerical solutions of the model system (4.2.1) showing variation of

(a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) between-host MAP bacterial load (BC) for different values of within-host MAP bacteria

produced per bursting infected macrophage cell Nm: Nm = 10, Nm = 100, Nm = 1000. This

shows that as an average replication rate of the within-host MAP bacilli bacteria at an infected

macrophage cell-scale at individual ruminant level increases, transmission of PTB infection at

herd-level of ruminant also increases.
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Figure 4.8: Simulations of model system (4.2.1) showing changes of (a) top left: population of

susceptible ruminants (SC), (b) top right:population of infected ruminants (IC), and (c) bottom:

between-host MAP bacterial load (BC) for different values of death rate of the within-host MAP

bacterial load, µc: µc = 0.3, µc = 0.025, and µc = 0.003.

Fig. 4.8 illustrates the solution profile of the multiscale model system (4.2.1) showing variations

of (a) population of susceptible ruminants (SC), (b) population of infected ruminants (IC), and

(c) between-host MAP bacterial load (BC) for different values of natural death rate of within-

host MAP bacilli at the site of infection within an infected ruminant µc: µc = 0.3, µc = 0.025,

and µc = 0.003. The results in Fig. 4.8 showed that as the death rate of the within-host MAP

bacilli increase, there is a noticeable decrease in the between-host MAP bacterial load, BC and

population of infected ruminant, IC as well as increase in the population of susceptible ruminant

SC . This again confirms the influence of the between-host parameters on the infection dynamics

at the ruminant population-level.

Overall, based on the numerical results in Fig. 4.3 - Fig. 4.8, we can conclude that:
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a. The between-host scale influences the within-host scale through the superinfection of the

infectious agent.

b. Once the minimum infectious dose is consumed, superinfection makes no different on the

dynamics of the disease when the infection at the within-host scale has successfully been

established because the infection at this domain scale is sustained by pathogen replication.

c. The within-host scale continuously influence the dynamics of the disease at the between-

host scale throughout the infection.

This indeed indicates that during the dynamics for paratuberculosis infection in ruminants, the

contribution of initial infective inoculum to the total pathogen load becomes negligible compared

to the contribution of the replication-cycle.

4.5 Summary

The contribution of this chapter to scientific knowledge is the use of embedded multiscale model

developed to investigate the effect of super-infection on the intrinsic dynamics of Paratuberculo-

sis in ruminants as a representative of all type II environmentally-transmitted disease systems in

which a pathogen replication-cycle occurs only at the microscale. To the best of our knowledge,

the embedded multiscale model developed in this study is the first of its kind to characterize

an infectious diseases in which pathogen replication occurs only at the microscale. Similar to

the nested multiscale model results in Chapter 3, the embedded multiscale model results in this

chapter (through numerical simulation) also illustrate that the transmission of the PTB disease at

the between-host scale only influences the disease dynamics at the within-host scale at the start

of the infection, while once the infection has been established, the replication of MAP bacteria

at the within-host scale sustain the dynamics of PTB disease. This means that once the minimum

infectious dose is consumed, superinfection become irrelevant when the infection at the within-

host scale has successfully been established. This implies that repeated infection of the ruminant

by the bacteria before it recovers from prior infection by PTB infection does not significantly

alter the total pathogen load within an infected ruminant. Sensitivity analysis of the model pa-

rameters was also carried out using the basic reproduction number of the embedded multiscale

model as the disease metric that characterized the infection at the start of an infection. The sen-

sitivity analysis of the embedded multiscale model basic reproductive number was based on the

Latin Hypercube Sampling (LHS) scheme. The results output of sensitivity analysis of the basic

reproductive number of the embedded multiscale model in this chapter are consistent with the

sensitivity analysis results of the basic reproductive numberwe obtain from the nested multiscale
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model in the previous chapter (i.e, Chapter 3) that indicate that the variation of the decay rate in

the within-host MAP bacteria population has a significant effect on the transmission risk of the

disease at the ruminant population level. Therefore, taking into account that there are no drugs

for PTB infection (intervention which is administrated at within-host scale), these results suggest

that the development of a drug that kills and restrict replication of MAP bacteria at within-host

scale would have the highest impact on the reduction of the transmission risk of the disease

among the ruminants at the herd level. Although the embedded multiscale modelling framework

developed here to specific disease system of paratuberculosis in ruminants, we anticipate it to be

robust enough to be applicable to other infectious diseases of type II environmentally-transmitted

diseases beyond paratuberculosis in ruminants.
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Comparison of the Multiscale Models in
Predicting Dynamics of Infectious Diseases

5.1 Introduction

In Chapter 3 and Chapter 4, we respectively developed both a nested multiscale model (NMSM)

and an embedded multiscale model (EMSM) which we used to study the intrinsic dynamics of

Partuberculosis (PTB) in ruminants as a typical example of type II environmentally-transmitted

diseases in which the pathogen has a replication-cycle at the microscale (i.e. at within-host scale).

A key feature of disease dynamics at any level of organization is that it is characterized by the

replication-transmission relativity [8]. The theory posits that at any level of organization of an

infectious disease there is a multiscale cycle/loop that involves the reciprocal influence of the

microscale and the macroscale. Both NNSMs and EMSMs describe this invariant feature of the

multiscale dynamics of infectious disease systems. However, the underlying difference is that in

NMSMs the macroscale influences the micro-scale through pathogen initial inoculum, whereas in

EMSMs the macroscale influences the microscale through super-infection (i.e. repeated infection

by a pathogen of the same species/strain before the host recovers from prior infection by the same

pathogen species/strain). At this stage what we know is that PTB disease dynamics in ruminants

involves a pathogen replication-cycle at the microscale (i.e. at within-host scale). We also know

that when the infection of the host involves a minimum infectious dose, then this is the one

that triggers the replication. The contribution of any subsequent infections to the total pathogen
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load becomes negligible compared to the contribution of the replication cycle. This means that

repeated infection of the host by the bacteria before the host recovers from prior infection by PTB

does not significantly alter the total pathogen load within an infected host. This in turn means

that superinfection would not make a difference in disease dynamics. Thus both the NMSM and

the EMSM can equally be used to characterize an infectious disease that involves a pathogen

replication-cycle at the microscale such as PTB. What we do not know is whether the NMSM

and the MSM would predict similar trends in disease dynamics. The fundamental question is

whether the NMSM and the EMSM would predict the same pattern of the intrinsic dynamics of

an infectious disease system and whether the predicted pattern would change under the influence

of health interventions. To the best of our knowledge no previous studies have investigated

this fundamental question. Thus, the objective of this chapter is to compare between these two

multiscale model categories (NMSM and EMSM), in order to establish the most appropriate

category of multiscale models in predicting the dynamics of an infectious disease system using

PTB in ruminants as a paradigm. The comparison consists of simulating the transmission of

PTB disease in ruminants without and with the influence of preventive and control measures

using different multiscale models for PTB disease dynamics that we have derived in previous

chapters which are: (a) the full nested multiscale model, (b) the simplified nested multiscale

model and (c) the embedded multiscale model.

5.2 Three Multiscale Models to be Compared

In this section, we provided the three multiscale models which we want to compare which are: (a)

the full nested multiscale model, (b) the simplified nested multiscale model, and (c) the embedded

multiscale model for quick reference. All these three different multiscale models describe the

dynamics of PTB infection in ruminants. The three multiscale models are given as follows:
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a. The full nested multiscale model for PTB transmission dynamics in ruminants: The full

nested multiscale model for PTB transmission dynamics in ruminants is:

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= αcBc(t)IC(t)− αCBC(t),

iv. ε
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t)

v. ε
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t)

vi. ε
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t)

vii. ε
dT0(t)

dt
= Λ0 − (δmIm(t) + δbBc(t))T0(t)− µ0T0(t)

viii. ε
dT1(t)

dt
= θ1δmIm(τ)T0(τ)− µ1T1(t)

ix. ε
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(5.2.1)

For a complete description of the full nested multiscale model system (5.2.1) and its deriva-

tion see Chapter 3. The full nested multiscale model can be reduced in order by using a

first-slow time-scale method [17]. For details of the reduction of the order of the full nested

multiscale model see Chapter 3.
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b. The simplified/reduced nested multiscale model for PTB transmission dynamics: The

simplified nested multiscale model for PTB transmission dynamics in ruminants is:

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)
SC(t)− [µC + δC ]IC(t),

iii.
dBC(t)

dt
= NcαcIC(t)− αCBC(t)

(5.2.2)

where the composite parameter Nc which estimates N̂c is given by

Nc =
Nmkm

2(µc + αc)

[
−φ1 +

√
φ2

1 + 4φ2

]
(5.2.3)

with 
φ1 =

k3 + µ1µ0k2 − k1Q

k2k1

,

φ2 =
µ1µ0Q

k2k1

(5.2.4)

and 

Q = µφ(µφ + δφ)(R0c − 1),

k1 =
µ1δm(µc + αc) + µ1δbNmkm

(µc + αc)
,

k2 =
βφNmkm(µφ + km)

(µc + αc)
,

k3 = k0 + µφγmθ1δmΛ0,

k0 =
βφNmkmγmθ1δmΛ0

(µc + αc)
,

R0c =
βφΛφNmkm

µφ(µφ + km)(µc + αc)
.

(5.2.5)
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Further, the quantity R0c =
βφΛφNmkm

µφ(µφ + km)(µc + αc)
in expression (5.2.5) is the within-

host PTB basic reproductive number as previously explained. Also, the derivation of this

simplified version of the full PTB multiscale model has been previously done in chapter

Chapter 3.

c. The embedded multiscale model for PTB transmission dynamics in ruminants: The em-

bedded multiscale model for PTB transmission dynamics in ruminants is given here for a

quick reference as:

i.
dSC(t)

dt
= ΛC −

βCBC(t)

B0 +BC(t)SC(t)
− µCSC(t)

ii.
dIC(t)

dt
=

βCBC(t)

B0 +BC(t)SC(t)
− [µC + δC ]IC(t)

iii.
dBC(t)

dt
= αc[IC(t) + 1]Bc(t)− αCBC(t)

iv.
dBc(t)

dt
=

βCBC(t)[SC(t)− 1]

[B0 +BC(t)]ΦC [IC(t) + 1]
+NmkmIm(t)− [µc + αc]Bc(t)

v.
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t)

vi.
dIm(t)

dt
= βφMφ(t)Bc(t)− [km + µφ]Im(t)− γmT1(t)Im(t)

vii.
dT0(t)

dt
= Λ0 − [δmIm(t) + δbBc(t)]T0(t)− µ0T0(t)

viii.
dT1(t)

dt
= θ1δmIm(t)T0(t)− µ1T1(t)

ix.
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(5.2.6)

For a complete description of the embedded multiscale model system (5.2.6) and its deriva-

tion see Chapter 4.

In what follows, we compared these three types of multiscale models.
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5.3 Comparison of three types of multiscale models in pre-

dicting the intrinsic dynamics of PTB infection from nu-

merical simulations

In this section, we presented some of the results concerning the comparison in predictions of the

intrinsic dynamics of environmentally-transmitted disease systems by the three different types

of multiscale models (i.e., a full nested multiscale model, a simplified nested multiscale model,

and a embedded multiscale model) using PTB in ruminants as a case study. We achieved this by

numerical simulating the two key between-host scale variables in all the three multiscale models

for PTB transmission dynamics. The two key between-host scale variables are (i) the population

infected ruminants, IC and (ii) the population of the between-host scale MAP bacterial load,

BC). The simulations of these two key between-host scale variables (IC and BC) we carried out

under the influence of the selected parameters when they are varied from different values in all

the three multiscale models. The initial condition used for the simulations of these multiscale

models are: SC(0) = 20000, IC(0) = 0, BC(0) = 10000 , Bc(0) = 100 , Mφ(0) = 500, Im(0) =

0, T0(0) = 0.1 , T1(0) = 0, and T2(0) = 0. The parameter values used for simulations of these

three multiscale models are tabulated in Table 4.1 of Chapter 4. The comparison of the predicted

output from all the three multiscale models (FULL-NMSM, SIMP-NMSM and BIDI-EMSM)

are presented in Fig. 5.1 and Fig. 5.2 as follows:

a. Camparing the suitability of the three multiscale models in predicting the profile of
IC , over time.

(i) Fig. 5.1(a) shows evolution of IC from the three multiscale models when µc varying

from high level, µc = 0.3 to low level, µc = 0.003.

(ii) Fig. 5.1(b) shows evolution of IC from the three multiscale models when αc varying

from high level, αc = 0.1 to low level, αc = 0.001.

(iii) Fig. 5.1(c) shows evolution of IC from the three multiscale models when αc varying

from high level, Nm = 10 to low level, Nm = 1000.
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Figure 5.1: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-

NMSM and BIDI-EMSM) showing the profile of infected ruminants for different values of selected

within-host parameters (αc, µc, Nm).
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From on the results in Figure 5.1, we made the following deduction:

1. The numerical results in Fig. 5.1(a) showed that when the natural decay rate (µc)

of the within-host MAP bacteria population changes from high level (i.e., µc =

0.3) to low level (i.e., µc = 0.003), there is noticeable but negligible difference

among the three multiscale models in predicting the profile of IC as the trajectory

of IC in all the multiscale models increase to a marginally different peak values

of about less than 350 infected ruminants when µc is at the high level. When µc is

at the low level IC increases to an approximately equal peak value of about more

than 350 infected ruminants in all the multiscale models. Furthermore, we also

noticed that in the long run, trajectories of infected ruminants in all the multiscale

models decrease and converge to approximately equal equilibrium steady state

when µc is at high level and when it is at the low level it converge to a strictly

equal equilibrium steady state.

2. The numerical results in Fig. 5.1(b) showed that the variation in the excre-

tion rate (αc) of the within-host MAP bacteria population from high level (i.e.,

αc = 0.1) to low level (i.e., αc = 0.001) makes no difference in predicting the

profile of IC among the three multiscale models as the trajectories of IC in all

the multiscale models increase to an approximately equal peak values as well as

converging to a strictly equal equilibrium steady state in the long run in all the

cases (i.e., when αc is at high level and when it is at low level).

3. The numerical results in 5.1(c) show that the variation in the average number

(Nm) of the intracellular MAP bacteria load into the extracellular environment

by each infected macrophages upon bursting from high level (i.e., Nm = 1000)

to low level (i.e., Nm = 10) again there is a noticeable but negligible difference

among the three multiscale models in predicting the profile of IC as the trajec-

tories of IC in all the multiscale models increase to a marginally different peak

values when Nm = 10. However, when Nm = 1000, all the three multiscale mod-

els (Full-NSMS, SIMP-NMSM and BIND-EMSM) provide the same prediction

of the profile of IC .

Collectively, based on all the three sets of numerical results presented in Fig. 5.1

(i.e., Fig. 5.1(a - c)), we can easily note that the variation in the selected key PTB

within-host parameters αc, µc and Nm from different values contribute to a negligible

difference in predicting the profile of IC from the three multiscale models. This

means that all the three multiscale models (Full-NSMS, SIMP-NMSM and BIND-

EMSM) can equally be used to characterize the dynamic of an infectious disease that

has a pathogen replication at the microscale, although the SIMP-NMSM provide a
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worse case scenario. This might be due to the fact that in the SIMP-NMSM infection

at the microscale has been allowed to reach an endemic before contributing to the

dynamics of the disease at the between-host scale.

b. Camparing the suitability of the three multiscale models in predicting the profile of
BC over time.

