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Abstract

In the field of mathematical biology, researchers are beginning to witness an overwhelming ap-
preciation of multiscale modelling as an essential and suitable technique as opposed to a tradi-
tional single-scale modelling approach in predicting the dynamics of infectious disease systems.
Yet, there is still a lack of evidence that generally indicates which among the different categories
of multiscale models of infectious disease systems is more appropriate to use in multiscale mod-
elling of infectious disease systems at different levels of their organization. This research study
is the first of its kind to compare the suitability of the two fundamental categories of multi-
scale models of infectious disease systems which are nested multiscale models and embedded
multiscale models in predicting disease dynamics with specific reference to environmentally-
transmitted diseases. Two environmentally transmitted diseases are used as case studies, namely
ruminant paratuberculosis and human ascariasis, to compare the two fundamental categories of
multiscale models in predicting disease dynamics. The two environmentally-transmitted dis-
eases considered in this study represent infectious disease systems with replication-cycle at mi-
croscale (i.e. ruminant paratuberculosis) and infectious disease systems without replication cycle
at the microscale (i.e. human ascariasis). Firstly, the author develop a single-scale model at the
host-level that we progressively extend to different categories of multiscale models that we later
compare. The findings of this study (through both mathematical and numerical analysis of the
multiscale models) are that for ruminant paratuberculosis which has a pathogen replication-cycle
at the within-host scale both nested and embedded multiscale models can be used because both
the models provide the same prediction of disease dynamics. However, for human ascariasis the
findings are such that nested multiscale model is not appropriate in characterizing the disease
dynamics, only the embedded is appropriate. Although the comparison of different categories of
multiscale models in disease prediction carried out in this study are specific to paratuberculosis
in ruminants and human ascariasis, the results obtained in this study are robust enough to be ap-
plicable to other infectious disease systems. Our results can be generalized to imply that for any
level of organization of an infectious disease systems, if the disease has a replication cycle at the
microscale, the nested multiscale and the embedded multiscle model provide the same accuracy
in predicting disease dynamics. However, when the disease has no replication cycle at the mi-
croscale, only the embedded multiscle model is appropriate for predicting disease dynamics. In
such a case, a nested multiscale model is inappropriate. We anticipate that this study will enable

modelers to choose appropriate multiscale model category in the study of infectious diseases.
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Chapter 1

Introduction

1.1 Background of the Study

Infectious diseases have been and still continued to be a public health threat throughout the world,
more especially in low-and-middle income settings where majority of people have limited access
to clean water and adequate sanitation facilities as well as health facilities. It has been widely
accepted that better insights into transmission mechanisms of infectious diseases using mathe-
matical modelling methods may facilitate the development of new as well as improving existing
preventive and control measures against burdens in which these infectious diseases impose across
populations. In the past two and half decades and until now, mathematical models in the field
of biological systems have been and still continued to play a crucial role in improving our un-
derstanding about infectious diseases dynamics across different levels of organization (e.g. cell
level, tissue level, organism/host level, population level, etc.). They have also enhanced our un-
derstanding regards to the impact of different disease transmission mechanisms (e.g., fecal-oral
transmission, sexual-oral transmission mechanism, vector-borne transmission mechanism, etc.)
on the transmission risks of many infectious diseases in a given population as well as assisting
us to be able to compare and evaluate effectiveness of various health interventions against these
infectious diseases either at local or global level. The earliest account of mathematical modelling
of infectious disease dynamics can be dated way back in 1766 [3] when Daniel Bernoulli for-
mulated a model for the spread of smallpox to assess the effectiveness of the variolation practice

[4, 5]. Since that time until recently, countless mathematical models have been developed to
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describe and analyze transmission dynamics of various infectious diseases across different hier-
archical levels of biological organization of an infectious disease system (see the work in [4, 6]
and reference therein). Additionally, most of these models have further been remarkably useful
in addressing many aspects pertaining the transmission dynamics of infectious disease systems
such as stages of an infection in a host, susceptibility of the host to infective dose, persistence of
a disease in the population, pathogen shedding, pathogen co-evolution, severity of the disease,
multi-host infections, and multi-strain infections, etc. Moreover, in the context of infectious dis-
ease modelling, it is worthy to mentioning that different models have been and continue to be
developed based on different model structures depending on the addressed question(s) of inter-
est under study. These different model structures include susceptible-infected (SI), susceptible-
infected-pathogen (SIP), and variations of this paradigm (SIR, SIRP, SEIR, SEIRP, etc) that can
be developed at any levels of organization of an infectious disease system (i.e., cell level, tissue
level, host level, etc). For instance, the SI model structure and variations of this paradigm (SIS,
SIR, SIRS, SEIR, SEIRS, etc) models specifically infectious diseases that are transmitted primar-
ily by direct contact means (see the work in [4] for example and reference therein), while the SIP
model structure and variations of this paradigm (SISP, SIRP, SIRSP, SEIRP, SEIRSP, etc) concern
with infectious diseases that are transmitted by indirect contact means (see the work in [7] for
example and reference therein). Directly transmitted diseases are those infectious diseases that
are transmitted from one host to another through host-to-host transmission. Sexually-transmitted
infectious diseases such as HIV/AIDS are the most typical examples of directly transmitted dis-
eases. On the other hand, indirectly transmitted diseases are those infectious diseases that a
host acquire through ingestion of free-living pathogens located in contaminated physical envi-
ronment domains such as food, water, air, soil, or contact surface; with the resulting diseases
being called environmentally-transmitted diseases. Diarrheal infectious diseases such as cholera,
campylobacteriosis, listeriosis, paratuberculosis in ruminants, and soil-transmitted helminth in-
fections are typical examples of environmentally-transmitted diseases. It is so interesting to note
that although there is an increasing number of mathematical models that are developed to study
transmission dynamics of various infectious disease systems, most of them predominantly stud-
ied their dynamics at two scales being the epidemiological scale and the immunological scale. It
is again important to note that these two scales have been and continue to be considered sepa-
rately even for the same infectious disease system. This is despite the fact that infectious disease
systems are multiscale, multilevel systems that bridge a wide range of varying spatial and tem-

poral scales, from cellular levels to macroecosystem level [8].

In addition, limited knowledge about how to integrate information from the different sets of

scales of biological organization involved in the dynamics of infectious diseases has hampered
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progress in controlling, eliminating and even eradicating both social and economical burdens
that most of these infectious disease impose throughout the world, particularly in the developing
world. Multiscale modelling offers the mathematical technological infrastructure for integrating
information from the different sets of scales of biological organization involved in the dynam-
ics of infectious diseases as opposed to traditional single-scale modelling. This is due to the
fact that multiscale modelling facilitates the integration of different sets of scales of an infec-
tion disease system. Recently, we have witnessed the development and application of different
multiscale models for various infectious disease systems (see [9-18] for examples) and the es-
tablishment of a broader scientific theory for multiscale of infectious disease systems [8] . In
a recent set of landmark papers by Garira [1, 19, 20], the author identified five main different
categories of multiscale models of infectious disease systems that can be developed at different
levels of organization of an infectious disease system (be the cell level, the tissue level, the host
level, etc.) which are: (i) Individual-based multiscale models (IMSMs), (ii) Nested multiscale
models (NMSMs), (iii) Embedded multiscale models (EMSMs), (iv) Hybrid multiscale models
(HMSMs), and (v) Coupled multiscale models (CMSMs) with each having more than one class
within. More details with regards to the categorization of these multiscale models for infectious
disease systems a reader is invited to the two papers by Garira ([19, 20]). Here, we only give
a brief review of each of the five categories of multiscale model types for infectious disease

systems as follow:

(i) Category I - Individual based multiscale models (IMSMs): In this category, multiscale
models are formulated based on the assumption that the individual/lower/micro scale (i.e.,
within-cell scale, within-tissue scale, within-host scale) sub-model is used to describe the
entire infectious disease system across both the within-host scale and between-host scale.
The key features in this category are such that (a) there is no information flow from the
population/upper/macro scale sub-model to the individual/lower/micro scale sub-model,
and the population/upper/macro scale is observed as emergent behaviour of the individu-
al/lower/micro scale entities. Typical examples of the development of multiscale models

within this category see the works in [21-29].

(i) Category II - Nested multiscale models (NMSMs): These are multiscale models of infec-
tious disease systems that are developed based on the assumption that there is only one-way
inter-scale or unidirectional flow of information (i.e., only from the individual/lower/mi-
cro sub-model to the population/upper/macro sub-model). In addition, the key features of
this category is that (a) the dynamics of the individual/lower/micro is independent from
the population/upper/macro scale, and (b) the formalism or mathematical representation

that describe both the individual/lower/micro sub-model and the population/upper/macro
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(iii)

(iv)

v)

sub-model must be the same. The multiscale models in [30-33] are good examples of the
development of NMSMs. Another good examples of the development of NMSMs are in
[16, 17] in the context of malaria (a vector-borne transmitted disease) and HIV (a direct

transmitted disease), respectively.

Category III - Embedded multiscale models (EMSMs): These are multiscale models of
infectious disease systems in which there is a two-way inter-scale or bidirectional flow
of information between the individual/lower/micro sub-model and the population/upper/-
macro sub-model. Therefore, the key features in this category are such that (a) there
is a reciprocal influence between the individual/lower/micro scale sub-model and popu-
lation/upper/macro scale sub-model, and (b) both the individual/lower/micro scale sub-
model and population/upper/macro scale sub-model must be described by the same for-
malism or mathematical representation. The papers by [8—11, 14, 34] provide classical

examples of the development of EMSMs at the host level.

Category 1V - Hybrid multiscale models (HMSMs): These are multiscale models that
are formulated based on the assumption that the individual/lower/micro sub-model and
population/upper/macro model can be modelled in a heterogeneous way using different
formalism or mathematical representation as appose to the multiscale models in categories
I, IT and III, where the within-host scale and the between-host scale can be modelled in
a homogeneous way using the same formalism or mathematical representation. There-
fore, the key feature in this category is that the individual/lower/micro sub-model and
population/upper/macro sub-model are described by different formalism or mathematical
representation. The most typical examples of such paired formalisms are deterministic/s-
tochastic, mechanistic/phenomenological, ODE/PDE, and ODE/ABM. Multiscale models
of infectious disease systems that are based on this category can be found in the following
articles [35-39].

Category V - Coupled multiscale models (CMSMs): These are multiscale models of in-
fectious disease systems in which multi-strain infections, multi-pathogen infections, multi-
group infections, multi-host infections, multi-level infections, multi-geographical environ-
ments infections, multi-biological environments infections take into account on the trans-
mission of infectious disease systems. The key features of this category are such that (a) the
diversity within a single-host species (multi-group infections) and diversity within a single-
pathogen species (multi-strain infections) are considered in multiscale modelling of infec-
tious disease systems, and (b) the other four categories of multiscale models (NMSMs,
IMSMs, EMSMs, HMSMs) can be used as sub-models to describe the dynamics of an
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infectious disease system across scales in each levels of biological organization. Typical

examples of multiscale models in this category are in [40—43].

It is important to mention that IMSMs, NMSMs and EMSMs are fundamental building blocks
for the development of most multiscale models that integrate micro-scale and macro-scale dy-
namics of an infectious disease system across different levels of biological organization. It is
further important to note that IMSMs integrate implicitly microscale and macroscale disease
dynamics, while both NMSMs and EMSMs integrate explicitly micro-scale and macro-scale
disease dynamics. Yet, nothing has been done in investigating which between these two multi-
scale models (NMSMs and EMSMs) is more suitable in describing the dynamics of infectious
disease systems. Therefore, this thesis investigates the suitability of application of NMSMs and
EMSMs in modelling infectious disease systems using environmentally-transmitted diseases as
example paradigms. The modelling of environmentally transmitted diseases involves the use
of pathogen load as a common metric of host infectious and burden of disease across all the
seven main biological levels of organization of an infectious disease system (i.e. cell level, tissue
level, organ level, micro-ecosystem level, host level, community level, and macro-ecosystem
level) [8]. For purposes of implementing multiscale modelling methods, we can demarcate
environmentally-transmitted into three different types: (i) type II environmentally transmitted
disease - in which there is no replication of their disease-causing pathogens at the microscale,
(i1) type I environmentally-transmitted disease - in which their disease-causing pathogens only
replicates at the microscale, and (iii) type III environmentally transmitted disease - in which their
disease-causing pathogens replicates at both the microscale and macroscale (see [8] and Sec. 1.2

of this thesis for more details).

1.2 Preliminary Comparison of Multiscale Models for Infec-

tious Disease Systems

Despite the increase in the use of multiscale modeling to study the complexity and multiscale
nature of infectious diseases dynamics, currently it has been urged by the author in [1] that
we cannot be able to draw general conclusions about which of the five categories of infectious
disease systems is suitable in addressing the problem of an infectious disease system in different
conditions. However, what is now clear as pointed out in [1] is what dictates the selection of a

particular category of multiscale models for a particular disease is:
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a. IMSMs — their selection is dictated by the need of incorporating heterogeneity into the
multiscale model (e.g., heterogeneity in (i) host susceptibility, (ii) the ability of hosts to

transmit pathogens to other hosts, (iii) host behavior, and (iv) host immune response).

b. NMSMs — their selection is based on the choice of biological linking mechanisms between
two adjacent scales of an infectious disease system (i.e., macroscale and microscale) in
which the contribution of super-infection/reinfection at the macro-scale to pathogen repli-
cation at the micro-scale is considered irrelevant/insignificant and that the effect of this

super-infection/reinfection on the dynamics of an infectious disease can be ignored.

c. EMSMs - their selection is as appose to NMSMs is based on the choice of biological
linking mechanisms between two adjacent scales of an infectious disease system (i.e.,
macro-scale/upper/population scale and micro-scale/lower/individual scale) in which the
contribution of super-infection/reinfection at the macro-scale to pathogen replication at the
micro-scale is considered significant such and that the effect of this super-infection/reinfection

on the dynamics of an infectious disease cannot be ignored.

d. HMSMs - their selection is also dictated by the freedom of the representation of the
two scales of an infectious disease system using different mathematical formalizations
(e.g., deterministic/stochastic, discrete time/ continues time, mechanistic/phenomenologi-
cal, ODE/PDE, etc.).

e. CMSMs - their selection is the same as the other four categories of multiscale models
(IMSMs, NMSMs, EMSMs, HMSMs), except that in this case the need of incorporating at
least the following aspects of infectious disease systems can be considered in the develop-
ment of multiscale models: (i) multiple levels of biological organization of the infectious
disease system, (ii) multiple host species such in the case of vector-borne diseases, (iii)
multiple pathogen species/strains such as in the case of co-infections, (iv) multiple com-

munities, and (v) multiple anatomical compartments or organs.

However, there is still lack of evidence that generally indicates which among these categories of
multiscale models is more appropriate to use in modelling infectious disease systems for differ-
ent conditions. The author in [1] further elaborates the need for studies to establish evidence that
would guide in the selection of these categories of multiscale models. Thus, the current study
is the first of its kind to compare the suitability in characterizing infectious diseases transmis-
sion dynamics within these five different categories. We particularly compare the suitability of
NMSMs and EMSMs in characterizing the multiscale dynamics of infectious disease systems.
This is partly because of their simplicity and partly because both they are fundamental build-

ing blocks for the development of other categories of multiscale models of infectious disease
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systems that can be developed at any biological organization. The comparison between these
two categories of multiscale models in their suitability in predicting the dynamics of infectious
disease systems is conducted using environmentally-transmitted disease systems as paradigms.
Environmentally-transmitted diseases are infectious diseases that arise or transmitted across pop-
ulations as a result of interaction of a host (be human, animal, and even plant) with free-living
pathogens in the outside-host/physical environmental domain (such as water, food, air, soil or
contact surface and objects). In any given population, individual hosts can be exposed to various
types of free-living pathogens (e.g., viruses, parasites, bacteria, and fungus) that are capable of
living in multiple environments which we can roughly demarcate into two main types as: (i) the
outside-host environment - which is generally associated with the pathogen’s free-living stages
in the geographical environment’s physical domains, and (ii) the inside-host/biological environ-
mental domain - which is also associated with the developmental life stages of the pathogen in
the biological host environment’s organs, tissues, and cells. In the outside-host environment,
these free-living pathogens that are solely responsible for causing environmentally-transmitted
diseases in the population are generally transmitted from one host to another host through differ-

ent modes of transmission which can roughly be classified into five classes as follows:

i. Food-borne diseases: These are illnesses that arise from ingestion of spoiled or poisonous
food contaminated by microorganisms or toxicants, which may occur at any stage during
food processing from production to consumption. The World Health Organization (WHO)
reported that every year, 1 in 10 people become infected from eating contaminated food,
and further approximately 420 000 people die each year as a result [44]. Bacterial infec-
tions such as salmonelliosis, listeriosis and campylobacteriosis, and viral infections such
as rotovirus and norovirus infections are among the most common food-borne infectious

diseases that afflict millions of people throughout the world annually.

ii. Water-borne diseases: These are infections that are transmitted among hosts through
drinking from unsafe water contaminated by infective pathogens. Some of water-borne
diseases are transmitted as a result of an individual being exposed to vectors whose life-
cycle are influenced by environmental factors, with the resulting disease being termed
vector-borne transmitted diseases. According to WHO, four-fifths of all infections in
the developing world are caused by water-borne diseases, with diarrhea being the lead-
ing cause of death among children under the age of five years [45]. Diarrheal infections
such as hepatitis e, cholera and other vector-borne transmitted illnesses such as malaria,
typhoid, schistosomiasis, guinea worm infection, and onchocerciasis are the most common

examples of water-related diseases.

© University of Venda



L
>

(o

@ University of Venda

Creating Future Leaders
@)

Chapter 1 8

iii. Air-borne diseases: These are infectious diseases that are transmitted through the air by

1v.

V.

means of breathing, talking, coughing, sneezing, or any activities which generates aerosol
particles or droplets. The most common well-known examples of air-borne related diseases

include: anthrax, chickenpox, influenza, measles, smallpox and tuberculosis.

Soil-transmitted diseases: These are infection that are transmitted through walking bare-
foot on the contaminated soil contaminated with faecal matters or through the ingestion of
worm larvae (eggs) presented in the vegetables, drinking water and raw or undercooked
meat. WHO have also reported that soil-transmitted helminth infections are among the
most common infections worldwide and affect more than 1.5 billion people, or 24% of
the world’s population [46]. Typical examples of soil-transmitted diseases are the whip-
worm (Trichuris trichiura), the roundworm (Ascaris lumbricoides) and the two species of
hookworms (Necator americanus and Ancylostoma duodenale) that are highly prevalent in

developing countries.

Formites-transmitted diseases: These include infectious diseases which are transmitted
through contact with surfaces contaminated with infective free-living pathogens in the en-

vironment.

However, it is important to note that this classification is not important in the development of

multiscale models of infectious disease systems. In the following we discuss categorization of

environmentally-transmitted disease systems which is more suitable for multiscale modelling.

Therefore, following the work in [8], we categorize environmentally-transmitted diseases into

three main types related to the scale of organization of an infection at which the replication and

transmission of their pathogens occur:

L.

il.

Type 1, Environmentally-transmitted diseases: In this type of environmentally-transmitted
infectious disease systems, pathogen replication-cycle do not occur at the micro-scale but
only the developmental stages of the pathogen occur at this scale, while the transmission
of the pathogen takes place at the macroscale. The most common example of this Type I
environmentally-transmitted infectious diseases include schistosomiasis [9], Guinea worm

[10], and soil-transmitted diseases such as hookworm [8].

Type II Environmentally-transmitted diseases: In this type of environmentally-transmitted
infectious disease systems, pathogen replication-cycle only occurs at the microscale (i.e., at
the within-host/within- tissue/within-cell scale) while the transmission of the pathogen oc-

curs at the macroscale (i.e., at the between-host/between-tissue/between-cell scale). Most
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air-borne viral infections such as influenza [47] and some food-borne bacterial infec-
tions such as paratuberculosis species [48] are good examples of Type II environmentally-

transmitted infectious disease systems.

iii. Type II1 Environmentally-transmitted diseases: In this type of environmentally-transmitted
infectious disease systems, replication-cycle of pathogen replicates at both the micro-scale
and at the macro-scale while the transmission of the pathogen still happens at the macro-
scale. These environmentally-transmitted diseases are typically caused by opportunistic
infections such as cholera, salmonella enterica and anthrax (see [8] and reference therein).
Additionally, it is important to note from [8] that this type of environmentally-transmitted

diseases is the combination of type (I and II) environmentally-transmitted disease systems.

All of these three categories of environmentally-transmitted diseases can be further explained
by a conceptual framework of environmentally-transmitted disease systems as shown in Fig. 1.1

which shows four main components of environmentally-transmitted disease systems.
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Figure 1.1: Conceptual diagram showing four main components of an environmentally-

transmitted disease system and the associated levels of organization of infection for each com-

ponent.

Based on Fig. 1.1, it should be noted that these four main components of environmentally-
transmitted disease systems are interdependently to one another and within each of them there
is at least two associated levels of biological organization of an infection disease system. These

four main components of environmentally-transmitted disease systems are: (a) the pathogen-host
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component which consists of (i) organism/host level, (ii) host-tissue level, (iii) host-cell level;
(b) the environmental component which also consists of (i) outside-host environmental level, (i1)
inside-host environmental level; (c) the health interventions component further consists of (i)
public health intervention level, (ii) medical intervention level; and (d) the host-immune system
component which again consists of (i) lypocytes level, (i1) phagocytes level. these four com-
ponents are also described in [20]. In what follows, we briefly describe each components for
environmentally-transmitted disease system and their associated levels of biological organization

of an infectious disease systems.

1. Pathogen-host component: This could be either the interaction between a free-living
pathogen in the physical environmental domains (such as soil, water, air, food, etc.) and a
host (such as animal, human or vector) at a host level in the host behavioral physical en-
vironment (i.e., outside-host environmental level) or the interaction between pathogen and
a host tissue at a host-tissue level within a single infected host (inside-host environmental
level) or the interaction between pathogen and a host cell at a host-cell level within an in-
fected individual host (i.e., inside-host environmental level) that could lead to an infection
in a host/host-tissue/host-cell populations. From a biological point of view, pathogen-host
interaction component generally takes place at different ordered hierarchical levels of bio-
logical organization of an infectious disease system ranging from molecule level and cell
level to tissue level and to organism/host level and host population level. However, the
three main ordered hierarchical levels of organization of an infectious disease system in-
clude (a) the organism/host level, (b) the host-tissue level and (c) host-cell level all which
serve as the units of multiscale analysis [20]. These three ordered hierarchical levels of
biological organization of an infectious disease system can be briefly described as follows
[19, 20]:

(a) Host level. This is an upper level of infection in the pathogen-host interaction compo-
nent at which infection can be observed. At the hierarchical level of the pathogen-host
component, empirical studies (i.e., those that are based on experiment, observation,
surveillance, clinical trials, etc.) or quantitative studies (i.e., those that are based on
mathematical models, statistical models, and computational modellings) that charac-
terize infectious disease systems across two adjacent scales of organization of an in-
fectious disease system can be carried out using a host as a basic unity of multiscale
analysis. The disease dynamics at the host level begin within the infection/super-
infection of the host by free-living pathogen in the physical environment. Following
infection/super-infection of the host by pathogen that has successfully entered in-

side the host, then pathogen replicate at the micro-scale. The replication of pathogen
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(b)

(c)

within a host in most cases is followed by pathogen shedding/excretion into the phys-
ical environment outside the host at the macro-scale. Shedding/excretion of pathogen
from host individual level (i.e., within-host scale) into the physical environment at the
host population level (i.e., between-host scale) by a single infected host is followed
by pathogen transmission between hosts at the host population scale (between-host
scale). This close up a circle of transmission-replication at the host level through
infection/super-infection and shedding/excretion that link the individual scale and
the population scale within this level. Diarrheal infections such cholera and some
helminth infections such as hookworm are typical examples of environmentally-
transmitted disease systems which can be studied at this order hierarchical level of an

environmentally-transmitted disease system.

Host-tissue level. This is a central level of infection in the pathogen-host interaction
component at which infection happens. At this order of hierarchical level, empirical
studies or quantitative studies that characterize infectious disease systems across two
adjacent scales and associated four pathogen specific diseases processes within this
level can also be conducted using a host-tissue as a basic unity of multiscale analysis.
At the host-tissue level disease dynamic begins within the infection/super-infection
of the host tissue by invading pathogen at the host tissue individual (within-tissue)
scale. Once the infection of the host by pathogen has successfully occur, pathogen
replication at the tissue micro-scale follows. The replication of pathogen within a
host tissue is followed by pathogen shedding/excretion into the extra-tissue environ-
ment outside the host tissue at the host tissue macro-scale. Shedding/excretion of
pathogen by a damaged host tissue at the host-tissue individual scale is followed by
pathogen transmission between host tissues at the host-tissue population scale (i.e,
between-tissue scale). This also close up a transmission-replication circle in the host
tissue level. Environmentally-transmitted disease system that can also be studied at
this order hierarchical level include bacterial infections such as paratuberculosis and
some helminth infections in which their pathogens do infect specific tissue such gran-

ulomas and microabscess to cause damage to the host tissues and organs.

Host-cell level. This is a lower level of infection in the pathogen-host interaction com-
ponent at which infection occur. At this order of hierarchical level of the pathogen-
host interaction component both empirical and quantitative studies that characterize
infectious disease systems across two adjacent scales and associated four pathogen
specific diseases processes within this level can also be carried out using a host-cell
as a basic unity of multiscale analysis. The disease dynamic at this level begins

within the infection of the host cell by cell invasion pathogen within an infected host
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at the site of infection (e.g. lung, small intestine, etc.). Once infection of the host
cell successfully occurred, pathogen replication at the host-cell individual level fol-
lows. The replication of pathogen within a single infected host-cell at the site of
infection within an infected host is generally followed by pathogen shedding/excre-
tion by bursting cells into the extracellular environment at the host cell population
level. Shedding/excretion of pathogen by bursting cell is followed by pathogen trans-
mission between cells at the host cell population scale (i.e., between-cell scale) at the
site of infection inside an infected host. This also close-up a circle of transmission-
replication at the host cell level. Typical examples of environmentally-transmitted
disease systems which can further be studied at this order hierarchical level of an
environmentally-transmitted disease system are bacterial infections such as campy-
lobacteriosis, listeriosis and ruminant paratuberculosis in which their disease-causing
pathogens do infect specific cells such as epithelial cells in the host small intestine,

and cause damage to these cells.

2. Environmental component: This component constitute both the outside-host and the inside-
host environmental levels. At the inside-host environmental level (a) host cells such as
epithelial cells and macrophages, (b) host tissues such as granulomas and microabscess,
and (c) host organs such as small intestine and lungs all constitute the inside-host (bio-
logical) environmental level for an infectious disease system including environmentally-
transmitted diseases where pathogen grow, reproduce and spread across host-cell and host-
tissue levels. While at the outside-host environmental level geographical environment
(such as village, district, town, province/state, country, region, etc.) and the associated
physical environment domains (including water, food, soil, contact surfaces and objects,
etc.) constitute the outside-host environmental level where both pathogen and host grow,
produce and interact with each other within this environmental level. Host individuals are
usually exposed to a variety of environmentally-transmitted disease-causing pathogens in
the outside-host environmental level through ingesting contaminated food or water with
infective pathogens or through direct contact with infective pathogens in the soil. In the
context of environmentally-transmitted disease systems, there is always a reciprocal in-
fluences between the outside-host and the inside-host environment dynamics of pathogen
which are linked through infection of an individual host by the pathogen in the geographi-
cal environment (at the host population scale) and the shedding/excretion of the pathogen
or its progeny in the biological environment (at the host individual scale) to the geograph-
ical environment. Therefore, the outside-host level coupled with the inside-host environ-
mental level strongly determine the nature of health infrastructures and technologies re-

quired against epidemics of a particular environmentally-transmitted disease in a specific
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village/district/town/province/region/country.

