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Abstract

Solar irradiance forecasting is essential in renewable energy grids amongst
others for back-up programming, operational planning, and short-term power
purchases. This research study focuses on forecasting hourly solar irradiance
using data obtained from the Southern African Universities Radiometric Net-
work at the University of Pretoria radiometric station. This research project
compares the predictive performance of long short-term memory (LSTM)
networks, support vector regression (SVR), and feed forward neural net-
works (FFNN) model for forecasting short-term solar irradiance. While all
the models outperform principal component regression model, a benchmark
model in this study, the FFNN yields the lowest mean absolute error (MAE)
and root mean square error (RMSE) on the testing set. According to findings,
among the three fitted machine learning models, the FFNN model produced
the best forecast accuracy based on MAE and RMSE. Forecast combination
of machine learning models’ forecasts is done using convex combination and
quantile regression averaging (QRA). Based on MAE and average pinball
losses, the QRA forecast combination model is the best forecast combination
method, and also the best forecasting model compared with the individual
machine learning models. Further analysis of the prediction interval widths
(PIWs) based on the prediction interval coverage probabilities (PICPs), and
prediction interval normalised average widths (PINAWs) including a count of
the number of predictions below and above the PIs show inconsistency. The
best model based on PINAW at 90% is QRA, FFNN at 95%, and SVR at
99%. There is inconsistency in the results of PICPs and PINAWs for differ-
ent PINC values. The residual analysis shows FFNN as the best model with
narrowest error distribution compared to other models, followed by QRA.

Keywords: Forecast combination, machine learning, neural networks, so-
lar irradiance forecasting, support vector regression.
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Chapter 1

Introduction

As the global population and levels of industrialisation continue to increase

rapidly, fossil fuels which are used for electricity generation deplete rapidly

as well (Zendehboudi et al., 2018). The continuous use of fossil fuels for

electricity generation also continues to cause environmental problems such

as global warming (Sun et al., 2018). Hence, there is a need for researchers

to focus extensively on renewable energy sources such as solar, wind, waves,

geothermal heat and others. Renewable energy sources are environmentally

friendly, clean and inexhaustible (Mohammadi et al., 2016).

Solar energy is one of the most important forms of renewable energy that

can contribute in the electrical grid to confront current environmental and

energy challenges (Zhandire, 2017). However, the integration of solar en-

ergy into the electrical grid needs accurate forecasts for good and effective

management of the electrical grid (Cristaldi et al., 2017). Electricity utility

decision makers face a challenge of balancing demand and supply of electric-

ity in a cost effective way which also favours future economic prosperity and
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environmental security. Solar irradiance forecasting is important in different

applications such as agriculture, seawater desalination, medical studies and

photovoltaic applications (Rezrazi et al., 2016).

1.1 Background

Studies on solar energy were first initiated by Liu and Jordan (1960). Their

studies focused on the relationship between daily diffuse and global irradiance

components on clear days on a horizontal surface, with the measurements

from 98 sites in the US and Canada. Since then, researchers have been

giving attention to solar irradiance with many modelling techniques being

employed. Solar irradiance forecasting mainly consists of physical models

and statistical data-driven models (Yang et al., 2013). Physical models are

based on numerical weather predictions (NWP) for solar irradiance forecast-

ing. According to Sun et al. (2018), solar irradiance forecasting techniques

can be classified into three groups, traditional mathematical statistics, nu-

merical weather forecasting and machine learning. Researchers have recently

paid attention to machine learning techniques such as artificial neural net-

works (ANN) (Deb et al., 2018), and support vector machines (SVM) (Fan

et al., 2018) in forecasting solar irradiance.

According to literature in solar irradiance forecasting, different forecast hori-

zons have been explored such as long-term (a time span of three or more

years), short-term (typically less than 3 months but has a time span of up-to

1 year) and medium-term (typically 3 months to 1 year but has a time span

from one to three years). Feature variables used in previous studies include
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meteorological variables such as temperature, humidity, precipitation, cloud

cover, wind speed; geographical variables such as latitude, longitude, alti-

tude, etc; and astronomical variables such as declination, hour angle, and

zenith angle as explanatory variables (Khatib and Elmenreich, 2015). This

study focuses on modelling solar irradiance using long short-term memory

(LSTM) networks, support vector regression (SVR), and feed forward neu-

ral networks (FFNN) models which have not been applied on South African

solar irradiance data, to the best of our knowledge. The Southern African

region experience sunshine all year round, therefore, South Africa’s local re-

source is one of the highest in the world. There has been little research in

South Africa on solar irradiance forecasting and this project seeks to make a

contribution in this critical area.