(i) Fig. 5.2(a) shows evolution of BC from the three multiscale models when µc varying

from high level, µc = 0.3 to low level, µc = 0.003.

(ii) Fig. 5.2(b) shows evolution of BC from the three multiscale models when αc varying

from high level, αc = 0.1 to low level, αc = 0.001.

(iii) Fig. 5.2(c) shows evolution of BC from the three multiscale models when αc varying

from high level, Nm = 10 to low level (Nm = 1000).
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Figure 5.2: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-

NMSM and BIDI-EMSM) showing the profile of infected ruminants for different values of selected

within-host parameters (αc, µc, Nm).
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From the results in Figure 5.2, we make the following deductions:

1. The numerical results in Fig. 5.2(b) show that as the natural decay rate (µc) of the

within-host MAP bacteria population vary from low level (µc = 0.003) to high

level (µc = 0.3) there is a noticeable difference among the three multiscale mod-

els in predicting the profile of BC , with the simplified nested multiscale models

predicting high population size of BC compared to full nested and embedded

multiscale models in which both predict approximately equal population size of

BC .

2. The numerical results in Fig. 5.2(b) show that when the excretion rate (αc) of the

within-host MAP bacteria load into the physical environmental domain by each

infected ruminant individuals increases from low level (αc = 0.001) to high level

(αc = 0.1) there is also a noticeable difference among the three multiscale mod-

els in predicting the profile of BC , with the simplified nested multiscale models

predicting high population size ofBC compare to full nested and embedded mul-

tiscale models in which both predict approximately equal population size of BC .

3. The numerical results in Fig. 5.2(c) show that when the average number of the

intracellular MAP bacterial load into the extracellular environment by each in-

fected macrophages upon bursting (Nm) increase from low level (Nm = 10) to

high level (Nm = 1000) there is a significant difference in predicting the pop-

ulation size of BC , with the simplified nested multiscale models still predicting

high population size of BC compare to both the full nested and the embedded

multiscale models in which both predict approximately equal population size of

BC .

Collectively, from all the three sets of numerical results in Fig. 5.2 (i.e., Fig. 5.2(a

- c)), we notice that as the selected key PTB within-host parameters αc, µc and Nm

change from different levels contribute to the variation in the three multiscale mod-

els in predicting the profile of BC , with the simplified multiscale predicting a high

number of MAP bacterial cells in the environment compared to both the full nested

and embedded multiscale models in which all predict an approximately equal num-

ber of infective MAP bacterial cells in the environment. This is largely because in

the simplified nested multiscale model the replication-cycle of pathogen is allowed

to reach an endemic level first before contributing to the dynamics of the diseases at

the population level.

Overall, the numerical results shown in Fig. 5.1 and Fig. 5.2 illustrate that during PTB disease

dynamics, although there is reciprocal influence between the within-host scale (micro-scale) and
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the between-host scale (macro-scale) when the within-host scale varies for different values, the

comparative different between the nested and embedded multiscale models in predicting the

dynamics of PTB in the ruminant population is negligible. This generally implies that at any

level of biological organization of an infectious disease system in which the replication-cycle

of pathogen only occurs at the micro-scale either a nested multiscale model or an embedded

multiscale model can equally be used to characterize its intrinsic dynamics. This is largely

because the results that can be obtained using an embedded multiscale modelling can also be

obtained by using a nested multiscale modelling.

5.4 Comparison of three types of multiscale models in pre-

dicting the dynamics of PTB infection under the influence

of PTB interventions

In this section, we further investigate which among the full nested, simplified nested and em-

bedded multiscale models would be more appropriate in guiding control and elimination of the

burden of Paratuberculosis (PTB) in the ruminant population. We extend all the three baseline

multiscale models introduced in Chapter 3 and Chapter 4, respectively, to incorporate two major

PTB health interventions which are: (i) environmentally-hygiene management (EHM) and (ii)

medical-based prevention and therapy (MBPT). We Achieve this by firstly evaluating how well

the three extended multiscale models that incorporate the two PTB health interventions (EHM

and MBPT) can translate existing knowledge about efficacy at the individual ruminant scale (i.e.,

within-ruminant-host scale) into outcomes of effectiveness that can be predicted at the ruminant

population scale (i.e., between-ruminant-host scale) in public health decision making. It is impor-

tant to note that both EHM and MBPT are complex intervention systems as they are composed

of a number of components, which may act independently or inter-dependently. For instance,

EHM have two components which are: (i) health and sanitary education effect of EHM and (ii)

killing of environmental bacilli bacteria effect of EHM. Similarly, MBPT have three components

which are (i) PTB vaccination effect of MBPT, (ii) PTB test and culling effect of MBPT and

(iii) PTB test and curing effect of MBTP. In addition, it should also be noted that these two PTB

health interventions in ruminant (EHM and MBPT) are generally administered at different scale

domains of the PTB disease system, with EHM administered at between-host scale while MBPT

administrated at within-host scale. Below is the description of the two main PTB interventions:

(i) Environmentally-hygiene management: This intervention strategy has two effects: (i)

health and sanitary education effect which has the net effect of reducing the infection rate in
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the ruminant population (r), and (ii) treatment of dams or water troughs effect using some

chemical for killing bacterial load in water which also have the net effect of increasing the

natural death of MAP in the physical water environment (k). Therefore, if we assume that

health and sanitary education intervention and treatment of water are administered then

the rate of ruminant contact with the physical environmental bacterial load parameter βC is

modified to become βC(1−r) where r is the efficacy of health and sanitary education effect,

with 0 < r < 1. The natural death rate of the environmental bacterial load in the physical

water environment is modified to become αC(1−k) where k is the efficacy of killing effect,

with 0 < k < 1. Thus, βC(1− r) measures the probability of the reduction of susceptible

ruminant contact with unsafe water bodies or other contaminated physical environments

due to health education campaigns and changes in behavioral practices that aims to reduce

the transmission risk of the disease in ruminant animals. The quantity αC(1−k) measures

the probability at which the population of MAP bacilli bacteria is reduced in the physical

environment due to the treatment of unsafe water with some chemicals.

(ii) Medical-based prevention and treatment: This intervention strategy also has multiple

effects: (i) PTB preventive vaccine effect which has the net effect of reducing suscepti-

bility of ruminants to PTB infection (v), (ii) PTB immune stimulation effect which has

the net effect of boosting Th1 cells at the site of an infection within an infected rumi-

nant (b), (iii) killing of extracellular MAP bacteria effect which net effect of increasing

natural death rate in the population of extracellular MAP bacilli (d) and (iv) restricting

growth of intracellular MAP bacteria effect which has a net effect of preventing infected

macrophages from bursting and further transmit MAP bacteria to other cells (m). Assum-

ing that PTB preventive vaccine are administered as PTB health intervention, coefficient

1/B0 is reduced to become 1/B0(1 + v), where v is the efficacy of the preventive vaccine

and 0 < v < 1. Thus, B0(1 + v) measures the probability of reducing the susceptibility

of ruminant when contact with the environmental bacterial load. Assuming further that

any health intervention mechanism that stimulates the response of Th1 cells against the

infection at the within-host scale is administered, then θ1 becomes θ1(1 + b) where b is

the efficacy of Th1 stimulation and 0 < b < 1. Thus, θ1(1 + b) measures the probability

of increasing the proliferation of Th1 cells. Also, if we assume that test and treatment

with drugs is administered, the µc is modified to be µc(1 + d), where d is the efficacy

of drug therapy intervention and 0 < d < 1 and also d is a parameter that relates to the

treatment of each ruminant using the drugs after tested positive to PTB infection. Thus,

µc(1 + d) measures the probability of killing the within-host bacterial load. Assuming that

any health intervention mechanism that restricts the growth of intracellular MAP bacteria
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within an infected macrophages, then Nm become Nm(1 + d). Thus, Nm(1 + d) mea-

sures the probability of restriction of the replication of intracellular bacteria within each

infected macrophages. Overall, health-sanitary education and the administration of PTB

vaccination in the herd modify λC and λc to become λ̃C and λ̃c, respectively. Where
λ̃C(t) =

βC(1− r)BC(t)

B0(1 + v) +BC(t)
,

λ̃c(t) =
βC(1− r)BC(t)

[B0(1 + v) +BC(t)]ΦC [IC(t) + 1]
.

(5.4.1)

A summary of the modifications of the two multiscale models parameters of PTB dynamics due

to effects of the two PTB health interventions (EHM and MBPT) is given in Table 5.1.

Health Interventions Transformation Efficacy Value Range

Reducing contact rate effect of EHM (r) βC −→ βC(1− r) 0.1 - 0.8

Killing of between-host MAP bacteria αC −→ αC(1 + k) 0.1 - 0.8

effect of EHM (k)

Reducing susceptibility of ruminants B0 −→ B0(1 + v) 0.1 - 0.8

to infection effect of MBPT (v)

Proliferation of Th1 cells effect of MBPT (b) θ1 −→ θ1(1 + b) 0.1 - 0.8

Killing of extracellular MAP bacteria µc −→ µc(1 + d) 0.1 - 0.8

effect of MBPT (d)

Retricting growth of intracellular MAP Nm −→ Nm(1−m) 0.1 - 0.8

bacteria effect of MBPT (m)

Table 5.1: Summary of the actions of the components of the two PTB health interventions against

the PTB infection dynamics in ruminants.

Taking into account all the modifications as in Fig. 5.1, the full nested, simplified and embedded

multiscale models for PTB infection dynamics that incorporate the effects of the two PTB health

interventions in ruminant (EHM and MBPT) are given as follows:
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a. The full nested multiscale model incorporating the two PTB health intervention is given
as: 

i.
dSC(t)

dt
= ΛC −

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− (µC + δC)IC(t),

iii.
dBC(t)

dt
= αcBc(t)IC(t)− αC(1− k)BC(t),

iv. ε
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t)

v. ε
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t)

vi. ε
dBc(t)

dt
= Nm(1−m)kmIm(t)− (µc(1 + d) + αc)Bc(t)

vii. ε
dT0(t)

dt
= Λ0 − (δmIm(t) + δbBc(t))T0(t)− µ0T0(t)

viii. ε
dT1(t)

dt
= θ1(1 + b)δmIm(τ)T0(τ)− µ1T1(t)

ix. ε
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(5.4.2)

As previously indicated, the extended nested baseline multiscale model (5.4.2) can not be

analyzed mathematically due to its structural feature in which the between-host scale dy-

namics only influence the within-host scale dynamics through the initial value condition of

the within-host MAP bacteria population. However, the numerical analysis of the extended

nested baseline multiscale model (5.4.2) can be performed.
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b. The simplified/reduced nested multiscale model for PTB transmission dynamics in ru-
minants is given as follow:

i.
dSC(t)

dt
= ΛC −

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− [µC + δC ]IC(t),

iii.
dBC(t)

dt
= NcαcIC(t)− αC(1 + k)BC(t)

(5.4.3)

with

Nc =
Nm(1− b)km

2(µc(1 + d) + αc)

[
−φ1 +

√
φ2

1 + 4φ2

]
(5.4.4)

where 
φ1 =

k3 + µ1µ0k2 − k1Q

k2k1

,

φ2 =
µ1µ0Q

k2k1

(5.4.5)

and 

Q = µφ(µφ + δφ)(R0c − 1),

k1 =
µ1δm(µc(1 + d) + αc) + µ1δbNm(1−m)km

(µc(1 + d) + αc)
,

k2 =
βφNm(1−m)km(µφ + km)

(µc(1 + d) + αc)
,

k3 = k0 + µφγmθ1δmΛ0,

k0 =
βφNm(1−m)kmγmθ1(1 + b)δmΛ0

(µc(1 + d) + αc)
,

R0c =
βφΛφNm(1−m)km

µφ(µφ + km)(µc(1 + d) + αc)
.

(5.4.6)
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c. The PTB embedded multiscale model incorporating the two PTB health intervention
becomes:

i.
dSC(t)

dt
= ΛC −

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− µCSC(t),

ii.
dIC(t)

dt
=

βC(1− r)BC(t)

B0(1 + v) +BC(t)
SC(t)− [µC + δC ]IC(t),

iii.
dBC(t)

dt
= αc[IC(t) + 1]Bc(t)− αC(1 + k)BC(t),

iv.
dBc(t)

dt
=

βC(1− r)BC(t)(SC(t)− 1)

[B0(1 + v) +BC(t)]ΦC [IC(t) + 1]
+Nm(1−m)kmIm(t)−

[µc(1 + d) + αc]Bc(t),

v.
dMφ(t)

dt
= Λφ − βφMφ(t)Bc(t)− µφMφ(t),

vi.
dIm(t)

dt
= βφMφ(t)Bc(t)− [km + µφ]Im(t)− γmT1(t)Im(t),

vii.
dT0(t)

dt
= Λ0 − [δmIm(t) + δbBc(t)]T0(t)− µ0T0(t),

viii.
dT1(t)

dt
= θ1(1 + b)δmIm(t)T0(t)− µ1T1(t),

iv.
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(5.4.7)

The comparison of the suitability of the three multiscale models in predicting the effectiveness

of PTB health interventions operated at different scales on the dynamics of IC over time are

presented as follows:

(i) Fig. 5.3(a) shows evolution of IC from all the three multiscale models when all the six

component efficacy values of the two PTB health interventions are assume to have a low

level of 10% in all the three multiscale models.
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(ii) Fig. 5.3(b) shows evolution of IC from all the three multiscale models when all the six

component efficacy values of the two PTB health interventions are assume to have a me-

dian level of 40% in all the three multiscale models.

(iii) Fig. 5.3(c) shows evolution of IC from all the three multiscale models when all the six

component efficacy values of the two PTB health interventions are assume to have a high

level of 80% in all the three multiscale models.
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Figure 5.3: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-

NMSM and BIDI-EMSM) showing the profile of infected ruminants for different efficacy values

of all the six components of the two PTB health interventions.

From the results in Figure 5.3, we make the following deduction:
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1. The variation in the efficacy values of the six individual interventions from different levels

(0.1, 0.4, 0.8) in all the three multiscale models have a significant and considerable benefit

in reducing the prevalence at the population level as there is a noticeable reduction of the

population size of infected ruminants IC in all the multiscale models from more than 350

infected ruminants to less than 100 infected ruminants.

2. However, when each of the six individual interventions is assumed to have the same ef-

ficacy value of 0.1, the comparative difference in predicting the effectiveness of these in-

terventions in all the three multiscale models in Fig. 5.3(a) is negligible as the population

of infected ruminants (IC) in all the multiscale models increase to a negligible different

peak values. We also observe that in a long run the profiles of IC in all the three multiscale

models converge to approximately equal equilibrium steady state. But the simplified nested

multiscale model predicts a slightly low effectiveness of reducing the population size of

infected ruminants compared to the full nested multiscale model and embedded multiscale

model in which both predict high and approximately equal effectiveness of reducing the

population size of infected ruminants.

3. When each of the six individual interventions is assumed to have the same efficacy value

of 0.4, the comparative difference in predicting the effectiveness of these interventions in

all the three multiscale models in Fig. 5.3(b) is significant as the population of infected

ruminants (IC) in all the multiscale models increase to a noticeable different peak values.