3. Health intervention systems component: This could be public health intervention or medi-
cal health intervention or the combination of both depending on the type of an environmentally-
transmitted disease system. On one hand, public health interventions are those interven-
tions that are generally administrated at the outside-host or geographical environmental
level to interfere with the transmission-replication processes of a pathogen outside the
host. Water, sanitation and hygiene (WASH) intervention systems along with health edu-
cation all are public health intervention level as they target to control, eliminate, and even
eradicate an environmentally-transmitted disease system by preventing/reducing/stopping
pathogen transmission between hosts at the host population scale in a specific village/dis-
trict/town/province/region/country. Medical health interventions on other hand are those
interventions that are normally administrated at the inside-host or biological environmen-
tal level to interfere with the development and establishment of an infection (based on the
transmission-replication of pathogen) within a single infected individual (inside-host en-
vironmental level). Vaccines and therapeutic drugs as pharmaceutical or medical health
intervention level are implemented at the individual level to control, eliminate, and even
eradicate an environmentally-transmitted disease system by preventing/reducing/stopping
pathogen replication in host cells, tissues or organs at the site of infection in a single in-
fected individual host. Due to the pathogen transmission-replication cycle that occur at the
outside-host environmental level and at the inside-host environment, there is also a recip-
rocal influence between the public health interventions that target to prevent/reduce/stop
the movement of pathogen in the physical environment and among individual hosts (at the
outside-host environmental level) and the medical health interventions that target to pre-
vent/reduce/stop circulation and replication of pathogen at the host-cell/host-tissue/host-

organ levels.

4. Host-immune system component: The host-immune system component of an environmentally-
transmitted disease system is made up of a complex network of host-cells, host-tissues and
host-organs that work together to protect a host from infection by pathogens, remove tox-
ins, and destroy infected host-cell/tissue/organ or tumor cells. Lymphocytes and phago-
cytes are the two main levels of the host-immune system component that are involved in

fighting against pathogens that are responsible of causing an infection within a host.

(a) Lymphocytes are small white blood cells that form part of the immune system in a
host and play a crucial role in the host immunity. They generate a specific immune
response which is referred as adaptive immunity. Lymphocytes mainly circulate in

the blood and lymphatic system and they can also found in other host tissues/organs
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including bone marrow, peyer’s patches, spleen, thymus, liver, lymph nodes, and
tonsils to defend the host body from invading pathogen, foreign matter, and infected
host cells by pathogen as well as tumor cells. There are three types of lymphocytes
which are B cells, T cells and Natural killer (NK) cells. The first type is B cells
that are responsible for manufacturing/secreting antibodies which neutralize bacteria
and viruses. The second type is T cells that are of three kinds: (i) helper T cells
which produce cytokines that stimulate the production of antibodies by the B cells,
(1) cytotoxic T cells which produce granules that induce the apoptosis of the infected
cells, and (iii) suppressor T cells which inhabit the immune response towards the
self-antigens in the body. The third type is NK cells that are capable to identify
and/or induce apoptosis of altered host cells such as tumor cells or infected cells by

pathogens.

(b) Phagocytes are also part of white blood cells that are essential for protecting the body
from infection by ingesting and destroying or engulfing harmful pathogens, foreign
particles, and dead or dying cells at the site of infection within an infected host. They
can also be found in different host tissues or organs such as blood, bone marrow
and tissue, lymphoid tissue, gut and intestinal peyer’s patches, liver, lung, spleen,
skin, etc. In contrast to lymphocytes, phagocytes generate a non-specific immune
response referred as innate immunity. Example of phagocytes include macrophages,

neutrophils, dendritic cells, monocytes, and mast cells.

1.3 Problem statement

In recent years, multiscale modelling of infectious disease systems has begun to receive an over-
whelming appreciation over single-scale modelling as a suitable methodology for studying the
reciprocal influence between the scales of an infection as well as intervention strategies that oper-
ate at different scales. Yet, to the best of our knowledge there has been little that have been done
in attempting to compare the suitability in predictions of structurally different multiscale models
for the same infectious disease systems. Thus, a comparison study of these structurally different
multiscale models is a key component in selecting a suitable multiscale models for predicting
infectious disease with various disease properties as well as identifying factors or conditions that
are necessary for the control, elimination and even eradication of the burden they cause across
the populations. In this study, we bridge this gap by investigating if nested and embedded mul-
tiscale models predict the different pattern of multiscale dynamics of infectious diseases using

environmentally-transmitted diseases as paradigms. Environmentally-transmitted diseases are
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among the most infectious disease systems that remain the leading cause of public health and
socioeconomic burden in many parts of the world, most notable in the developing world. In de-
veloping countries, more than billion cases of environmentally-transmitted diseases are reported
annually. Interestingly, environmentally-transmitted diseases are multilevel and multiscale com-
plex systems as a results of the combined interactions of three subsystems, namely the host

sub-system, the free-living pathogen sub-system, and the environment sub-systems.

1.4 Aim and objectives

The current study aimed to compare different categories of structurally different multiscale mod-
els of infectious diseases and identify the most appropriate category of multiscale models for a
given multiscale modelling problem of an infectious disease system. The specific objectives of

the study were as follows:

1. To investigate if nested multiscale models are an appropriate category of multiscale models
to characterize the multiscale dynamics of infectious diseases with a replication cycle at

microscale using ruminant paratuberculosis as an example.

2. To investigate if embedded multiscale models are an appropriate category of multiscale
models to characterize the multiscale dynamics of infectious diseases with a replication

cycle at microscale using ruminant paratuberculosis as an example.

3. To compare between nested and embedded multiscale models and identify the most appro-
priate category of multiscale models to characterize the multiscale dynamics of infectious
diseases with a replication cycle at microscale using ruminant paratuberculosis as an ex-

ample.

4. To compare between nested and embedded multiscale models and identify the most appro-
priate category of multiscale models to characterize the multiscale dynamics of infectious

diseases without a replication cycle at microscale using human ascaris as an example.

1.5 Methodology

The study focused on comparing multiscale models of infectious diseases based on ordinary
differential equations that describe the dynamics of environmentally-transmitted diseases at the

host-level using ruminant paratuberculosis as an example. We firstly develop an epidemiological
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model that describes the transmission dynamics of ruminant paratuberculosis at the between-
host scale. This is followed by the development and analysis of two structurally different mul-
tiscale models for paratuberculosis that integrate the between-host scale and within-host scale
sub-models. We then make a comparison between these two structurally different multiscale
models of ruminant paratuberculosis to investigate the most appropriate category in characteriz-
ing paratuberculosis transmission dynamics in ruminants. We further illustrate the importance
of embedded multiscale models over nested multiscale models by evaluating the reciprocal in-
fluence between scales using human ascariasis as a representative of all type I environmentally-
transmitted disease as paradigm. We use various mathematical analysis techniques to analyze
all the models in this study. which include: (i) Routh-Hurwitz criteria, (ii) Next generation op-
erator, (iii) Center Manifold Theory, and (iv) Lyapunov function. We also conducted sensitivity
and numerical analyses for all the models. Sensitivity analysis is conducted using Latin Hy-
percube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs). Also, numerical
simulations in all the models are done in order to illustrate analytical results obtained from these
multiscale models using Python odeint function in the scipy.integrate which solves any system
of differential equations. The methodology for development of multiscale models in this thesis

1s a variation of the one described in [1].

1.5.1 Process of Multiscale Modelling of Infectious Disease Systems

Traditionally, the developmental process of multiscale models for infectious disease systems,
at any hierarchical level of biological organization of an infectious disease system (cell-level,
tissue-level, organ-level, host-level, community level, etc.) commonly involves an iterative pro-
cess between four main stages which are [1]: (a) Formulation stage of multiscale models of
infectious disease systems, (b) Testing stage of multiscale models of infectious disease systems,
(c) Application stage of multiscale models of infectious disease systems, and (d) communication
stage of multiscale models of infectious disease systems. Fig. 1.2 shows schematic diagram of
the four main stages of the developmental process for multiscale models of infectious disease

systems, which we can briefly describe as follows:

(a) Formulation stage of multiscale models of infectious disease systems: This stage involves
development of an appropriate multiscale model to address a particular given problem of
an infectious disease system. Within this stage there are three main steps that are involved

in order to complete the cycle of the multiscale models development which are:

(i) identification of the infectious disease problem to be addressed,
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(b)

(i1) identification of the levels/scales of an infectious disease system involved in the in-

fectious disease problem,

(ii1) formulation of multiscale models of infectious disease systems to describe the infec-

tious disease problem at appropriate levels/scales being identified,

Therefore, in this stage, a researcher/modeler firstly becomes familiar with the infectious
disease problem he/she is intending to address. After identification of the infectious dis-
ease problem, a modeler should further define research question(s), aim and objectives
of the study as well as stating the hypothesis of the study. Once the infectious disease
problem has been identified and well stated, the modeler should clearly identify levels of
a biological organization to be incorporated into the multiscale model and their associated
scale of infection and further ascertains if there exists any knowledge with regard to the
infectious disease problem to be addressed across all the identified scales (i.e., reviewing
what has been achieved or done about the problem across all the scales and what is lacking
or missing). This can be achieved through either empirical observation or literature review
or both. Empirical observation can be made through experiments and data collections. In
addition, proper literature review is necessary in attaining the right knowledge required to
detail the system under study as well as to understand data and experimental results. After
that, the modeler formalizes a biological model that involves detailing the flow of informa-
tion from one scale to another as well as detailing mechanisms and different relationships
of any entities involved in the infectious disease system under observation. This is then
followed by the formulation of sub-models for multiscale model that are related to scales
of an infection in the biological organization under study. In the formulation of these sub-
models of multiscale model for infectious disease problem, a modeler should decide which
most features of the system under observation must be included in the models and which
must not be included. Following that, the modeler chooses symbols to represent variables

included in the multiscale model for infectious disease problem [1].

Testing stage of multiscale models of infectious disease systems: This stage involves
testing the quality of the multiscale model of infectious disease through verification, vali-
dation and/or sensitivity analysis of the multiscale model results. It is important to verify
and validate the results of the multiscale model before trying to do anything else with the
model. The testing of the quality of the multiscale model can be analyzed using any avail-
able and reliable mathematical techniques. It is at this stage where the modeler decides
which technique he/she needs to utilize in analyzing the multiscale model results. It is
also at this stage where the modeler determines whether the model is mathematically well-

posed through examining the existence and uniqueness of the multiscale model equilibrium
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steady states, and further determine their local and global stabilities through analytical and

numerical analysis.

(c) Application stage of multiscale models of infectious disease systems: This involves the

(d)

use of multiscale models of infectious disease systems to (i) evaluate the influence of func-
tionally organized complex systems on infectious disease dynamics, (ii) to analyze the
underlying mechanisms of infectious disease dynamics, (iii) predict dynamics of infec-
tious disease, and (iv) inform policy and guide research for the control and elimination of

environmentally-transmitted diseases (see for instance the work in [17]).

Communication stage of the results of multiscale models for infectious disease systems:
This involves interpreting the results of the models and comparing them with the real-world
systems in order to determine whether the outcome behavior of the model matches with
what is observed in the system. However, if the outcome behavior of the model matches
with the behavior that is observed from the real-world system the results of the model can
then be communicated through publication, reports, or writings. Yet, if the outcomes of
the models differ with observation made from the system, the formulated model needs to

be refined or modified together with assumptions.
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Figure 1.2: Schematic diagram illustrating the iterative modelling process of multiscale mod-

ellings. Adopted from [1]

In what follows, we give an overview of multiscale models that have been developed in attempt-

ing to study multiscale dynamics of environmentally-transmitted diseases at various hierarchical
levels of biological organization of an infectious disease system.
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1.5.2 Multiscale Modeling and Environmentally-Transmitted Disease Sys-

tems

This subsection provides an overview of some of the existing multiscale models that have been
developed to describe the multiscale dynamics of environmentally-transmitted diseases in any
given population. In the context of environmentally-transmitted diseases, various multiscale
models within the five categories of infectious disease systems established in [19, 20] have been
developed and analyzed at various scales of biological organization of an infectious disease sys-
tem. The most studied categories of multiscale models for environmentally-transmitted diseases
are the hybrid and the individual based multiscale models as opposed to the other three cate-
gories which are nested, embedded and coupled multiscale models. However, since the scope
of this study is centered in investigating which between a nested multiscale model an embedded
multiscale modelling is appropriate category of multiscale models to characterize the multiscale
dynamics of an environmentally-transmitted disease system with different scenarios, we there-
fore restrict ourselves to those studies that focused on the application of either embedded or
nested multiscale models in attempting to broaden our understanding about the complex trans-
mission dynamics of environmentally-transmitted disease systems. In the case of nested multi-
scale models for environmentally-transmitted disease systems, there has been little progress in
their development. To the best of our knowledge, we are only aware of one publication [15],
which addresses the development of nested multiscale models for environmentally-transmitted
disease systems in the context of ruminant paratuberculosis at the between-pen scale and within
within-pen scale dynamics. The authors use nested multiscale model to explore the best com-
bination of control and preventive measures that can minimize the prevalence and incidence of
parauberculosis in ruminants as well as the risk of the disease-causing bacteria occurrence in
each pen environment and possible in the entire dairy. The study suggests that a combination of
test and cull with more frequent manure removal is the most effective method in reducing inci-
dence, prevalence and the risk of the bacteria occurrence as opposed to control measures such as
limiting calf-adult cow contacts, raising calves in a disease-free herd or colostrum management.
In the context of embedded multiscale models for environmentally-transmitted disease systems
on the other hand, there has been also few multiscale models of this types that have been de-
veloped and of these few the majority of them have been restricted to studying the transmission
dynamics of environmentally transmitted infectious diseases at the host level [9-14]. In partic-
ular, the paper by Feng et al. [11], presents a BIDI-EMSM for the transmission dynamics of
Toxoplasma gondii (a typical example of type Il environmentally transmitted infectious disease
system) that integrate within-host sub-model and the between-host sub-model dynamics through

the free-living parasite in the environment. Furthermore, the authors simplified BIDI-EMSM into
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a SIMP-EMSM based on a singular perturbation argument, which allows for decoupling of the
full model by separating the fast- and slow-systems two independent single scale models (i.e., the
within-host scale and the between-host scale). In [11], the authors carefully analyzed the within-
host scale sub-model and between-host scale sub-model separately and defined new reproductive
numbers associated with these two sub-models. In addition, the study established that the repro-
duction number for the between-host (slow) system dependent on the parameters associated with
the within-host (fast) system in a very natural way. In [12, 13], analysis of the multiscale model
established in [11] was further carried out using different modifications. The major findings from
these studies is that infection may persist at population level even if the isolated between-host
reproduction number is less than a unity. Another good examples of BIDI-EMSM are given
in [9, 10]. In [9], the authors introduced a superinfection/pathogen-replication approach (i.e.,
down-scaling and up-scaling method) for development of multiscale models of environmentally-
transmitted disease systems at host level (i.e. linking within-host scale and between-host scale)
using human schistosomiasis (a type I environmentally-transmitted disease system) as an exam-
ple. The paper demonstrated in a practical way the idea of scaling up and down in linking scales
of an infectious disease system by identifying within-host scale and between-host scale vari-
ables and parameters and design a reciprocal influence of these variables and parameters through
downscaling and upscaling across the within-host scale and the between-host scale. In [10], the
authors followed the method introduced in [9] to Guinea worm disease as a paradigm, which is
also a type I environmentally-transmitted disease system. The major findings in these studies is
that expressions such as disease reproductive numbers and endemic equilibrium states as well as
numerical simulations of the full models all are adequately account for the reciprocal influence
of the linked within-host and between-host sub-models. Further example of the development
of BIDI-EMSM at the host level is given in [14] in the context of cholera transmission (a type
IIT environmentally-transmitted disease systems). The BIDI-EMSM of this study concurrently
study the within-host scale and between-host scale dynamics of cholera, taking into account
both direct and environment transmission. Additionally, its development was achieved through
presuming a general representation for both the direct transmission and the pathogen shedding,
and the interaction between environmental vibrios at between-host scale and human vibrios at
within-host scale. Further, the authors simplified BIDI-EMSM into a SIMP-EMSM based using
fast- and slow-time scale analysis. Using SIMP-EMSM, the major finding of the study is that
the between-host scale sub-model was shown to undergo a backward bifurcation as a result of

coupling the within-host scale and between-host scale cholera dynamics.
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1.6 Outline of the thesis

The structure of this thesis is as follows.

In Chapter 2, we develop a single-scale model for environmentally-transmitted disease systems
at the host-level that we progressively extend to develop the different categories of multiscale

models.

In Chapter 3, we investigate if nested multiscale models are an appropriate category of mul-
tiscale models to characterize the multiscale dynamics of infectious diseases with a replication

cycle at microscale using paratuberculosis as an example.

In Chapter 4, we investigate if embedded multiscale models are an appropriate category of
multiscale models to characterize the multiscale dynamics of infectious diseases with a replica-

tion cycle at microscale using paratuberculosis as an example.

In Chapter 5, we compare between nested and embedded multiscale models and identify the
most appropriate category of multiscale models to characterize the multiscale dynamics of infec-

tious diseases with a replication cycle at microscale using paratuberculosis as an example.
In Chapter 6, we compare between nested and embedded multiscale models and identify the
most appropriate category of multiscale models to characterize the multiscale dynamics of infec-

tious diseases without a replication cycle at microscale using human ascariasis as an example.

Finally, Chapter 7 provides conclusions and some recommendations for future research direc-

tions.

© University of Venda



Chapter 2

Single-Scale Model for Environmentally
Transmitted Disease Dynamics at the
Host-level

2.1 Introduction

In the study of infectious disease systems at any level of their organization, single-scale models
have a long history of being used to understanding and interpreting as well as predicting dy-
namics of many infectious diseases (see [7, 49-51] for and references therein). They have and
continue to play a crucial role in guiding control and eliminating burdens imposed by various
infectious diseases either at the local or global level. In the context of infectious disease systems,
we know that at any level of organization single-scale models describe or characterize dynamics
of an infection disease problem only at a single scale. Unlike, multiscale models that describe
or characterize an infectious disease problem at more than one scale [1]. In this chapter, we
present a single-scale modeling framework for environmentally-transmitted disease systems at
the host-level that will be progressively extended to develop different categories of multiscale
models. The development of this single-scale model is carried out to examine or test the quality
of single-scale models in predicting the dynamics of environmentally-transmitted diseases us-

ing Paratuberculosis infection in ruminants as a case study. Paratuberculosis (PTB) infection,
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also known as Johnes’ disease, is an environmentally-transmitted and important disease in ru-
minants (e.g., ruminants, goat and sheep) (see [52-54] and references therein) that has been
locally and globally reported throughout the world, more especially in countries with temperate
climates. The single-scale model will be extended in the chapters that follow to develop the dif-
ferent categories of multiscale models that are compared based on the replication-transmission
relativity theory [8], which states that at every level of organization of an infectious disease sys-
tem, there is no privileged/absolute scale which would determine disease dynamics. However,
at every level of organization of an infectious disease system, single scale modelling privileges
the macroscale. In the same way, the single-scale model for paratuberculosis developed in this
chapter which is developed at the host level privileges the macroscale (i.e. between-host scale)
in disease dyanmics. PTB is caused by bacteria called Mycobacterium avium subspecies paratu-
berculosis (MAP) which often infects intestines of many ruminants [53]. This organism is most
commonly widespread in dairy ruminants and can lead to a serious economic burdens in livestock
industries due to the reduction of milk production and the productive life of ruminants as well
[48]. The main clinical outcomes of PTB infection in ruminants are failure growth, increases in
weight loss, and chronic diarrhea. Although PTB has not been classified as a zoonotic disease,
clinical studies show that most patients with Crohn’s disease are found with MAP [55]. Crohn’s
disease is an inflammatory bowel disease characterized by a persisting, painful, and diarrheal
inflammatory disease of the intestinal tract in human [53]. Ruminants in the PTB endemic herd
acquire PTB through ingestion of the infective bacteria in colostrum, and from the faeces of in-
fected ruminants contaminating food and surface water/water troughs. The disease can also be
transmitted vertically from an infected pregnant ruminant to its foetus. Following the ingestion of
MAP bacteria contained in faecal material, and reach the gut of an infected ruminants, MAP are
engulfed by macrophages in the submucosal of the ruminant, and the submucosal macrophages
become infected [53]. However, the dynamics of MAP among submucosal macrophages within
an infected ruminant can be controlled by the ruminant immune response cells (such as T-helper
cells). Yet, currently there is no meaningful treatment that has been made available for PTB in
ruminant, and control programs implemented in many countries have had limited success [56].
Besides, very few ruminants can resist the infection; and it takes a long time to notice that ru-
minant has PTB disease because of a long incubation period, and clinical disease is not usually
apparent until three to five years-old. Furthermore, clinical studies have reported that infected
animals may shed bacteria in the environment through faeces for over a year before clinical signs

appear.
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2.2 Mathematical Model for Ruminant Paratuberculosis Dy-

namics at the Host-level

In this section, we present the single-scale model for PTB disease transmission dynamics devel-
oped at the host population-level, with the aim of pin-pointing weakness of single-scale models in
modelling infectious disease systems. For any infectious disease system, the standard approach
for developing single-scale models that describe the dynamics of the infectious disease at the
between-host scale is to classify the host population into compartments such as susceptible, in-
fected and recovered (SIR) and variation of this paradigm within which individuals are assumed
to behave homogeneously (see [4]). For instance, a paper by Magombedze et al. [52] which
investigates the PTB disease dynamics in ruminants is based on the susceptible-exposed-infected
framework (SET) coupled with the environmental dynamics that depict the evolution of MAP
bacteria (B) in the environment. The single scale model in [52] divides the class of infected
ruminants into three stages: exposed or silent stage, sub-clinical stage and clinical stage. In this
case, we only incorporate a single infected class into the between-host scale sub-model. The dif-
ferent classes that the infected ruminant progresses through are accounted for by the within-host
scale sub-model. In developing the single scale model at between-host scale for PTB dynamics,

we make the following assumptions:

a. The transmission of the infection is only through contact with MAP bacterial load (B¢) in
the physical environment. However, if there is any direct transmission, it can be estimated

by indirect transmission in terms of environmental MAP bacterial load (B¢).

b. The average extracellular MAP bacteria in each infected ruminant is modelled phenomeno-

logically by Nc, which is a proxy for individual ruminant infectiousness.

c. The environmental MAP bacterial (B¢) do not replicate in the environment (outside-host).

From these assumptions, the single scale model for PTB dynamics at between-host scale be-

comes:

(1) dS(Z(t) = Ac— —BfiBg(Ctgt)Sc(t) — peSc(t),
(i4) dlst(t) _ BfCJFB—;S()t)SC(t) — (e + 0c)Ic(t), (2.2.1)
| Giii) dBdi(t) — Naado(t) — acBo(t),
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The single-scale model given by equation (2.2.1), which is later used as a between-host submodel
of the nested multiscale model in Chapter (4), is based on monitoring the dynamics of three pop-
ulations which are susceptible ruminants (S¢), infected ruminants /-, and MAP bacterial load
(B¢) in the physical environment. The first equation of the model system (2.2.1) describes the
dynamics of susceptible ruminants. At any time ¢, new recruits of susceptible ruminants enter
the ruminant population through birth and incoming ruminants from other farms at a constant
rate A and this population losses individuals due to natural death at a constant rate .. The sus-
ceptible ruminant population also decreases through infection at a rate ScB¢(t)/(Bo + Be(t))
with B¢ being the exposure rate to infective MAP bacterial load (B¢ ) in the environment and
By is the saturation parameter of the bacteria that yield 50 percent chance of a ruminant getting
infected with PTB infection after ingesting the bacteria. The infection happens when suscep-
tible ruminants feed from contaminated pasture with faecal material containing infective MAP,
or drink from contaminated surface water/water troughs with the bacteria. The second equation
in the model system (2.2.1) describes the dynamics of PTB infected ruminants. This population
increases through infection of susceptible ruminants and decreases through natural death at a con-
stant rate ;1. There is additional death at a rate d¢ in the population of infected ruminants due to
disease, so that an average lifespan of PTB infected ruminant in the population is 1/(d¢ + pc).
We assume that infected ruminants spread the disease through contaminating the environment
at a rate ]Vcaclc, where Nc models phenomenologically the average number of the within-host
scale MAP bacterial load available for excretion into the environment by each infected ruminants
at a rate .. Therefore, the population dynamics of MAP bacilli in the environment, described
by the last equation of the model system (2.2.1), increases following excretion of MAP bacteria
by infected ruminant hosts in faecal material into the environment at a net rate ]Vcaclg. This
population of MAP bacilli in the environment is assumed to decrease due to natural death at a
rate a. The model state variables and parameters are summarized in Table (2.1) and Table (2.2),

respectively.
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State variables

Description values

Se(t)

The susceptible ruminant population size in the behavioral ruminants

environment.

Ic(t) The infected ruminant population size in the behavioral ruminants
environment.

Be(t) The population size of PTB disease-causing bacteria

in the physical environment.

Table 2.1: Description of the state variables of the model system (3.1)

- |

AcSc

l ucSc l (nct 8c)lc

AcSc
N.aBc

Figure 2.1: A schematic representation of the transmission-cycle of the Johne’s disease in a Herd
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2.3 Mathematical Model Analysis

2.3.1 Basic Properties

In this section, we study mathematical properties of the model system (2.2.1). We start by show-
ing that all the solutions of the model system (2.2.1) will remain positive for all ¢ > 0. This
is followed by showing that the model system (2.2.1) is mathematically and epidemiologically

well-posed.

2.3.1.1 Positivity of Solutions

We now consider the positivity of the model system (2.2.1) by showing that if the system starts
with non-negative initial conditions (S¢(0), 1(0), Bc(0)), the solutions/trajectories (Sc (%),
Ic(t), Be(t)) of the model system (2.2.1) will remain positive for all ¢ > 0, so that they should
be in consistence with the basic aspect of the biological reality. This is summarized in following

theorem.

Theorem 2.1. Given that the initial conditions of the model system (2.2.1) remain non-negative
(i.e., Sc(0) > 0,15(0) > 0,Bx(0) > 0), the resulting solutions (Sc(t), Io(t), Bo(t)) are all
positive for all t > 0.