1.2 Purpose of the Study

Aim

The aim of this research project is to compare predictive performance of

LSTM networks, SVR, and FFNN models on forecasting solar irradiance at

the University of Pretoria radiometric (UPR) station in South Africa.

Objectives

The main objectives of this study are to:

i develop machine learning models for solar irradiance forecasting,

ii evaluate the predictive performance of the models,

iii combine forecasts from these models,
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iv forecast hourly solar irradiance,

v evaluate the accuracy of the forecasts,

vi suggest areas for future work.

1.3 Scope of the Study

The remainder of the project is organised as follows. In Chapter 2, a lit-

erature review on forecasting solar irradiance using the proposed machine

learning models and other techniques is presented. The research method-

ology is discussed in Chapter 3. A discussion of the empirical results is

presented in Chapter 4, and the project concludes in Chapter 5.



Chapter 2

Literature review

2.1 Introduction

This chapter provides an overview of solar irradiance forecasting studies in

South Africa, as well as the summaries of some studies that have used the

proposed methodology to forecast solar irradiance in different regions of the

world.

2.2 Solar Irradiance Components

Solar irradiance can be divided into three types, namely, global horizontal

irradiance (GHI), direct normal irradiance, and diffuse horizontal irradiance.

This is due to solar irradiance being reflected, absorbed, scattered and trans-

mitted as it moves from the sun in the form of electromagnetic waves or

sun’s rays. GHI is the sum of direct normal irradiance and diffuse horizontal

irradiance with the account of zenith angle of the sun. Direct normal irra-

diance is the irradiance which travels straight to the earth’s surface directly

from the sun. The irradiance which is reflected or scattered is known as dif-

5
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fuse irradiance. The surface of the earth receive direct solar irradiance and

the diffuse or reflected solar irradiance that appears to come from various

directions over the entire sky due to atmospheric scattering (Badescu, 2014).

2.3 An Overview of Solar Irradiance Fore-

casting in South Africa

Solar irradiance forecasting in South Africa using different methods and tech-

niques is discussed in literature. Cristaldi et al. (2017) present a hybrid ap-

proach model for solar irradiance and photovoltaic (PV) power short-term

forecasting. The prediction of solar irradiance is done using physical models

known as clear-sky models which estimate solar irradiance in the absence

of clouds. Short-term PV forecasting is then done using an auto associative

kernel regression (AAKR) technique which is usually used for fault detection.

An application of the proposed model is done using a PV plant located in

South Africa. The empirical results from this study show that the developed

model produces accurate solar irradiance forecasts.

Zhandire (2017) proposes a solar resource index that is based on a site-specific

sky conditions due to stochastic movement and evolution of clouds. Solar re-

sourse index is proposed to differentiate persistent clear-sky conditions from

persistent overcast-sky conditions. This study used data from eight differ-

ent weather stations in South Africa. After applying the K-means clustering

technique five classes are identified for the solar irradiance resource. The so-

lar resource classification index is superior to probability of persistence index

and fractal dimension index.
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Adeala et al. (2015) present a study on prediction of global solar irradiance

using multiple linear regression with an inclusion of weather parameters in

addition to the traditional extraterrestrial irradiance and sunshine hours.

The study is done in all nine provinces in South Africa. The study shows

that an inclusion of weather parameters improves the accuracy and perfor-

mance of solar irradiance models for some locations.

A more recent study is that of Mpfumali et al. (2019) who uses partially linear

additive quantile regression (PLAQR) model in predicting day ahead GHI.

The study uses data from the Tellerie radiometric station in the Northern

Cape province. Two PLAQR models are developed, one without interaction

and the other with interactions obtained using the least absolute shrinkage

and selection operator (Lasso). This study also combines forecasts from indi-

vidual models using the convex combination method and quantile regression

averaging (QRA). The results of the study show that QRA forecast combi-

nation model is the best forecasting model compared with other individual

models in the study.