We also observe that in a long run the profiles of IC in all the three multiscale models con-

verge a negligible different equilibrium steady states, with the simplified nested multiscale

model predict a slightly low effectiveness of reducing the population size of infected ru-

minants compared to the full nested multiscale model and embedded multiscale model in

which both predict high and approximately equal effectiveness of reducing the population

size of infected ruminants.

4. When each of the six individual interventions is assumed to have the same efficacy value

of 0.8, the comparative difference in predicting the effectiveness of these interventions in

all the three multiscale models in Fig. 5.3(c) is extremely significant as the population of

infected ruminants (IC) in all the multiscale models increase to a noticeable different peak

values. We further observe that profiles of IC in all the three multiscale models converge

to a considerable different endemic levels compared to when each of the six individual

interventions is assumed to have the same efficacy value of 0.1 and 0.4, respectively. How-

ever, we also observe that when each of the six individual interventions is assumed to have

the same efficacy value of 0.8 the simplified multiscale model predict a low effectiveness

of reducing the population of infected ruminants, while the embedded multiscale model
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predict an intermediate effectiveness of reducing the population of infected ruminants and

the full nested multiscale model predict a high effectiveness of reducing the population of

infected ruminants.

The comparison of the suitability of the three multiscale models in predicting the effectiveness

of PTB health interventions operated at different scales on the dynamics of BC over time are

presented as follows:

(i) Fig. 5.4(a) shows evolution of BC from the three multiscale models when all the six

component efficacy values of the two PTB health interventions are assume to have a low

level of 10%.

(ii) Fig. 5.4(b) shows evolution of BC from the three multiscale models when all the six com-

ponent efficacy values of the two PTB health interventions are assume to have a median

level of 40%.

(iii) Fig. 5.4(c) shows evolution of BC from the three multiscale models when all the six

component efficacy values of the two PTB health interventions are assume to have a high

level of 80%.
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Figure 5.4: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-

NMSM and BIDI-EMSM) showing the profile of infected ruminants for different efficacy values

of all the six components of the two PTB health interventions.

From on the results in Figure 5.4, we make the following deduction:
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1. Similarly, the variation in the efficacy values of the six individual interventions from differ-

ent levels (0.1, 0.4, 0.8) in all the three multiscale models have a more considerable benefit

in reducing the prevalence at the population level as there is a noticeable reduction of the

population size of the between-host MAP bacteria load BC in all the multiscale models

from more than 130 million MAP bacteria cells to less than 1.6 million MAP bacteria

cells.

2. In Fig. 5.4(a), when each of the six individual interventions is assumed to have the same

efficacy value of 0.1, there is a minimal comparative difference in predicting the effec-

tiveness of these interventions in reducing the population of MAP bacterial cells at the

population level in all the three multiscale models. We observe that the profiles of BC in

all the three multiscale models increases to a noticeable but slightly different peak values,

with the simplified multiscale model predict the high peak value of MAP bacteria cells

while both the full nested and embedded multiscale models predict approximately equal

peak value of MAP bacteria cells. We also observe that in a long run the profiles of BC in

all the three multiscale models converge to a noticeable but slightly different equilibrium

steady states, with the simplified nested multiscale model predict a slightly low effective-

ness of reducing the MAP bacterial load in the physical environmental entities compared

to the full nested multiscale model and embedded multiscale model in which both pre-

dict high and approximately equal effectiveness of reducing the MAP bacterial load in the

physical environment.

3. In Fig. 5.4(b), when each of the six individual interventions is assumed to have the same

efficacy value of 0.4 , the comparative difference in predicting the effectiveness of these

interventions in all the three multiscale models is significant. We observe that the profiles

of BC in all the multiscale models increases to a noticeable different peak values, with the

simplified multiscale model predict the high peak value of MAP bacteria cells while both

the full nested and embedded multiscale models predict approximately equal peak value

of MAP bacteria cells. We also observe that in a long run the profiles of BC in all the

three multiscale models converge to a noticeable different equilibrium steady states, with

the simplified nested multiscale model predict a low effectiveness of reducing the MAP

bacterial load in the physical environmental entities compared to the full nested multiscale

model and embedded multiscale model in which both predict high and approximately equal

effectiveness of reducing the MAP bacterial load in the physical environment.

4. In Fig. 5.4(c), when each of the six individual interventions is assumed to have the same

efficacy value of 0.8, the comparative difference in predicting the effectiveness of these

interventions in all the three multiscale models is extremely significant as BC in all the
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multiscale models increase to a more considerable different peak values. We observe that

the simplified multiscale model predict a low effectiveness of reducing the population of

MAP bacteria cells in the environment, while both the embedded multiscale model and

the full nested multiscale model predict a high and equal effectiveness of reducing the

population of MAP bacterial load at the population level.

Collectively, the numerical results shown in Fig. 5.3 and Fig. 5.4 show that during PTB

transmission-replication dynamics, the simplified nested multiscale model predict a worse case

scenario of the effectiveness of the six individual intervention in reducing MAP bacterial load

at the population level. While both the full nested and embedded multiscale models predict

approximately equal effectiveness of reducing the number of infected ruminants and MAP bac-

terial load in the environment. Similarly, this also indicates that both the full nested and the

embedded multiscale models can equally be used to characterize the dynamics of an infectious

disease that involves a pathogen replication-cycle at the microscale under the influence of health

interventions.

5.5 Summary

In this chapter, we compared the predictions of three different types of multiscale models in char-

acterizing disease dynamics with pathogen replication cycle that occurs only at the microscale

using ruminant paratuberculosis as a paradigm. Based on the simulations of population dynamics

of infected ruminants as well as the population dynamics of the free-living MAP bacteria in the

environment in all the three multiscale models (FULL-NSMS, SIMP-NMSM and EMSM), we

were able to established the fact that all of them would predict the same pattern of the intrinsic

dynamics of an infectious disease system. These results indicate that both the NMSM and the

EMSM can equally be used to characterize intrinsic dynamics of an infectious disease that in-

volves a pathogen replication-cycle at the microscale such as PTB. We further extended the three

baseline models described in Chapter 3 and Chapter 4, respectively, to incorporate two main

health intervention strategies for ruminant paratuberculosis, with the aim of investigating further

if the predicted pattern by the NMSM and the EMSM would change under the influence health

interventions. Similarly, the findings show that both the full nested and the embedded multiscale

models would predict the same pattern of the dynamics of an infectious disease system under the

influence of health intervention mechanisms. However, the simplified multiscale model provide

a worse case scenario. In conclusion, although the focus of this chapter was on investigating if

a NMSM and an EMSM would predict the same pattern of an infectious disease system using

paratuberculosis in ruminants as a example of type II environmentally-transmitted diseases, we
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anticipated that the results of the chapter can be robust enough in the selection of multiscale

modelling framework to characterize other infectious diseases beyond PTB in ruminants.



Chapter 6

An Embedded Multiscale Model For
Dynamics of Ascariasis Population Biology

6.1 Introduction

In Chapter 5, we compared nested and embedded multiscale models to determine the most ap-

propriate category to characterize the multiscale dynamics of infectious diseases without a repli-

cation cycle of pathogen at microscale of organization of an infectious disease system. At this

stage, what we know is that both nested and embedded multiscale models can be used to char-

acterize the dynamics of infectious diseases that has a pathogen replication at the microscale as

both nested and embedded multiscale models equally predict the same disease dynamics. How-

ever, what we do not know is whether a nested multiscale model and embedded multiscale model

would predict the same dynamics of an infectious disease system in which there is no pathogen

replication at the microscale. Therefore, the objective of this chapter is to compare and identify

the most appropriate category to model the multiscale dynamics of infectious diseases with a

replication cycle of pathogen at microscale using human ascariasis as an example. To achieve

this objective, start by investigating the potential influence of super-infection on the dynamics of

type I environmentally-transmitted diseases from an embedded multiscale model through test-

ing or examining the reciprocal influence between the inside-host scale and outside-host scale

disease processes of human ascariasis as a paradigm. This is followed by investigating if nested

multiscale models are an appropriate category of multiscale models to characterize the multiscale
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dynamics of infectious diseases that have no pathogen replication-cycle at microscale. Human

ascariasis is one of the soil-transmitted helminth infections of the small intestine and also a ne-

glected tropical disease that has been and continue to be a cause of public health concern in many

countries [64]. Together, soil-transmitted helminths (hookworm, ascariasis, and whipworm) are

environmentally-transmitted disease systems of type I [8] and they account for a major burden

of parasitic disease worldwide [2], with an estimation of 807 million - 1.2 billion people infected

with human ascariasis [65]. In general, soil-transmitted helminths commonly affect people living

in tropical and sub-tropical regions, with about 10 percent from the developing world infected

with intestinal worms [2]. The causal agent of human ascariasis is the parasite ascaris lumbri-

coides, which is a species of roundworm. Additionally, The parasite ascaris lumbricoides has

been implicated in the health welfare of many people world-widely, more especially in the im-

poverished regions with inadequate sanitation and poor hygiene practices [66]. People become

infected with human ascariasis after accidentally swallowed ascaris lumbricoides eggs from the

soil that have been contaminated by human feces or from raw vegetables or untreated water

contaminated by soil containing the eggs. The main two environments that directly attribute in

the life-cycle of ascaris lumbricoides are (i) the physical environment - which is associated with

the outside-host developmental stages and transmission of ascaris lumbricoides at the popula-

tion level (i.e., the between-host scale or macroscale) and (ii) the biological-host environment

- which is associated with the inside-host developmental stages and migration of ascaris lum-

bricoides across various organs of the body (e.g., small intestine, heart, liver and lungs) at an

individual level (i.e., the within-host scale or microscale). In the following three subsections, we

provide some basic information about the life-cycle of the parasite that is resposible for the dis-

ease, preventive and control measures against the disease, and an overview of some mathematical

models that have been developed to study the dynamics of the disease in the populations.

6.1.1 Life-Cycle of the Parasite of Human Ascariasis

This subsection highlights the complex life-cycle of ascaria lumbricoides. It involves seven im-

portant stages (see Figure 6.1). Five of these seven stages of the life-cycle of ascaria lumbricoides

occur in the biological/inside-host environment (i.e. at the within-host scale or microscale) and

the other two occur outside-host/geographical environment (i.e. at the between-host scale or

macroscale). For more details on the life cycle of ascaria lumbricoides see the published works

[67, 68]. Here, we only give a brief description. The transmission of human ascaris parasite

begins when a human swallows food or water contaminated with fertilized ascaris worm eggs

containing ascaris worm larvae (L3 larvae). After ingestion, the fertilized worm eggs hatch L3

larvae in the small intestine. Then the hatched larvae migrate to the lungs through bloodstream
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where they mature. After maturing, the roundworms leave the lungs and migrate to the small

intestine for the second time, where they become adult worms. It is at this stage where worms

mate and lay eggs, which are then excreted to the physical-soil environment in feces. The cycle

continues when another person ingests the eggs from contaminated soil.

Figure 6.1: A Conceptual Diagram Showing the Life-cycle of Human Ascariasis Parasite.

Source: [2]
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6.1.2 Preventive and Control Measures Against Human Ascariasis

In general, the complexity of the life-cycle of ascaria lumbricoides makes human ascariasis being

among the most challenging but preventable environmentally-transmitted infectious diseases to

eliminate and even eradicate. Although, ascariasis infection rarely cause morbidity, however, if

left untreated a high number of worms in the small intestine or lungs can lead to a sever compli-

cations such as intestinal blockage and impair growth in children. Additionally, people infected

with this infection often show no symptoms. We briefly discuss some of control and preventive

measures that have been proposed and implemented against human ascarisis. Currently, there is

no vaccine against human ascariasis. Yet, efforts against the spread of human ascariasis across

populations are only centered on control and preventive measures which include the following:

1. Health education [68]: This involves educating people in a community about the disease

and ensuring that they adopt and maintain behavioral practices that are aimed at reducing

cases of human ascariasis. These behavioral practices include (i) improvement of per-

sonal hygiene practices such as washing of hands before handling or eating food as well

as washing, peeling, or cooking all raw vegetables and fruits before eating, (ii) avoiding

contact with soil that may be contaminated with human feces and (iii) always make a use

of improved latrines for defecating.

2. Prevention of fecal contamination of soil [68]: This involves control of parasitic move-

ment from an infected individual to the physical environment through the means of provid-

ing sanitary disposal of human excreta to the households in communities with high risk of

heavy ascariasis infections to ensure that people do not defect in open spaces. Generally,

provision of sanitary disposal of human excreta in communities can be achieved through

government’s programs/campaigns that focus on breaking the parasite’s life-cycle outside

the host environment (i.e. at the between-host scale).

3. Administration of Anthelminthic medications for prevention and treatment [68]: This

involves provision and administration of drugs such as Albendazole and Mebendazole for

treating people who are already infected with the disease. In addition the effectiveness of

administration of anthelminthic medications is through killing the parasite. Moreover, the

administration of anthelminthic medications also involves treating groups of people who

are identified to be at higher risk for the infection without a prior stool examination by

means of mass drug administration. Preschool and school-aged children as well as women

of childbearing age (including pregnant women in the 2nd and 3rd trimesters and lactating

women) are particularly identified as the high-risk groups for soil-transmitted helminth

infections by the World Health Organization. In most cases, school-age children are often
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treated through school-health programs while preschool children and pregnant women are

treated during their visits to health clinics. Collectively, all of these measures focus on

breaking the life-cycle of the parasite inside the host environment (i.e. at the within-host

scale).

4. Removal of Parasitic Eggs from Water, Soil and Food [68]: This include the treatment of

wastewater, boiling of drinking water, and thorough cooking of raw vegetables, particularly

those that have been grown in soil that has been fertilized with human excreta. Thus,

this control measures have an effect of killing the parasite and thereby reduce parasite

population in the water or vegetables.

Despite the aforementioned efforts for controlling and preventing human ascariasis together with

the other soil-transmitted diseases (hookworm and Trichuris diseases), these infections continue

to be a major public health concerned in many impoverished populations living in the tropical

and subtropical regions of the world [68].

6.1.3 Overviews of Mathematical Models for the Transmission Dynamics
of Human Ascariasis

In the past few decades, a number of mathematical models have been and continue to be used in

attempting to gain a deeper understanding about the complexity of human ascariasis population

biology and characterize its persist in a given population. The earliest account of mathematical

models that describe the transmission dynamics and population biology of human ascariasis can

be dated way back in 1980s, a period when mathematical modelling for helmnith infections was

in its infancy [67]. It is in this period where Anderson and May introduced the first and sim-

plest model structure of the population biology of ascaris. The model describes the dynamics of

the mature adult worms (M) in the human host and the free-living infective egg stage (E) in the

environment. Following the mathematical model developed in [67], we have witnessed a grow-

ing interest in mathematical modelling of human ascariasis and different modifications from this

model by several authors have been carried out to take into account various aspects pertaining

the population biology and transmission dynamics of human ascariasis which include: (i) age-

structure, (ii) different host exposure and excretion/shedding rates of the parasite and (iii) control

and preventive measures against human ascariasis burden across population (see for examples

[67, 69–71] and references therein). Contrary to the previous studies of the transmission dynam-

ics for human ascarisasis, the current study thought to use process of multiscale modelling as

a way of thinking about human ascariasis population biology as a multiscale infectious disease

system, in order to explicitly integrate the outside-host and inside-host environment life stages of
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the parasite ascaria lumbricoides. This has been achieved through explicitly integrating ascaria

disease processes that typically occur at the between-host scale in the physical environment as

well as at the within-host scale in the human biological environment. In addition, this multiscale

modeling for human ascariasis population biology presented in this current study is an extension

of the application of the general method in [8] of type I environmentally-transmitted diseases.