Proof: From the first equation of the model system (2.2.1), a differential inequality which de-

scribes the dynamics of susceptible ruminant population in time is given by

dSc(t)
dt

v

—(Ac(t) + pe)Sc(t). (2.3.1.1.1)

Therefore, the expression of the differential inequality in equation (2.3.1.1.1) can be solved by

the separation of variables as follows

dSc(t)
Seo(t)

> —(Ao(t) + pe)dt. (2.3.1.1.2)

Now, letting
t=sup{t >0:Sc >0, Ic>0,Bc >0} €[0,1],

and integrating equation (2.3.1.1.2), we thus have

In(Sc(t)) > — (uCH/Ot Ac(f)d£> +1n(S¢(0)). (2.3.1.1.3)
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Thus, the solution of the differential inequality for the susceptible ruminants population is given
by

Sc(t) > Sc(0).exp {— (uct+ /t Ac(f)df)} > 0. (2.3.1.1.4)
0
This implies that
tlggo inf(Sc(t)) > 0. (2.3.1.1.5)
Using the same principle, it can be shown that
tlg?o inf(Ic(t)) > 0. (2.3.1.1.6)

Now, using the second equation of the model system (2.2.1) that describes the evolution of the
population of the MAP bacteria in the physical environment, we can have the following differ-
ential inequality given as

dBc(t)

— 72 > —a~B~(1). 2.3.1.1.7
L > —acBe(t) ( )

Therefore, by the separation of variables we obtain

Be(t) > Be(0).exp{—act} > 0. (2.3.1.1.8)
This implies that
thm inf(Bc(t)) > 0. (2.3.1.1.9)
—00

Thus, when starting with non-negative initial value conditions in the model system (2.2.1), the

solutions of the model will remain non-negative for all £ > 0, and this completes the proof.

2.3.1.2 Feasible Region

Letting N¢(t) denotes the total number of ruminant population and adding the first and second

equation of the model system (2.2.1), we obtain

NG (t)
dt

= AC’ - ,uch(t) - 5clc(t), (23121)
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so that
dNe(t
CZ( < Ac — peNe(t). (23.12.2)
This implies that
: Ac
lim sup(Ne(t)) < —-. (2.3.1.2.3)
t—o00 ILLC

Since N¢(t) is the sum of the state variables for susceptible humans and infected humans, then

each of the individual state variables is less or equal to = Now, using the third equation of

model system (2.2.1) we obtain the following inequality

B ~ A
dBc(t) < No.=% — acBe, (2.3.1.2.4)
dt pe

A
since Io(t) < ZC . Therefore, the solution of equation (2.3.1.2.4) can be obtained by using a
He

suitable integrating factor (e“¢?), to obtain
N.a.A
Bo(t) < =o€ 4 Oyeoet, (2.3.1.2.5)
Qoo
This implies that
NeoaA
lim sup(Bo(t)) < —<eC (2.3.1.2.6)
t=o0 Qchc
We let
Q2 = {(Sc(t), Iyt), Pp(t)] 0 < Sc(t) + Io(t) < Z4,
{(Se(®), In(t), Po(®)] 0 < Se(t) + Ie(t) < 74 0312
0 < Be(t) < Zo},
be an invariant region of the model system (2.2.1), where
A
Zl - _Ca
1226
(2.3.1.2.8)
N.a.A
Zy = —22C ),
aclc

Thus, (2 is a positively invariant and attracting region, since all the solutions/trajectories that

start in {2 will remain in (2 for all £ > 0. As a result, we can easily conclude that the model
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system (2.2.1) is mathematically and epidemiologically well-posed [4]. Therefore it is sufficient

to consider the dynamics of the flow generated by model system in {2.

2.3.2 Disease-free Equilibrium (DFE) and Reproductive Number

The disease-free equilibrium of the model system (2.2.1) was obtained by setting the left-hand
side of the model to zero and further assume that /o = Bo = 0 to get
Ac

Ey = (X*,0) = (M—C,0,0> , (2.3.2.1)

where FEj, denotes the disease-free equilibrium of the baseline single-scale model system (2.2.1).
In this study, the basic reproductive number of the baseline single-scale model system (2.2.1)

was also computed by using the next generation operator approach in [5] to be

AcNoa,
Ry = — PohoNeae (2.32.2)
pe(pe + dc)Boac
which can be re-written as
Ro = Roy. Ropy, (23.2.3)

where the quantity Ry, of the above is explained as follows. Consider a single newly infected
ruminants entering a contaminated-free environment at an equilibrium point. The expected num-
ber of bacteria cells produced by each infected ruminants and contaminate the environment is

approximately

(2.3.24)

Similarly, the quantity Ry, can be interpreted as follows. Consider newly bacterial infectious
dose of bacilli cells entering a disease-free population of ruminants at an equilibrium point. The

expected number of ruminants infected by this bacteria cells is approximately

_ BelAe
2¢ T aeBy’

(2.3.2.5)

Based on the two expressions Ry, and Ry, , we can conclude that the epidemiological (between-
host) transmission parameters and the immunological (within-host) parameters all contribute to

the transmission of ruminant paratuberculosis disease.

© University of Venda



@

University of Venda
Creating Future Leaders

Chapter 2 33

2.3.2.1 Local stability of the disease-free equilibrium

In this subsection, we determine the local stability of DFE for the model system (2.2.1) by lin-

earizing the three equations of the model system (2.2.1) to obtain the following Jacobian matrix

given as,
e 0 _ Bclc
Bopc
JE)=| 0 —(uet+de) he | (232.1.1)
Bopc
0 ]Vcac —ac

We test for stability of DFE by calculating the eigenvalues (\s) of the above Jacobian matrix at

the DFE. The characteristic equation for the eigenvalues is given by

(=g — AN+ G\ + ¢o] = 0, (2.3.2.1.2)
where
o1 = po+dc+ ac,
(2.3.2.1.3)
¢s = (e +dc)ac(l — Ry).
It is clear from equation (2.3.2.1.2) that one of the eigenvalues is equal to A = —puc. Now, to
determine the remaining eigenvalues of the polynomial
P(A) =N+ ¢1A + ¢y =0, (23.2.1.4)

we use the Routh-Hurwitz Criteria. In this case, we define the following matrices whose elements

are the coefficients (¢g) of the characteristic polynomial P()) in equation (2.3.2.1.4):

o1 1
o, = ( &1 ) Hy = ( 0w > . (23.2.1.5)
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Evaluating the determinant of /7, we obtain

det(H)) = | o |.
. (2.3.2.1.6)
= pc+9dc+ ac > 0.

The determinant of 5 is given by:

det(Hy) = o1 :
0 ¢ (232.1.7)
= ¢192,
= &(1— Ry) >0, whenever Rj < 1.
Where
o = (e + 6¢ + ac) (e + dc)ac. (2.3.2.1.8)

It can be noted that all the coefficients ¢; and ¢, of the polynomial P(\) in equation (2.3.2.1.4)
are greater than zero whenever Ry < 1. And also all the determinants of matrices H; and H, are
positive if and only if Ry < 1. Hence, all the roots of the polynomial P(\) are either negative or

have negative real parts. These results are summarized by the following theorem.

Theorem 2.2. The Disease-free equilibrium point of the model system (2.2.1) is locally asymp-
totically stable if Ry < 1.

2.3.2.2 Global stability of the disease-free equilibrium

We determine the global stability of DFE of the model system (2.2.1) by using the next generation

operator [5]. Thus the system (2.2.1) can be re-written in the form

dX

— = FX,Z
dt (X, 2).
(2.3.2.2.1)
dz
— = G(X,Z
dt (X, 2),

where

e X = S¢ represent a compartment of uninfected ruminants, and

e 7 = (l¢, Be) represent compartments of infected ruminants and Infective MAP bacilli

bacteria in the physical environment.
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We let

Ey = (X",0) = (E,O,O> , (2.3.2.2.2)
2%

denote the disease-free equilibrium (DFE) of the model system (2.2.1). For X™ to be globally
asymptotically stable, the following conditions (H1) and (H2) must be satisfied.

dX
HI. v F(X,0) is globally asymptotically stable (g.a.s),

H2. G(X,Z)=AZ - G(X, Z),G((X,Z) > 0for (X, Z) € RS where A = D;G(X*,0) is an

M-matrix and Riis the region where the model makes biological sense.

In this case

F(X,0) = | Ao — peSe | (23223)
and the matrix A is given by
A
(o +60) S0
A= : (2.3.2.2.4)
]/\}COéc —QC
and
Ac Sc
- B
. <MCBO Bo+BC> vobe
G(X,2) = . (2.3.2.2.5)
0

Since S% =A¢/ (e Bo) > Se/(Bo + Be), itis clear that G(X, Z) > 0 forall (X, Z) € R®. Ttis
also clear that A is a M-matrix, since the off diagonal elements of A are non-negative. We state

a theorem which summarizes the above results.

Theorem 2.3. The fixed point

A
Eo = (X*,0) = (—0,0,0)
26

of the model system (2.2.1) is global asymptotically stable (GAS) if Ry < 1 and the assumptions
(H1) and (H?2) are satisfied.
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2.3.3 Endemic Equilibrium and its Global Stability

For the endemic equilibrium point, we let
E* = (S¢, 15, BE), (2.3.3.1)

denote the endemic equilibrium point of the system of equations (2.2.1). At the endemic equi-
librium point, each of the population variables is constant such that the rate of change of each of
the model variables is zero. Thus, we set the left-hand side of the equations of the model system

(2.2.1) equal to zero to obtain

0 = Ao — AoSE — pueSe, (233.2)
0 = AoSE — (e + 00) 5, (23.3.3)
0 = Nl — acBg, (2.3.3.4)
where
AL = %. (23.3.5)

From (2.3.3.2), the endemic value of susceptible ruminants is given by

Ac
Ao+ e

Se: (2.3.3.6)
From the expression in equation (2.3.3.6) we note that the susceptible ruminants population at
endemic equilibrium is equal to the average time of stay in susceptible class and the rate at
which new susceptible ruminants are recruited into the susceptible class through natural birth.
The population of susceptible ruminants leave the susceptible class when infected with MAP
bacilli in the environment at a rate A\¢, or through natural death at a rate ;. The endemic value
of infected humans in equation (2.3.3.3) is given by

AGSE

If, = —————. 2.3.3.7
¢ ac + ¢ ( )

We note from equation (2.3.3.7)) that infected ruminants population at the endemic equilibrium
point is equal to the average time of stay in the infected class and the rate at which susceptible

ruminants become infected and the density of susceptible ruminants. The endemic value of MAP
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bacilli population in the physical environment is given by

N I
B = O‘L c (2.33.8)

We deduce from equation (2.3.3.8) that the average population of MAP bacilli in the environment
at the equilibrium point is determined by the rate at which infected ruminants population excretes
an average number of the within-ruminants-host MAP bacilli into the physical environment and

the average time of stay in the class of MAP bacilli in the physical environment.

2.3.3.1 Existence and uniqueness of the endemic equilibrium state

In this section, we provide some results concerning the existence and uniqueness of an endemic
equilibrium point (EEP), E* = (S¢., I}, Bf.), for model system (2.2.1). We determine the exis-
tence and uniqueness of the endemic equilibrium point, £*, by expressing S~ and I in terms of

B¢ in the form:

AC(BO + Bé)
(Be + pe)BE + pe By’

Sc(Be) =
(2.3.3.1.1)

BceAe B

I5 (B = .
ABe) = G T he) (e T no) B + o Bolie T 1)

Substituting the expressions in equation (2.3.3.1.1) into the equation for B, which is given by

dBo(t)  —~
;t *) _ N.aIo(t) — acBe(t),

at the endemic equilibrium, we obtain:

Bé[ac/ucho((;C + /Lc)(Ro — 1) — Oéc((Sc + N/C)(ﬁc + Mc)Bg] =0. (23312)

From equation (2.3.3.1.2), we can either get B, = 0, which correspond to disease-free equilib-

rium point or

B
oo _teBoldetpo) oo g (2.33.1.3)

(6c + pe)(Be + po)

for the endemic equilibrium point. Since Ac > 0 and B > 0, we can easily deduce from

equation (2.3.3.1.2) that only a single positive endemic equilibrium point exists for Ry > 1.
Therefore, we can conclude that there exists only one unique endemic equilibrium point for

model system (2.2.1) whenever Ry > 1.
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2.3.3.2 Local stability of the endemic equilibrium

The local stability of the endemic steady state of the model system (2.2.1) is determined by the
use of Center Manifold Theory described in [10]. Center Manifold Theory has been used to
determine the local stability of a non-hyperbolic equilibrium point. For convenience of interpre-

tation of the stability we state the theorem (see also [57]).

Theorem 2.4. Consider the following general system of ordinary differential equations with
parameter @:

d

d—f = f(z,¢), f:R"—R, f:C*R*xR), (2.3.3.2.1)

where 0 is an equilibrium point of the system (2.3.3.2.1), i.e., f(0,¢) =0, Y ¢, and assume
that

(1) A= D.f(0,0) = (=5

with ¢ evaluated at 0;

) is a linearization of the system around the equilibrium 0

(2) Zero is a simple eigenvalue of A and other eigenvalues of A have negative real part;

(3) Matrix A has a left eigenvector denoted by u and a right eigenvector denoted by v, corre-

sponding to the zero eigenvalue.

Let f;, be the kth component of f and

Z" 0 fi
k,i,j=1
- 0 fi
= E —— . 2.3.3.2.
b kijﬂvkulamiaqb(o,()) (2.3.3.2.3)

The local dynamics of the system around the equilibrium point 0 is totally governed by the signs
of aand b.

(i) a> 0, b >0, when ¢ < Owith | ¢ | < 1, 0 is locally asymptotically stable, and there exists
a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

(ii)) a <0, b <0, when ¢ <O with | ¢ | < 1, 0 is unstable; when 0 < ¢ < 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium point.

(iii) a > 0, b < 0, when ¢ < O with | ¢ | < 1, 0 is unstable and there exists a locally asymp-
totically stable negative equilibrium; when 0 < ¢ < 1, 0 is stable and a positive unstable

equilibrium appear.
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(iv) a <0, b> 0, when ¢ changes from negative to positive, O changes its stability from stable to
unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally

asymptotically stable.

In our case:

Let So = x1,lc = x9,Bc = x3 and o = (" where 8 is considered as the bifurcation

parameter. If we consider g = 1 ;and solve for 5%, we obtain

NeowB*A
- afho (2.3.3.2.4)
Bopc(pe + dc)ac
so that 5 5
g — Dorclpc +dc)ac. (2.3.3.2.5)
NCOéCAC
We also use the vector notation Z = (1, x9, 9[:3)T so that the model system (3.1.3) can be written
in the form
T _ B g (233.2.6)
— =F(z 3.3.2.
dt ) 7
where
F = (f1, fo, f3). (2.3.3.2.7)
So that
. p*riw3
1= =Ac— — Uoxq,
1= f C By + 23 Hcxy
: B rizs 23328
= f, = _ ) (2.3.3.2.8)
Ty = fo Bo + 23 (1o + oc)z2,
. T3 = f3= ]\Afc&cxz — QcT3.

The Jacobian matrix of the model system (2.3.3.2.8) is given by
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- —Hc 0 _Fho ]
e Bo
A= 0 _(utsn B | (23.3.2.9)
(e o) peBo
| 0 ]/\\7604C —ac |

The Jacobian matrix of the model system (2.3.3.2.9) has the left eigenvector u = (uy, us, Ug)T,

where

( B*Ac
U = — ’
! N%B(Q)(,uc + 50)
) vy — B*Ac (2.3.3.2.10)

Bo(pe + dc)pc’

and the right eigenvector given by v = (v, v, v3), where

v = O,

by = e (2.332.11)
(e +dc)

V3 = 1

The non-zero second order mixed derivatives of F with respect to each variables, used to deter-

mine the sign of a, are given by

Pf 28*Ac
or:  Bluc’
(2.3.3.2.12)
Pf 28*Ac
dx2  Biuc
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The non-zero partial derivatives with respect to variables and 5%, used to determine the sign of b,

are given by

*h A
0z303* peBoy’
(2.3.3.2.13)
9 fa Ac

dx303* teBy

Substituting expressions (2.3.3.2.10), (2.3.3.2.11), (2.3.3.2.12) and (2.3.3.2.13) into equation
(2.3.3.2.2) and (2.3.3.2.3), respectively, we get

since u; — ug < 0, and

e

L Bg,uc J

26 A ]
L Bcz)ﬂc J

2 2
oo (25) oo (25)

[28*Ac | ) { 25*AC} )
A5 F | ——— | . u9.V3, (2.3.3.2.14)
1-VUs BS,UJC 2-U3
.Ug.[ul — 'LLQ] < 0,

Ao 2A¢e
Ay . 2.3.3.2.1
BOMC:| U1.V3 + [BOMC} U2.V3, ( 33 5)
[28* Ao

since uy — uy > 0. Thus, a < 0 and b > 0. Using Theorem 2.4, item (iv), we can conclude that

the endemic steady state of the model system (2.2.1) is locally asymptotically stable which holds

for Ry > 1 but close to 1. These results are therefore summarized by the following theorem.

Theorem 2.5. The paratuberculosis endemic steady state of model system (2.2.1) guaranteed by

Theorem 3.4 is locally asymptotically stable for Ry > 1 near 1.
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2.3.3.3 Global stability of the endemic equilibrium

To prove that the endemic equilibrium E* of the model system (2.2.1) is globally asymptotically

stable, we state the following theorem:

Theorem 2.6. The Endemic Equilibrium E* of the model system (2.2.1) is global asymptotically
stable (GAS) whenever Ry > 1.

Proof: Let’s consider a Volterra-type Lyapunov function given by

Ll = L(SC7[C7BC)7

Vlscg (S_f) + Vzlcg ([_S) + VSBcg (B_f) )
C C C

where 15, 15 and v3 are positive constants to be determined, and we take advantage of the prop-

(2.3.3.3.1)

erties of the function
g(x) = x—1—In(x) (2.3.3.3.2)

which is positive in (0, oo) except at x = 1 where it vanishes. We note that L, is non-negative
in the interior of ) and attain zero at £*. We now need to show that L, is negative definite.

Differentiating I, along the trajectories of the model system (2.2.1), we obtain

. dSc Sé dIc I¢ dBc B¢,
Ly = v—|1— — |1 - = 1—
T [ 501”2 a | Io T Bol’
S&
= 1— S [AC — )\cSc — HCSC]
c
(2.3.3.3.3)

_ I

+ s — E [)\CSC - (NC + 5())]@]
- 51

+ U3 1-— C} [NCOéCIC - Oéch}.
L c

Since E™ is an equilibrium point, the following relations hold

( . . » )\* S*

Ao = Ao Se + eS¢, (ke +6c) = (;* <,
c
(2.3.3.3.4)
Neo It

Qo = =

\ BC
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Using the relations in (2.3.3.3.4), Ll becomes

S¢

L, = 1—
1 7/1{ Se.

} (AGSE 4 peSe — AeSe — peSc|

It AeSEL
+ 1n 1——C:| |:)\Csc— CSC C:|

. Ic I¢,
+ 3 :1 - gi} Neaolo — Nca;—lgBC 7
) _”;‘;C(Sc g Ag’fg (2.333.5)
B VQ)\C}icIE B V3]/\\7c04cfé§_g — V3NCQCIC§§
LS,

+ |v3N.op — v I+ [+ ] A\ESE

I

+ [ve — 1] eSc + 1 AcSE + ugﬁcacfé.

Choose the value of v, v5 and v5 such that

AhGe (2.3.3.3.6)
VBJ/\}CQC ) C* € = 0,
It
from which we get
AGSE
vy = (2.3.3.3.7)
Nealf
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Substituting the value of 11, v, and v3 into equation (2.3.3.3.5), such that
Ly = 1-— S_C [/\C’SC + /LcSC — AcSc — Mcsc]
17, AeSEle
—C1 1\ _
+ { Ic} { ceSe = = ] (233.3.8)
st [ 521 (5, Radeoe
NCOéCIE BC BC
By direct calculations from equation (2.3.3.3.8), we have that
1——6()\*3*—1— St — AeSc — neSc) = 1—% ALSEH — AeS,
IS cPc T Hevo cSc — peSc) = S(cc cSc)
C C
S, 5517 S, AeSe
1-— St — ucSc) = —pucSc |1 — ALSH |1 — 1-—
+[ SO}WCC tese) MCC{ So}JFCC{ Sc AeSEL
(2.3.3.3.9)
S AcSc
<AESH 1 -9 11— :
<ves 1= -5
I¢ AeSELe It [AeSe 1o
— = | AeSc — =ALS5H |1 — = | — — — | ;
{ Jc] { L O To] eSs T T
and
AESE { Bg} - Neow I Be { Bg} [IC BC}
= 1-— Neado — ————| = ALSH |1 — —=—=| |— — (2.3.3.3.10)
Ny | Be “ B, ¢ T Be| Iy B
Therefore,

. S )\CSC’ I )\C’SC ]C
Ly < MoS%5|1—2¢ 11— \LSE 11— 2 - =
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By using the function g(z) defined in (2.3.3.3.2), we get
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From (2.3.3.3.12), we have that the largest invariant subset, where Ll = (0, is £*. Therefore, we

IN

5—;)1

+ AGSE

IN

conclude from the LaSelle’s Invariance Principle that £* is globally asymptotically stable (GAS)
when Ry > 1.

2.4 Numerical analysis

Experimental simulations of the baseline single-scale model system (2.2.1)’s behaviour was done
using a Python program version V 2.6 which typically uses a package odeint function in the
scipy.integrate for solving any nature of system of differential equations. These numerical sim-
ulations of the model system (2.2.1) was carried out to illustrate some of the analytical results
that we obtained within this chapter. We use the estimated parameter values presented in Table
(2.2) for sensitivity and numerical analysis. It is important to mention that parameter values used
for numerical simulations, some are from published literature and some were assumed as val-
ues of some parameters are generally not reported in literature. The initial conditions used for
simulation are given by S¢(0) = 2000, I-(0) =0, B<(0) = 10000.

© University of Venda

(2.3.3.3.12)



s

University of Venda
reating Future Leaders

Chapter 2 46
Parameter Description Unit | Initial Source
values
Ac Cattle birth rate day™' | 027 | [52,54]
Be Ruminant infection rate | day ™" | 0.00027 | Assumed
e Death rate of Ruminants | day ' | 0.0001 [52]
do Ruminant removal rate due | day™" | 0.0008 | Assumed

to PTB infection

ac Environmentally bacteria | day ™' | 0.0018 [52]
death rate

By Saturation rate of bacteria | day™' | 10000 [54]

JVC Number of MAP bacteria | day ™' 1000 | Assumed

available for excretion

a, Excretion rate day™ | 0.01 [54]

Table 2.2: Model parameter values associated with the transmission dynamics of Paratuberculo-

sis

2.4.1 Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of the two PTB transmission metrics derived
from the baseline PTB dynamics single-scale model system (2.2.1). The two PTB transmission
metrics derived from the baseline PTB single-scale model system (2.2.1) are: the reproduction
number, Ry, which generally describes the dynamics of a disease at the beginning of an infection
and the endemic value of the environmental bacteria load, B¢, which generally describes the
dynamics of a disease at the epidemic level. For any epidemic model that describe the dynamics
of any diseases in a population, a sensitivity analysis study is essential to perform as it helps
to identify model’s parameters which can be targeted for disease control, elimination or even
eradication, and also be monitored and controlled during an outbreak of the disease. In this
case, sensitivity analysis of both the PTB transmission metrics (R, and Bg.), with respect to
the variation of the baseline PTB single-scale model system (2.2.1)’s parameters is conducted
using Latin Hypercube Sampling and partial rank correlation coefficients (PRCCs). We use
1000 simulations per run to investigate the impact of each model parameters on both the basic
reproduction numbers (R) and the endemic value of the environmental bacteria load (B.). The
sensitivity results of Ry and B/ on the model parameters when they changes are given in the

Tornado plots, Figure (2.2) and Figure (2.3), respectively.
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Figure 2.2: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric Ry.
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Figure 2.3: Tornado plot of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric Bg..
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From the sensitivity analysis results of both R, and B¢, to all the baseline model (2.2.1)’s param-

eters in Figure (2.3), we deduce the following results:

(a)

(b)

Some of the baseline PTB single-scale model (2.2.1)’s parameters have positive PRCCs
and some have negative PRCCs. This indicates that, parameters with positive PRCCs will
increase the values for both R, and B when they are increased, while parameters with
negative PRCCs will decrease the values for both Ry and B/, when they are increased. For
instance, increasing parameter like bacteria transmission rate 3¢ at the between-host level
will eventually increase the value of R, as well as the value of B¢, and also increasing
parameters like decay rate of bacteria in the environment o will the lead to a reduction in

the value of Ry as well as the value of B.

The PTB transmission metric Ry is highly sensitive to the six of the disease parameters
(Be, Bo, ﬁc, a., a ¢, M) is relatively high, but more highly and approximately equal sen-
sitive to ¢, B, ]Vc, and a.. However, the sensitivity of B{, to the same parameters is
variable, with B, being least sensitive to 3¢ and B, while remaining highly sensitive and
having approximately the same sensitivity to ]/\}c and a. as for Ry. Since R characterizes
transmission of PTB disease at the start of the epidemic while B, characterizes transmis-
sion of the disease when the disease has reach an endemic level. We make the following
conclusions regarding the sensitivity of Ry and B¢, to the PTB model system (2.2.1)’s

parameters.

(i) Since both R, and B, are significantly sensitive to (3¢, By, ]/\\fc, ., ac, A¢o), this
implies that care must be taken to the accuracy of these six PTB transmission model
(2.2.1)’s parameters during the data collection if the validity and utility of the model

system (2.2.1) is to be improved.

(ii) Since B, is less sensitive to ¢ and B,y while R is significantly sensitive to - and
By, this implies that PTB interventions such as environmental-hygiene management
(which reduce MAP concentration in the environment through cleaning as we as
preventing contact of ruminant with the MAP in the environment) and vaccination
(which reduce susceptibility of ruminants to infection) would have more effect in
controlling the transmission of PTB infection at the start of the epidemic than when

the disease is already endemic in the herd.

(iii) Since both R, and B, are significantly sensitive to NC, we note that NG phenomeno-
logically model the within-host dynamics of the infection which can be modified by
the within-host health intervention mechanisims such as drugs that kill MAP bacterial

cells at the ruminant individual level.
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2.4.2 Numerical simulations of the basiline PTB model transmission dy-

namics

In this subsection, we use numerical simulations to verify some results we have obtained from
the sensitivity analysis for both R, and B¢, and analytical results of the model. The numerical
simulations are conducted using the baseline parameter values given in Table (2.2). We illustrate
the influence of four PTB transmission parameters (5¢, By, ]\A/'c, a¢) on the model variables (S¢,
Ie, Be). These parameters were only chosen partly because they are significantly sensitive to
both Ry and B..
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Figure 2.4: Graphs of numerical solutions of the model system (2.2.1) showing evolution in

time of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (I1¢),

and (c) population of environmental MAP bacterial load (B¢ ) for different values of ruminant
infection rate Bo: Bo = 0.00027, o = 0.0027, and Bo = 0.027.

Figure (2.4) shows changes in (a) population of susceptible ruminants (S¢), (b) population of
infected ruminants (/¢), and (c) population of environmental MAP bacteria load (B() for differ-

ent values of the rate at which ruminants became infected with PTB infection: Go: o = 0.3,
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Be = 0.03, and B¢ = 0.003. The results in Figure (2.4) show that higher rates of infection at the
ruminant population level result in increased population of environmental MAP bacteria B¢ and
infected ruminants /- and a significant noticeable increase in the population of susceptible rumi-
nants S¢. Therefore, environmental-hygiene management measures practiced by farmers which
prevent ruminants from contact with MAP bacteria in the environment reduce the transmission

risk of the disease at the ruminant population/herd level.
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Figure 2.5: Graphs of numerical solutions of the model system (2.2.1) illustrating the variation

of (a) population of susceptible ruminants (Sc), (b) population of infected ruminants (Ic), and

(c) between-host MAP bacterial load (B¢ ) for different values of natural death rate of the MAP

bacterial load in the physical environmental domains ac: ac = 0.18, ac = 0.00018, and
ac = 0.000018.