6.2 Formulation of Embedded Multiscale Model of Human

Ascariasis Dynamics

To explicitly capture the relevant and significant details of the population biology for human

ascariasis, we use a general multiscale model in [8] that integrates the within-host scale and the

between-host scale dynamics of environmentally-transmitted disease systems of type I. We used

the general multiscale model for type I environmentally-transmitted infectious disease system to

ascertain the potential influence of super-infection/reinfection on the spread of human ascariasis

in the population. The multiscale model for human ascariasis presented in this section takes into

consideration the reciprocal influence between the life stages of human ascariasis parasite in the

inside-host/biological environment and the outside-host/geographical environment as shown in

Figure 6.2. Thus, Figure 6.2 is a conceptual diagram of the multiscal model of human ascariasis

showing the dynamics of the nine populations at any time t, namely: susceptible humans SH(t)

and infected humans IH(t) in the human behavioural environment; fertilized worm eggs PE(t)

and infective worm eggs PH(t) in the physical soil-environment; infective worm eggs Ph(t) and

hatched worm larvae Ps(t) in the small intestine; mature worm Pm(t) in the lungs; and adult

worm larvae Pa(t) and released worm eggs Pe(t) by adult worm larvae in the small intestine.
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Figure 6.2: A conceptual diagram of the multiscale model of Human Ascariasis disease system.

In this Figure λhSh =
λH [Sh(t)− 1]

ΦH [IH(t) + 1]
, where λH =

βHPH(t)

P0 + PH(t)
.

We make the following assumption for the multiscale model of human ascariasis dynamics:

(i) There is no vertical transmission of the disease,

(ii) The transmission of the disease is only through ingestion of infective eggs (PH) in the

physical environmental’s entities (such soil, food or water),

(iii) The infected human population do not recover naturally from the infection,
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(iv) There is no immune response in the human population,

(v) All the new recruited humans are assumed be healthy and have not been previously exposed

to the disease.

(vi) The within-host scale parasitic load Pa = Pa(t) is a proxy for individual human infectious-

ness.

(vii) The production of eggs is only by female adult worms Pa(t) in the small intestine.

(viii) The population of unfertilized eggs in the soil is negligible as it has no impact on the

transmission risk of the disease in the human population.

Based on the above mentioned assumptions and the diagram presented in Figure (6.2), the mul-

tiscale model for human ascariasis transmission dynamics is given by the following system of

ordinary differential equations:



i.
dSH(t)

dt
= ΛH −

βHPH(t)SH(t)

P0 + PH(t)SH(t)
− µHSH(t),

ii.
dIH(t)

dt
=

βHPH(t)SH(t)

P0 + PH(t)
− [µH + δH ]IH(t),

iii.
dPE(t)

dt
= [IH(t) + 1]αePe(t)− [µE + αE]PE(t),

iv.
dPH(t)

dt
= αEPE(t)− αHPH(t),

v.
dPh(t)

dt
=

βHPH(t)[SH(t)− 1]

[P0 + PH(t)]ΦH [IH(t) + 1]
− [µh + αh]Ph(t),

vi.
dPs(t)

dt
= αhPh(t)− [µs + αs]Ps(t),

vii.
dPm(t)

dt
= αsPs(t)− [µm + αm]Pm(t),

viii.
dPa(t)

dt
=

αm
2
Pm(t)− µaPa(t),

iv.
dPe(t)

dt
= NaαaPa(t)− [µe + αe]Pe(t).

(6.2.1)
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The first two equations of the model system (6.2.1) describe the dynamics of susceptible and in-

fected human populations, respectively, in the behavioural human environment. The population

of susceptible humans is assumed to increase at a constant rate ΛH . This population is depleted

through infection of susceptible humans at a variable rate λH(t)SH(t) and natural death at a con-

stant rate µH . The infected human population increases through infection of susceptible humans,

and decreases through natural death at a rate µH and through disease induced death at a rate δH ,

so that an average lifespan of infected humans in the population is determined by 1/(δH + µH).

The third equation in the model system (6.2.1) describe the dynamics of fertilized worm eggs

in the physical soil-environment, which is generate through excretion of fecal material contain-

ing the within-host worm eggs at a variable rate αePe(t)(IH(t) + 1) derived following [9] and

further refined in [8] which involves up scaling of individual infectiousness to population infec-

tiousness. We assume that the fertilized worm eggs in the soil deplete through natural death at a

rate µE and through developmental changes to become infective worm eggs at a rate αE .

Equation (4) of the model system (6.2.1) describes the changes in time of the infective worm

eggs in the physical environment, which also is generated following the developmental changes

undergone by fertilized worm eggs at a rate αE . The population of infective worm eggs in the

physical environment is assumed to deplete naturally at a constant rate αH .

Equation (5) of the model system (6.2.1) describes the dynamics of the inside-host infective

worm eggs in the small intestine. The population of the inside-host infective worm eggs in the

small intestine is generated following the ingestion of the outside-host infective worm eggs in

the contaminated water or food by susceptible human host and becomes an infected human host

at a mean rate λh(t)Sh(t) derived also following [9] and further refined in [8] which involves

down scaling of population infectiousness into individual infectiousness. This population of the

inside-host infective worm eggs is assumed to decrease through natural death at a constant rate

µh and through hatching at a constant rate αh.

Equation (6) of the model system (6.2.1) describes the variation in time of the immature worm

larvae in the small intestine. This population is generated through each egg hatching into imma-

ture worm larvae at a rate αh. We assume that the population of immature worm larvae in the

intestine depleted through natural death at a rate µs and through migration to the lungs at a rate

αs, where they develop and grow into mature worms.

Equation (7) of the model system (6.2.1) describes the evolution in time of the population of
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mature worm larvae in the lungs, which is generated following the developmental changes un-

dergone by immature worm larvae to become mature worm larvae at a rate αs. This population

is assumed to decrease through natural death at the rate µm and through migration to the small

intestine at a rate αm where they develop and grow to become adult worm larvae.

The last two equations of the multiscale model system (6.2.1) describe the changes in time of

adult female worm larvae and released worm eggs by adult female worms in the small intestine,

respectively. The population of adult female worm larvae is generated following developmental

changes undergone by mature worms to become adult female worms at a rate αm/2. These de-

velopmental changes result in mature worms reaching sexual maturity and pairing up. Therefore,

the introduction of the fraction 1/2 multiplying the parameter αm models the pairing of immature

worms on reaching sexual maturity. We assume that mature worms die naturally at a rate µa. The

population of worm eggs in the intestine is generated when each pair laying an average number

Na of eggs at a rate αa. We model the rate at which these eggs die in the human small intestine

by the parameter µe and the rate at which they are excreted by the human host into the physical

soil environment by µe.

No. Variable Description

1. SH(t) Population of susceptible human hosts at time t.

2. IH(t) Population of infected human hosts at time t.

3. PE(t) Mean population of fertilized eggs in the environment at time t.

4. PE(t) Mean population of infective eggs in the environment at time t.

5. Ph(t) Mean population of infective worm per infected human host at time t.

6. Ps(t) Mean population of immature worms per infected human host at time t.

7. Pm(t) Mean population of mature worms per infected human host at time t.

8. Pa(t) Mean population of female worms per infected human host at time t.

9. Pe(t) Mean population of worm eggs per infected human at time t.

Table 6.1: A summary of the variables of the human ascariasis multiscale model system (6.2.1).
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6.3 Mathematical analysis of the embedded multiscale model

of human ascariasis dynamics

In this section, we analyze the multiscale model system (6.2.1) by studying its properties, com-

puting its basic reproductive number an use it to determine the stabilities of the model equilib-

rium states. The multiscale model system (6.2.1) has two equilibrium states: the disease-free

equilibrium state (DFE) and the endemic equilibrium state (EEP).

6.3.1 Feasible Region of the Equilibria of the Multiscale Model

The multiscale model system (6.2.1) describes the transmission cycle of ascaria parasite in two

distinct environments which are: (i) the inside-human-host scale environment and (ii) the outside-

human-host scale environment. The multiscale model system (6.2.1) for human ascariasis trans-

mission dynamics can be analyzed in a region Γ ∈ R+ of biological interest. Assuming that all

parameters and state variables for model system (6.2.1) are positive for all t > 0, it can be ver-

ified that all solutions for the model system (6.2.1) with non-negative initial conditions remain

bounded. Therefore, letting NH = SH + IH and further add the 1st and 2nd equations in system

(6.2.1) gives

dNH(t)

dt
= ΛH − µHNH − δHIH . (6.3.1)

It follow that

dNH(t)

dt
≤ ΛH − µHNH (6.3.2)

from which we get

NH(t) ≤ NH(0)e−µH t +
ΛH

µH

[
1− e−µH t

]
. (6.3.3)

Where NH(0) represents the value of total human population at the between-host scale in the

population-host level evaluated at the initial values of the variables. Taking the limits of both

NH(t) in (6.3.3) as time gets larger, we get the following expressions

lim
t→∞

sup(NH(t)) ≤ ΛH

µH
. (6.3.4)
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Using the same principle as in equation (6.3.4), similar expressions can be derived for the re-

maining model variables. Hence, all feasible solutions of the model system (6.2.1) are positive

and enter a region define by


Γ = {(SH , IH , PE, PH , Ph, Ps, Pm, Pa, Pe) ∈ R9

+ :

0 ≤ SH + IH ≤ S1, 0 ≤ PE ≤ S2, 0 ≤ PH ≤ S3,

0 ≤ Ph ≤ S4, 0 ≤ Ps ≤ S5, 0 ≤ Pm ≤ S6, 0 ≤ Pa ≤ S7,

0 ≤ Pe ≤ S8}

(6.3.5)

which is positively invariant and attracting for all t > 0, where

S1 =
ΛH

µH
,

S2 =
QE(R0 − 1)

R0

,

S3 = P0(R0 − 1),

S4 =
QH(R0 − 1)

R0

,

S5 =
αhQH(R0 − 1)

(αs + µs)R0

,

S6 =
αsαhQH(R0 − 1)

(αs + µs)(αm + µm)R0

,

S7 =
αmαsαhQH(R0 − 1)

2µa(αm + µm)(αs + µs)R0

,

S8 =
NaαaαmαsαhQH(R0 − 1)

2µa(αe + µe)(αm + µm)(αs + µs)R0

(6.3.6)

with
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

R0 =

[
βH(ΛH − µH)αE

αHµHΦH(µE + αE)P0

] [
Naαaαeαmαsαh

2(µh + µh)(µs + αs)(µm + µm)(µe + αe)µa

]
,

QE =
NaαaαmαsαhαeβH(ΛH − µH)

2µa(αe + µe)(αm + µm)(αs + µs)(αh + µh)ΦH(αE + µE)µH
,

QH =
βH(ΛH − µH)

µH(ΛH + µH)(αh + µh)ΦH

,

(6.3.7)

for ΛH > µH . Thus, whenever ΛH > µH , then the region Γ is positively invariant and attract-

ing and it is sufficient to consider solutions of the model system (6.2.1) in Γ, since all solutions

starting in Γ remain there for all t ≥ 0. Hence, the model system is mathematically and epi-

demiologically well-posed and it is sufficient to consider the dynamics of the flow generated by

model system (6.2.1) in Γ whenever ΛH > µH . We shall assume in all that follows (unless stated

otherwise) that ΛH > µH and R0 > 0. In the next two subsection, we provide some results con-

cerning the equilibrium states of the multiscale model system (6.2.1) and their stabilities. The

multiscale model system (6.2.1) has two equilibrium states: the disease-free equilibrium state

(DFE) and the endemic equilibrium state (EPP).

6.3.2 Disease-Free Equilibrium and Reproduction Number

We compute the disease-free equilibrium point of the model system (6.2.1) by setting the left-

hand side of the equations of model system (6.2.1) equal to zero and also assume that IH = PE =

Ph = Ps = Pm = Pa = Pe = 0. We further let

E0 =

(
ΛH

µH
, 0, 0, 0, 0, 0, 0, 0, 0

)
, (6.3.2.1)

denote the disease-free equilibrium of the model system (6.2.1). For the purpose of analyzing the

stability of the DFE, we make the use of the basic reproduction number denoted asR0. Generally,

R0 is a threshold value that is often used in public health to measure the spread of a disease in a

given population.

6.3.2.1 Basic reproductive number of the embedded multiscale model system (6.2.1) for
human ascariasis dynamics

The basic reproduction number of the multiscale model system (6.2.1) is calculated in this section

using next generation operator approach described in [5]. Thus, the model system (6.2.1) can be
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written in the form 

dX

dt
= f(X, Y, Z),

dY

dt
= g(X, Y, Z),

dZ

dt
= h(X, Y, Z),

(6.3.2.1.1)

where

(i) X = SH represents a compartment of susceptible individuals,

(ii) Y = (IH , PE, Ph, Ps, Pm, Pa, Pe) represents all compartments of infected individuals that

do not transmit the disease,

(iii) Z = PH represents a compartment of infected individuals who are capable of transmitting

the disease.

Following [5] we define g̃(X∗, Z) by

g̃(X∗, Z) = (g̃1(X∗, Z), g̃2(X∗, Z), g̃3(X∗, Z), g̃4(X∗, Z), g̃5(X∗, Z), g̃6(X∗, Z), g̃7(X∗, Z)),

(6.3.2.1.2)

with
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

1. g̃1(X∗, Z) =
βHΛHPH

µH(µH + δH)(P0 + PH)
,

2. g̃2(X∗, Z) =
αePe[g̃1(X∗, Z) + 1]

(µE + δE + αE)
,

3. g̃3(X∗, Z) =
βH(ΛH − µH)PH

µH(µh + αh)ΦH(P0 + PH)[g̃1(X∗, Z) + 1]
,

4. g̃4(X∗, Z) =
αhPh
αs + µs

,

5. g̃5(X∗, Z) =
αsPs

αm + µm
,

6. g̃6(X∗, Z) =
αmPm

2µa
,

7. g̃7(X∗, Z) =
NaαaPa

2µa(αe + µe)
.

(6.3.2.1.3)

Therefore, in this case

h(X, Y, Z) =
KPH

(P0 + PH)
− αHPH , (6.3.2.1.4)

where

K =
NaαaαeαmαsαhβH(ΛH − µH)αE

2µaµH(αe + µe)(αs + µs)(αm + µm)(αh + µh)(αE + µE)ΦH

. (6.3.2.1.5)

LetA = DZh(X∗, g̃(X∗, 0), 0) and further assume thatA can be written in the formA = M−D,

where

M =
K

P0

, D = αH . (6.3.2.1.6)

The basic reproductive number is the spectral radius (dominant eigenvalue) of the matrixMD−1,

that is,
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
R0 = ρ(MD−1) =

[
βH(ΛH − µH)αE

αHµHΦH(µE + αE)P0

][
Naαaαeαmαsαh

2(µh + µh)(µs + αs)(µm + µm)(µe + αe)µa

]
,

= R0H .R0h .
(6.3.2.1.7)

Therefore, from the equation (6.3.2.1.7) we deduce that the basic reproductive number R0, has

two main components which are as follows:

i. The between-host scale partial reproductive number (R0H ) which is the average number of

infected humans arising from each infectious dose of ascaria parasite eggs ingested from

the contaminated food or water by soil containing the eggs.

ii. The within-host scale partial reproductive number (R0h) which is the amount of eggs pro-

duced by worms within a single infected human host and contributed to the contamination

of the physical-soil environment.