Figure (2.5) also shows graphs of numerical solutions of the between-host scale model system
(2.2.1) illustrating dynamics of (a) population of susceptible ruminants (S¢), (b) population of
infected ruminants (/), and (c) environmental MAP bacteria load (B() for different values of
natural death rate of the MAP bacilli in the environmental domains a¢: a¢ = 0.18, o = 0.0018,

and ac = 0.00018. The results also show the environmental conditions which enhance death of
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MAP bacteria in the environment affect transmission of PTB disease in the ruminant population.
This imply that increasing death of MAP bacteria population in the environment will reduce
transmission risk of the disease at the ruminant population level. Therefore, environmental-
hygiene management which enhance the killing of MAP bacteria in the physical environment

reduces transmission risk of the disease among ruminants in the herd.
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Figure 2.6: Graph of numerical solutions of model system (2.2.1) further showing propagation

of (a) population of susceptible ruminants (Sc), (b) population of infected ruminants (1¢), and

(c) environmental MAP bacteria load (B¢ ) for different values of disease induce death rate By:
By = 1000, By = 10000, and By = 100000.

Figure (2.6) further shows changes in (a) population of susceptible ruminants (S¢), (b) popula-
tion of infected ruminants (/), and (c) population of environmental MAP bacteria load (B¢)
for different values of natural decay rate of the within-host MAP bacilli bacteria cells: By:
By = 1000, By = 10000, and By = 100000. The results in Figure (2.6) show that as the
death rate of the within-host bacterial load increases, there is a noticeable reduction in the popu-
lation of environmental MAP bacteria B¢ and the population of infected ruminants /- as well as

an increase in the population of susceptible ruminants So. Therefore, vaccination interventions
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that reduces susceptibility of ruminants to infection would have a significant impact on reducing

transmission risk of PTB infections at the ruminant population/herd level.
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Figure 2.7: Graphs of numerical solutions of the model system (2.2.1) showing dynamics in

(a) population of susceptible ruminants (S¢), (b) population of infected ruminants (1), and (c)

population of environmental MAP bacterial load (B¢ ) for different values of the average number

of within-host MAP bacteria produced per bursting infected macrophage cell Nc:ﬁc = 900,
N.. = 9000, N, = 90000.

Figure (2.7) shows dynamics in the (a) population of susceptible ruminants (S¢), (b) population

of infected ruminants (/¢), and (c) population of environmental MAP bacterial load (B¢) for

different values of the average number of within-host MAP bacteria excreted in the environment
by each infected ruminants N,: ]\Afc = 900, J\A/'C = 9000, ]Vc = 90000. The numerical results
in Figure (2.7) show that the within-host process that enhance killing of MAP bacteria load

at the site of PTB infection within an infected ruminant affect transmission of the disease at

the ruminant population level. Therefore, any mechanism that intend to kill within-host MAP

bacteria load at the ruminant individual level would have an influence on the transmission risk of

PTB infection among ruminants in the herd.
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2.5 Summary

In this chapter, we presented a single-scale model that describes the intrinsic dynamics of a given
environmentally-transmitted disease that can be modeled at the host level using paratuberculosis
in ruminants as paradigm. The model was formulated based on the susceptible-infected endemic
framework coupled with the compartment of free-living pathogen in the environment (SIP)
which describes the population dynamics of susceptible ruminants S¢, infected ruminants /¢,
and MAP bacteria B¢ at any time . We study the mathematical properties of the model system
(2.2.1) and established that the model is mathematically and epidemiologically well-posed. This
has been achieved by establishing the positiveness and boundedness of the model system (2.2.1)
solutions and determining the basic reproductive number for the model and the two equilibrium
states which are the disease-free equilibrium state (£) and the endemic equilibrium state (E™*).
The basic reproductive number, R, of the model system (2.2.1) was then used to prove both
local and global stability of F( as well as the existence and uniqueness of E* along with lo-
cal and global stability of £*. Additionally, we noted that when the basic reproductive number
of the model is less than a unity the disease-free equilibrium state is asymptotically stable and
globally attracting. However, when the basic reproductive number of the model is greater than
a unity there exist a unique endemic equilibrium state which is locally and globally asymptot-
ically stable. Sensitivity analysis of the basic reproductive number and the endemic value of
the infective MAP bacteria in the physical environment as the two main disease transmission
metrics which generally characterize the dynamics of the disease at the start of infection and
when it has already at an endemic level has been conducted. We further carried out numeri-
cal simulations of the model with the aim of verifying mathematical analysis derived from the
model. Although both the mathematical and numerical analysis of this single-scale model of
the dynamics of ruminant paratuberculosis was easy, a major weakness of this model is that it
describes the replication dynamics of the MAP bacteria within an infected ruminant host in a
phenomenological manner which makes the model unrealistic in predicting the dynamics of the
disease. We anticipated that this kind of limitation of single-scale models in predicting dynamics
of environmentally-transmitted diseases can be overcome by extending the single-scale model to

a multiscale model.
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Chapter 3

A Nested Multiscale Modelling of

Paratuberculosis Dynamics in Ruminants

3.1 Introduction

It is widely appreciated that infectious diseases are typical example of complex systems because
of their multilevel and multiscale nature [1]. Due to this common key feature of multilevel and
multiscale in infectious disease systems, several authors in the field of mathematical biology have
turned their attention to multiscale modelling as a scientific method for studying the dynamics of
infectious diseases at different levels of their organizations. Multiscale models facilitate integra-
tion of more than one scale that are involved in the dynamics of an infectious disease systems. In
this chapter, we present a nested multiscale model that integrates microscale and macroscale at a
host level of an infectious disease system that has a pathogen replication-cycle at the microscale
with application to paratuberculosis in ruminants. The most important feature of nested multi-
scale models at any level of organization of an infectious disease system [1, 8]: cell level, tissue
level, organ level, microecosystem level, host level, community and macroecosystem level is that
the macroscale influences the microscale through the initial infective inoculum. Our objective in
this chapter is to investigate how the initial inoculum influences disease dynamics for a pathogen
with a replication-cycle at the microscale. Therefore, we investigate the impact of the variation in
size of initial inoculum on the dynamics of the disease. This is unlike embedded multiscale mod-

els in which the macroscale influences the microscale through super-infection [1]. We use this
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key feature of nested multiscale models to investigate if they are an appropriate category of mul-
tiscale models to characterize the multiscale dynamics of environmentally-transmitted infectious
diseases with a replication-cycle at microscales using Paratuberculosis (PTB) in ruminants as an
example. In the subsequent chapters of this research, we will further compare this key feature of
nested multiscale models with the features of embedded multiscale models of infectious diseases
systems. In the context of an environmentally-transmitted disease system at the host level, the
within-host scale and the between-host scale serve as building blocks in the development of mul-
tiscale models. In the case of PTB infection in dairy ruminants as an environmentally-transmitted
disease system, the within-host scale on one hand is associated with the interaction of MAP with
ruminant macrophages (target cells) and other immune response cells that happens inside an
infected ruminant. It is at this scale where the process outcomes of infection within a single
infected ruminant level determine if, when and how much the ruminant will further transmit the
bacteria into the environment, and in turn affecting the spread of the disease at the ruminant
population-level. The processes of PTB infection at the within-host scale can be modified by
the within-host conditions and medical interventions. The between-host scale on other hand,
however, is associated with the transmission dynamics of MAP bacteria that typically occurs be-
tween ruminants and their physical environment domains. This takes place when ruminants feed
from contaminated pasture with fecal material containing infective MAP or drink from contami-
nated surface water/water troughs with the bacteria. The processes at the between-ruminant-host
scale can be modified by control measures such as reducing fecal contamination of food, water
and pasture (which can be achieved by raising feed and water troughs, strip grazing, or use of
mains/piped water rather than surface/pond water); avoid spreading yard manure on pasture; and

maintain proper hygiene practices particularly in buildings/yards and calving boxes [58].

To date, most of PTB disease dynamics models in the literature have been devoted to study
the dynamics of PTB infection in ruminants and evaluating the effect of control measures aim
at controlling, eliminating and even eradicating this disease using a single-scale modelling ap-
proach (see [52, 59, 60] and references therein). This is despite the fact that PTB infection is a
complex and multiscale disease system. However, we have to date, witnessed the development of
few models in the literature that consider the complexity and multiscale nature of PTB infection
in attempting to study its dynamics [54, 61-63]. The multiscale models in [54, 61] use the time-
since-infection approach to link the within-host sub-model with the between-host sub-model for
PTB infection as well as the dependence of some epidemiological parameters on the within-host
MAP bacteria load. This coupling principle employed in [54, 61] was suggested for the first time

by Gilchrist and Sasaki [35]. In addition, it is also worthy to note that the multiscale models in
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[54, 61] are categorized as hybrid multiscale models (see [19, 20]). To the best of our knowl-
edge the nested multiscale in this study is the first of its kind to be developed to characterize the
dynamics of PTB in ruminants. Moreover, although the multiscale models in [54, 61] and the
multiscale model developed in this study all characterize the reciprocal influence between the
within-host scale and the between-host scale disease dynamics, there are important differences
between these multiscale models. Specifically, in the current nested multiscale model, both the
within-host scale and the between-host scale sub-models are all described by the same formal-
ism or mathematical representation (i.e. a system of ODEs). However, the multiscale models
in [54, 61] are hybrid multiscale models, where only the within-host scale sub-models are rep-
resented by ODEs, while their between-host sub-models are represented by partial differential
equations (PDEs).

3.2 Derivation of Nested Multiscale Model for the Dynamics

of Ruminant Paratuberculosis (PTB)

As mentioned previously, for infectious disease systems at host level, the between-host scale sub-
model and the within-host scale sub-model are the building blocks upon which multiscale models
are developed. In this case, we derive a nested multiscale model that integrates the between-host
sub-model associated with the transmission dynamics of PTB disease and the within-host sub-
model associated with the replication dynamics of MAP bacteria within an infected ruminant at
the site of infection. In the following sections, we begin by presenting two independent sub-
models for PTB transmission dynamics at two distinct scales, one at the between-host scale and

other at the within-host scale and then integrate them into a single multiscale model in sec 3.2.3.

3.2.1 The between-host scale submodel for the PTB multiscale model dy-

namics

The between-host scale submodel for the multiscale dynamics of PTB in ruminants is described
by the system of ordinary differential equations given in Chapter 2, which we can re-write here

for quick reference as:
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i = T BB el
dlc(t Bo(t)So(t
i G - % i_(gc?%(f) ~ (e + do) (), (3.2.1.1
L 111. dBdcz;(t) = ]/\\fcaclc(t) — Oéch(t).

From the model system (3.2.1.1), we make the following assumption that the dynamics of S¢,
I and Be occur at a slow time scale, ¢, compared to the within-host scale PTB transmission
dynamics variables, so that S¢ = S¢(t), Ic = I¢(t) and Bo = Be(t). It is also important to
note from the model system (3.2.1.1), that Nc is treated as a single value parameter whereas NC
is a composite parameter that summarize the disease dynamics within an infected individual host
and this make the model system (3.2.1.1) being unrealistic. We shall also urge that it is note easy
to estimate NC using a single-scale models. However, an alternative approach for estimating f\l
is to use a nested multiscale model based on the within-host disease dynamics. In section 3.3,

we simplified a full nested multiscale model nested multiscale in order to estimate ]\Afc.

3.2.2 The within-host scale submodel for the PTB multiscale model dy-

namics

Further, for the derivation of the current nested multiscale model for PTB in ruminants considered
in this study, the within-host submodel dynamics is adopted from a more elaborative single-scale
model framework from the work by Magombedze et al. [53] with minor modifications which are
based on multiscale considerations. However, the main multiscale consideration incorporated
into the model in [53] is the excretion/shedding rate ., which is an important multiscle con-
sideration since in general the within-host scale sub-model is linked to the between-host scale
sub-model through pathogen shedding/excretion [19]. The resulting within-host model describes
the interactions of six population: susceptible macrophages, My which are target cells, infected
macrophages, I, which are macrophages which have internalized extracellular MAP bacteria
cells, MAP bacterial load, B, at the extracellular environment, specific naive CD4+ T cells Ty,
Th1 immune response cells, 77, and Th2 phenotype immune response cells, 75 (see the work in

[53]). We also modify the model in [53] by making the following assumptions:
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a. Transmission of the infection between cells is only through contact with the extracellular

MAP bacterial load B, in the extracellular environment at the site of infection.

b. The within-host scale disease processes happen at fast time scale, 7, compared to the
between-host scale PTB submodel variable so that My = My(7), I, = I,,(7), B, =
BC(T), TO = T()(T), T1 = Tl(T) and T2 = TQ(T).

c. The extracellular MAP bacterial load modelled mechanistically by B, = B.(7) is a proxy

for individual ruminant infectiousness.

d. The extracellular MAP bacteria cannot replicate outside the macrophage cells of an indi-

vidual ruminant.

e. The depletion of MAP bacteria in the extracellular environment through engulfment by

macrophages is negligible.

These assumptions lead to the following submodel of ordinary differential equations for the

within-host scale PTB transmission dynamics:

(. d]\/fi‘im = Ay — BeMy(T)B.(T) — poMy(7),
i d[;T(T) = BeMy(7)Be(T) — Y T1(T) L1 (T)
_(km + /‘qﬁ)Im(T)a
iii. d%y) = NpkmDn(7) = (e + ac) Be(T),
(3.2.2.1)
. d]:;f') = Ao — (Omdm(T) + 0uBe(7))To(7)
_MOTO(T)>
v. dl;iT) = 016 Lo (T)To(T) — i T (1),
| il dz;;f) = 0:0,B.(7)To(7) — paTa(7).

In the within-host scale sub-model (3.2.2.1), the first two equations describe the dynamics of the

within-ruminant-host macrophage population which is divided into two groups. The first group is
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of susceptible macrophage cells M, (7) (these are macrophages which are healthy and are suscep-
tible to the Paratuberculosis at the site of infection). The second group is of infected macrophage
cells /,,,(t) (these are macrophages which are infected by the MAP bacteria). We assume that, at
any time 7, new macrophage recruits enter the population of susceptible macrophages through
the supply of macrophage cells from progenitor monocytes that are recruited from the blood
to the site of infection at a constant rate A4 and this population losses individuals due to nat-
ural death at a constant rate y,. Susceptible macrophages acquire infection through engulfing
extracellular MAP bacilli bacteria at a rate 5. We assume that in the population of infected
macrophages there is an additional death due to bursting of infected cells at a rate k,, and due
to cell removal by 7} immune response at a rate y,,. In addition, when infected macrophages
burst at constant rate k,,, they are assumed to release an average number of intracellular MAP
bacilli V,, into the extracellular environment, so that the total number of intracellular bacteria
released into the extracellular environment is N,,k,,,,. The third equation of the model system
(3.2.2.1) describes the changes in time of the population size of MAP bacteria in the extracellular
environment which is generated following the release of the intracellular MAP bacilli into the
extracellular environment when each infected macrophage bursts. We assume that the population
of MAP bacteria in the extracellular environment decays naturally at a constant rate j. and are
excreted out of the body of infected ruminant into the physical environment through feces at a
constant rate a.. The last three equations of the model system (3.2.2.1) describe the evolution
in time of the population of ruminant immune response cells at the site of infection in the gut
which are specific naive CD4+ T cells (7)), and the two subsets of the MAP specific immune
response, Thl (77) and Th2 (75) cells (see [53] and reference therein). The population of specific
naive CD4+ T cells (1) for MAP bacilli are produced at a constant rate Ay from the thymus. We
assume that these specific naive CD4+ T cells decay naturally at a rate jy. Following the work
in [53], we assume that Tj cells become T} or T, immune response cells at per capita rates 9,),
and 0y, respectively. Thus, the population of 77 and 7, immune response cells are proliferated at
a rate 610,,1,, Ty and 0,6, B,, Ty, respectively. We assume that both the population of 77 and 75

immune response cells decay naturally at rates p4; and po, respectively.

3.2.3 Integration of the between-host and within-host submodels of PTB

dynamics into a nested multiscale model

In the previous sections we presented the two submodels for the dynamics of PTB infection
(between-host submodel (3.2.1.1) and within-host submodel (3.2.2.1)) that separately describe
the two key processes of PTB disease dynamics (transmission and replication of MAP bacteria

processes) which occur at two distinct scales (within-host scale and between-host scale). We
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now integrate them into a single multiscale model as shown in flow diagram in Fig. 3.1. We

achieve this by replacing the parameter ]\Afc which phenomenologically models within-host scale

pathogen replication by a variable B.(7) which mechanistically models the within-host scale

pathogen replication to get:

( . dSc(t)
Cdt

. dIo(t)
17. dt

.

. chf_%sc@) ~ noSol(t),
BfiB—gg()t)SC(t) — (e + 00)1c(t),

ach(T)IC(t) — ach(t),

Ay — BMy(T)Be(T) — pg My (),

B My (T) Be(T) = 4 T2 (7) I (T)

= (km + p19) I (7). (G230

Nk I (T) = (pte + ae) Be(7),

Ao = (Omdin(T) + 06 Be(7))To(T)
—oTo(7),

016m L (T)To(T) — paT1(7),

eg(sbBc(’T)T()(’T) — IUQTQ(T).

Based on the categorization of multiscale models of infectious disease systems presented in [19,

20], the multiscale model for PTB disease dynamics given by (3.2.3.1) falls in the category of

nested multiscale models of class 2.
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Figure 3.1: A schematic representation of the nested multiscale model of Johne’s disease in a

herd

3.2.4 Analysis of the multiscale model using fast-low time-scale analysis

We note from the full nested multiscale model system given by (3.2.3.1) has two different time
scales involved which are the between-host time scale (¢) associated with the transmission dy-
namics of PTB at the population level and the within-host time scale (7) associated with the
replication dynamics of PTB infectious agent at an individual ruminant level. This makes the
analysis of the full nested multiscale model system (3.2.3.1) more difficult to perform. However,

the analysis of the multiscale model system (3.2.3.1) can be simplified by expressing the slow
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time-scale and the fast time-scale in terms of each other by using the relationship ¢ = e7, where
0 < € << 1 and € being a constant highlighting the fast time-scale dynamics of the within-
host model compared to the slow time-scale of the between-host scale dynamics, so that the full

nested multiscale model system (3.2.3.1) becomes:

o B e - P 1) - s,
o dIg(t) BeBelt)
1. Zt = Bocik—gc(t)SC(t) — (pe +6c)a(t),
i, dBdCt(t) = a B Io(t) — acBo(t),
w. ﬁ%i(t) = Ay — BpMy(t) Be(t) — poMo(t)
. edlgt(t) By My(8)Bu(t) — m T () In(1)

< o + 1) I (1) (3.2.4.1)
vi. ed%t(t) Nk (t) — (e + a) Bult)
vid. edT;ft) = Ao — (Suln(t) + 8,Bo(1) T (t)

—poTo(t)

Vi e%t(t) = 010,10 (T)To(T) — 1 T ()

\ 1T. Ed%;t) = egébBc(t)To(t) — IUQTQ(t)

In the next two sub-sections, we assessed through numerical simulations of the full nested multi-
scale model system given by equation (3.2.4.1) the reciprocal influence between the between-host
scale and the within-host scale dynamics of PTB infection. We achieved this by demonstrating
(i) the influence of the between-host scale on the within-host scale through the initial infective
inoculum that susceptible ruminants may acquire by interacting with MAP bacteria in contami-

nated environment, and (ii) the influence of the within-host scale parameters on the between-host
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disease dynamics. The parameter values used for simulations are tabulated in Table 3.1. In ad-
dition, initial values used for simulations for the full nested multiscale model system (3.2.4.1)
are as follows: S¢(0) = 2000, I-(0) = 5, B.(0) = 10, M4(0) = 500, 1,,(0) = 0, Tp(0) = 0,
T1(0) = 0, T5(0) = 0, B&(0) = 1000.

Parameter | Description Unit | Initial Source
value
Ao Ruminants birth rate day’1 0.27 [52, 54]
Be Ruminant infection rate day™' | 0.00027 | Assumed
Ue Death rate of Ruminants day™ | 0.0001 [52]
oo Ruminant removal rate due to PTB day™' | 0.0008 | Assumed
infection
ac Environmentally bacteria death rate dagf1 0.0018 [52]
By Saturation rate of Bacteria day’l 1000 [54]
Ay Macrophages supply rate day ™ 10 [53]
B Macrophages infection rate day™" | 0.002 [53]
e Macrophages natural death rate day‘l 0.02 [53]
N, Burst size of intracellular MAP bacteria day‘1 100 [53]
km Burst rate of infected macrophages day™' | 0.00075 [53]
Yim T, lytic effect day™ | 0.01 [53]
Lhe Bacteria’s death rate day‘1 0.03 [53]
Q. Excretion rate of extracellular MAP day_1 0.01 [54]
bacteria
Ao Ty supply rate day™ | 0.001 [53]
Lo T, death rate day™ | 0.01 [53]
L T: death rate day™ | 0.03 [53]
Lo T, death rate day™ | 0.02 [53]
Om T, differentiation into T, cells day™ | 0.01 [53]
5 T, differentiation into T cells day™' | 0.01 [53]
6, T, cells clonal expansion day™' | 9000 [53]
0, T, cells clonal expansion day™ | 9000 [53]

Table 3.1: Model parameter values associated with the within-host scale and between-host scale

dynamics of Paratuberculosis
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3.2.4.1 The influence of initial inoculum on the within-host scale of PTB infection dynam-

ics

In this subsection, we demonstrate through numerical simulations of the full nested multiscale
model system (3.2.4.1) the influence of between-host scale dynamics on within-host scale vari-
ables for PTB infection dynamics. This is achieved by varying the initial value condition of
the infective inoculum B,.(0) that susceptible ruminants may acquire by interacting with MAP
bacteria in contaminated environment for different values and assess its impact on the dynam-
ics of four selected key within-host variables, [,,, B., 11 and T,. The results of the influence
of between-host scale dynamics on the within-host scale variables for the PTB infection are as

follows:

a. Fig. 3.2 shows the effect of varying B..(0) for different values on the within-host variables
(Iim, Be, T1, T). B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000.

b. Fig 3.3 also shows the effect of varying B.(0) for different values on the within-host vari-
ables (I,,, Be, T1, Tz). B.(0): B.(0) = 1000, B.(0) = 10000, and B.(0) = 100000.

c. Fig 3.4 further shows the effect of varying B.(0) for different values on the within-host
variables (I,,,, B., Ty, T»). B.(0): B.(0) = 1000000, B.(0) = 10000000, and B.(0) =
100000000.

Collectively, from all these three sets of numerical results in Fig. 3.2, Fig. 3.3, and Fig. 3.4,
we notice that as the initial infective inoculum B, (0) increases beyond the minimum infectious
dose (MID), there is a noticeable but minimal changes in the dynamics of the within-host scale
variables [,,, B., T1, T5. This is because, once the host is infected, the replication of the MAP

bacteria at the within-host scale sustains the disease dynamics at this scale.
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Figure 3.2: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing
evolution of (a) infected macrophage population (I,,), (b) within-host MAP bacteria population
(B¢), (c) MAP-Specific Thl response cells (1), and (d) MAP-Specific Th2 response cells ('I3) for
different values of initial value condition of the within-host MAP bacterial load B.(0): B.(0) =
10, B.(0) = 100, and B.(0) = 1000.
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Fig. 3.2 shows the solution profile of the population of (a) infected macrophage population (/,,),
(b) within-host MAP bacteria population (B,), (c) MAP-Specific Thl response cells (77), and
(d) MAP-Specific Th2 response cells for different initial values of the within-host MAP bacterial

load B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000. The results in Fig. 3.2 illustrate that

when the initial inoculum vary from B.(0) = 10, B.(0) = 100, and B.(0) = 1000 this only

affect the dynamics of the disease at the within-host scale within the first 20 days. However,

after that there is no different in the dynamics of the disease. This implies that different initial

inoculum values converge to the same endemic state after a period of about 20 days. Therefore,

these results confirm that once the minimum infectious dose is consumed, the long term disease

dynamics is independent of the initial inoculum.
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Figure 3.3: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

propagation of (a) infected macrophage population (1), (b) within-host MAP bacteria popula-

tion (B.), (c) MAP-Specific Thl response cells (11), and (d) MAP-Specific Th2 response cells

(T3) for different values of initial value condition of the within-host MAP bacterial load B.(0):
B.(0) = 1000, B.(0) = 10000, and B.(0) = 100000.

Fig. 3.3 shows the solution profile of the population of (a) infected macrophage population (/,,),
(b) within-host MAP bacteria population (B,), (c) MAP-Specific Thl response cells (77), and
(d) MAP-Specific Th2 response cells for different values of initial value condition of the within-
host MAP bacterial load B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000. The results in
Fig. 3.3 illustrate that when the initial inoculum vary from B.(0) = 1000, B.(0) = 10000, and
B.(0) = 100000 this only affects the dynamics of the disease at the within-host scale within
the first 30 days. However, after that there is also no different in the dynamics of the disease.
This also implies that different initial inoculum values converge to the same endemic state after a
period of about 30 days. Therefore, these results also confirm that once the minimum infectious

dose is consumed, the long term disease dynamics is independent of the initial inoculum.
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Figure 3.4: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

changes of (a) infected macrophage population (1), (b) within-host MAP bacteria population

(B¢), (c) MAP-Specific Thl response cells (1), and (d) MAP-Specific Th2 response cells ('I3) for

different values of initial value condition of the within-host MAP bacterial load B.(0): B.(0) =
1000000, B.(0) = 10000000, and B.(0) = 100000000.

Fig 3.4 shows the solution profiles of the population of (a) infected macrophage population (/,,),
(b) within-host MAP bacteria population (B,), (c) MAP-Specific Thl response cells (77), and
(d) MAP-Specific Th2 response cells for different values of initial inoculum of MAP bacterial
load B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000 at within-host scale. The results
in Figure (3.4) also illustrate that the variation in the initial inculom from B.(0) = 1000000,
B.(0) = 10000000, and B.(0) = 100000000 influence with the dynamics of the disease at the
within-host scale between 20 and 50 days. However, after that the dynamics of the disease reach
an endemic level. Similarly, this also implies that different initial inoculum values converge to
the same endemic state after a period of about 50 days. In the same way as the results in Fig. 3.2
and Fig. 3.3, these results also confirm that once the minimum infectious dose is consumed, the

long term disease dynamics is independent of the initial inoculum. However, the all the three
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figures confirm (i.e. Fig. 3.2, Fig. 3.3 and Fig. 3.4 ) that as the initial inoculum increases, the

time to reach the endemic state also increases.

3.2.4.2 The influence of initial inoculum on the between-host scale of PTB infection dy-

namics

In this subsection, we investigated through numerical simulations of the full nested multiscale
model system (3.2.4.1) the influence of initial inoculum on between-host scale variables for
PTB infection dynamics. This is achieved by varying the initial value condition of the infective
inoculum B,(0) that susceptible ruminants may acquire by interacting with MAP bacteria in
contaminated environment for different values and assess its impact on the dynamics of all the
three between-host variables: S¢, I, and Bo. The results of the influence of initial inoculum on

the between-host scale variables for the PTB infection are as follows:

a. Fig. 3.5 shows the effect of varying B.(0) for different values on the between-host variables
(Sc, Ie, Be). B.(0): B.(0) =10, B.(0) = 100, and B.(0) = 1000.

b. Fig. 3.6 also shows the effect of varying B.(0) for different values on the between-host
variables (S¢, 1o, Be). B.(0): B.(0) = 1000, B.(0) = 10000, and B.(0) = 100000.

c. Fig. 3.7 again shows the effect of varying B,.(0) for different values on the between-host
variables (S¢, Io, Be). B.(0): B.(0) = 1000000, B.(0) = 10000000, and B.(0) =
100000000.

Collectively, from all these three sets of numerical results in Fig. 3.5, Fig. 3.6, and Fig. 3.7, we
notice the same trends that as the initial value of the infective inoculum B.(0) increases beyond
the minimum infectious dose (MID), there is a noticeable but minimal changes in the dynamic

of the between-host scale variables S¢, I, Bc.
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Figure 3.5: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

evolution of (a) population of susceptible ruminants (Sc), (b) population of infected ruminants

(Ic), and (c) between-host MAP bacterial load (Bc) for different values of initial value of the
within-host MAP bacterial load B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000.

Fig. 3.5 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and

(c) environmental MAP bacteria load (B¢) for different values of initial value of the within-

host MAP bacterial load B.(0): B.(0) = 10, B.(0) = 100, and B.(0) = 1000. The results
in Fig. 3.5 show that an increase in the initial inoculum from B.(0) = 10 to B.(0) = 1000

makes no different in the transmission dynamics of the disease at the between-host scale as the

between-host scale variables (S¢, ¢, B¢) remain constant as the initial inoculum changes.
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Figure 3.6: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

propagation of (a) population of susceptible ruminants (Sc¢ ), (b) population of infected ruminants
(Ic), and (c) between-host MAP bacterial load (Bc) for different values of initial value of the
within-host MAP bacterial load B.(0): B.(0) = 1000, B.(0) = 10000, and B.(0) = 100000.

Fig. 3.6 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics

of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and

(c) environmental MAP bacteria load (B¢) for different values of initial value condition of the
within-host MAP bacterial load B.(0): B.(0) = 1000, B.(0) = 10000, and B.(0) = 100000.
The results in Fig. 3.6 show that an increase in the initial inculum from B,(0) = 1000 to B.(0) =

100000 also makes no different in the transmission dynamics of the disease at the between-host

scale as the between-host scale variables (S¢, I, Bc) remain constant as the initial inoculum

changes.
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Figure 3.7: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing

changes of (a) population of susceptible ruminants (Sc), (b) population of infected ruminants

(Ic), and (c) between-host MAP bacterial load (Bc) for different values of initial value of the

within-host MAP bacterial load B.(0): B.(0) = 1000000, B.(0) = 10000000, and B.(0) =
100000000.

Fig. 3.7 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics
of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and
(c) environmental MAP bacteria load (B¢) for different values of initial value of the within-host
MAP bacterial load B.(0) = 1000000, B.(0) = 10000000, and B.(0) = 100000000. The results
in Fig. 3.7 show that an increase in the initial inculum from B.(0) = 1000 to B.(0) = 100000
only associated with the increase in the between-host scale MAP bacteria within the first 2500
days as both the susceptable and infected ruminants remain constant with the increase in the

initial inoculum.
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3.2.4.3 The influence of within-host scale parameters on the between-host scale PTB in-

fection dynamics

In this subsection, we illustrate through numerical simulations of the full nested multiscale model
system (3.2.4.1) the influence of within-host scale parameters on between-host scale variables for
PTB infection dynamics. We vary the within-host scale parameters, ., p. and V,, and assess

their impact on the dynamics of the between-host scale variables.
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Figure 3.8: Graphs of numerical solutions of the multiscale model system (3.2.4.1) showing the
evolution in time of (a) population of susceptible ruminants (Sc), (b) population of infected
ruminants (Ic), and (c) between-host MAP bacterial load (B¢ ) for different values of excretion
rate of the within-host MAP bacterial load into the environment o.: . = 0.1, a. = 0.01, and

a. = 0.001.

Fig. 3.8 shows graphs of numerical solutions of the model system (3.2.4.1) showing dynamics
of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and
(c) environmental MAP bacteria load (B¢) for different values of excretion rate of the within-

host scale MAP bacilli into the environment «.: «, = 0.1, o, = 0.01, and o, = 0.001. The
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results show that an increase in the excretion rate of the within-host scale bacterial load into the
physical environment by each infected ruminant individual has important public health effects
at the between-host scale dynamics of PTB infection as there is a noticeable increase in the
population of environmental MAP bacteria B and the population of infected ruminants /- as

well as a decrease in the population of susceptible ruminants Sc.
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Figure 3.9: Graphs of numerical solutions of the multiscale model system(3.2.4.1) showing

changes in (a) population of susceptible ruminants (Sc), (b) population of infected ruminants

(Ic), and (c) population of environmental MAP bacterial load ( Bc) for different values of death
rate of the within-host MAP bacterial load pp: p. = 0.3, e = 0.03, and p. = 0.003.

Fig. 3.9 shows changes in (a) population of susceptible ruminants (S¢), (b) population of infected
ruminants (/¢), and (c) population of environmental MAP bacteria load (5() for different values
of natural decay rate of the within-host scale MAP bacteria cells: p.: p. = 0.3, pu. = 0.03,
and p. = 0.003. The results in Fig. 3.9 show that as the death rate of the within-host scale
bacterial load increases, there is also noticeable reduction in the population of environmental
MAP bacteria B and the population of infected ruminants /- as well as an increase in the

population of susceptible ruminants S¢ at between-host scale. Therefore, any treatment measures
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that kills the MAP bacteria at within-host scale are equally good for both the individual ruminant
and the population because a single infected ruminant will no longer pose a threat for transmitting
infection in the population/herd which consequently reduces the transmission risk of the disease

among the ruminants in the population/herd.
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Figure 3.10: Graphs of numerical solutions of the multiscale model system(3.2.4.1) showing

dynamics in (a) population of susceptible ruminants (S¢ ), (b) population of infected ruminants

(Ic), and (c) population of environmental MAP bacterial load ( B¢ ) for different values of within-

host scale MAP bacteria produced per bursting infected macrophage cell Ny,: N, = 100,
N, = 1000, N,,, = 10000.

Fig. 3.10 shows the dynamics in the (a) population of susceptible ruminants (S¢), (b) popula-
tion of infected ruminants (/), and (c) population of environmental MAP bacterial load (B¢)
for different values of within-host scale bursting size of each infected macrophage cell N,,:
N,, = 100, N,, = 1000, N,, = 10000. The numerical results in Fig. 3.10 show that as an aver-
age replication rate of the within-host MAP bacteria within infected macrophage cells at the site
of infection increases, transmission of PTB infection at the population/herd level of ruminants

also increases. Therefore, these results demonstrate the benefit of treatment that can restrict the
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replication of MAP bacteria at individual ruminant level on the transmission of the disease at the
population/herd level of ruminants. Collectively, we note from the results in Fig. 3.8 - Fig. 3.10,
that the between-host scale variables (S¢, I, Be) are significantly sensitive to the variation of
the three selected within-host scale parameters («.., j. and V,,), particularly the decay rate p. of

the within-host scale MAP bacteria.

Overall, the results in Fig. 3.5 - Fig. 3.10 show that:

a. The between-host scale influences the within-host scale through the initial inoculum of the

infectious agent.

b. Once the initial inoculum has been introduced from the between-host scale, then the infec-

tion at within-host scale is sustained by pathogen replication.

c. As the initial inoculum acquired from the between-host scale increases beyond the MID,

the time taken for the infection at within-host scale to reach equilibrium increases.

d. The between-host scale variables (S¢, I, B¢) are significantly sensitive to the variation
of the three selected within-host scale parameters (a., 1. and NV,,), particularly the decay

rate y. of the within-host scale MAP bacteria.

This indeed indicates that during the dynamics for PTB infection in ruminants once the infection
has successfully established at the within-host scale, the contribution of initial infective inoculum
to the total pathogen load becomes negligible compared to the contribution of the replication-

cycle.

3.3 Estimation of ]VC from the Full Nested Multiscale Model

In this section, we estimate NG parameter in the single scale model for the dynamics of PTB
infection using the nested multiscale model system (3.2.4.1). This is achieved by assumming
that 0 < € << 1, so that to reasonable approximation we can set ¢ = 0 in the the full nested mul-
tiscale model system (3.2.4.1). Thus, we consider the last six equations of the PTB transmission

dynamics multiscale model system (3.2.4.1) re-written here as a quick reference
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(i Gd]\éq;@) = Ny — BeMy(t)Be(t) — poMg(t),
it I M) B0) — T 1)
—(km + o) I (1),
i edict“) NI (£) — (e + 0) Bult),
3.3.1)
iv. edi‘;t(t) — Ao = (B In(t) + 6, Bo()) T (1)
_MOTO(t)7
. edi}t(t) 0L (DT (7) — T (),
L Vi. Edjst(t) = 92(5bBc(t)T0(t) - ,LLQTQ(t)

Since 0 < € << 1, we can set € to zero so that the within-host scale PTB replication dynamics

submodel becomes independent of time and we obtain:

(

i Ap—

BsMyB, — ugMg =0,

1. BeMy B — TV L, — (b + pg) I, = 0,

141. Nk I — (pe + o) Br =0,

. A() —

(3.3.2)
(5L, + 0BTy — Ty =0,

V. Hlém[;th — ,ulTl* = O,
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From (3.3.2) we get
( . * 2A¢(MC + aC)
1. Md) - )
5¢Nmk5mM + 2/‘(15(!% + ac)
w. I, = %,
2
vi. B = —NmkmM ,
2(pe + ac)
(3.3.3)
. % QAO(/"LC + ac)
w. Ty = ,
2:“0(,“(: + ac) + [5m(luc + ac) + 5bNmkm]M
v. T - Ql(smAO (/vLc + ac)M
ol 2:“0;“1(:“0 + ac) + H1 [5m<,uc + ac) + 5bNmkm]M’
I 036 Mo N iy M
[ ! 2paapto(pe + ) + p2l0m (pe + ae) + 0Nk ] M
In the expression (3.3.3),
(
M = —¢1+1/é] +4¢2
ks + pipoks — k1Q
= ) 34
$1 o (3.3.4)
o fpo@
L ¢2 - k’gk’l )
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with
(
Q = peps+0ds)(Roy — 1),
kl _ :ul(sm(:uc + ac) + ,uldemkm
(pe + ) ’
k2 _ 5¢Nmkm(ﬂ¢ + k’m)
(fe + e) 7
(3.3.5)
ks = ko + ptgYmb10m Ao,
6¢Nmkm7m915mA0
]C() - y
(Nc + O‘C)
Ro, = .
\ M(Z)(Nqb + ) (pte + o)

Further, in the expression (3.3.5) the quantity

5¢A¢Nmkm

R w — 9
M (s + 0g) (pe + )

is the within-host scale basic reproductive number. Therefore, the fast-slow analysis reduces the
within-host scale submodel system (3.2.2.1) to the algebraic equations given in (3.3.3) which can

be fed into the parameters of the between-host scale submodel and become

(0 B o R set) - nesclo)
. d[flt(t) = jgfiB—l%Sc(t)—(Mc+5C)]c(t), (3.3.6)
i ngt(t) — a.B'Io(t) — acBelt),

We note that from the model system given by (3.3.6) that the total number of extracellular MAP
bacilli excreted by each infected ruminant into the physical environment B./¢ is now approxi-
mated by B’ I-. Using the notation that N. = B, a composite parameter which can be inter-
preted as the average number of the within-host scale MAP bacterial load (5.) at the endemic

equilibrium that is available for excretion into the environment by each infected ruminant, the
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full multiscale model (3.2.3.1) of PTB transmission dynamics is simplified to become

p i. dSC(l;t(t) = Ao — Bfi_B—%Sc(t) — pucSc(t),

_dIe(t)  BeBe(t)

W =n T Bog Bow et~ ket do)le(t), (3.3.7)
| dB;;(t) = Neaelo(t) — acBe(t)

where the composite parameter N, which estimates N, is given by

Nykm /

In the expression for N, given by equation (3.3.8),

kst ok — kB1Q
qbl - 9

koky
3.3.9
pfto@
0 Tk
with
(
Q = peps+0ds)(Roy — 1),
kl _ ,ul(sm(,uc + ac) + ,ul(SbNmkm
(pe + ) ’
]{72 _ 5¢Nmkm(“¢ + km)
(fe + e) 7
(3.3.10)
k3 = ko + e Ymb10m Ao,
kO o 6¢Nmkm7m015m/\0
(Nc + O‘C) ’
Ry, = .
\ M¢(M¢ + km)(ﬂc + )

Based on the categorization of the multiscale models of infectious disease systems in [19, 20],

the multiscale model system given by (3.3.7) is a nested multiscale model of class 3. After
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estimating NC as well as establishing the simplified nested multiscale model system given by
(3.3.7), we now analyze the behavior of this nested multiscale model system (3.3.7). In the next
section we present some results from mathematical analysis and numerical simulations of the

behaviour of the simplified nested multiscale model (3.3.7).

3.4 Mathematical Analysis of the Simplified Nested Multiscale
Model For PTB Infection in Ruminants

The PTB dynamics multiscale model system (3.3.7) can be analyzed in a region I' C R‘i of

biological interest, which is given by

I' = {(Se;lc;Be) € RY:

(3.4.1)
0<Se+1c<5, 0<Be <55}
where the constant S; and Ss are such that
A
Sl - _07
e
(3.4.2)
N.a. A
Gy = —ctefic
acpc

It can be easily shown that all solutions for the simplified multiscale model system (3.3.7) with
positive initial conditions remain bounded within the invariant region I" given by (3.4.1). There-
fore, it is sufficient to consider the dynamics of the flow generated by the simplified nested model
system (3.3.7) in I'.

In the following three subsections, we evaluate global stability of both the disease-free and
endemic equilibrium states for the PTB dynamics multiscale model system (3.3.7) as well as
evaluating sensitivity of the two main between-host transmission metrics which are the basic
reproductive number (R,) and the endemic value of the nested multiscale model (3.3.7) MAP
bacteria (B().
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3.4.1 Disease-free equilibrium and reproductive number of the simplified

nested multiscale model for PTB infection in ruminants

The disease-free equilibrium of the nested multiscale model system (3.3.7) was obtained by

setting the left-hand side of the model to zero and further assume that /o = B~ = 0 to get

~ A
Ey = (X*,0) = (—C,o,o> , (3.4.1.1)
He

where Eo denotes the disease-free equilibrium of the nested multiscale model system (3.3.7).

3.4.1.1 Derivation of the reproductive number of the simplified multiscale model for PTB

infection in ruminants

The basic reproduction number denoted by R, is a threshold value that is often used as a public
health measure to determine whether a disease will persist or die out. In this study, we computed
the basic reproductive number of the simplified multiscale model system (3.3.7) by using the

next generation operator approach in [5] to obtain

BCACNCQC

R pr—
0 pe(pe + dc)Boae

(34.1.1.1)

which can be re-written as
Ro - RUEROb (34112)

where the quantity R, is explained as follows:

a. Consider a single newly infected ruminant entering a contaminated-free environment at an
equilibrium point. The expected number of bacteria cells produced by this ruminant and

contaminate the environment is approximately

Nea,

Ry, = — %
% po(ue + oc)

a

(3.4.1.1.3)

From the expression (3.4.1.1.3) we deduce that the quantity R, depends on the average
MAP bacterial load within an infected ruminant /N, which is excreted into the physical
environment at a rate o, , where it becomes infectious to other ruminants during feeding
from contaminated food or water with MAP bacterial load. In this study, we consider

N, as a composite parameter which is interpreted as the endemic value of the within-host
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scale MAP bacterial load B which we have already determined from the within-host PTB
disease dynamics sub-model as given in equation (3.3.8). Therefore, the quantity R,
quantifies how much an infected ruminant can contribute to the spread of the disease in the
herd during its entire period of infectiousness, with 1 /(1 + d¢) describes the average life

span of an infected ruminant.

b. Similarly, consider a newly bacterial infectious dose of MAP bacilli cells entering a disease-
free population of a ruminant population at an equilibrium point. The expected number of

ruminants infected by this dose of bacteria cells is approximately

_ Behe

R .
0 OCCB[)

(34.1.1.4)

b

We can also deduce that the quantity 2y, in (3.4.1.1.4) depends on the supply rate of
susceptible ruminants A¢, the rate at which susceptible ruminants contract MAP bacteria
in the physical environment domains during feeding (¢, the average life span of each
susceptible ruminant host 1/, the average life span of MAP bacteria load in the physical
environment domains and the susceptibility coefficient to PTB infection in the ruminant
community/herd, where B is the bacterial load that results in 50% chance of the people

being infected.

Collectively, based on the two expressions Iy, and R,,, we conclude that the epidemiological
(between-host scale) transmission parameters and the immunological (within-host scale) param-

eters all contribute to the transmission of ruminant paratuberculosis disease.

3.4.1.2 Global stability of the disease-free equilibrium

In this subsection, we determine the global stability of DFE of the simplified multiscale model
system (3.3.7) by using a next generation operator [5] as in Chapter 2. Thus the system (3.3.7)

can be re-written in the form

dX
— = F(X,Z
dt (X, 2),
(3.4.1.2.1)
dz
— = G(X,Z
dt ( ) )7

where

e X = S¢ represents a compartment of uninfected ruminants, and
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e 7 = (I¢, Be) represents compartments of infected ruminants and Infective MAP bacteria

in the physical environment.

We let

A
Ey = (X*,0) = (—C,o,o) : (3.4.1.2.2)
He

denote the disease-free equilibrium (DFE) of the model system (3.3.7). For X™* to be globally
asymptotically stable, the following conditions (H1) and (H2) must be satisfied.

dX
HI. p7 F(X,0) is globally asymptotically stable (g.a.s),

H2. G(X,Z)=AZ - G(X,Z),G((X,Z) >0for (X, Z) € R® where A = D;G(X*,0)is an

M-matrix and Riis the region where the model makes biological sense.

In this case,

F(X,0) = [ Ac — peSe | (3.4.12.3)
and the matrix A is given by
A
—(pe +c) Pele
e Bo
A= (3.4.1.2.4)
Ncac —Qc
and
A S
( < - . ) BeBe
. pcBy By + Bce
G(X,Z) = . (3.4.1.2.5)
0
Since Sg = Ac > ©__itis clear that G(X, Z) > 0 forall (X, Z) € R? . It is also clear
peBo T By + Be

that A is a M-matrix, since the off diagonal elements of A are non-negative. We state a theorem

which summarizes the above results.

Theorem 3.1. The fixed point

A
Ey = (X*,0) = (—C,o,o)

26
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of the multiscale model system (3.3.7) is globally asymptotically stable (GAS) if Ry < 1 and the
assumptions (H1) and (H2) are satisfied.

3.4.2 Endemic Equilibrium and its Global Stability

In ths subsection, we determine the endemic equilibrium state of the simplified nested multiscale
model system (3.3.7) by setting the left-hand side of the simplified nested multiscale model

system (3.3.7) to zero but assuming that /- and B¢ are non-zero, so that

E* = (S5, I, BE) (3.4.2.1)
where
(o _ Ac(pc[Ro — 1] + (Be + pc))
¢ (B + pe)peRo
[ BeAc[Ry — 1]
¢ (pe +d¢)(Be + pe)Ro’
(3.4.2.2)
* :uCBO
B _HePo ipo ),
¢ Be + ,uc[ 0~ 1]
RO _ 5CACNcac
L pe(pe + dc)Boae

We deduce that only a single positive endemic equilibrium point exists whenever Ry > 1. To this
effect, we conclude that there exists only one unique endemic equilibrium point for model system
(3.3.7) whenever Ry > 1. We can then further determine the global stability of the endemic
equilibrium for the simplified multiscale model system (3.3.7) since we have established the
existence of £* without providing any information about its stability. The global stability of the
endemic equilibrium E* of the multiscale model system (3.3.7) is summarized in the following

theorem:

Theorem 3.2. The Endemic Equilibrium E* of the multiscale model system (3.3.7) is globally
asymptotically stable (GAS) whenever Ry > 1.

Proof: The proof is not needed since the global stability of the endemic equilibrium is a conse-

quence of Theorem 2.6 in Chapter 2.
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3.4.3 Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of the two PTB transmission metrics derived
from the simplified nested multiscale model given by (3.3.7) to the parameters of the model. As
mentioned previously, the two PTB transmission metrics derived from the baseline PTB mul-
tiscale model system (3.3.7) are: the reproduction number, Ry, which generally describes the
dynamics of a disease at the beginning of an infection and the endemic value of the environmen-
tal bacteria load, B;,, which generally describes the dynamics of a disease at the endemic level.
For any epidemic model that describes the dynamics of any diseases in a population, a sensi-
tivity analysis study is an essential to perform as it helps to identify model’s parameters which
can be targeted for disease control, elimination or even eradication, and also be monitored and
controlled during an outbreak of the disease. In this case, sensitivity analysis of both the PTB
multiscale transmission metrics (R and B/.), with respect to the variation of the baseline PTB
multiscale model system (3.3.7)’s parameters is conducted using Latin Hypercube Sampling and
partial rank correlation coefficients (PRCCs). We used 1000 simulations per run to investigate
the impact of each model parameter on both the basic reproduction numbers (R;) and the en-
demic value of the environmental bacteria load (5/.). The sensitivity results of R, and B, to the

model parameters are given in the Tornado plots, Fig. 3.11 and Fig. 3.12, respectively.
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Figure 3.11: Tornado plot of partial rank correlation coefficients (PRCCs) of the model parame-

ters that influence the PTB transmission metric Ry.

© University of Venda



University of Venda

Creating Future Leaders

s

Chapter 3 86

3 o =

S e RS e =
o £
T

= =
o
T

2
33 3 o

ST TR
T

)

T =
o0
T

=
=]
T

S
o
o
=
o
w
S
o
S
o
o
o
N
o
w
o
=

Figure 3.12: Tornado plot of partial rank correlation coefficients (PRCCs) of the model parame-

ters that influence the PTB transmission metric B.

Fig. 3.11 and Fig. 3.12 show the results of the evaluating the sensitivity of the two PTB trans-
mission metrics derived from the PTB simplified multiscale model (3.3.7). From the sensitivity
analysis results of both R, and B, to baseline PTB multiscale model (3.3.7)’s parameters in
Fig. 3.11 and Fig. 3.12, we deduce that some of the baseline PTB multiscale model (3.3.7)’s pa-
rameters have positive PRCCs and some have negative PRCCs. This indicates that, parameters
with positive PRCCs will increase the value of both Ry and B/, when they are increased, while
parameters with negative PRCCs will decrease the value of R, and B, when they are increased.
For instance, increasing a parameter like bacteria transmission rate S at the between-host scale
eventually increases the value of R, and B, and also increasing parameters like B, will lead to
a reduction in the value of both Ry and B(.. Therefore, since R, characterizes transmission of
PTB infection at the start of the epidemic while By, characterizes transmission of PTB when the
disease is now endemic in a herd, we make the following conclusions regarding the sensitivity of
both R, and B

a. The PTB transmission metric Ry is relatively sensitive to the variation of the within-host
scale and between-host scale parameters of the multiscale model system (3.3.7), but more
highly sensitive to the five within-host scale parameters (itc, Ny, (g, B, k). From the
results of the sensitivity analysis of Rj, we can easily notice that the influence of the

between-host scale parameters on the changes of R, is negligible. This is contrary to
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the results of sensitivity analysis of the single-scale model basic reproductive number in
Chapter 2 which indicate that the between-host parameters such as S and By have the
higher sensitive PRCC indexes of about more than 0.4. This might be due to the fact
that single-scale models characterize the dynamics of an infection at the microscale of

organization.

b. Similarly, the PTB transmission metric B, is also relatively sensitive to the variation of
the within-host scale and between-host scale parameters of the multiscale model system
(3.3.7), but highly sensitive to only three within-host scale parameters (i, NV,,, k) and
two between-host scale parameters (8¢, By). This means that when PTB is at the endemic
level, interventions such as (a) vaccination that reduces susceptibility of ruminant to infec-
tion, (b) drug treatments if available that would reduce the population of the within-host
MAP bacterial cells, and (c) environmental hygiene management that reduces the risk of
a ruminant to interact with environmental MAP bacterial cells in the environment need to
be highly considered as they are likely to have the highest benefits in reducing the trans-
mission of PTB among ruminants in the herd. This is also contrary to the output of results
of sensitivity analysis of the single-scale model basic reproductive number in Chapter 2
which indicate that the two between-host parameters S~ and Bj have the least sensitive
PRCC indexes of about less than 0.1. This also can be due to the fact that single-scale
models phenomenologically characterize the dynamics of an infection at the microscale of

organization.