In overall, from the expression of the reproductive number in equation (6.3.2.1.7) we can con-

clude that it is a function of both the within-host scale parameters and the between-host scale

parameters. Therefore, the obtained results here show that the within-host scale and the between-

host scale influence each other in a reciprocal way. In the next following two subsections, we

further use basic reproductive number (6.3.2.1.7) to evaluate the local and global stability of the

disease-free equilibrium (E0) of the multiscale model system (6.2.1).

6.3.2.2 Local stability analysis of the embedded multiscale model disease-free equilibrium
state

In this subsection, we determine the local stability of DFE of the model system (6.2.1). We

linearize equations of the model system (6.2.1) in order to obtain a Jacobian matrix. Then we

evaluate the Jacobian matrix of the system at the disease - free equilibrium (DFE),

E0 =

(
ΛH

µH
, 0, 0, 0, 0, 0, 0, 0, 0

)
. (6.3.2.2.1)

The Jacobian matrix of the model system (6.2.1) evaluated at the disease-free equilibrium state

(DFE) is given by
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J(E0) =



−µH 0 0 −A0 0 0 0 0 0

0 −a0 0 A0 0 0 0 0 0

0 0 −a1 0 0 0 0 0 αe

0 0 αE −αH 0 0 0 0 0

0 0 0 A1 −a2 0 0 0 0

0 0 0 0 αh −a3 0 0 0

0 0 0 0 0 αs −a4 0 0

0 0 0 0 0 0
αm
2

−µa 0

0 0 0 0 0 0 0 Naαa −a5



(6.3.2.2.2)
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where 

a0 = (µH + δH),

a1 = (µE + αE),

a2 = (µh + αh),

a3 = (µs + αs),

a4 = (µm + αm),

a5 = (µe + αe),

A0 =
βHΛH

µHP0

,

A1 =
βH(ΛH − µH)

ΦHµHP0

.

(6.3.2.2.3)

We consider stability of DFE by calculating the eigenvalues (λs) of the Jacobian matrix given by

equation (6.3.2.2.2). The characteristic equation for the eigenvalues is given by

Θ[λ7 + Φ1λ
6 + Φ2λ

5 + Φ3λ
4 + Φ4λ

3 + Φ5λ
2 + Φ6λ+ Φ7] = 0, (6.3.2.2.4)

where

Θ = (−µH − λ)(−a0 − λ). (6.3.2.2.5)

It is clear from equation (6.3.2.2.4), that there are two negative eigenvalues (λ = -µH and λ = -a0).

Now in order to make conclusions about the stability of the DFE, we followed the Routh-Hurwitz

criteria to determine the sign of the remaining eigenvalues of the polynomial

P (λ) = λ7 + Φ1λ
6 + Φ2λ

5 + Φ3λ
4 + Φ4λ

3 + Φ5λ
2 + Φ6λ+ Φ7 = 0 (6.3.2.2.6)
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where 

Φ1 = a5 + a4 + a3 + a2 + a1 + αH + µa,

Φ2 = a5(αH + µa) + k0(a5 + αH + µa) + αHµa + k1,

Φ3 = (a5k0 + k1)(αH + µa) + αHµa(a5 + k0) + a5k1 + k2,

Φ4 = (a5k1 + k2)(αH + µa) + αHµa(a5k0 + k1) + a5k2 + k3,

Φ5 = (a5k2 + k3)(αH + µa) + αHµa(a5k1 + k2) + a5k3,

Φ6 = αHµa(a5k2 + k3) + a5k2(αH + µa),

Φ7 = k3a5µaαH [1−R0],

(6.3.2.2.7)

with 

k0 = a5 + a4 + a3 + a2 + a1,

k1 = a1a2 + a3a4 + (a3 + a4)(a1 + a2),

k2 = a1a2(a3 + a4) + a3a4(a1 + a2),

k3 = a1a2a3a4.

(6.3.2.2.8)

Using the Routh-Hurwitz stability criterion, the equilibrium state associated with the model sys-

tem (6.2.1) is stable if and only if the determinants of all the Hurwitz matrices associated with

the characteristic equation (6.3.2.2.6) are positive, that is

Det(Hj) > 0; j = 1, 2, ...., 7 (6.3.2.2.9)
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where 

H1 =
(

Φ1

)
; H2 =


Φ1 1

Φ3 Φ2

 ; H3 =



Φ1 1 0

Φ3 Φ2 Φ1

Φ5 Φ4 Φ3


;

H4 =



Φ1 1 0 0

Φ3 Φ2 Φ1 1

Φ5 Φ4 Φ3 Φ2

Φ7 Φ6 Φ5 Φ4


; H5 =



Φ1 1 0 0 0

Φ3 Φ2 Φ1 1 0

Φ5 Φ4 Φ3 Φ2 Φ1

Φ7 Φ6 Φ5 Φ4 Φ3

0 0 Φ7 Φ6 Φ5



;

(6.3.2.2.10)
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and 

H6 =



Φ1 1 0 0 0 0

Φ3 Φ2 Φ1 1 0 0

Φ5 Φ4 Φ3 Φ2 Φ1 1

Φ7 Φ6 Φ5 Φ4 Φ3 Φ2

0 0 Φ7 Φ6 Φ5 Φ4

0 0 0 0 Φ7 Φ6



;

H7 =



Φ1 1 0 0 0 0 0

Φ3 Φ2 Φ1 1 0 0 0

Φ5 Φ4 Φ3 Φ2 Φ1 1 0

Φ7 Φ6 Φ5 Φ4 Φ3 Φ2 Φ1

0 0 Φ7 Φ6 Φ5 Φ4 Φ3

0 0 0 0 Φ7 Φ6 Φ5

0 0 0 0 0 0 Φ7



.

(6.3.2.2.11)

The Routh-Huiwitz criterion applied to Eq. (6.3.2.2.6) requires that the following conditions C1

- C6 be satisfied, in order to guarantee the local stability of the disease-free equilibrium point of
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the model system (6.2.1).

C1. Φ1,Φ2,Φ3,Φ4,Φ5,Φ6,Φ7 > 0, C2. Φ1Φ2 − Φ3 > 0,

C3. Φ1(Φ2Φ3 + Φ5) > Φ1Φ4 + Φ2
3

C4. Φ1[Φ2Φ3Φ4 + Φ6(Φ1Φ2 + Φ5)] + Φ3[Φ2Φ5 + Φ7] + Φ4Φ5 >

Φ1[Φ2
2 + Φ2

1Φ4 + Φ2Φ7] + Φ3Φ6[Φ3Φ2
6 + 1] + Φ2

5,

C5. Φ1[Φ1Φ5Φ6(2Φ2 + Φ3) + Φ2Φ3(Φ4Φ5 + Φ7) + Φ3(2Φ6 + Φ7)] +

Φ3
3(1 + Φ5Φ4 + Φ2Φ7) > Φ1[Φ1(Φ2Φ4Φ7 + Φ2

4Φ5 + Φ1Φ2
6 + Φ6Φ7) +

Φ2(Φ3Φ5Φ6 + Φ2
5) + Φ4(Φ3Φ7Φ2

5)] + Φ3(Φ3Φ6 + Φ2Φ2
5 + 2Φ5Φ7),

C6. Φ1[Φ2Φ4η0 + Φ2Φ6Φ7(Φ3 + Φ5) + 2Φ4Φ6η1] + Φ2
1Φ6[2Φ6(Φ2Φ3 + Φ7) + Φ7η2] +

Φ3Φ7(η3 + Φ7η4) + Φ3Φ6η5 + Φ7Φ4Φ2
5 + Φ3

7 > Φ1[Φ2η6 + Φ6ν8 + Φ2
7Φ6(2 + Φ6)

+ 2Φ7Φ4η7 + Φ2
1(Φ7Φ6η9 + Φ2

4Φ5Φ6) + Φ6(Φ3
1Φ6 + Φ3

5) + Φ2
7η10

(6.3.2.2.12)
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where 

η0 = Φ3Φ5Φ6 + Φ5Φ7 + Φ2
7,

η1 = Φ3Φ4Φ7 + Φ2
5,

η2 = Φ2Φ4 + Φ3
4 + 1,

η3 = Φ3Φ2
4 + 3Φ5Φ6

, η4 = Φ2Φ4Φ7 + Φ2
2Φ7,

η5 = Φ3Φ6 + Φ2Φ2
5,

η6 = Φ3Φ2
4 + Φ2

3Φ2
6 + Φ5Φ6Φ7 + Φ4Φ2

7,

η7 = Φ3Φ6 + Φ4Φ5,

η8 = Φ2
2Φ2

5 + 2Φ3Φ5Φ6,

η9 = φ4Φ2 + φ4 + Φ2,

η10 = Φ3
3 + Φ1Φ2

6 + Φ2Φ5

(6.3.2.2.13)

From equations (6.3.2.2.10) and (6.3.2.2.11) we note that all the coefficients Φ1, Φ2, Φ3, Φ4, Φ5,

and Φ6 of the polynomial P (λ) are greater than zero whenever R0 < 1. And we also noted that

the conditions above are satisfied if and only if R0 < 1. Hence, all the roots of the polynomial

P (λ) are either negative or have negative real parts. The results are summarized in the following

theorem.

Theorem 6.1. The Disease-free equilibrium point of the model system (6.2.1) is locally asymp-

totically stable wheneverR0 < 1.
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6.3.2.3 Global stability analysis of the embedded multiscale model disease-free equilib-
rium

We determine the global stability of DFE of the simplified multiscale model system (6.2.1) by

using a next generation operator [5]. Thus the system (6.2.1) can be re-written in the form
dX

dt
= F (X,Z),

dY

dt
= G(X,Z),

(6.3.2.3.1)

where

• X = SH represents a compartment of uninfected humans, and

• Z = (IH , PE, PH , Ph, Ps, Pm, Pa, Pe) represents all compartments of infected and infec-

tious components.

We let

E0 = (X∗, 0) =

(
ΛH

µH
, 0, 0, 0, 0, 0, 0, 0, 0

)
, (6.3.2.3.2)

denote the disease-free equilibrium (DFE) of the embedded multiscale model system (6.2.1).

For X∗ to be globally asymptotically stable, the following conditions (H1) and (H2) must be

satisfied.

H1.
dX

dt
= F (X, 0) is globally asymptotically stable (g.a.s),

H2. G(X,Z) = AZ − Ĝ(X,Z), Ĝ((X,Z) ≥ 0 for (X,Z) ∈ R9
+ where A = DZG(X∗, 0) is

an M-matrix and R9
+ is the region where the model makes biological sense.

In this case,

F (X, 0) =
[

ΛH − µHSH
]
, (6.3.2.3.3)
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and the matrix A is given by

A =



−b0 0
βHΛH

µHP0

0 0 0 0 0

0 −b1 0 0 0 0 0 αe

0 αE −αH 0 0 0 0 0

0 0
βH(ΛH − µH)

ΦHµHP0

−b2 0 0 0 0

0 0 0 αh −b3 0 0 0

0 0 0 0 αs −b4 0 0

0 0 0 0 0
αm
2

−µa 0

0 0 0 0 0 0 Naαa −b5



. (6.3.2.3.4)

where 

b0 = (µH + δH),

b1 = (µE + αE),

b2 = (µh + αh),

b3 = (µs + αs),

b4 = (µm + αm),

b5 = (µe + αe).

(6.3.2.3.5)
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and Ĝ(X,Z) given by

Ĝ(X,Z) =



(
ΛH

P0µH
− SH
P0 + PH

)
βHPH

0

0

(
ΛH − µH
P0µHΦH

− SH − 1

(P0 + PH)ΦH(IH + 1)

)
βHPH

0

0

0

0



(6.3.2.3.6)

It is clear that Ĝ(X,Z) ≥ 0 for all (X,Z) ∈ R9
+, since ΛH/(µHP0) ≥ SH/(P0 + PH) and

(ΛH − µH)/(P0µHΦH) ≥ [SH − 1]/[(P0 + PH)ΦH(IH + 1)]. It is also clear that A is an

M-matrix, since the off diagonal elements of A are non-negative. We state a theorem which

summarizes the above result.

Theorem 6.2. The disease-free equilibrium of model system (6.2.1) is globally asymptotically

stable if R0 ≤ 1 and the assumptions (H1) and (H2) are satisfied.

6.3.3 The Endemic Equilibrium and its Existence

In this section, we present some results concerning the existence of an endemic equilibrium

solution for the model system (6.2.1). The endemic equilibrium state of the multiscale model

system (6.2.1) is obtained by setting the left-hand side of the model to zero. Letting

E∗ = (S∗H , I
∗
H , P

∗
E, P

∗
H , P

∗
h , P

∗
s , P

∗
m, P

∗
a , P

∗
e ) (6.3.3.1)

be and endemic solution for the multiscale model system (6.2.1), the human ascariasis baseline
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burden can be approximated using the endemic solutions of E∗ given by equation (6.3.3.1). We

now give expression for the endemic variables and their interpretation as follows: The endemic

value of susceptible humans is given by

S∗H =
ΛH(P0 + P ∗H)

(βH + µH)P ∗H + µHP0

. (6.3.3.2)

From Eqn. (6.3.3.2) we note that the susceptible human population at endemic equilibrium is

determined by the average time of stay in susceptible class and the rate at which new susceptible

individuals enter into the susceptible class through birth. Individuals in the susceptible class leave

the susceptible class either through infection or death. The endemic value of infected humans is

given by

I∗H =
βHP

∗
HS
∗
H

(µH + δH)(P0 + P ∗H)
. (6.3.3.3)

We note from Eqn. (6.3.3.3) that the infected human individuals at the endemic equilibrium point

is given by the average time of stay in the infected class, the rate at which susceptible individuals

become infected and the density of susceptible individuals. The endemic value of ascaria worm

eggs population in the physical soil environment is given by

P ∗E =
αeP

∗
e (I∗H + 1)

(αE + µE)
. (6.3.3.4)

We note from Eqn. (6.3.3.4) that the worm eggs population at equilibrium point is equal to the

average life span of eggs, the rate at which each infected human host excretes ascaria worm eggs

and the total number of humans infected. We note that this expression provides a link between the

dynamics of the inside-host worm eggs and the outside-host environmental population dynamics

of ascaria worm eggs. The endemic value of infective ascaria worm eggs population in the

outside-host environment is given by

P ∗H =
αEP

∗
E

αH
. (6.3.3.5)

We note from Eqn. (6.3.3.5) that the ascaria worm eggs population at equilibrium point is equal

to the rate at which ascaria worm eggs develop to become infective worm eggs and the average

life span of infective worm eggs in the outside-host environment. The endemic value of within-

host infective worm eggs in the human intestine is given by

P ∗h =
βHP

∗
H(S∗H − 1)

(P0 + P ∗H)(I∗H + 1)(αh + µh)ΦH

. (6.3.3.6)
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We note from Eqn. (6.3.3.6) we note that the average infective worm eggs population within a

single infected human is equal to the average life-span of infective worm eggs within a single in-

fected human host and the rate of infection of a single susceptible individual to become infected.