3.5 Summary

The major innovation in this chapter to scientific knowledge is the use of a nested multiscale
model to investigate if the initial infective inoculum increases beyond the minimum infectious
dose (MID) has an impact on the dynamics of an infectious disease system in which the pathogen
replication-cycle occurs only at the microscale. The numerical results in this chapter demonstrate
that once the minimum infectious dose is consumed, then the infection at the within-host scale is
sustained by pathogen replication. These results also show that as the initial inoculum increases,
the time to reach the endemic state also increases at this scale domain. However, at the between-
host scale, the results further show that when initial inoculum increases beyond the MID makes
no different in the transmission dynamics of the disease in the ruminant population. From these
results it seem like superinfection might have an insignificant effect on the dynamics of PTB in

ruminants. However, at this stage we cannot precisely conclude if superinfection does not effect
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on the dynamics of the disease. This would be investigated in the next chapter (i.e. Chapter 4) us-
ing an embedded multiscale model. Furthermore, through the reduction of the dimension in order
of full nested multiscale model enable us to estimate a composite parameter, Nc, that is difficult
to estimate using single-scale models. The estimation of ]/\\7c facilitate in enhancing single-scale
model framework that can be developed at host level to predict the dynamics of paratuberculosis
in ruminants. This is largely because single-scale models consider pathogen transmission as the
only major disease process, while multiscale models consider both pathogen transmission and
pathogen replication as the two major disease processes. We also perform a sensitivity analy-
sis to the two main disease dynamics metrics of the simplified nested multiscale model, namely
the basic reproductive number and the endemic value of the MAP bacteria in the environment
to determine important parameters of paratuberculosis disease dynamics. The sensitive analysis
results show that at the start of PTB infection and when it has reach at the endemic level, the
two key within-host parameters (y. and N,,) are relatively sensitive to PTB disease dynamics.
This is unlike the sensitivity results of the basic reproductive number and the endemic value of
the MAP bacteria in the environment in the single-scale model for PTB developed in Chapter 2
which only provide a general indication about the influential of the within-host dynamics signifi-
cantly influence the dynamics of the PTB disease, but not specifically indicating parameters that

have potential influence on the disease dynamics.
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Chapter 4

An Embedded Multiscale Model to Study

Paratuberculosis Dynamics in Ruminants

4.1 Introduction

In the previous chapter, we developed a nested multiscale model for ruminant paratuberculosis.
We used the nested multiscale model to investigate the influence of initial inoculum on ruminant
paratuberculosis disease dynamics. What we do not know is whether an embedded multiscale
model can be used to model the same disease system with comparable accuracy. The most defin-
ing feature of an embedded multiscale model is that at any level of organization of a disease
the macroscale influences the microscale through super-infection [1]. This is unlike the nested
multiscale model in which the macroscale influences the microscale through initial infective in-
oculum. In this chapter, we presented an embedded multiscale model to investigate the influence
of super-infection on the dynamics of infectious diseases that has a pathogen replication-cycle at
microscale using Paratuberculosis in ruminants as a case study. Therefore, the objective in this
chapter was to investigate how the super-infection influences disease dynamics for a pathogen
with a replication cycle at the microscale. In the next chapter we compare the suitability of the
embedded multiscale model in prediction of PTB transmission dynamics with the nested multi-
scale model described in the previous chapter. To the best of our knowledge, there is no embed-
ded multiscale models in the literature that we are aware of which characterize the dynamics of

infectious diseases that have a pathogen replication-cycle at the microscale of organization of an
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infectious disease system. The embedded multiscale model presented in this study is the first of
its kind to be developed to characterize infectious disease dynamics with a pathogen replication-
cycle at the microscale. However, the only application of the embedded multiscale models that
we aware of is that of hookworm infection [8] which is an environmentally-transmitted disease
systems of type II in which there is no pathogen replication-cycle at the microscale. Moreover,
the multiscale models such as in [9] and [10] use embedded multiscale models as sub-models
in the context of schistosomiasis and guinea worm infection, respectively. Unlike hookworm
infection in [8] and schistosomiosis in [9] as well as guinea worm infection in [10] in which
their disease-causing agents have no replication-cycle inside a host, paratuberculosis (PTB) in
ruminant considered in this study is caused by the bacteria that has a replication-cycle that oc-
cur inside a host. The bacteria which is responsible for PTB infection in ruminants is called
Mycobacterium Avium Subspecies Paratuberculosis (MAP) [52-54] which is the most notori-
ous obligate pathogen affecting domestic ruminants and wild animals throughout the world. As
previously mentioned, MAP is commonly widespread in dairy cattle and can significantly pose
a serious economic burdens in dairy cattle industries due to the reduction of milk production,
increased cattle mortality and premature culling of infected cattle as well as reduction of sale
price for cattle in regions with high PTB prevalence [48]. Additionally, in the dairy cattle, PTB

is manifested by cattle’s failure to grow, increases in weight loss and chronic diarrhea.

For the transmission-replication dynamics of PTB in the dairy ruminants at the host level, there
are two important disease processes that usually occur at different scales of PTB infection. One is
the outside-host (i.e., within-host scale) disease process which is associated with the transmission
of MAP at the ruminant population-level. The other is the inside-host (i.e., between-host scale)
disease process which is associated with the replication of MAP at the ruminant individual-level.
It is worthy to mentioning that there is a reciprocal influence between these two disease pro-
cesses on the dynamics of PTB in the dairy ruminants. Mathematical models that integrate these
two disease processes of PTB in dairy ruminants into multiscale modelling have been devel-
oped using either individual-based multiscale such as [62] or hybrid multiscale modelling such
as [54, 61]. It is also worth mentioning that although an IMSM in [62] and a HMSM in [54] both
have respectively shed some lights into the multiscale nature of PTB infection and the impact
of health interventions against the disease, there are important differences between them and the
current embedded multiscale model presented in this research study. Therefore, the following
differentiate our model from the models in [54], our model uses pathogen load as a common
metric for infectiousness and disease transmission potential, whereas in [54] different metrics
were used for disease transmission across scales. Additionally, the within-host scale model in

[54] use pathogen load as the metric for disease transmission while at between-host scale disease
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class (i.e. infected class or prevalence) is used as the metric for disease transmission.

4.2 Embedded Multiscale Model for the PTB Transmission-

Replication Dynamics in Ruminants

To investigate explicitly if superinfection has an influence on the dynamics of infectious diseases
with a pathogen replication-cycle at the microscale of their organizations using ruminant paratu-
berculosis as an example, we developed a multiscale model which takes into account the recipro-
cal influence of the macroscale on the microscale through superinfection on the disease dynam-
ics. For the PTB in ruminants, the within-host sub-model that characterize the dynamics of the
disease at the microscale was adopted with minor modifications from a single-scale model frame-
work in Magombedze et al. [53]. However, the only minor extension to the model in [53] is the
addition of the excretion/shedding rate parameter «.. While the between-host sub-model that de-
scribes the dynamics of the disease at the microscale is based on a susceptible-infected-pathogen
(SIP) epidemic framework as described in Chapter 2. Therefore, integrating the between-host
epidemic framework developed in Chapter 2) and the adopted within-host model in [53] through
super-infection and pathogen replication method introduced in [9] result to embedded multiscale
model for ruminant paratuberculosis transmission-replication dynamics which is consequently
based on monitoring the dynamics of nine populations: susceptible ruminant (S¢), infected ru-
minant (/o) and the between-host MAP bacilli bacterial load (B¢) in the environment at the
between-host scale; and susceptible macrophages (Mg ), infected macrophages (/,,,), within-host
MAP bacilli bacterial load (B.) at the extracellular environment, specific naive CD4+ T cells
(o), Thl response cells (717), and Th2 phenotype response cells (75) at the within-host scale

within an infected ruminant-host level. We made the following assumption for this model:

(i) Infected ruminants do not naturally recover from MAP infection,

(i) Transmission of infection is only through indirect means and if there is any direct trans-

mission, it will be estimated by an indirect expression,

(i11) There is no vertical transmission, and ruminant hosts are not vaccinated or treated and
so the infection state of the ruminant hosts (exposed, subclinical, clinical, etc.) is only

determined by the level of immune response in each ruminant host.

(iv) The recruitment of ruminants in the herd is through birth and incoming ruminant from

other farms.
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(v) All the new recruited ruminants are assumed to be healthy and have not been previously

exposed to the disease.

(vi) The extracellular MAP bacterial load B. = B.(t) is a proxy for individual ruminant infec-

tiousness and is excreted out of the body of an individual ruminant through feces.

(vii) There is no bacteria replication in the physical environment, and the loss of MAP bacteria

in the environment due to uptake by susceptible ruminant hosts is negligible,

(viii) The depletion of MAP bacteria in the extracellular environment through engulfment by

macrophages is negligible.

(ix) Clonal expansion of the 7{ cells into 77 is only due to infected macrophages while clonal

expansion of the 75 is only due to MAP bacteria in the infected ruminant host.

Based on the above mentioned assumptions and the diagram presented in Fig. 4.1, the embedded
multiscale model for PTB transmission dynamics is given by the following system of ordinary

differential equations:
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. dlg(t)  BeBe(t)
1. c(;t = B()C:i-—gc(ﬂsc(t) — [ne +écllc(t),
. dBC;(t) — aullo(t) + 1]Bu(t) — acBo(t),
. dB.(t) BeBo(t)[Sc(t) — 1] _ N
. — = ot Be(|oolic® £ 1 + Nk L (t) — [pte + ] Be(t),
v, %i(t) = Ny — BoMy(t)Be(t) — poMy(2), #2.1)
vi. IO G MAOB) o+ 10l (8) — WAL 1),
vii, T p (8 L0) + BB — T (1),
v, dTC}t(t) 0L (OTo(t) — T (8),

The first two equations of the model system (4.2.1), equations (1) and (2), describe the dynamics
of susceptible and infected ruminant hosts respectively. At any time ¢, new recruits susceptible
ruminant enter the ruminant population through birth and incoming ruminant from other farms
at a constant rate Ao. Susceptible ruminant population losses its individuals due to natural death
at a constant rate ;i and through infection at a rate variable A\ (t)Sc(t). Susceptible ruminants
acquire PTB infection when feed from contaminated pasture with fecal material containing infec-
tive MAP, or drink from contaminated surface water/water troughs with MAP bacilli cells. The
infected ruminant is generated when susceptible ruminants become infected and join the group
at a rate variable A\ (t)Sc(t). The infected group decreases due to natural death at a constant
rate yic or through death induced removal rate at d¢, so that an average lifespan of PTB infected
ruminant in the population is determined by 1/(d¢c + pc). We assume that infected ruminant
spread the disease in the population through contaminating the environment with fecal material
containing the MAP bacteria cells at a variable rate o.B.(t)(Ic(t) + 1) as shown in Fig. (4.1).
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Therefore, the population dynamics of MAP bacilli in the physical environment, described by
equation (3) of the model system (4.2.1) is generated through excretion of fecal material con-
taining the MAP bacteria cells by each infected ruminant individual host at a rate . B.(t)I.(t).
We assume that the population of MAP bacteria in the physical environment decreases due to
natural death at a rate a. Equation (4) of the model system (4.2.1) describes the changes in time
of the within-host MAP bacteria cells at the site of infection within a single infected ruminant
host. The within-host MAP bacteria cells at the site of infection within an infected ruminant host
are generated following uptake of average between-host MAP bacteria cells in the physical envi-
ronment through ingesting contaminated food or water and the release of the intracellular MAP
bacilli into the extracellular environment when each infected macrophage burst. Generally, in
the ruminant population, the uptake of contaminated food or water which contain between-host
MAP bacterial cells, is the transmission of the MAP bacteria from the physical environment to
susceptible ruminant and become infected ruminant. Following the methodology as described
in [8—10] for modelling re-infection (superinfection) for environmentally-transmitted infectious
disease systems, we model the average rate at which a single susceptible ruminant host uptake
MAP bacterial cells in the physical environment through ingesting contaminated food or water

and become an infected ruminant host by the expression

Ae(®)Se(t) 1

Ac(t)Se(t , 422
N P A ES] 422
where Ao (%), Sc(t) and I(t) are as defined previously, and

(Sc(t), Ie(t), Be(t)) — (Se(t) — 1, 1c(t) + 1, Be(t)). (4.2.3)

being a single transition used for down-scaling and up-scaling between PTB transmission dynam-
ics at the population level and at the within ruminant host level. Moreover, this term \.(t)S.(t)
models increases of the within-host MAP bacteria at the within-host scale through super-infection,
and thus downscaling population infectiousness into and individual infectiousness. Furthermore,
in the within ruminant level, the burst of infected macrophages to release an average number of
intracellular MAP bacteria cells into the extracellular environment is modeled phenomenolog-
ical. The burst rate represents the transmission of the MAP bacteria between cells at the site
of infection within an infected ruminant host. Infected macrophages burst at constant rate k,,, to
release an average number of intracellular MAP bacilli N, into the extracellular environment, so
that the total number of intracellular bacteria released into the extracellular environment is deter-
mined by N,,k,,I,,. Therefore, the average number of within-host MAP bacterial cells at the site
of infection, B, (t) within a single infected ruminant host increases at a mean rate A, ()5, (t) and

Nk I,,. We assume that the population of MAP bacilli in the extracellular environment decay
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naturally at a constant rate j. and excreted out of the body of an infected ruminant into the phys-
ical environment through fecal material at a constant rate «.. Equations (5) and (6) of the model
system (4.2.1) describe the dynamics of the susceptible macrophage cells M, (¢) and infected
macrophage cells 7,,,(¢) at the site of infection within a single infected ruminant host. Similarly,
at any time ¢, new susceptible macrophages are recruited through the supply of macrophage cells
from progenitor monocytes that are recruited from the blood to the site of infection at a constant
rate Ay and the population losses individuals due to natural death at a constant rate p4. In that
way an average lifespan of each susceptible macrophages cells in the site of infection within an
infected ruminant is 1/4145. Susceptible macrophages acquire infection through engulfing extra-
cellular MAP bacilli bacteria at a rate 3;. The infected macrophage cells at a site of infection
within an infected ruminant host is generated when susceptible macrophages become infected
and join the group of infected macrophages at a rate 3,. We assume that in the population of
infected macrophages there is an additional death rate related to infection and due to removal by
T response at a rate k,,, and 7,,, respectively, so that the lifespan in the population of infected
macrophages is 1/(ky, + 1ty + 7m711). The last three equations of the model system (4.2.1),
equations (7) - (9) describe the evolution in time of the population of ruminant response cells at
a site of infection in the gut which are specific naive CD4+ T cells (7j), and the two subsets of
the MAP specific immune response, Th1 (77) and Th2 ('75) cells (see [53] and reference therein).
The population of specific naive CD4+ T cells (1;) for MAP bacilli are produced at a constant
rate Ay from the thymus. We assume that these specific naive CD4+ T cells decay naturally at
a rate (i, so that their average lifespan is 1/py. Following the work in (4.2.1), we also assume
that 7 cells become 7' and T, immune response cells at per capita rates ¢,, and J,, respectively.
Thus, the population of 7} and 75 immune response cells are proliferated at a rate 6,6,,1,, Ty and
016, B, 1o, respectively. We also assume that both the population of 77 and 75 immune response

cells decay naturally at a rate p; and o, respectively.

© University of Venda



s

University of Venda
Creating Future Leaders

Chapter 4 96
Ac
1 N : A
Fplm d
I C L : v
. n'lT-D[LTL _-'-.' TO ...}:lf).—l:?

Sc

v

reSc M-:b ﬁd)M‘th
>l (5] BLTLT'D m
‘_".’ é
- - T,
.: . lTl m T Y[T[T]
wTr & 4 nTs
‘ ASe i i Nukulm v '
2_- 'E : Ym [LnT] T2
]_l.cSC ,:' -
B c 0,0, TpB.
reSce TETTL
-E e onToBe
HeB. = acBe
1 (IctDoeBe
(nc+ 8c)lc
acBC l

Figure 4.1: A conceptual diagram of the multiscale model of PTB transmission dynamics in

ruminant population.

4.3 Mathematical Analysis of the Embedded Multiscale Model

for PTB Transmission-Replication Dynamics in Ruminants

4.3.1 Feasible Region of the Equilibria of the Model

The embedded multiscale model system (4.2.1) for PTB transmission dynamics can be analyzed
in a region I' € R™ of biological interest. Now assuming that all parameters and state variables

for model system (4.2.1) are positive for all ¢ > 0, it can be shown that all solutions for the
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model system (4.2.1) with positive initial conditions remain bounded. Letting No = S¢ + I¢o
and Ny = M, + I,,, and further add the 1 and 2", and 5" and 6"" equations of the model

system (4.2.1), respectively, we obtain

dN¢g(t
1. dct() = Ac — peNe — dcle,
(4.3.1)
dNy(t
2. CZ( ) = A¢ — M¢N¢ — [’YmTl + km]fm
It follows that
dNe(t
1. di( ) < Ac¢ —peNe,
4.3.2)
dNy(t
2. C;;( ) S A¢ — /L¢Nq>.
From which we get
—uct AC —uct
1. No(t) < Ne(0)e e +u_ [1—eret],
c
(4.3.3)

2. Ny(t) < Ny(0)e o' + A [1— e +']
He
where N¢(0) represents the value of total ruminant population at the between-host scale in the
population-host level and N, (0) represents the value of total macrophage cell population at the
within-host scale within a single infected ruminant-host level evaluated at the initial values of the
respective variables. Taking the limits of both N () and Ny(t) in (4.3.3) as time gets larger, we

get the following expressions

: Ac
< —
1. tlg?o sup(Ne(t)) < e
(4.3.4)
2. i Ny(t) < ¢
- lim sup(Ny(t)) -~ < i
Now, considering the 7" equation of the model system (4.2.1) given by
dTy(t
O Ny [Bult) + BT — T (1), (43.5)
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it is true that

dT,
d—t“ < Ao — poTo, (4.3.6)
from which we get
—puot AO —pot
To(t) < To(0)e o' + — [1—e M, (4.3.7)
Ho

where 7, (0) denoting the value of total naive immune response cell population at the within-host
scale within an infected ruminant-host level evaluated at the initial values of 7. Taking the limits
of Ty(t) as time gets larger, we get the following

Ao

lim sup(Ty(t)) < (4.3.8)
t—o00 Mo

From the 8" equation of the of the model system (4.2.1), we get

AT, _ iy
. — Helo

Ty (4.3.9)

From which we get

016, Ao A
L D0mBohg 1

T.(t) < Ty(0)e !
i) < 1O e 41 fho

M (4.3.10)

with 77(0) being the value of total Th1 immune response cell population at the within-host scale

within a single infected ruminant-host level evaluated at the initial values of 77. This implies that

010, Ao A
lim sup(Ty(t)) om0 (4.3.11)
=00 He 1o
A A 010,, Aoy .
Therefore, substituting No < —<, N, < 8 and Ty < 22079 dnto the 37, 4™ and 9t
ke

) ?  HoH1fho
equations of the model system (4.2.1), we obtain the following

( B A
1. dBc(t) < —ac( o MC)BC — acBe,
dt pe
dBc(t) 5C<AC — ,UC)BC NmkmA¢>
2. < — (e + a)B.,  (43.12
dt Qc(Ae + pe)(Bo + Be) P G ) ( )
dTs(t 050, A\
3. >(t) < 2 0p 215,
\ dt Ko
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with
a; = (pe + ae). (4.3.13)

From which we get

)
A
1. By < Clbotrd)
27eie%e]
2. B, < be(Ac — pe)Be Nk , (4.3.14)
Oo(Ae + pe)(Bo + Be)(pe + ac)  pg(pte + o)
3.7, < 02000 B,.
\ Ho b2

Following some algebraic solving we obtain

( ac(Ae + pe) /
1. BC S 2#0—040|:§1+ §%+4§2}7
1
5 {51 + 4/ £+ 452] ) (4.3.15)
020, Ao
\ 3. Ty Dot [él + 4/ &3 +4£2} :

where the constants &; and &5 are as follows

2. B,

IN

IA

& = (v + 1) — By,
(4.3.16)

&2 = by,
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with
( (Ao + o)
vy = ——————,
2717
Be(Ae — pe)
v = , 43.17
VS Bohe e e+ o) (4317
NmkmA¢
vy = )
\ /,Ld)(,U/C + ac)

This implies that

(

. (Ao +
1. tlgglo sup(Be(t)) < % [51 +1/& +4f2] ;
Zgyw@W)S%Fﬁ ﬁwq, (43.18)
020, A
k3gyw@@)§:%£Fﬁ-ﬁ+%}

Therefore, all feasible solutions of the model system (4.2.1) are positive and enter a region de-
fined by

I' = {(SC7107807BcaM¢7[m7T05T17T2) S Ri)_
0<Sc+1c<S, 0<My+ 1, <S5, 0< Be <83, (4.3.19)
0<B. <8y 0<Tp,<S; 0<Ty <S5 0<T,<5},
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which is positively invariant and attracting for all ¢ > 0, where
( A
Sl = _Ca
[ 20e4
A
SQ = _¢7
He
a.(Ac +
Sz = w [51+\/§%+4§2] ;
Helo
1 2
Sy = 3 §1+14/& +48],
A 4.3.20
85 = _Oa ( )
Ho
010, Ao\
SG = ° ¢7
Het1to

\

000 5
Sy = 2iofis [51 +4/& + 452] ;
& = vo(vh + 1) — By,

52 = 12 By.

Therefore, it is sufficient to consider solutions of the model system (4.2.1) in (2, since all so-

lutions starting in €2 remain there for all ¢ > 0. Hence, the multiscale model system (4.2.1) is

mathematically and epidemiologically well-posed. It is sufficient to consider the dynamics of

the flow generated by model system (4.2.1) in 2 whenever A¢ > uc and vo(vy + v5) > By. We

shall assume in all that follows (unless stated otherwise) that A¢ > ¢ and vo(vy + 15) > By.

In the next two subsections, we provide some results concerning the equilibrium states of the

multiscale model system (4.2.1) and their stabilities. The multiscale model system (4.2.1) has

two equilibrium states: the disease-free equilibrium state (DFE) and the endemic equilibrium

state (EPP).
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4.3.2 Disease-Free Equilibrium and Reproduction Number

We obtained the disease-free equilibrium point of the model system (4.2.1) by setting the left-
hand side of the equations of model system (4.2.1) equal to zero and also assuming that /o =
Beo=B.=1,, =1, =T, =0. Thus, we let
A A A
E, = (—C, 0,0, 0,=2 0, =2 o0, o) , (4.3.2.1)
He He Ho
denote the disease-free equilibrium of the model system (4.2.1). For the purpose of analyzing
the stability of the DFE, we make use of the basic reproductive number, Ry. We employed the
next generation operator approach described in [5] to compute the basic reproduction number of

the embedded multiscale model (4.2.1). Therefore, the model system (4.2.1) can also be written

in the form
¢ dX
— = X, Y. 7
dt f( b ) )7
Y
Y xv.2) (4.322)
dt
dz
— = h(X) Y. Z
\ dt ( ) ) )7
where

i. X = (Se, My, Ty, Th,T) represents all compartments of individuals who are not infected,

ii. Y = (I¢, I,,) represents all compartments of infected individuals who are not capable of

infecting others,

ili. Z = (B¢, B.) represents all compartments of infected individuals who are capable of

infecting.

In this case, we let the disease free-equilibrium of the model (4.2.1) be denoted by the following

expression

_ A A A
UU = <_Ca Oa Oa Oa _¢7 07 _07 07 0) . (4323)
j2%] Ho Ho

Following [5], we let
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with
_ BceAcBe
‘XV*7 Z — ]
il ) pe(pe + dc)(Bo + Be)
4.3.2.5)
B . Ay B,
gQ(X 7Z) = 6¢ ¢ .
1ot + 0g)
We deduce that
MX,Y,Z) = (M(X,Y,Z),h(X,Y, Z)), (4.3.2.6)
with
KyBcB,,
h X Y Z - T S~ ch - B 9
1( )y Ly ) (B() + Bm) + « aoDo
4.3.2.7)
K B¢
h X7Y7Z :—+KBC_ et cha
2( ) (Kg +KQBc) 4 (:u Q )
where
p
KO _ ﬁCACOéc :
pe(pe + dc)
P Bo(Ae — pe)(po + dc)
1 — )
O
4.3.2.8)

Ky = BelAe + pe(pe + oc),

K3 = po(pe + d¢)Bo,

BN Nk,
K, = ————.
\ N¢>(M¢> + ki)
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A matrix
—QC [0
A= Dzh(X" g(X"0),0) = K 4.3.2.9)
1
_ K - c c
s 4 — (pte + o)

can be written in the form A = M — D, so that

0 a
M = (4.3.2.10)
K,
— K
K, °
and
(676 0
D = . 4.3.2.11)
0 (pe + )

The basic reproductive number is the spectral radius (dominant eigenvalue) of the matrix 7' =
MD™!, that is,

Ry = p(T). (43.2.12)

Hence, in this case, the basic reproductive number of the embedded multiscale model (4.2.1) is

expressed by the following quantity

1 [ o

where

Ry, = (4.3.2.14)
" ol + R (e + )
characterizes a partial within-host basic reproductive number and
A - c
Ry, = Lelhc = po)a (4.3.2.15)

B aC,uC(DC(/% + O‘c)

characterizes a partial between-host basic reproduction number. However, we can conclude from

the expression (4.3.2.13) of the reproductive number that it is a function of both the within-host
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scale parameters and the between-host scale parameters. Therefore, the obtained results here
show that the within-host scale and the between-host scale influence each other in a reciprocal
way. We further made use of the basic reproductive number (4.3.2.13) to test both the local and
global stability of the disease-free equilibrium (Fj) of the multiscale model system (4.2.1). We
then established that if the basic reproductive number is less than a unity, then £ is locally and
globally stability asymptotically stable. Details of the local and global stability of £ are given

in the next two subsections.

4.3.3 Stability Analysis of the Embedded Multiscale Model Disease-Free
Equilibrium State

4.3.3.1 Local stability analysis of analysis of the embedded multiscale disease-free equi-

librium state

In this subsection, we determined the local stability of DFE of the model system (4.2.1) by
linearizing all the equations of the model system (4.2.1) to obtain a Jacobian matrix. Then we
evaluate the Jacobian matrix of the system at the disease-free equilibrium

A A A

E, = (—C, 0,0, 0,=2 0, =2 o0, 0). (4.33.1.1)

%6 o Ho
Evaluating the Jacobian matrix of the model system (4.2.1) at the disease-free equilibrium state
(DFE), we get
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A
—ue 0 _Pehe 0 0 0O 0 0
e B
A
0 —ag Pehe 0 0 0 0 0 0
peBo
0 0 —ac e 0 0 0 0 0
0 0 A —a; 0 Nykm 0 0 0
A
0 0 0 _Bels 0 0 0 0
J(Ey) = 116 4.3.3.1.2)
A
0 0 0 Paho —a; 0 0 0
i
8y Sm\
0 0 0o =2 0 -2 _u 0 0
Ho Ho
015mA
0 0 0 0 0 —=0% 0o —u 0
Ho
055, A
0 0 0 200 0 0 0 —pu
Ho
where

ap = (pc +dc),

ap = (Nc+a0)7

(4.3.3.1.3)
a2 = (/1’(;5 + km)7

a - Bo(Ae — pe)
1 -_——-— = = .
\ Popc By

Now, considering stability of DFE by calculating the eigenvalues ()\;) of the Jacobian matrix

given by equation (4.3.3.1.2), characteristic equation for the eigenvalues is given by
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Qo[\* + PN + Do)\ + B3] = 0, (4.3.3.1.4)
where the coefficient () is as follows

Qo = (—pc — A) (=g — M) (—po — A)(=p1 = A)(—p2 — A)(—ag — A).  (4.3.3.1.5)

We noticed from equation (4.3.3.1.4), that there are six negative eigenvalues (¢ ,-fig, -f10, ~C0,-
1 and -po). The stability of the DFE can be concluded by using the Routh-Hurwitz criteria to

determine the sign of the remaining eigenvalues of the polynomial
A+ PN+ Pod + Py =0 (4.3.3.1.6)

where

P, = ac+ay+ ao,

CI)Q = (Oéc' + ag)(ll + Oéc(lg(]_ — RO(;); (43317)

| P53 = aas[Ry, + ac(l — Ro,.)].

Employing the Routh-Hurwitz stability criterion, we can deduce that the equilibrium state asso-
ciated with the model system (4.2.1) would be stable if and only if the determinants of all the

Hurwitz matrices associated with the characteristic equation (4.3.3.1.6) are positive, that is

Det(H;) >0; j=1,2,.....6 (4.3.3.1.8)
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where
.
o, 1
Hl - ( (I)l )) H2 - )
O3 D
¢, 1 0 (4.3.3.1.9)
Hy=1 &3 &y &4
0 0 &4

The Routh-Huiwitz criterion applied to expressions in equation (4.3.3.1.9) requires that the fol-

lowing conditions C'1 and C2 be satisfied, in order to guarantee the local stability of the disease-

free equilibrium point of the model system (4.2.1).

Cl. &y, &y, By > 0,

(4.3.3.1.10)

C2. &1 — P35 > 0,

From equations (4.3.3.1.6) and (4.3.3.1.9) we noted that all the coefficients ®;, @5, and P35 of the

polynomial P(\) are greater than zero whenever Ry < 1. And we also noted that the conditions

above are satisfied if and only if the basic reproductive number of the model system (4.2.1) is

less than a unit (i.e., Ry < 1). Hence all the roots of the polynomial P()) are either negative or

have negative real parts. The results are summarized in the following theorem.