We also note that this expression provides a link between the dynamics of the infective worm

eggs within-host and human population dynamics. The endemic value of first stage worm larvae

population inside an infected human host is given by

P ∗s =
αhP

∗
h

(αs + µs)
. (6.3.3.7)

We note from Eqn. (6.3.3.7) that the first stage worm larvae population at equilibrium point is

equal to the average life span of larvae, the rate at which each within-host ascaria worm eggs

hatch . The endemic value of mature larvae population in the lungs of an infected human host is

given by

P ∗m =
αsP

∗
s

(αm + µm)
, (6.3.3.8)

We note from (6.3.3.9) that the mature larvae population in the lungs of an infected human host

at equilibrium point is equal to the rate at which immature worm larvae migrate to the lungs and

develop to become mature worm larvae and the average life span of mature worm larvae in the

lungs. The endemic value of adult female worm larvae is given by

P ∗a =
αmP

∗
m

2µa
. (6.3.3.9)

We note from Eqn. (6.3.3.9) that the adult female worm larvae population in the small intestine

at equilibrium point is equal to the average life span of adult female worm larvae and the rate

at which each mature worm larvae in the lungs migrate to the small intestine and develop to

become adult female worm larvae. The endemic value of ascaria worm eggs population in the

small intestine is given by

P ∗e =
NaαaP

∗
a

(αe + µe)
. (6.3.3.10)

We note from Eqn. (6.3.3.10) that the ascaria worm eggs population in the small intestine at

equilibrium point is equal to the rate at which adult female worm release eggs, number of ascaria

worm eggs produced by each adult female worm and the average life span of ascaria worm eggs

in the small intestine.
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6.3.3.1 Existence and uniqueness of the endemic equilibrium state

In this subsection, we present some results concerning the existence of an endemic equilibrium

solution for model system (6.2.1). To determine the existence and uniqueness of the endemic

equilibrium point (EEP) of the multiscale model system (6.2.1), we express the endemic values of

the human ascariasis disease variables S∗H , I
∗
H , P

∗
E, P

∗
h , P

∗
s , P

∗
m, P

∗
a , P

∗
e in terms of P ∗H as follows:

S∗H(P ∗H) =
ΛH(P0 + P ∗H)

µHP0 + (βH + µH)P ∗H
, I∗H(P ∗H) =

βHΛHP
∗
H

(µH + δH)[µHP0 + (βH + µH)P ∗H ]
,

P ∗h (P ∗H) =
βH

(µh + αh)ΦH

.
Q∗H(P ∗H)

[I∗H + 1]
, Q∗H(P ∗H) =

P ∗H [(ΛH − µH)(P0 + P ∗H)− βHP ∗H ]

[µHP0 + (βH + µH)P ∗H ]
,

P ∗s (P ∗H) =
αhβH

(µs + αs)(µh + αh)ΦH

.
Q∗H(P ∗H)

[I∗H + 1]
,

P ∗m(P ∗H) =
αsαhβH

(µm + αm)(µs + αs)(µh + αh)ΦH

.
Q∗H(P ∗H)

[I∗H + 1]
,

P ∗a (P ∗H) =
αmαsαhβH

2µa(µm + αm)(µs + αs)(µh + αh)ΦH

.
Q∗H(P ∗H)

[I∗H + 1]
,

P ∗e (P ∗H) =
NaαaαmαsαhβH

2µa(µe + αe)(µm + αm)(µs + αs)(µh + αh)ΦH

.
Q∗H(P ∗H)

[I∗H + 1]

P ∗E(P ∗H) =
αeNaαaαmαsαhβHQ

∗
H(P ∗H)

2µa(µe + αe)(µm + αm)(µs + αs)(µh + αh)(µE + αE)ΦH

.

(6.3.3.1)

Substituting the expression P ∗E(P ∗H) of equation (6.3.3.1) into the equation for infective para-

site eggs (PH) in the outside-human-host scale environment which is given by:

dPH(t)

dt
= αEPE(t)− αHPH(t), (6.3.3.2)

at endemic equilibrium, we get

P ∗2H +M1P
∗
H +M2 = 0, (6.3.3.3)
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where 

M1 =
µHP0

βH + µH
[1−R0] +

NEβH
αH(βH + µH)

+ P0,

M2 =
µHP

2
0

βH + µH
[1−R0] ,

NE =
βHαeNaαaαmαsαh

2ΦH(µE + αE)(µh + αh)(µs + αs)(µm + αm)(µe + αe)µa
.

(6.3.3.4)

Therefore,

P ∗H =
1

2

[
−M1 +

√
M2

1 − 4M2

]
> 0 for R0 > 1. (6.3.3.5)

We note that M2 < 0 for R0 > 1, while M2 is either positive or negative forR0 > 1. Therefore,

we can conclude that the multiscale model system (6.2.1) has one positive endemic equilib-

rium for R0 > 1. Furthermore, based on the endemic equilibrium values of the model system

(6.2.1) given by equation (6.3.3.1)), we can easily deduce that some of the between-host scale

expressions depend on both the within-host and the between-host disease parameters, while the

within-host scale expressions are determined by both the within-host and the between-host dis-

ease parameters. Therefore, the obtained results here show that the within-host scale and the

between-host scale dynamics influence each other in a reciprocal way.

6.3.3.2 Local stability of the endemic equilibrium state

In this sub-section, we study the local asymptotic stability of the endemic steady state of the

model system (6.2.1) by using the Center Manifold Theory described in [57]. In this case, we

employ Center Manifold Theory by making the following change of variables: letting SH = x1,

IH = x2, PE = x3, PH = x4, Ph = x5, Ps = x6, Pm = x7, Pa = x8, Pe = x9. We also use

the vector notation x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)T so that the model system (6.2.1) can

be written in the form
dx
dt

= f(x, β∗), (6.3.3.1)

where

f = (f1, f2, f3, f4, f5, f6, f7, f8, f9). (6.3.3.2)
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Therefore, model system (6.2.1) can be re-written as:

1. ẋ1 = ΛH − [
βHx4(t)

P0 + x4(t)
− µH ]x1(t),

2. ẋ2 =
βHx4(t)

P0 + x4(t)
− [µH + δH ]x2(t),

3. ẋ3 = αex9(t)(x2(t) + 1)− [µE + αE]x3(t),

4. ẋ4 = αEx3(t)− αHx4(t),

5. ẋ5 =
λH(x1(t)− 1)

ΦH(x2(t) + 1)
− [αh + µh]x5(t),

6. ẋ6 = αhx5(t)− [αs + µs]x6(t),

7. ẋ7 = αhx6(t)− [αm + µm]x7(t),

8. ẋ8 =
αmx7(t)

2
− µax8(t),

9. ẋ9 = Naαax8(t)− [αe + µe]x9(t).

(6.3.3.3)

The Center Manifold Theory method involves evaluating the Jacobian matrix of the system

(6.3.3.3) at the disease-free equilibrium E0 denoted by J(E0). The Jacobian matrix associated

with the system of equations (6.3.3.3) evaluated at the disease-free equilibrium (E0) is given by



Chapter 6 191

Jβ∗ =



−µH 0 0 −β
∗ΛH

µHP0

0 0 0 0 0

0 −z0 0
β∗ΛH

µHP0

0 0 0 0 0

0 0 −z1 0 0 0 0 0 αe

0 0 αE −αH 0 0 0 0 0

0 0 0
β∗(ΛH − µH)

ΦHµHP0

−z2 0 0 0 0

0 0 0 0 αh −z3 0 0 0

0 0 0 0 0 αs −z4 0 0

0 0 0 0 0 0
αm
2

−µa 0

0 0 0 0 0 0 0 Naαa −z5



(6.3.3.4)

where 

z0 = (µH + δH),

z1 = (µE + αE),

z2 = (µh + αh),

z3 = (µs + αs),

z4 = (µm + αm),

z5 = (µe + αe).

(6.3.3.5)
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Using the similar approach as in previous section, the basic reproductive number of model system

(6.3.3.3) is as follows:

R0 =
NaαaαeαmαsαhβH(ΛH − µH)αE

2(µh + µh)(µs + αs)(µm + µm)(µe + αe)µaαHµHΦH(µE + αE)P0

. (6.3.3.6)

Let βH = β∗ be a bifurcation parameter of the model system (6.3.3.3). ConsideringR0 = 1, and

solve for β∗ in equation (6.3.3.6), we obtain:

β∗ =
2(µh + µh)(µs + αs)(µm + µm)(µe + αe)µaαHµHΦH(µE + αE)P0

NaαaαeαmαsαhβH(ΛH − µH)αE
. (6.3.3.7)

We can easily note that the linearized system of the transformed equations (6.3.3.3) with bifur-

cation point β∗ has a simple zero eigenvalue. Hence, the center manifold theory [? ] can be

used to analyze the dynamics of (6.3.3.3) near βC = β∗. We, therefore, apply Theorem 4.1 in

Castillo-Chavez and Song [? ] stated below as Theorem 6.3 for convenience, to show the lo-

cal asymptotic stability of the endemic equilibrium point of (6.3.3.3) (which is the same as the

endemic equilibrium point of the original system (6.2.1), for βC = β∗ ).

Theorem 6.3. Consider the following general system of ordinary differential equations with

parameter φ:
dx

dt
= f(x, φ), f : Rn ×R −→ R, f : C2(R2 ×R), (6.3.3.8)

where 0 is an equilibrium of the system, that is f(0, φ) = 0 for all φ, and assume that

A1. A = Dxf(0, 0) = ((∂fi/∂xj)(0, 0)) is a linearization matrix of the model system (6.3.3.8)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue ofA, and other

eigenvalues of A have negative real parts,

A2. matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero

eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

ukvivj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

ukvi
∂2fk
∂xi∂φ

(0, 0). (6.3.3.9)
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The local dynamics of (6.3.3.8) around 0 are totally governed by a and b and are summarized as

follows.

1. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and there exists

a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

2. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable and a positive

unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and

locally asymptotically stable

For us to apply Theorem 6.3, the following computations are necessary (it should be noted that

we are using β∗ as the bifurcation parameter, in place of φ in Theorem 6.3).

Eigenvectors of Jβ∗: For the case when R0 = 1, it can be shown that the Jacobian matrix in

(6.3.3.4) at βC = β∗ (denoted by Jβ∗ ) has a right eigenvector associated with the zero eigenvalue

given by

u = [u1, u2, u3, u4, u5, u6, u7, u8, u9]T , (6.3.3.10)
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where

u1 = − β∗ΛH

µ2
CP0

,

u2 =
β∗ΛC

P0µH
,

u3 =
NaαaαeαmαsαhβH(ΛH − µH)

2(µh + µh)(µs + αs)(µm + µm)(µe + αe)µaµHΦH(µE + αE)P0

,

u4 = 1,

u5 =
β∗(ΛH − µH)

µHΦH(µh + αh)P0

,

u6 =
αhβ

∗(ΛH − µH)

µHΦH(µh + αh)(µs + αs)P0

,

u7 =
αsαhβ

∗(ΛH − µH)

µHΦH(µh + αh)(µs + αs)(µm + αm)P0

,

u8 =
αmαsαhβ

∗(ΛH − µH)

µHΦH(µh + αh)(µs + αs)(µm + αm)µaP0

,

u9 =
Naαaαmαsαhβ

∗(ΛH − µH)

2µHΦH(µh + αh)(µs + αs)(µm + αm)µaP0

.

(6.3.3.11)

In addition, the left eigenvector of the Jacobian matrix in (6.3.3.4) associated with the zero eigen-

value at βC = β∗ is given by

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9]T , (6.3.3.12)

where
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

v1 = 0,

v2 = 0

v3 =
2(µh + αh)(µs + αs)(µm + αm)µa

αENaαaαmαsαh
,

v4 =
β∗(ΛH − µH)

αHµHΦHP0

,

v5 = 1,

v6 =
(αh + µh)

(αh
,

v7 =
(µs + αs)(αh + µh)

(αsαh
,

v8 =
(µm + αm)(µs + αs)(αh + µh)

(αmαsαh
,

v9 =
2µa(µm + αm)(µs + αs)(αh + µh)

Naαaαmαsαh
.

(6.3.3.13)

Computation of bifurcation parameters a and b:

We evaluate the non-zero second order mixed derivatives of f with respect to the variables and

β∗ in order to determine the signs of a and b. The sign of a is associated with the following

non-vanishing partial derivatives of f:



∂2f1

∂x2
3

=
2β∗ΛH

P 2
0 µH

,

∂2f2

∂x2
3

= − 2β∗ΛH

P 2
0 µH

,

∂2f3

∂x2
3

= − 2β∗(ΛH − µH)

P 2
0 µHΦH

.

(6.3.3.14)



Chapter 6 196

The sign of b is associated with the following non-vanishing partial derivatives of f:

∂2f1

∂x3∂β∗
= − ΛH

µHP0

,

∂2f2

∂x3∂β∗
=

ΛH

µHP0

,

∂2f4

∂x3∂β∗
=

(ΛH − µH)

µHP0ΦH

.

(6.3.3.15)

Substituting expressions in Eqn. (6.3.3.11), Eqn. (6.3.3.13), and Eqn. (6.3.3.14) into Eqn.

(6.3.3.9), we get



a = u1v
2
4

∂2f1

∂x2
4

+ u2v
2
4

∂2f2

∂x2
4

+ u5v
2
4

∂2f5

∂x2
4

,

= u1v
2
4

[
2β∗ΛH

P 2
0 µH

]
+ u2v

2
4

[
−2β∗ΛH

P 2
0 µH

]
+ u5v

2
4

[
−2β∗(ΛH − µH)

ΦHP 2
0 µH

]
,

=
2β∗ΛH

P 2
0 µH

.v2
4 [u1 − u2]− u5v

2
4

[
2β∗(ΛH − µH)

ΦHP 2
0 µH

]
< 0,

(6.3.3.16)

since u1 − u2 < 0 and u5 > 0.

Similarly, substituting expressions in Eqn. (6.3.3.11), Eqn. (6.3.3.13) and Eqn. (6.3.3.15) into

equation (6.3.3.9), we get



b = u1v4
∂2f1

∂x3∂β∗
+ u2v4

∂2f2

∂x3∂β∗
+ u5v4

∂2f5

∂x10∂β∗
,

= v4

[
ΛH

P0µH
.u2 −

ΛH

P0µH
.u1 +

(ΛH − µH)

ΦHP0µH
.u4

]
,

=
ΛH

P0µH
.v4 [u2 − u1] +

(ΛH − µH)

ΦHP0µH
.v4u5 > 0,

(6.3.3.17)
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since (u2−u1) > 0, u5 > 0, and v4 > 0. Thus, a < 0 and b > 0. Using Theorem 6.3, item 4., we

have established the following result which only holds for R0 > 1 but close to 1. The following

Theorem summaries the results we obtained:

Theorem 6.4. The endemic equilibrium guaranteed by the Center Manifold Theorem 6.3 is lo-

cally asymptotically stable for R0 > 1 near 1.

6.4 Numerical Analysis of the baseline multiscale model of as-

cariasis transmission dynamics

The behaviour of the human ascaria multiscale model system (6.2.1) was also numerically simu-

lated using a Python program version V 2.6 on Windows 10 operation system. This was achieved

to illustrate the analytical results we obtained in this chapter. We used the estimated param-

eter values presented in Table 6.2 and Table 6.3 for sensitivity and numerical analysis. Some

of parameter values used from published literature and some were assumed as values of some

parameters generally not reported in literature. However, for those parameters which are not

reported in literature, their values were only indirectly approximated from inferences reported

in the published literature. For instance, parameters marked [D∗] in Table 6.2 are demographic

parameters which were chosen to be within ranges of values for developing countries. Also, pa-

rameters marked [H∗] in Table 6.3 are epidemiological parameters specific to human ascariasis

infection that could not be found in literature, and thus were chosen to be within ranges of values

for helminths infections. The initial conditions used for simulation are given by SH(0) = 2500,

IH(0) = 10, PE(0) = 0, PH(0) = 1.50, Ph(0) = 0, Ps(0) = 0, Pm(0) = 100000, Pa(0) = 0, Pe(0) =

50000.
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SL.
No.

Param-
eter

Description Value [Range
explored]

Units Source/
Rational

1. ΛH Susceptible humans recruitment

rate through birth

0.0001[0.0001-

0.0003]

day−1 [D∗]

2. βH Human infection rate 0.1[0.3000-0.00300] day−1 [D∗]

3. µH Natural death rate of humans 0.00001[0.0001-

0.00001]

day−1 [D∗]

4. δH Disease induced death rate 0.004[0.004-0.0001] day−1 [D∗]

5. P0 Saturation constant of infective

eggs

1000[100-10000] day−1 Assumed

6. ΦH Proportion of new infections 0.03000[0.003-

0.3000]

day−1 Assumed

7. αE Rate at which fertilized eggs be-

come infective in the environment

0.1250[0.0181-

0.1000]

day−1 [69]

8. µE Natural decay rate of fertilized

worm eggs in the environment

0.183561[0.079472-

0.260274]

day−1 [66]

9. αH Natural decay of infective eggs in

the environment

0.0357[0.0120-

0.0357]

day−1 [69]

Table 6.2: Parameter values for the multiscale model given by (6.2.1) associated with the outside-

host disease dynamics.
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SL.
No.

Param-
eter

Description Value [Range
explored]

Units Source/
Rational

1. µh Natural decay rate of infective eggs

in the small intestine

1.427397[0.805479-

2.276712]

day−1 [H∗]

2. αh Rate at which infective eggs

hatched in the small intestine

0.1230[0.000-1.000] day−1 [72]

3. µs Natural death rate of immature

worms in the small intestine

0.0400[0.000-0.000] day−1 [H∗]

4. αs Migration rate of immature worm

to lungs

0.2500[0.5000-1] day−1 [73]

5. µm Natural death rate of adult female

worms within the human host

0.0667[0.0667-

0.1000]

day−1 [H∗]

6. αm Migration rate of mature worm to

small intestine

0.0714[0.0667-

0.2000]

day−1 [66, 69]

7. Na Average number of eggs produced

by adult female worm

10000.0[10000.0-

20000.0]

day−1 [69]

8. αa Rate at which female worms pro-

duce eggs in the small intestine

0.0133[0.0133-

0.0167]

day−1 [66]

9. µa Natural decay rate of adult female

worms within human host

0.0027[0.0014-

0.0027]

day−1 [69]

10. αe Rate of excretion of the worm eggs

into the environment

0.320548[0.019178-

1.369863]

day−1 [H∗]

11. µe Natural decay of worm eggs in the

human host

0.0400[0.0400-

0.0001]

day−1 [H∗]

Table 6.3: Parameter values for the multiscale model given by (6.2.1) associated with the inside-

host disease dynamics.

6.4.1 Sensitivity Analysis of the human ascariasis transmission metrics de-
rived from the multiscale model

In this subsection, we carry out a sensitivity analysis to evaluate the relative change in the two

main human ascariasis transmission metrics derived from the multiscale model system (6.2.1)

when the within-host and between-host parameters in the multiscale model change. The two

human ascariasis transmission metrics derived from the multiscale model system (6.2.1) are:

the basic reproductive number (R0) – which characterize the transmission of the disease at the
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start of an infection, and the endemic value of infective worm eggs in the environment (P ∗H) –

which characterize the transmission of the disease when it has reach an endemic level. Fig. 6.3

and Fig. 6.4 are tornado plots of the partial rank correlation coefficients (PRCCs) concurrently

showing the effect of the within-host and between-host parameter variations on the two human

ascariasis transmission metrics (R0 and P ∗H) using parameter values in Table ??.

Figure 6.3: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the human ascariasis transmission metric R0



Chapter 6 201

Figure 6.4: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the human ascariasis transmission metric P ∗H

From the sensitivity indices in Fig. 6.3) and Fig. 6.4, we deduce the following results:

(i) Some of the baseline parameters of the multiscale model (6.2.1) have positive PRCCs and

some have negative PRCCs. This indicates that, parameters with positive PRCCs will

increase the value of both R0 and P ∗H when they are increased, while parameters with

negative PRCCs will decrease the value of R0 and P ∗H when they are increased.

(ii) For R0, the most sensitive parameters at within-host scale are: µh, αh, αs, µs, αm, µm,

Na, αa, µa, αe, and µe while the most sensitive parameters at between-host scale are βH ,

P0, ΦH , and αH . This implies that at the beginning of human ascaris infection care must

be taken to the accuracy of those five between-host parameters and the five within-host

parameters during the intervention.

(iii) For P ∗H , the sensitive of the transmission metric to the same parameters as for R0 is vari-

able, with P ∗H being highly sensitive only to the two between-host parameters (βH and P0)

while remaining less sensitive to all the other parameters. This means that when human

ascariasis is at the endemic level, interventions such as (a) vaccinations that reduces sus-

ceptibility of humans to infection, (b) good sanitary hygiene behavior that reduces the risk

of an individual to contact with infective worm eggs in the environment need to be highly



Chapter 6 202

considered as they are likely to have the highest benefits in reducing the transmission of

human ascariasis in the community.

6.4.2 Evaluation of Reciprocal Influence Between Within-host scale and
Between-host scale from Numerical Simulations of the Multiscale
Model

In this subsection, we present evidence about the reciprocal influence between the between-host

scale and the within-host dynamics of human sacariasis infection using results from the numer-

ical simulations of the multiscale model system (6.2.1). The simulation of model (6.2.1) were

carried out using a Python program version V 2.6 in the windows operation system (Windows

10).

6.4.2.1 Ascertaining the influence of between-host scale on the within-host ascaris disease
dynamics

In this sub-section, we investigate through numerical simulation of the multiscale model sys-

tem (6.2.1) the reciprocal effect of the between-host scale sub-model parameters on the within-

host scale sub-model dynamics. Fig. 6.5 - Fig. 6.7 show the impact in the variation of the four

between-host parameters (βH , µE , αH , P0) on the dynamics of four selected key with-host vari-

ables (Ph, Ps, Pa, Pe). These parameters were only chosen as illustrative examples of the influ-

ence of outside-host (between-host) scale disease processes on within-host scale ascaria disease

dynamics.
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Figure 6.5: Graphs of numerical solutions of model system (6.2.1) showing the influence of

between-host transmission rate parameter (βH ) on the within-host scale population dynamics of

(a) infective eggs (Ph), (b) first stage larvae (Pa), (c) adult roundworms (Pa), and (d) eggs (Pe)

hatched by adult roundworms in the host small intestine for different values of βH : βH = 0.1,

βH = 0.01, and βH = 0.001.

Fig. 6.5 illustrates graphs of numerical solutions showing the variations in the population of (a)

within-host infective eggs (Ph), (b) first stage larvae (Pa), (c) adult roundworms (Pa), and (d)

hatched eggs (Pe) by adult roundworms in the human small intestine for different values of βH :

βH = 0.1, βH = 0.01, and βH = 0.001. The results Fig. 6.5 show the influence of between-

host disease process on within-host disease process of ascaria disease. In particular, the results

show that as transmission rate of human ascariasis at the population level increases, the within-

host infection intensity of the disease increases as well. Therefore, human behavioural changes

(such as good hygiene and sanitation practices) which reduce individuals from contacting with
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contaminated food or water with worm infective eggs from the soil reduces the infection intensity

of the disease at an individual level.

Figure 6.6: Simulations of model system (6.2.1) showing impact of decay rate of infective eggs in

the environment on the within-host scale population dynamics of (a) infective eggs (Ph), (b) first

stage larvae (Pa), (c) adult roundworms (Pa), and (d) eggs (Pe) hatched by adult roundworms in

the host small intestine for different values of αH : αH = 0.8, αH = 0.2, and αH = 0.002.

Fig. 6.6 further illustrates graphs of numerical solutions showing the changes in (a) the within-

host infective eggs in the human small intestine (Ph), (b) the within-host first stage larvae in

the human small intestine (Pa), (c) adult roundworms in the human small intestine (Pa), and

(d) hatched eggs (Pe) by adult roundworms in the human small intestine for different values of

αH : αH = 0.8, αH = 0.2, and αH = 0.002. The results in Fig. 6.6 further shows that as the

decay rate of infective worm eggs in contaminated food or water increase, there is a negligible

or no change in the within-host infection intensity of the disease at an individual level. This
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further demonstrates the influence of between-host disease transmission process on the within-

host infection intensity of human ascariasis. Therefore, public health interventions intended to

kill infective eggs from contaminated food or drinking water (through food or water treatment

such as heating or chlorinate) would have beneficial effect at an individual through reduction of

the infection intensity of the disease.

Figure 6.7: Graph of numerical solutions of model system (6.2.1) showing effect of half satura-

tion constant parameter (P0) on the within-host scale population dynamics of (a) infective eggs

(Ph), (b) first stage larvae (Pa), (c) adult roundworms (Pa), and (d) eggs (Pe) hatched by adult

roundworms in the host small intestine for different values of P0: P0 = 100, P0 = 10000, and

P0 = 1000000.

Fig. 6.7 again illustrates graphs of numerical solutions showing the variations in (a) the within-

host infective eggs in the human small intestine (Ph), (b) the within-host first stage larvae in

the human small intestine (Pa), (c) adult roundworms in the human small intestine (Pa), and (d)
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bottom right: hatched eggs (Pe) by adult roundworms in the host small intestine for different

values of P0: P0 = 100, P0 = 10000, and P0 = 1000000. The results in Fig. 6.7 shows that the in-

crease in the half saturation constant parameter (P0) associated with infection of infective worm

eggs results in a significant decline of the within-host ascariasis intensity. Therefore, sufficient

distribution of vaccines in the population to reduce susceptibility of human to the disease will

significantly reduce the infection intensity of the disease at an individual level.

Collectively, based on the numerical results in Fig. 6.5 - Fig. 6.7, we notice that the varia-

tion in the selected between-host scale parameters βH , µE , αH and P0 corresponds to the the

changes in the four key selected within-host scale variables Ph, Ps, Pa and Pe. This confirms that

during disease dynamics between-host scale influences the within-host scale for human ascaria

infection.

6.4.2.2 Ascertaining the influence of within-host scale on the between-host ascaris disease
dynamics

This sub-subsection highlights some numerical results obtained from the investigation of the

reciprocal influence of the within-host sub-model parameters on the between-host sub-model

ascariasis transmission dynamics. Fig. ?? - Fig. 6.10 show the impact in the variation of three

within-host parameters (αs, µs, Na) on the dynamics of three key between-host variables (SH ,

IH , PE , PH). Also, these parameters were only chosen as illustrative examples of the influ-

ence of inside-host (within-host) scale disease processes on between-host scale human ascariasis

transmission dynamics.



Chapter 6 207

Figure 6.8: Graph of numerical solutions of the model system (6.2.1) showing the influence of

the rate of migration of mature worms αs from the host’s lungs to the host’s small intestine on

the between-host population dynamics of (a) susceptible humans (SH ), infected humans (IH ),

fertilized worm eggs in the environment (PE), and (d) infective fertilized worm eggs (PH ) in the

environment for different values of αs: αs = 0.3202, αs = 0.03202, and αs = 0.003202.

Fig. 6.8 also shows graphs of numerical solutions of the multiscale model system (6.2.1) showing

variations in (a) population of susceptible human (SH), (b) population of infected human (IH),

(c) population of roundworm eggs (PE) in physical environment, and (d) population of infec-

tive fertilized worm eggs in the physical environment for different values of αs: αs = 0.3202,

αs = 0.03202, and αs = 0.003202. The numerical results in Fig. 6.8 show that the between-

host scale population of worm eggs (PE and PH) in the environment as well as infected human

population (IH) increase significantly in response to the increase in the rate of migration of first

stage larvae from small intestine to the human host lungs whilst susceptible human population
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(SH) decreases. Therefore, any intervention mechanisms that is intended to block migration of

worm larvae in the small intestine to human host lung may have a considerable effect on reducing

transmission risk of human ascariasis at population/community level.

Figure 6.9: Simulations of model system (6.2.1) showing the impact of decay rate of mature worm

larvae in the host lungs on the between-host population dynamics of (a) susceptible humans (SH ),

(b) infected humans (IH ), (c) fertilized worm eggs in the environment (PE), and (d) infective

fertilized worm eggs (PH ) in the environment for different values of µs: µs = 0.3, µs = 0.025,

and µs = 0.003.

Fig. 6.9 further shows graphs of numerical solutions of the multiscale model system (6.2.1)

showing variations in (a) population of susceptible human (SH), (b) population of infected human

(IH), (c) population of roundworm eggs (PE) in physical environment, and (d) population of

infective fertilized worm eggs in the physical environment for different values of µs: µs = 0.4,

µs = 0.04, and µs = 0.004. The results in Fig. 6.9 demonstrate that as the death rate of the
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mature worm larvae in the human host lungs increases, there is a significant decrease in the

between-host scale population of worm eggs (PE and PH) which consequently further affects

transmission of the disease in the human population level. Therefore, any interventions which

enhance the killing of mature worm population in the lungs of an infected human host reduces

transmission risk of the disease within communities.

Figure 6.10: Graphs showing the effect of average number of eggs (Na) in the small intestine pro-

duced by adult roundworms on the between-host population dynamics of (a) top left: susceptible

humans (SH ), (b) infected humans (IH ), (c) fertilized worm eggs in the environment (PE), and

(d) infective fertilized worm eggs (PH ) in the environment for different values of Na: Na = 100,

Na = 1000, Na = 10000.

Fig. 6.10 again shows graphs of numerical solutions of the multiscale model system (6.2.1) show-

ing variations in (a) population of susceptible human (SH), (b) population of infected human

(IH), (c) population of roundworm eggs (PE) in physical environment, and (d) population of
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infective fertilized worm eggs in the physical environment for different values of Na: Na = 10,

Na = 100, Na = 1000. The results in Fig. 6.10 demonstrate that an increase in production

of worm eggs per day by each pair of adult roundworm in the human host small intestine in-

creases significantly the transmission risk of human ascariasis at population/community level.

Therefore, any intervention mechanisms intended to reduce worm fecundity within an infected

human host may significantly reduce the transmission risk of human ascariasis in the community.

Collectively, the numerical results in Fig. 6.8 - Fig. 6.10, we notice that as the selected within-

host scale parameters µh, αs, µs and Na change, results to the changes in the between-host scale

variables SH , IH , PE and PH . This confirms that during disease dynamics within-host scale

influences the between-host scale for human ascaria infection.