Theorem 4.1. The Disease-free equilibrium point of the model system (4.2.1) is locally asymp-

totically stable whenever Ry < 1.
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4.3.3.2 Global stability analysis of the embedded multiscale disease-free equilibrium state

We determined the global stability of DFE of the embedded multiscale model system (4.2.1) by

using a next generation operator [5]. Thus the system (4.2.1) can be re-written in the form

dX

— = FX,Z
dt (X, 2).
(4.3.3.2.1)
day
— = X, Z

where

o X =S¢, My, Ty, Th, T, represents compartment of uninfected ruminant, and

e 7/ = (I¢, Be, B, 1) represents compartments of infected ruminant and Infective MAP

bacilli bacteria in the physical environment.

We let

A A A
Ey = (X*,0) = (—C, 0,0, 0,-2 0, =2 o0, 0> , (4.3.3.2.2)

He He Ko
denote the disease-free equilibrium (DFE) of the embedded multiscale model system (4.2.1).
For X to be globally asymptotically stable, the following conditions (H1) and (H2) must be

satisfied.

dX
HI. v F(X,0) is globally asymptotically stable (g.a.s),

H2. G(X,Z)=AZ — G(X,Z), G((X,Z) > 0 for (X, Z) € R where A = D,G(X*,0) is

an M-matrix and R?r is the region where the model makes biological sense.
In this case,

Ac — peSc

Ay — ppMy

F(X,0) = (4.3.3.2.3)
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and the matrix A is given by

BelAe 1
— 1) 0 0
(ke + dc) Bopc
0 —ao Q. 0
A= Bl ) 4.3.3.2.4)
c\i\g — Mo

0 — 0 & . —\Qc + c Nmkm

Bodope e He)

A
0 0 ooy + k)
L He i
with G(X, Z) given by
_ A s, ) i
— B
<Bo,uc By + Be PoBe
0
G(X,Z) = . (4.3.3.2.5)
0
A
(_¢ - Md)) BQSBC + ’YmTIIm
L\ Mo i

S, A
€ > _"%  and =2 > M, Itis

pucBy — By + Be He

also clear that A is an M-matrix, since the off diagonal elements of A are non-negative. We state

It is clear that G(X, Z) > 0 for all (X, Z) € RY, since

a theorem which summarizes the above result.

Theorem 4.2. The disease-free equilibrium of model system (4.2.1) is globally asymptotically
stable if Ry < 1 and the assumptions (H1) and (H2) are satisfied.

4.3.4 Endemic Equilibrium State of the embedded multiscale model

The endemic equilibrium state of the multiscale model system (4.2.1) is given by

E* = (g, 15, By, BY, M, I TS Ty, )

© University of Venda



s

University of Venda
Creating Future Leaders

Chapter 4 111

satisfies

(0 = Ac—Ae(t)Sc(t) — peSe(t),
0 = Ac(t)Sc(t) = [ne + dclle(t),
0 = a.Be(t)I.(t) — upBo(t),
0 = AeSe+ NokmIm(t) = [pe + e Be(t),
0 = Ay — BsMy(t)B,(t) — e My(2), (4.3.4.1)
0 = BoMy(t)Be(t) = YmT1(t) L (t) — [k + 16 L (),
0 = Ag— [Omlm(t) + 0 Be(t)To(t) — poTo (),

0 = 0:0mLn()To(t) — mTi(t),

0 = 020, Bc(t)To(t) — p2Tx(t)

where
\ BeBe
© By + Bc'
4.3.4.2)
N BeBe(Se — 1)

(Bo + Be)®c(lc + 1)

for all S&, I, Bi, BE, M, I, Ty T5, Ty > 0.

Based on the expressions in (4.3.4.1), we can therefore estimate the disease burden of PTB in
ruminants. We achieved this by estimating the endemic values of the PTB disease variables

Se, I, Bé, BX, My, I T35, T, T . The endemic value of susceptible ruminants is given by

¢ mo

Ac
Ao+ pie

S, (4.3.4.3)

From Eqn. (4.3.4.3) the susceptible ruminant population at endemic equilibrium is given by
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the rate at which new susceptible ruminant individuals entering into the susceptible class at a
constant rate Ao and the average time of stay in the susceptible class. Susceptible ruminants
leave the susceptible class either through infection or death. The endemic value of infected

ruminants is given by

AeSe

I = .
“ 7 e +ée

(4.3.4.4)
From Eqn. (4.3.4.4) the population of infected ruminants at the endemic equilibrium steady
state is determined by the rate at which susceptible ruminants become infected and the density
of susceptible ruminants and the average time of stay in the infected class. The endemic value
of between-host scale MAP bacterial load in the environment at the equilibrium steady state is
given by

a.B¥(I5+1)

Bf, = ————~. 4345
c o ( )

From Eqn. (4.3.4.5) the between-host MAP bacterial load in the environment at the equilibrium
steady state is given by the rate of excretion of the average number of the within-host MAP
bacterial load by each infected ruminant individual into the environment and the average life-
span of the bacteria in the environment. It should be noted that this expression provides a link
between the dynamics of the within-host MAP bacterial load and the transmission dynamics
of the disease at the ruminant population level. The endemic value of within-host scale MAP

bacterial load within a single infected ruminant is given by

ANS* + Nk L
B* _ c™~c + m'

= 4.3.4.6
‘ (e + pte) ( )

From Eqn. (4.3.4.6) the population of within-host MAP bacteria within a single infected rumi-
nant at endemic equilibrium steady state is determined by the average dose of the between-host
bacterial load in the environment are ingested and the average life-span of within-host bacte-
rial load at the site of infection within an infected ruminant and the average number rate of the
within-host MAP bacilli bacteria produced by bursting infected macrophage cells at a site of
infection. It should also be noted that this expression provides a link between the dynamics of
the between-host MAP bacterial load in the environment and the within-host infection dynam-
ics within a single infected ruminant. The value of susceptible macrophage population within a

single infected ruminant at equilibrium steady state is given by

. Ay

Mi=—. 4.3.4.7)
? T BB+ pg
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From Eqn. (4.3.4.7) the susceptible macrophage population at endemic equilibrium within an in-
fected ruminant host is proportional to the average time of stay in susceptible macrophage class
and the rate at which new susceptible macrophage are supplied into the susceptible macrophage
class at the site of infection within this infected ruminant. The endemic value of infected

macrophage population is given by

o By BEM
T kgt o+ YTy

(4.3.4.8)

From Eqn. (4.3.4.8) the infected macrophage population at the endemic equilibrium steady state
is proportional to the average time of stay in the infected macrophage class at the site of infec-
tion, the rate at which susceptible macrophages become infected and the density of susceptible
macrophages. The endemic value of naive CD4 T cell population within a single infected rumi-

nant at the site of infection is given by

Ao

T = .
0 S l*, + 0y B + 1o

(4.3.4.9)

The average population of naive immune response cells at a site of infection within an infected
human at endemic equilibrium point is equal to the average life-span of naive CD4 T cells and
the supply rate of naive CD4 T cells into a site of infection from the source within an infected
ruminant body. The endemic value of a single ruminant MAP-specific immune response Thl
effector cells within a single infected ruminant at the site of infection is given by

010,17, 15

T = —— (4.3.4.10)
M1

The average population of MAP-specific immune response Thl effector cells within an infected
ruminant is proportional to the differential rate of naive CD4 T cells into the class of MAP-
specific immune response cell Thl effector population after a detection of infected macrophage
cells at the site of infection. The endemic value of a single ruminant MAP-specific immune

response Th2 effector cell within a single infected ruminant at the site of infection is given by

0,0, BT

T =
2 1

(4.3.4.11)
From Eqn. (4.3.4.11) that the MAP-specific immune response Th1 effector cell population within
a single infected ruminant at equilibrium point is proportional to the differential rate of naive CD4
T cells into the class of MAP-specific immune response Th2 effector population after a detection
of the within-host MAP bacterial load at the site of infection.
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From the endemic equilibrium values of the model system (4.2.1) given by expressions (4.3.4.3)-
(4.3.4.11), we deduce that the between-host scale expression B¢, depends on both the within-host
and the between-host disease variables, while the within-host scale expression B is determined
by both the within-host and the between-host disease variables. Therefore, the obtained results
here show that the within-host scale and the between-host scale dynamics influence each other

in a reciprocal way.

4.3.5 Stability Analysis of the Embedded Multiscale Model Endemic Equi-

librium State

In this sub-section, we evaluated the local stability of the endemic steady state of the model
system (4.2.1) by using the center manifold theory in [57] as in the previous chapters. In this case,
we employed Center Manifold Theory by making the following changes of variables: letting
Sc = w1, Ic = %9, Be = 3, Be = x4, My = x5, I, = w6, Ty = v7,T1 = vg and Ty, = x9. We
used the vector notation X = (x1, z9, T3, T4, T5, T, T7, Tg, .ng)T so that the model system (4.2.1)

can be written in the form

dx .
- = (x5 (4.3.5.1)
where
£ = (f1, fo. f3, [a, f5, fo, [, fs, fo)- (4.3.5.2)
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Therefore, model system (4.2.1) can be re-written as:

(. Bows(t)
Q. i = Ac— B()C:l——:(:?,@)xl(t) — poxe(t),
1. jfg = _ch—f—?[ﬁgt)x1<t) — [,LLC + 50]I’2(t>,
i, @3 = aewy(t)(xe(t) + 1) — acxs(t),
L em®m@ - o
o d = e Y oo(e ) + Nikmws(t) — [pte + acJza(t),
(4.3.5.3)
v. &5 = Ny — Bexs(t)ralt) — pexs(t),
V1. i‘ﬁ = 5¢$5(t)$4(t) — "}/mfﬂg(t)fﬂfj(t) — [k’m + M¢]$6(t),
vit. T = N — [0mxe(t) + opra(t)]z7(t) — poz7(t),

V114, jfg = 915m:v6(t):v7(t)—u1:v8(t),

L 1. .ig = 82(5(,I4(t)$7(t) _Mng(t)

The Jacobian matrix associated with the system of equations (4.3.5.3) evaluated at the disease-

free equilibrium (£j) is given by
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A
—ue 0 _Pehe 0 0 0O 0 0
e By
A
0 —z feho 0 0 0 0 0 0
peBo
0 0 —ac Qe 0 0 0 0 0
0 0 @ —2 0 Npkn, 0 0 0
A
0 0 o _Pehe —py 0 0 0 0
J(Ey) = 1 (4.3.5.4)
A
0 0 0 Pollo o ., 0 0 0
g
S\ S\
0 0 0 20 g 0 000
Ho Ko
015mA
0 0 0 0 0 —=™% 0 —u 0
Mo
026, A
0 0 0 200 0 0 0 —pu
Ho
where

20 = (ue +dc),

21 = (fte + ),

(4.3.5.5)
22 = (:U'tb + km)?

o = Be(Ae — pe)
\ PcpcBo
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Using the similar approach as in the previous Chapters, the basic reproductive number of model
system (4.3.5.3) is

1
Ry = 3 {ROC +y/R2 + 4300} (4.3.5.6)

where
Ay Nk
Ry, = Bolo N (4.3.5.7)
Mqﬁ(,ui’ + 5¢)(Mc +oe + )
and
A - c
Ry fe(Ac = po)a (43.5.8)

" ppBopco(pe + ad)®c

Now, let us consider 85 = kf¢, regardless of whether £ € (0,1) or £ > 1 and let S = 3" be
a bifurcation parameter of the model system (4.3.5.3). Considering Ry = 1, and solve for " in

equation (4.3.5.6), we obtain:

3 (He + ae)po(ptg + dp) e Bopic P

= . 4.3.5.9)
kAgNikpacopcBopePe + ac(Ac — pe) o (g + km)

We noted that the linearized system of the transformed equations (4.3.5.3) with bifurcation point
[* has a simple zero eigenvalue. Hence, the Center Manifold Theory [57] can be used to analyze
the dynamics of (4.3.5.3) near 5o = (*. We, therefore, apply Theorem 4.1 in Castillo-Chavez
and Song [5] stated below as Theorem 4.3 for convenience, to show the local asymptotic stability
of the endemic equilibrium point of (4.3.5.3) (which is the same as the endemic equilibrium point

of the original system (4.2.1) for 5o = %).

Theorem 4.3. Consider the following general system of ordinary differential equations with

parameter ¢:

cé—f = f(z,¢), f:R"xR-—R, f:C*R*xR), (4.3.5.10)

where 0 is an equilibrium of the system, that is f(0, ¢) = 0 for all ¢, and assume that

Al. A= D,f(0,0) = ((0fi/0x;)(0,0)) is a linearization matrix of the model system (4.3.5.10)
around the equilibrium 0 with ¢ evaluated at 0. Zero is a simple eigenvalue of A and other

eigenvalues of A have negative real parts,
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A2. matrix A has a right eigenvector u and a left eigenvector v corresponding to the zero

eigenvalue.

Let f, be the k' component of f and

a = g’”‘ UKV O Ji (0,0)
. kUi j@xﬁ:ﬁ] ) )
kyi,j=1
- D fr
b = E ——(0,0). 4.3.5.11
k=1 e 83:18(?( ) ( :

The local dynamics of (4.3.5.10) around 0 are totally governed by a and b and are summarized

as follows.

1. a>0,b>0. When ¢ < 0 with |¢| < 1, 0 is locally asymptotically stable and there exists
a positive unstable equilibrium; when 0 < ¢ < 1, 0 is unstable and there exists a negative

and locally asymptotically stable equilibrium.

2.a<0,b<0. When ¢ < 0 with |p| < 1, 0 is unstable; when 0 < ¢ < 1, 0 is locally

asymptotically stable and there exists a positive unstable equilibrium,

3.0 >0,b< 0. When ¢ < 0 with |¢p| < 1, 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when 0 < ¢ < 1, 0 is stable and a positive

unstable equilibrium appears;

4. a < 0, b > 0. When ¢ changes from negative to positive, 0 changes its stability from
stable to unstable. Correspondingly, a negative unstable equilibrium becomes positive

and locally asymptotically stable.

In order to apply Theorem 4.3, the following computations are necessary (it should be noted that

we are using $* as the bifurcation parameter, in place of ¢ in Theorem 4.3).

Eigenvectors of Jg-: For the case when R, = 1, it can be shown that the Jacobian matrix of
(4.3.5.4) at B = " (denoted by J- ) has a right eigenvector associated with the zero eigenvalue
given by

T
u= Ul,uzyus,U4,U5,U6,U7,U8,U9] (4.3.5.12)
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where
( . PAc
e péBoae
acB*AC
Ug = ;
Bope(pe + éc)oc
(0%
Uz = —,
876
Uy = 1,
kB*Ag
U — —
4 ’ w2 (4.3.5.13)
" kB* Ay
6 — T 7
to (e + 0g)
0p\o OmNok* Ao
Uy = — 2 + 2
ug o 1g(kg + km) g
016m Mok B A,
usg = )
to (e + K pgpin
020\
Ug = .
\ Mol

In addition, the left eigenvector of the Jacobian matrix in (4.3.5.4) associated with the zero eigen-

value at o = (" is given by

T
V= [Ul,'UQ,1)3,1)4,1)5,1)6,?}77'08,1}9] ) (43514)

where
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4
v = 07
Vg = 07
vy = B*(Ac — pe)
acpe®PeBy
Vg = 1,
vs = 0, (4.3.5.15)
Nk
Vg = )
(H’¢ + km)
Uy = 07
Vg = 0,
Vg = 0

Computation of bifurcation parameters a and b:
We evaluated the non-zero second order mixed derivatives of f with respect to the variables and
[£* in order to determine the signs of a and b. The sign of a is associated with the following

non-vanishing partial derivatives of f:

( Pf 28*Ac
dx3  Biuc’
0 f2 20" Ac
= — 4.3.5.16
axg Bg,uC ’ ( )
fs _ 28°(Ac — o)
\ 8:76% B(%HC(I)C ’
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The sign of b is associated with the following non-vanishing partial derivatives of f:

( *hHL A
0x304* peBo’
D fo Ac

0x306* peBo’

32f4 (AC - MC)

= ) 4.3.5.17
Ox306* poBo®c ( )
Pl Ay
O0x,03* to
0 fs kA,

\ 0x40* Ho

Substituting expressions (4.3.5.13), (4.3.5.15) and (4.3.5.16) into equation (4.3.5.11), we get

( a 282f1 262f2 262f4

— U1U38—x§ + UQU?)@_J;% + U4U38_x§+

28" A¢ —2B*Ac —28*(Ac — pe)
= u? {—} + ugv? {— + uyv? 435.18
178 B2 uc R Bduc e deBiuc ( )

_ 28Mc o 2 [287(Ac — po)

<0

since (u; — ug) < 0, ug > 0, and v3 > 0.

Similarly, substituting expressions (4.3.5.13) (4.3.5.15) and (4.3.5.17) into equation (4.3.5.11),

we get

T 0m,08 T P 0,08 T P 0ms08F 0 t0x100B* 0 0x,08*
AC AC (AC — uc) :| |:]<7A¢ k’A¢
< = v Ay — AU+ ————uy | v AUg — s, (4.3.5.19
*|Bouc”© Bope ' ®cBouc s 0 e ( )
Ac (Ac — pc) kA
= W3 Uy — Up| + ———SV3Uy + —— .04 |Ug — U5| > 0
\ Bopuc 3 u2 — ) OcBopc g i g — g
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since (ug — uq) > 0, (ug — us) > 0, uy > 0, and vz > 0.

Thus, a < 0 and b > 0. Using Theorem 4.3, item (iv), we have established the following result
which only holds for /7y > 1 but close to 1:

Theorem 4.4. The endemic equilibrium guaranteed by the Center Manifold Theorem 4.3 is lo-
cally asymptotically stable for Ry > 1 near 1.

4.3.6 Sensitivity Analysis

In this section, we conducted sensitivity analysis to evaluate the relative change in a proposed
PTB health intervention metric when the within-host and between-host parameters of the mul-
tiscale model system (4.2.1) changes. We achieved this by using Latin Hypercube Sampling
(LHS) and Partial Rank Correlation Coefficients (PRCCs). The proposed PTB health interven-
tion metric in this study is the basic reproductive number obtained from the multiscale model
(4.2.1). Therefore, we used 1000 simulations per run to investigate the impact of each of the
multiscale model system (4.2.1)’s parameters on the proposed PTB dynamics metric. The results
of the evaluation of the sensitivity of the PTB dynamic metric to the baseline PTB multiscale
model system (4.2.1)’s parameters are shown in the Tornado plots in Fig 4.2. Therefore, based
on Fig.4.2, it can be note that some of the model parameters have positive PRCCs and some have
negative PRCCs. Thus, parameters with positive PRCCs will increase the PTB dynamics metric,
Ry, when they are increased, whereas parameters with negative PRCCs will decrease R, when
they are increased. For instance, increasing parameter like /V,,, increases the value of R, and also

increasing parameters like ji. reduces the value of Ry.
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Figure 4.2: Tornado plots of partial rank correlation coefficients (PRCCs) of all the model pa-

rameters that influence the PTB transmission metric Ry

Therefore, from Fig. 4.2, we make the following deductions:

@

(ii)

The most sensitive parameters to the PTB embedded multiscale model disease metric Ry
are Ny, K, 116, 1t and B, with all being the within-host scale PTB parameters. This is in
agreement with sensitive results of the nested multiscale model in Chapter 3 which show
that the impact of the within-host scale on the dynamics of the disease is vital compare to
the between-host scale parameters. This implies that care should be taken in improving
the accuracy of these five within-host scale parameters during data collection if the valid-
ity and utility of both the nested and embedded multiscale models of PTB transmission
given by (4.2.1) are to be improved. From the assessment of the sensitivity of Ry to two
additional parameters that we can have the most control over (/V,,, and 1), we note that Rz
is also significantly sensitive to these two within-host scale parameters while having the
highest sensitivity to N,,. We conclude that administration of PTB drug treatment that kill
and restrict the reproduction of the within-host bacteria cells will likely yield the highest

benefits in reducing the transmission of PTB at the herd level.

The sensitivity output results of the embedded multiscale model metric in Fig. 4.2 show
the similar trends as to the sensitive output results of the nested multiscale model in Chap-

ter 3 which show that the threshold R, is less sensitive to the all three between-host scale
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parameters (5¢, ac, By) that we can have a significant control over through some preven-
tive and control intervention measures such as environmentally-hygiene management and

vaccinations.

4.4 Numerical Analysis of the baseline multiscale model of ru-

minant PTB transmission-replication dynamics
This section presented evidence about the reciprocal influence between the immunology and the
epidemiology of PTB infection which we get from the numerical simulations of the embedded

multiscale model that describes the dynamics of the disease. The numerical values of the param-

eters used in the numerical simulations are given in Table (4.1).
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Parameter | Description Unit | Initial Source
values
Ac Ruminants birth rate day™' | 027 [52, 54]
Be Ruminants infection rate day™' | 0.00027
e Natural death rate of Ruminant population | day™ | 0.0001 [52]
do Ruminants removal rate due day™" | 0.0008 | Assumed
to PTB infection
ac Environmentally bacteria day™' | 0.0018 [52]
death rate
By Saturation rate of bacteria day ! 1000 [54]
0! Down-scaling parameter day ™" 0.03 | Assumed
Ay Macrophages supply rate day™" 10 [53]
B Macrophages infection rate day™' | 0.002 [53]
o Macrophages natural death rate day ™ 0.02 [53]
Ny, Burst size of intracellular MAP day‘1 100 [53]
kmm, Burst rate of infected macrophages day™" | 0.00075 [53]
Y T lytic effect day™ | 0.01 [53]
Lhe Bacteria’s death rate dag[1 0.03 [53]
Q. Excretion rate of extracellular MAP day ! 0.01 [54]
Ay T, supply rate day™" | 0.001 [53]
Lo T, death rate day™' | 0.01 [53]
L T, death rate day™' | 0.03 [53]
Lo T, death rate day™ | 0.02 [53]
Om, T, differentiation into T cells day ! 0.01 [53]
Op T, differentiation into Ts cells day ™ 0.01 [53]
0, T, cells clonal expansion day™* 9000 [53]
0 Ty cells clonal expansion day™* 9000 [53]
Table 4.1: Model parameter values used for Simulations
4.4.1 The influence of between-host scale on the within-host PTB disease

dynamics

In this sub-section, we assessed numerically the effect of the between-host submodel parameters

on the within-host submodel PTB pathogen-cell interactions within a single infected ruminant.

© University of Venda



L
>

(o

S |\ University of Venda
Creating Future Leaders

,
L

Chapter 4 126

Fig. 4.3) - Fig. 4.5 show the impact in the variation of four between-host parameters (53¢, ac,

By) on the dynamics of four selected with-host scale variables (1,,,, B., 11, T5).
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[ 0 10 w0 0 40 0 &0 0 W0 (j 0 L0 AC N0 L0 N0 &N MW &

500
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400
300
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~ ~ 300
200
200
100 100
0 0
(C) 0 100 200 300 400 500 600 700 800 (d) 0 100 200 300 400 500 600 700 800
Time in days Time in days

Figure 4.3: Graph of numerical solutions of model system (4.2.1) showing the evolution in time

of (a) infected macrophage population (1,,), (b) within-host MAP bacteria population (B.), (¢)

MAP-Specific Thi response cells (T1), and (d) MAP-Specific Th2 response cells for different
values of between-host transmission rate Sc: Bc = 0.00027, o = 0.0027, and Bc = 0.027.

In Fig. 4.3, we showed the effects of the variation of the infection rate parameter So: S =
0.00027, Be = 0.0027, and o = 0.027 associated with the between-host scale dynamics on
the within-host scale selected variable (a) infected macrophage population (/,,,), (b) top right:
within-host MAP bacteria population (B5.), (c) MAP-Specific Thl response cells (7}), and (d)
MAP-Specific Th2 response cells. The results showed that the increase in infection rate at the
population level of ruminants will only influence the within-host disease dynamics at the start of
an infection within 100 days. But after that there is no difference in the population dynamics of
the within-scale MAP bacterial (5B.), MAP-Specific Th2 response cells (75), MAP Specific Thl
response cells (77), and infected macrophages (/,,,) in the long run. This also implies that the

variation of infection rate for different values influence the within-host scale disease dynamics
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only at the start of infection of about 100 days, after that then converge to the same endemic state.
Therefore, these results further confirm that once the minimum infectious dose is consumed, the

long term disease dynamics is independent to superinfection.

o o — -
500 /— 30 7 -
.
400 w00 f+ /
£ 300 Y
~ Q
200
=018 150 =018
100 w0 =(,0018 w— r=00018
0 w1 gr=0.00018 100 w1 qr=0.00018

(a) 0 100 200 300 400 500 600 700 800 (b) 0 100 200 300 400 500 600 700 80O

= =018 30 = =018
w—c=0.0018 w—0c=0.0018
400 =" gc=0.00018 250 = gc=000018
300 200 >
al ™~ \l
~ I~ 150
200
100
100
50
0 0
0 100 200 300 400 500 600 700 800 d 0 100 200 300 400 500 600 700 800
(c) Time in days (d Time in days

Figure 4.4: Simulations of model system (4.2.1) showing propagation of (a) infected macrophage

population (1), (b) within-host MAP bacteria population (B.), (c) MAP-Specific Thl response

cells (1), and (d) bottom right: MAP-Specific Th2 response cells for different values of environ-
mentally MAP bacilli death rate ovc: oo = 0.18, ac = 0.018, and a.c = 0.0018.

In Fig. 4.4, we also illustrated the effects of the variation of natural death rate of MAP bacilli
in the environment a: ac = 0.18, o = 0.018, and o = 0.0018 at the between-host scale on
the within-host scale selected variable (a) top left: infected macrophage population (Z,,), (b)
within-host MAP bacteria population (B,.), (c) MAP-Specific Thl response cells (7}), and (d)
MAP-Specific Th2 response cells for different values. The results also indicated that increasing
the environmentally MAP bacilli death rate will only influence the within-host disease dynamics
at the start of an infection within 100 days. However after that there would be no difference in the
population dynamics of the within-scale MAP bacterial load (B.), MAP-Specific Th2 response
cells (T5), MAP Specific Thl response cells (7}), and infected macrophages (/,,,) in the long run.
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This also implies that the variation of infection rate for different values influence the within-host
scale disease dynamics only at the start of infection of about 100 days, after that then converge to
the same endemic state. Therefore, these results confirm that once the minimum infectious dose

is consumed, the long term disease dynamics is independent to superinfection.
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Figure 4.5: Graph of numerical solutions of model system (4.2.1) showing propagation of (a)
infected macrophage population (1,,,), (b) top right: within-host MAP bacteria population (B.),
(c) MAP-Specific Thi response cells (1), and (d) MAP-Specific Th2 response cells population

for different values of disease induce death rate By: By = 1000, By = 10000, and By =
100000.

In Fig. 4.5, we further showed the effects of variation of the bacteria half saturation constant
By: By = 1000, By = 10000, and By = 100000 associated with infection of ruminants at the
between-host scale on the within-host scale selected variables (a)infected macrophage popula-
tion (/,,), (b) within-host MAP bacteria population (5.), (c) MAP-Specific Thl response cells
(11), and (d) MAP-Specific Th2 response cells for different values of. Fig. 4.5 show that the
health mechanisms that reduce the susceptibility of ruminants to the disease (e.g. administration

of vaccine) again will only have a considerable effect on the within-host disease dynamics at
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the start of an infection within 100 days. But after that there is no difference in the population
dynamics of the within-scale MAP bacterial load (B5.), MAP-Specific Th2 response cells (75),
MAP Specific Thl response cells (77), and infected macrophages (/,,,) in the long run. This
again implies that the variation of infection rate for different values influence the within-host
scale disease dynamics only at the start of infection of about 100 days, after that then converge to
the same endemic state. Therefore, these results again confirm that once the minimum infectious

dose is consumed, the long term disease dynamics is independent to superinfection.

Collectively, based on the numerical results in Fig. 4.3 - Fig. 4.3, we noticed that the when
the between-host scale parameters are varied, there is a noticeable but minimal changes in the
dynamics of the within-host scale variables: [,,, B, T}, T;. This is because, once the host is
infected, superinfection becomes irrelevant as the replication of the MAP bacterial load at the

within-host scale sustains the disease dynamics at this scale.

4.4.2 The influence of within-host scale on the between-host PTB disease

dynamics

This sub-subsection highlights some numerical assessment results of the influence of the within-
host submodel parameters on the between-host submodel PTB transmission dynamics. Fig. 4.6
- Fig. 4.8 show the impact in the variation of three within-host parameters (o, V., t.) on the

dynamics of three key between-host scale variables (S¢, I, Bo).
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Figure 4.6: Graph of numerical solutions of the model system (4.2.1) showing the evolution in

time of (a) population of susceptible ruminants (Sc), (b) population of infected ruminants (I¢),

and (c) between-host MAP bacterial load (Bc) for different values of excretion rate of within-
host MAP bacterial load, B., a.: a. = 0.001, a. = 0.01, and o = 0.1.

Fig. 4.6 shows graphs of numerical solutions of the model system (4.2.1) showing propagation

of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and

(c) between-host MAP bacterial load (B¢) for different values of excretion rate of within-host
MAP MAP bacilli into the environment «.: «. = 0.001, o, = 0.01, and o, = 0.1. The

results Fig. 4.6 showed that an increase of excretion rate of the within-host bacterial load into

the physical environment by each infected ruminant individual has important public health effect

at the ruminant population-level in that there is a noticeable increase in the between-host MAP

bacteria Bx and population of infected ruminant /- as well as decrease in the population of

susceptible ruminant Se.
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Figure 4.7: Graphs showing changes in (a) population of susceptible ruminants (S¢), (b) pop-
ulation of infected ruminants (Ic), and (c) between-host MAP bacterial load (B¢) for differ-

ent values of within-host MAP bacteria produced per bursting infected macrophage cell Ny, :
N,, =10, N, = 100, N,,, = 1000.

Fig. 4.7 shows graphs of numerical solutions of the model system (4.2.1) showing variation of
(a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/), and
(c) between-host MAP bacterial load (Bc) for different values of within-host MAP bacteria
produced per bursting infected macrophage cell N,,,: N,, = 10, N,,, = 100, N,,, = 1000. This
shows that as an average replication rate of the within-host MAP bacilli bacteria at an infected
macrophage cell-scale at individual ruminant level increases, transmission of PTB infection at

herd-level of ruminant also increases.
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Figure 4.8: Simulations of model system (4.2.1) showing changes of (a) top left: population of

susceptible ruminants (Sc¢ ), (b) top right:population of infected ruminants (1), and (c) bottom:

between-host MAP bacterial load ( B¢ ) for different values of death rate of the within-host MAP
bacterial load, p.: pe = 0.3, pe = 0.025, and . = 0.003.

Fig. 4.8 illustrates the solution profile of the multiscale model system (4.2.1) showing variations

of (a) population of susceptible ruminants (S¢), (b) population of infected ruminants (/.),

and

(c) between-host MAP bacterial load (Bc) for different values of natural death rate of within-

host MAP bacilli at the site of infection within an infected ruminant p.: p. = 0.3, p. = 0.025,
and g, = 0.003. The results in Fig. 4.8 showed that as the death rate of the within-host MAP

bacilli increase, there is a noticeable decrease in the between-host MAP bacterial load, Bo

and

population of infected ruminant, /- as well as increase in the population of susceptible ruminant

Sc¢. This again confirms the influence of the between-host parameters on the infection dynamics

at the ruminant population-level.

Overall, based on the numerical results in Fig. 4.3 - Fig. 4.8, we can conclude that:
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a. The between-host scale influences the within-host scale through the superinfection of the

infectious agent.

b. Once the minimum infectious dose is consumed, superinfection makes no different on the
dynamics of the disease when the infection at the within-host scale has successfully been

established because the infection at this domain scale is sustained by pathogen replication.

c. The within-host scale continuously influence the dynamics of the disease at the between-

host scale throughout the infection.

This indeed indicates that during the dynamics for paratuberculosis infection in ruminants, the
contribution of initial infective inoculum to the total pathogen load becomes negligible compared

to the contribution of the replication-cycle.

4.5 Summary

The contribution of this chapter to scientific knowledge is the use of embedded multiscale model
developed to investigate the effect of super-infection on the intrinsic dynamics of Paratuberculo-
sis in ruminants as a representative of all type II environmentally-transmitted disease systems in
which a pathogen replication-cycle occurs only at the microscale. To the best of our knowledge,
the embedded multiscale model developed in this study is the first of its kind to characterize
an infectious diseases in which pathogen replication occurs only at the microscale. Similar to
the nested multiscale model results in Chapter 3, the embedded multiscale model results in this
chapter (through numerical simulation) also illustrate that the transmission of the PTB disease at
the between-host scale only influences the disease dynamics at the within-host scale at the start
of the infection, while once the infection has been established, the replication of MAP bacteria
at the within-host scale sustain the dynamics of PTB disease. This means that once the minimum
infectious dose is consumed, superinfection become irrelevant when the infection at the within-
host scale has successfully been established. This implies that repeated infection of the ruminant
by the bacteria before it recovers from prior infection by PTB infection does not significantly
alter the total pathogen load within an infected ruminant. Sensitivity analysis of the model pa-
rameters was also carried out using the basic reproduction number of the embedded multiscale
model as the disease metric that characterized the infection at the start of an infection. The sen-
sitivity analysis of the embedded multiscale model basic reproductive number was based on the
Latin Hypercube Sampling (LHS) scheme. The results output of sensitivity analysis of the basic
reproductive number of the embedded multiscale model in this chapter are consistent with the

sensitivity analysis results of the basic reproductive numberwe obtain from the nested multiscale
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model in the previous chapter (i.e, Chapter 3) that indicate that the variation of the decay rate in
the within-host MAP bacteria population has a significant effect on the transmission risk of the
disease at the ruminant population level. Therefore, taking into account that there are no drugs
for PTB infection (intervention which is administrated at within-host scale), these results suggest
that the development of a drug that kills and restrict replication of MAP bacteria at within-host
scale would have the highest impact on the reduction of the transmission risk of the disease
among the ruminants at the herd level. Although the embedded multiscale modelling framework
developed here to specific disease system of paratuberculosis in ruminants, we anticipate it to be
robust enough to be applicable to other infectious diseases of type I environmentally-transmitted

diseases beyond paratuberculosis in ruminants.
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Chapter 5

Comparison of the Multiscale Models in

Predicting Dynamics of Infectious Diseases

5.1 Introduction

In Chapter 3 and Chapter 4, we respectively developed both a nested multiscale model (NMSM)
and an embedded multiscale model (EMSM) which we used to study the intrinsic dynamics of
Partuberculosis (PTB) in ruminants as a typical example of type II environmentally-transmitted
diseases in which the pathogen has a replication-cycle at the microscale (i.e. at within-host scale).
A key feature of disease dynamics at any level of organization is that it is characterized by the
replication-transmission relativity [8]. The theory posits that at any level of organization of an
infectious disease there is a multiscale cycle/loop that involves the reciprocal influence of the
microscale and the macroscale. Both NNSMs and EMSMs describe this invariant feature of the
multiscale dynamics of infectious disease systems. However, the underlying difference is that in
NMSMs the macroscale influences the micro-scale through pathogen initial inoculum, whereas in
EMSMs the macroscale influences the microscale through super-infection (i.e. repeated infection
by a pathogen of the same species/strain before the host recovers from prior infection by the same
pathogen species/strain). At this stage what we know is that PTB disease dynamics in ruminants
involves a pathogen replication-cycle at the microscale (i.e. at within-host scale). We also know
that when the infection of the host involves a minimum infectious dose, then this is the one

that triggers the replication. The contribution of any subsequent infections to the total pathogen
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load becomes negligible compared to the contribution of the replication cycle. This means that
repeated infection of the host by the bacteria before the host recovers from prior infection by PTB
does not significantly alter the total pathogen load within an infected host. This in turn means
that superinfection would not make a difference in disease dynamics. Thus both the NMSM and
the EMSM can equally be used to characterize an infectious disease that involves a pathogen
replication-cycle at the microscale such as PTB. What we do not know is whether the NMSM
and the MSM would predict similar trends in disease dynamics. The fundamental question is
whether the NMSM and the EMSM would predict the same pattern of the intrinsic dynamics of
an infectious disease system and whether the predicted pattern would change under the influence
of health interventions. To the best of our knowledge no previous studies have investigated
this fundamental question. Thus, the objective of this chapter is to compare between these two
multiscale model categories (NMSM and EMSM), in order to establish the most appropriate
category of multiscale models in predicting the dynamics of an infectious disease system using
PTB in ruminants as a paradigm. The comparison consists of simulating the transmission of
PTB disease in ruminants without and with the influence of preventive and control measures
using different multiscale models for PTB disease dynamics that we have derived in previous
chapters which are: (a) the full nested multiscale model, (b) the simplified nested multiscale

model and (c) the embedded multiscale model.

5.2 Three Multiscale Models to be Compared

In this section, we provided the three multiscale models which we want to compare which are: (a)
the full nested multiscale model, (b) the simplified nested multiscale model, and (c) the embedded
multiscale model for quick reference. All these three different multiscale models describe the

dynamics of PTB infection in ruminants. The three multiscale models are given as follows:
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a. The full nested multiscale model for PTB transmission dynamics in ruminants: The full

nested multiscale model for PTB transmission dynamics in ruminants is:

(B - P ) - sl
_dle(t)y  BeBel(t)
it. ;t = Boi—go(t)sc(t) — (ne + 0c)1c(t),
ii. BB B () — acBolb),
i
o POy 8 M)B(D) ~ nM()
0 edfgt(” — BoMy(®)Balt) — ATy () In(t) — (o + ) Im(t) 2D
vi. edBdct(t) = NpknIn(t) — (e + ac)Be(t)
Vit Edjggt(t) = Ao — (Omln(t) + 0 Be(t))To(t) — poTo(t)
vii. edj;}t(t) 06T () To(7) — T (1)
i ed%t(t) 0 BOTy(t) — paTo(t).

For a complete description of the full nested multiscale model system (5.2.1) and its deriva-
tion see Chapter 3. The full nested multiscale model can be reduced in order by using a
first-slow time-scale method [17]. For details of the reduction of the order of the full nested

multiscale model see Chapter 3.
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b. The simplified/reduced nested multiscale model for PTB transmission dynamics: The

simplified nested multiscale model for PTB transmission dynamics in ruminants is:

(. dSc(t) BeBe(t)
) — ————2_5c(t) — ucSc(t
T ¢~ By 1 Boy cW) ~ HeSc(d),
. dle(t) BeBe(t)
. = —————2_50(t) — ocllo(t 5.2.2
. — BO+BC(t)SC( ) = e +dcllc(t), (5.2.2)
B
111, d C(t) = Ncacfc(t) - Ochc<t>
\ dt
where the composite parameter N, which estimates N, is given by
N,k
N,=—2>2" |~ \/ PP+ 4 523
2(/110 + O{c> |: ¢1 + (bl + ¢2:| ( )
with
b = ks + pipoks — k1Q
1 k‘gl{fl )
(5.2.4)
HfoQ
P2 Tk
and
.
Q = pp(pe +0¢)(Ro, — 1),
kl _ HJlém(ﬂ’c + ac) + Nl(sbNmkm
(fe + c) ’
(pe + ) 7
(5.2.5)
ks = ko+ peYmb10m Ao,
ﬁqSNmkm’Ymel(SmAO
kO = )
(/v‘c + O‘C)
B¢A¢Nmkm
Ry, = .
\ top (g + k) (pre + ac)

© University of Venda



3

O
P R
University of Venda

Chapter 5 139

po (s + Kom) (e + cre)
host PTB basic reproductive number as previously explained. Also, the derivation of this

Further, the quantity Ry, =

in expression (5.2.5) is the within-

simplified version of the full PTB multiscale model has been previously done in chapter
Chapter 3.

. The embedded multiscale model for PTB transmission dynamics in ruminants: The em-
bedded multiscale model for PTB transmission dynamics in ruminants is given here for a

quick reference as:

(. dSc(t) BoBe(t)

YT = Ae-p Bo(t)Sc(t) HeSo(t)

o dIe(t) BcBe(t)

. gt = By + CBc?t)Sc(t) - [/‘LC + 5C]IC(t)

i, P o) + 11B1) - acBe(t)

o dBe(t) BeBeo(t)[Sc(t) — 1]

VT T [Bo+ Be@bollo(® £ 1] et = et acl Bl
| v d]\{iﬁ(t) = Ny — BsMy(t)Be(t) — o My(1) (5.2.6)

vi. O g M BD) ~ [+ el Balt) — 1T (O, (0)

vii dq;‘;t(t) = Ao — B (E) + Gy Bu(t)]To(t) — poTo(t)

viii. g s L OTo(t) — Ty (1)

it
ix. dj;izt(t) = 020, B(1)To(t) — p2Ta(1).

For a complete description of the embedded multiscale model system (5.2.6) and its deriva-

tion see Chapter 4.

In what follows, we compared these three types of multiscale models.
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5.3 Comparison of three types of multiscale models in pre-
dicting the intrinsic dynamics of PTB infection from nu-

merical simulations

In this section, we presented some of the results concerning the comparison in predictions of the
intrinsic dynamics of environmentally-transmitted disease systems by the three different types
of multiscale models (i.e., a full nested multiscale model, a simplified nested multiscale model,
and a embedded multiscale model) using PTB in ruminants as a case study. We achieved this by
numerical simulating the two key between-host scale variables in all the three multiscale models
for PTB transmission dynamics. The two key between-host scale variables are (i) the population
infected ruminants, /- and (ii) the population of the between-host scale MAP bacterial load,
B¢). The simulations of these two key between-host scale variables (/- and B¢) we carried out
under the influence of the selected parameters when they are varied from different values in all
the three multiscale models. The initial condition used for the simulations of these multiscale
models are: S (0) = 20000, [(0) =0, Bo(0) = 10000, B.(0) = 100, M,(0) = 500, I,,(0) =
0, Tp(0) = 0.1 , T7(0) = 0, and 75(0) = 0. The parameter values used for simulations of these
three multiscale models are tabulated in Table 4.1 of Chapter 4. The comparison of the predicted
output from all the three multiscale models (FULL-NMSM, SIMP-NMSM and BIDI-EMSM)
are presented in Fig. 5.1 and Fig. 5.2 as follows:

a. Camparing the suitability of the three multiscale models in predicting the profile of

Ic, over time.
(i) Fig. 5.1(a) shows evolution of I~ from the three multiscale models when . varying
from high level, i = 0.3 to low level, u. = 0.003.

(i1) Fig. 5.1(b) shows evolution of /- from the three multiscale models when «, varying

from high level, a. = 0.1 to low level, a. = 0.001.

(i11) Fig. 5.1(c) shows evolution of /- from the three multiscale models when «. varying
from high level, N,,, = 10 to low level, V,,, = 1000.
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Figure 5.1: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-
NMSM and BIDI-EMSM) showing the profile of infected ruminants for different values of selected

within-host parameters (Q., fic, Nm).
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From on the results in Figure 5.1, we made the following deduction:

1. The numerical results in Fig. 5.1(a) showed that when the natural decay rate (js.)
of the within-host MAP bacteria population changes from high level (i.e., p. =
0.3) to low level (i.e., . = 0.003), there is noticeable but negligible difference
among the three multiscale models in predicting the profile of /. as the trajectory
of I in all the multiscale models increase to a marginally different peak values
of about less than 350 infected ruminants when .. is at the high level. When g, is
at the low level /- increases to an approximately equal peak value of about more
than 350 infected ruminants in all the multiscale models. Furthermore, we also
noticed that in the long run, trajectories of infected ruminants in all the multiscale
models decrease and converge to approximately equal equilibrium steady state
when g is at high level and when it is at the low level it converge to a strictly

equal equilibrium steady state.

2. The numerical results in Fig. 5.1(b) showed that the variation in the excre-
tion rate (c,) of the within-host MAP bacteria population from high level (i.e.,
a. = 0.1) to low level (i.e., a. = 0.001) makes no difference in predicting the
profile of I among the three multiscale models as the trajectories of /- in all
the multiscale models increase to an approximately equal peak values as well as
converging to a strictly equal equilibrium steady state in the long run in all the

cases (i.e., when «. is at high level and when it is at low level).

3. The numerical results in 5.1(c) show that the variation in the average number
(NV,,,) of the intracellular MAP bacteria load into the extracellular environment
by each infected macrophages upon bursting from high level (i.e., N,, = 1000)
to low level (i.e., V,,, = 10) again there is a noticeable but negligible difference
among the three multiscale models in predicting the profile of /- as the trajec-
tories of /¢ in all the multiscale models increase to a marginally different peak
values when N,,, = 10. However, when N,,, = 1000, all the three multiscale mod-
els (Full-NSMS, SIMP-NMSM and BIND-EMSM) provide the same prediction
of the profile of /.

Collectively, based on all the three sets of numerical results presented in Fig. 5.1
(i.e., Fig. 5.1(a - ¢)), we can easily note that the variation in the selected key PTB
within-host parameters «., u. and NV, from different values contribute to a negligible
difference in predicting the profile of /- from the three multiscale models. This
means that all the three multiscale models (Full-NSMS, SIMP-NMSM and BIND-
EMSM) can equally be used to characterize the dynamic of an infectious disease that

has a pathogen replication at the microscale, although the SIMP-NMSM provide a
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worse case scenario. This might be due to the fact that in the SIMP-NMSM infection
at the microscale has been allowed to reach an endemic before contributing to the

dynamics of the disease at the between-host scale.

b. Camparing the suitability of the three multiscale models in predicting the profile of

B¢ over time.
(i) Fig. 5.2(a) shows evolution of B¢ from the three multiscale models when . varying
from high level, p. = 0.3 to low level, p. = 0.003.

(i1) Fig. 5.2(b) shows evolution of B¢ from the three multiscale models when «.. varying

from high level, a. = 0.1 to low level, a. = 0.001.

(111) Fig. 5.2(c) shows evolution of B¢ from the three multiscale models when «. varying
from high level, N,, = 10 to low level (V,, = 1000).
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Figure 5.2: Graphs of numerical solutions of the three multiscale models (Full-NMSM, SIMP-
NMSM and BIDI-EMSM) showing the profile of infected ruminants for different values of selected

within-host parameters (Q., fic, Nm).
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From the results in Figure 5.2, we make the following deductions:

1. The numerical results in Fig. 5.2(b) show that as the natural decay rate (y..) of the
within-host MAP bacteria population vary from low level (u. = 0.003) to high
level (u. = 0.3) there is a noticeable difference among the three multiscale mod-
els in predicting the profile of B¢, with the simplified nested multiscale models
predicting high population size of B compared to full nested and embedded
multiscale models in which both predict approximately equal population size of
Be.

2. The numerical results in Fig. 5.2(b) show that when the excretion rate () of the
within-host MAP bacteria load into the physical environmental domain by each
infected ruminant individuals increases from low level (. = 0.001) to high level
(ae = 0.1) there is also a noticeable difference among the three multiscale mod-
els in predicting the profile of B¢, with the simplified nested multiscale models
predicting high population size of B¢ compare to full nested and embedded mul-

tiscale models in which both predict approximately equal population size of B.

3. The numerical results in Fig. 5.2(c) show that when the average number of the
intracellular MAP bacterial load into the extracellular environment by each in-
fected macrophages upon bursting (/V,,,) increase from low level (V,,, = 10) to
high level (N, = 1000) there is a significant difference in predicting the pop-
ulation size of B¢, with the simplified nested multiscale models still predicting
high population size of Bo compare to both the full nested and the embedded
multiscale models in which both predict approximately equal population size of
Be.

Collectively, from all the three sets of numerical results in Fig. 5.2 (i.e., Fig. 5.2(a
- ¢)), we notice that as the selected key PTB within-host parameters «., p. and N,
change from different levels contribute to the variation in the three multiscale mod-
els in predicting the profile of B¢, with the simplified multiscale predicting a high
number of MAP bacterial cells in the environment compared to both the full nested
and embedded multiscale models in which all predict an approximately equal num-
ber of infective MAP bacterial cells in the environment. This is largely because in
the simplified nested multiscale model the replication-cycle of pathogen is allowed
to reach an endemic level first before contributing to the dynamics of the diseases at

the population level.

Overall, the numerical results shown in Fig. 5.1 and Fig. 5.2 illustrate that during PTB disease

dynamics, although there is reciprocal influence between the within-host scale (micro-scale) and
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the between-host scale (macro-scale) when the within-host scale varies for different values, the
comparative different between the nested and embedded multiscale models in predicting the
dynamics of PTB in the ruminant population is negligible. This generally implies that at any
level of biological organization of an infectious disease system in which the replication-cycle
of pathogen only occurs at the micro-scale either a nested multiscale model or an embedded
multiscale model can equally be used to characterize its intrinsic dynamics. This is largely
because the results that can be obtained using an embedded multiscale modelling can also be

obtained by using a nested multiscale modelling.

5.4 Comparison of three types of multiscale models in pre-
dicting the dynamics of PTB infection under the influence

of PTB interventions

In this section, we further investigate which among the full nested, simplified nested and em-
bedded multiscale models would be more appropriate in guiding control and elimination of the
burden of Paratuberculosis (PTB) in the ruminant population. We extend all the three baseline
multiscale models introduced in Chapter 3 and Chapter 4, respectively, to incorporate two major
PTB health interventions which are: (i) environmentally-hygiene management (EHM) and (ii)
medical-based prevention and therapy (MBPT). We Achieve this by firstly evaluating how well
the three extended multiscale models that incorporate the two PTB health interventions (EHM
and MBPT) can translate existing knowledge about efficacy at the individual ruminant scale (i.e.,
within-ruminant-host scale) into outcomes of effectiveness that can be predicted at the ruminant
population scale (i.e., between-ruminant-host scale) in public health decision making. It is impor-
tant to note that both EHM and MBPT are complex intervention systems as they are composed
of a number of components, which may act independently or inter-dependently. For instance,
EHM have two components which are: (i) health and sanitary education effect of EHM and (ii)
killing of environmental bacilli bacteria effect of EHM. Similarly, MBPT have three components
which are (i) PTB vaccination effect of MBPT, (ii) PTB test and culling effect of MBPT and
(111) PTB test and curing effect of MBTP. In addition, it should also be noted that these two PTB
health interventions in ruminant (EHM and MBPT) are generally administered at different scale
domains of the PTB disease system, with EHM administered at between-host scale while MBPT

administrated at within-host scale. Below is the description of the two main PTB interventions:

(i) Environmentally-hygiene management: This intervention strategy has two effects: (i)

health and sanitary education effect which has the net effect of reducing the infection rate in
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(ii)

the ruminant population (r), and (ii) treatment of dams or water troughs effect using some
chemical for killing bacterial load in water which also have the net effect of increasing the
natural death of MAP in the physical water environment (k). Therefore, if we assume that
health and sanitary education intervention and treatment of water are administered then
the rate of ruminant contact with the physical environmental bacterial load parameter (¢ is
modified to become S (1—r) where  is the efficacy of health and sanitary education effect,
with 0 < r < 1. The natural death rate of the environmental bacterial load in the physical
water environment is modified to become . (1—k) where k is the efficacy of killing effect,
with 0 < k£ < 1. Thus, B¢ (1 — r) measures the probability of the reduction of susceptible
ruminant contact with unsafe water bodies or other contaminated physical environments
due to health education campaigns and changes in behavioral practices that aims to reduce
the transmission risk of the disease in ruminant animals. The quantity o (1 — k) measures
the probability at which the population of MAP bacilli bacteria is reduced in the physical

environment due to the treatment of unsafe water with some chemicals.

Medical-based prevention and treatment: This intervention strategy also has multiple
effects: (1) PTB preventive vaccine effect which has the net effect of reducing suscepti-
bility of ruminants to PTB infection (v), (ii) PTB immune stimulation effect which has
the net effect of boosting Th; cells at the site of an infection within an infected rumi-
nant (b), (iii) killing of extracellular MAP bacteria effect which net effect of increasing
natural death rate in the population of extracellular MAP bacilli (d) and (iv) restricting
growth of intracellular MAP bacteria effect which has a net effect of preventing infected
macrophages from bursting and further transmit MAP bacteria to other cells (m). Assum-
ing that PTB preventive vaccine are administered as PTB health intervention, coefficient
1/ By is reduced to become 1/By(1 + v), where v is the efficacy of the preventive vaccine
and 0 < v < 1. Thus, By(1 + v) measures the probability of reducing the susceptibility
of ruminant when contact with the environmental bacterial load. Assuming further that
any health intervention mechanism that stimulates the response of Th; cells against the
infection at the within-host scale is administered, then ¢; becomes (1 + b) where b is
the efficacy of Th; stimulation and 0 < b < 1. Thus, #;(1 4 b) measures the probability
of increasing the proliferation of Th; cells. Also, if we assume that test and treatment
with drugs is administered, the p. is modified to be p.(1 + d), where d is the efficacy
of drug therapy intervention and 0 < d < 1 and also d is a parameter that relates to the
treatment of each ruminant using the drugs after tested positive to PTB infection. Thus,
(14 d) measures the probability of killing the within-host bacterial load. Assuming that

any health intervention mechanism that restricts the growth of intracellular MAP bacteria
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within an infected macrophages, then N,, become N,,(1 + d). Thus, N,,(1 + d) mea-
sures the probability of restriction of the replication of intracellular bacteria within each
infected macrophages. Overall, health-sanitary education and the administration of PTB

vaccination in the herd modify A\¢ and \. to become XC and XC, respectively. Where

~ 50(1 — T‘)Bc(t>
Ael) = B0 10+ Bel®)’
5.4.1)
(1) = Bc(l —r)Be(t)
’ [Bo(1+v) + Be(t)]@cllo(t) + 1]

A summary of the modifications of the two multiscale models parameters of PTB dynamics due
to effects of the two PTB health interventions (EHM and MBPT) is given in Table 5.1.

Health Interventions Transformation Efficacy Value Range
Reducing contact rate effect of EHM () Bo — Bo(1—7) 0.1-0.8
Killing of between-host MAP bacteria ac — ac(l+k) 0.1-0.8
effect of EHM (k)

Reducing susceptibility of ruminants By — By(1 +v) 0.1-0.8
to infection effect of MBPT (v)

Proliferation of Th; cells effect of MBPT (b) | 6; — 0,(1 4+ b) 0.1-0.8
Killing of extra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>