6.5 Comparison of the Embedded Multiscale Model With the

Nested Multiscale Multiscale Model

In this section, we compare the embedded multiscale model which has been extensively used in

this chapter to study the multiscale dynamics of the population biology of ascaris with the cor-

responding nested multiscale model. The corresponding nested multiscale model can be derived

from the embedded multiscale model (6.2.1) by removing the super-infection. Therefore, the

nested multiscale model for ascaris becomes:
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

i.
dSH(t)

dt
= ΛH −

βHPH(t)SH(t)

P0 + PH(t)SH(t)
− µHSH(t),

ii.
dIH(t)

dt
=

βHPH(t)SH(t)

P0 + PH(t)
− [µH + δH ]IH(t),

iii.
dPE(t)

dt
= IH(t)αePe(t)− [µE + αE]PE(t),

iv.
dPH(t)

dt
= αEPE(t)− αHPH(t),

v. ε
dPh(t)

dt
= −[µh + αh]Ph(t),

vi. ε
dPs(t)

dt
= αhPh(t)− [µs + αs]Ps(t),

vii. ε
dPm(t)

dt
= αsPs(t)− [µm + αm]Pm(t),

viii. ε
dPa(t)

dt
=

αm
2
Pm(t)− µaPa(t),

ix. ε
dPe(t)

dt
= NaαaPa(t)− [µe + αe]Pe(t).

(6.5.1)

where ε as previously defined is a constant highlighting the fast time-scale dynamics of the

within-host model compared to the slow time-scale of the between-host scale dynamics, and

it is assumed that 0 < ε << 1. Therefore, setting ε = 0 we get:

(P ∗h , P
∗
s , P

∗
m, P

∗
a , P

∗
e ) = 0. (6.5.2)

Now, substituting P ∗e = 0 in the third equation of the nested multiscale model system (6.5.1) for

PE which is given by

dPE(t)

dt
= IH(t)αePe(t)− [µE + αE]PE(t). (6.5.3)

when the dynamics of the disease has reached an endemic level we get:

dPE(t)

dt
= −(µE + αE)PE(t). (6.5.4)
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Therefore, the solution of the expression (6.5.4) is

PE(t) = PE(0)e−(µE+αE)t (6.5.5)

This implies that when t get larger, PE(t) converges to zero. That is,

PE(t)→ 0 as t→∞ (6.5.6)

Using the same principles as in Eqs. (6.5.4), similar expressions can be derived for the remaining

model variables so that

(S∗H , I
∗
H , P

∗
E, P

∗
H , P

∗
h , P

∗
s , P

∗
m, P

∗
a , P

∗
e ) = 0 (6.5.7)

as the disease reaches an endemic level. But, this is not true because infectious disease system

of this type do not clear themselves naturally as the within-host dynamics reaches endemic lev-

els. Therefore, we can conclude that nested multiscale models are generally not appropriate in

characterizing the dynamics of any type I environmentally-transmitted diseases.

6.6 Summary

The main objective of this study was to compare and identify between an embedded multi-

scale model and a nested multiscale model which is the most appropriate multiscale model in

predicting the dynamics of an infectious disease that has no pathogen replication-cycle at the

microscale with specific reference to human ascariasis. The embedded multiscale model for hu-

man ascariasis population biology was formulated based on the general multiscale model for

type I environmentally-transmitted disease systems presented in the paper of the replication-

transmission relativity theory for multiscale modelling of infectious disease systems by Garira

[8]. While, the nested multiscale model for human ascariasis population biology was derived

from the embedded multiscale used in this study by neglecting the effect of superinfection on the

dynamics of the disease. The results of the embedded multiscale models (through mathemati-

cal and numerical analysis) show that superinfection continuously influence the dynamics of the

disease throughout the infection. While, the nested multiscale model results show that during

human ascariasis dynamics the model predict an endemic level of zero which correspond to a

disease-free equilibrium state. However, this is not true because infectious diseases of this type

continue to persist as they do not naturally clear themselves as they reach an endemic level. Based

on these results obtained in the chapter, we established that during human ascariasis population

dynamics, only the embedded multiscle model is appropriate for predicting disease dynamics.
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In such a case, a nested multiscale model is inappropriate. Therefore, the results in this chapter

are powerful evidence that for any infectious disease that has no pathogen replication cycle at

the microscale, only the embedded multiscle model is appropriate for predicting disease dynam-

ics. We anticipate that the results in this chapter will enable modelers to choose an appropriate

multiscale model in the study of infectious diseases that has no pathogen replication cycle at the

microscale beyond human ascariasis.



Chapter 7

Conclusion and Future Research
Directions

7.1 Conclusion

In this study, we compared two different categories of multiscale models of infectious diseases,

namely, nested multiscale models and embedded multiscale models, and identify between the two

categories which one is most appropriate in characterizing the dynamics of infectious disease sys-

tem with specific to two representative environmentally-transmitted disease systems which are

ruminant paratuberculosis and human ascariasis. The two environmentally-transmitted diseases

considered in this thesis represent infectious disease systems with replication-cycle at microscale

(i.e. ruminant paratuberculosis) and infectious disease systems without replication cycle at the

microscale (i.e. human ascariasis). Firstly, we developed a single-scale model that we progres-

sively extended to develop nested multiscale models and embedded multiscale models that we

then compare to determine they suitability in characterizing the multiscale dynamics of infec-

tious diseases. To be more specific:

In Chapter 2, we presented a single-scale model for the transmission dynamics of environmentally-

transmitted disease systems using ruminant paratuberculosis as a paradigm. The model was for-

mulated based on the transmission mechanism theory [8], (i.e. single scale modelling of disease)

which privileges the macroscale at every level of organization of an infectious disease system in
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disease dynamics. The model was shown through mathematical analysis to be both mathemati-

cally and epidemiologically well-posed. We also performed sensitivity analysis study to assess

the sensitivity of the two main disease transmission metrics derived from the model which are the

basic reproduction number (R0) and the endemic value of the environmental MAP bacteria (B∗C)

to all the parameters in the model using the Latin hypercube sampling scheme. Numerical simu-

lations of the model variable were also done based on parameters identified to be more sensitive

from sensitivity analysis. In this chapter, we demonstrated that although the model analyses were

simple, the major weakness of the model was that it describes the replication dynamics of the

pathogen within an infected host in a phenomenological manner which makes the model being

unrealistic in predicting the dynamics of environmentally-transmitted disease systems. We there-

fore, anticipate that this kind of limitation of single-scale model can be overcome by extending

the single-scale model to a multiscale model.

In Chapter 3, we presented nested multiscale model that integrates the within-host scale and

between-host scale dynamics for PTB infection, with the main objective of investigating the in-

fluence of the variation in size of initial inoculum on the dynamics of the disease. We established

(through numerical simulation of the PTB transmission multiscale model) that once the minimum

infectious dose is consumed, then the infection at the within-host scale is sustained by pathogen

replication. In particular, numerical results showed that as the initial inoculum increases, the

time to reach the endemic state also increases at this scale domain. However, at the between-host

scale, we observed that when the initial inoculum of MAP bacteria increased beyond the min-

imum infectious dose made no difference in the transmission dynamics of the disease. In this

regard, we think that as the initial infective inoculum increases beyond the minimum infectious

dose, the superinfection in the dynamics of PTB in ruminants has no effect on the dynamics of

the disease. This is due to the replication of MAP bacteria at the within-host scale that sustains

the disease dynamics at this scale. We further used nested multiscale model to enhance tradi-

tional single-scale model by estimating N̂c that is difficult to estimate using single scale. This

was achieved by making the use of a fast-slow time scale based method which reduces dimen-

sion of the full nested multiscale model to become a simplified nested multiscale model. After

estimating N̂c, we showed that the simplified multiscale model for PTB infection is mathemat-

ically and epidemiologically well-posed. Furthermore, we investigated global stability for both

the disease-free and endemic equilibrium states. We also perform a sensitivity analysis study to

assess sensitivity (R0) and (B∗C) derived from the multiscale model to both the within-host scale

and between-host scale parameters in the multiscale model using the Latin hypercube sampling

scheme. The results from the sensitivity analysis for both R0 and B∗C indicated that care must

be taken to the accuracy of the within-host model parameters such as the excretion rate of the
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within-host MAP bacteria into the environment, the decay rate of the within-host MAP bacteria

at the site of infection within an infected ruminants and the average number of the intracellular

MAP bacteria excreted into extracellular environment by each bursting infected macrophages

during the data collection if the efficient elimination of the burden of Paratuberculosis infection

in a dairy farm level need to be achieved.

In Chapter 4, we developed an embedded multiscale model for the dynamics of ruminant paratu-

berculosis, with the main objective of investigating the role of superinfection on the multiscale

dynamics of paratuberculosis in ruminants. We studied the mathematical properties of the mul-

tiscale model and established that the model is epidemiological and mathematically well-posed.

We observed the same trends as in nested multiscale model results in Chapter 3, that superinfec-

tion of the ruminant by the bacteria before it recovers from prior infection by PTB infection does

not significantly alter the total pathogen load within an infected ruminant. In particular, Fig. 4.6 -

Fig. 4.8 showed the impact in the variation of three selected within-host parameters (αc, µc, Nm)

on the population dynamics of three key between-host variables (SC , IC , BC), while Fig. 4.3

- Fig. 4.5 showed the impact in the variation of three important between-host scale parameters

(βC , αC , B0) on the population dynamics of four selected key with-host scale variables (Im, Bc,

T1, T2). Collectively, the numerical results in Fig. 4.6 - Fig. 4.5 confirmed that once the infection

has successfully established at the within-host scale the replication of MAP bacteria sustain the

dynamics of PTB disease at this scale domain. The results of sensitivity analysis of R0 further

indicated that the variation of the within-host scale parameters in particular the decay rate of

the within-host MAP bacteria population have significant effect on the transmission risk of the

disease at the ruminant population level. Therefore, taking into account that there is no drugs

for PTB infection (intervention which is administrated at within-host scale), the output of results

of sensitivity analysis as indicated in the Tornado plot in Fig. 4.2 reveals that the development

of a drug that kills and restricts replication of MAP bacteria at the within-host scale would have

beneficial effect on the reduction of the transmission risk of the disease among the ruminants at

the herd level.

In Chapter 5, we compared the full nested multiscale model, simplified nested multiscale model

and the embedded multiscale model for ruminant paratuberculosis described in Chapter 3 and

Chapter 4, respectively, to ascertain their suitability in characterizing the intrinsic dynamics of

PTB in ruminants as well as the disease is under the influence of health interventions. We es-

tablished the fact that both the full nested and the embedded multiscale models predict the same

pattern of the intrinsic dynamics of an PTB infection and the predicted pattern did not change

under the influence of PTB health interventions. This indicates that both the full nested and
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the embedded multiscale models can equally be used to characterize an infectious disease that

involves a pathogen replication-cycle at the microscale such as PTB. However, the simplified

multiscale model seem to predict a high pathogen load as well as a lower impact of effectiveness

of intervenion on reducing the burden of the disease. This is because in the simplified multiscale

model infection at the microscale has been allowed to progress for sometime before interventions

are implemented.

In Chapter 6, we compared an embedded multiscale models with a nested multiscale modelling

in predicting the dynamics of environmentally-transmitted diseases that have has no pathogen

replication cycle at the microscale with specific reference to human ascariasis. Human ascariasis

is among neglected tropical diseases that has been and continue to be a cause of public health

concern in many low and middle income countries. It is caused by the parasite ascaris lumbri-

coides that has a complex life-cycle associated with seven main life stages of which two occur

outside-host/geographical environment and two take place inside-host/biological environment.

The development of an embedded multiscale model for human ascariasis population biology

was based on the general multiscale model for type I environmentally-transmitted disease sys-

tems presented in [8]. On the other hand, the derivation of a nested multiscale model for human

ascariasis population biology was based on the embedded multiscale by neglecting the effect of

superinfection on the dynamics of the disease. For an embedded multiscale model, we studied

its mathematical properties and established that the multiscale model is epidemiologically and

mathematically well-posed. Through investigating the potential influence of superinfection on

the dynamics of the disease, we established that during human ascariasis dynamics, superinfec-

tion has a significant influence on the increase of infectiveness of an individual. However, in the

case of a nested multiscale model, we established (through mathematical analysis of the multi-

scale model) that during human ascariasis dynamics the model predict an endemic level of zero

which correspond to disease-free equilibrium states. But, this is not the case because infectious

diseases of this type continue to persist as they do not naturally clear themselves as they reach an

endemic level. Therefore, the results in this chapter are powerful evidence that for any infectious

disease that has no pathogen replication cycle at the microscale, only the embedded multiscle

model is appropriate for predicting disease dynamics. Whereas a nested multiscale model is in-

appropriate.

The major innovations of this study are as follows: (i) the establishment of scientific evidence

that show that for type II environmentally-transmitted diseases, both the NMSM and the EMSM

can equally be used to characterize their intrinsic disease dynamics and when they are under the
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influence of health intervention mechanisms; (ii) the use of simplified nested multiscale mod-

elling to enhance single-scale modelling in estimating a composite parameter that is difficult to

estimate using single-scale models; and (iii) establishment of scientific evidence that show that

only an embedded multiscale model is suitable for modelling type I environmentally-transmitted

diseases and that a nested multiscale model is inappropriate in modelling type I environmentally-

transmitted diseases. We anticipate that this study will enable modelers to choose an appropriate

multiscale model in the study of infectious diseases. However, the most challenge we face in

this study is the scarcity of multiscale empirical data for models validations. All of our multi-

scale models developed in this study we not validate due to the scarcity of multiscale empirical

data. We do acknowledge that the availability of a relevant multiscale empirical dataset would

have aided in estimating key disease parameter and testing possible control scenarios for any

infectious disease systems beyond Paratuberculosis and Ascariasis considered in this study.

7.2 Future Research Directions

Since focus of this study was only on comparing the appropriateness of nested and embed-

ded multiscale models in predicting the dynamics of two representative of environmentally-

transmitted diseases, for future research directions the following aspects can be take into con-

sideration:

1. Intensive study to compare the suitability in predicting the dynamics of infectious disease

systems among all the five different generic categories of multiscale model beyond nested

multiscale model and embedded multiscale model would be helpful in the selection of an

appropriate category.

2. The comparison between NMSM and EMSM categories was done based on infectious

disease systems that are environmentally-transmitted diseases. Therefore, it would be im-

portant to consider also infectious diseases that are directly-transmitted diseases to com-

pare the appropriateness of these two multiscale models in prediction of the dynamics of

infectious disease systems.

3. It is also imperative to investigate if these two categories of multiscale models accurately

predict the dynamics of an infectious disease to the existing empirical data.

4. Furthermore, in relationship to paratuberculosis multiscale models developed in Chapter

3 and Chapter 4, these multiscale models do not take into account the formation of gran-

uloma within an infected ruminant. A possible extension of the work in this study is to
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investigate if the two multiscale models predict the same pattern when taking into account

granuloma formation on the transmission dynamics of the disease among ruminants.

5. In addition, the multiscale models presented in Chapter 6 did not take into account other

factors that determine disease dynamics such as climate, immune response, and demo-

graphic structure of the population. We think that these factors are important in determin-

ing human ascariasis disease dynamics.
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