2.4 Machine Learning Techniques

Artificial neural networks (ANNs) have been applied extensively in forecast-

ing solar irradiance. ANNs based models already applied are feed forward

ANN, cascade-forward back propagation ANN, generalised regression ANN,

neurofuzzy ANN, and optimized ANN-genetic algorithm. ANNs have the

ability to map relationships between input and output variables provided
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there is historical data to learn from (Haykin et al., 2009).

Paoli et al. (2010) present an integrated model to forecast daily solar ir-

radiance time series using neural networks (ANNs). Multi-layer perceptron

neural network (MLPNN) is used in the study for daily solar irradiance fore-

casting after using the seasonal index adjustment method to adjust origi-

nal solar irradiance sequence. The outcome of the study shows that the

mean absolute percentage error (MAPE) of the MLPNN model is lower than

that of autoregressive integrated moving average (ARIMA), the Bayesian,

Markov chain model and K-nearest neighbor (KNN) technique. Benmouiza

and Cheknane (2013) use K-means clustering to classify input data into re-

gions of the reconstructed phase-space which has similar characteristics, then

model different groups using a non-linear autoregressive neural network, and

then forecast the solar irradiance on test data by the corresponding model.

The results of the study show that the clustering of the input space is an

important task to interpret the behaviour of the series.

Gensler et al. (2016) study different ANN and deep neural network (DNN)

architectures in the field of solar power forecast. Different models such as

physical forecasting model, MLPNN, LSTM, deep belief networks (DBN),

and Auto-Encoders are analyzed and compared. The results of the study

show that Deep Learning algorithms have superior solar power forecasting

performance compared to ANN and physical models on data from 21 solar

power plants in Germany.
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Shamshirband et al. (2016) present a hybrid support vector machine firefly

optimization algorithm (SVM-FFA) model to estimate monthly mean hori-

zontal global solar radiation (HGSR) at Bandar in Iran. Using the approach

and long-term measured HGSR, three models are calibrated by consider-

ing different sets of meteorological parameters measured for Bandar Abbass

situated in Iran. It is found that the model utilizing the combination of

relative sunshine duration, difference between maximum and minimum tem-

peratures, relative humidity, water vapour pressure, average temperature,

and extraterrestrial solar irradiance shows superior performance compared

to all the other approaches used. The survey results reveal that the devel-

oped SVM-FFA approach is capable of providing favourable predictions with

significantly higher precision than other examined techniques.

Sun et al. (2018) propose a decomposition-clustering-ensemble (DCE) learn-

ing approach for solar irradiance forecasting. The application results show

that the EEMD-LSSVR-K (K-means clustering)-LSSVR learning technique

can significantly improve the predicting performance and is superior to some

popular forecasting methods in terms of forecasting accuracy and robustness

analysis. Sreekumar et al. (2016) presents a SVR model with fixed parame-

ter optimization and two hyper parameter optimized SVR models, support

vector regression with optimized hyper parameters using Genetic Algorithm

(SVRGA) as well as Particle Swarm Optimization (SVRPSO) for short-term

solar irradiance forecasting. Their study uses solar irradiance data from

Chicago, USA. The results show that SVRPO outperform SVR model with
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fixed parameter optimization and SVRGA.

2.5 Non-Machine Learning Techniques

A number of alternative methods have been used to forecast solar irradi-

ance besides machine learning techniques. Huang et al. (2013) propose a

coupled autoregressive and dynamical system (CARDS) to forecast the solar

irradiance. The proposed method increases the 1-hour ahead global solar

irradiance forecast accuracy by 30% than general neural network or random

models. Akarslan and Hocaoglu (2016) first use the multidimensional linear

predictive filtering model to forecast hourly solar irradiance in different re-

gions of Turkey, which is superior to the two-dimensional linear predictive

filtering model and the traditional statistical forecasting method by means

of empirical analysis.

Akarslan et al. (2018) propose five semi-empirical models to forecast hourly

solar irradiance which use historical data of solar irradiance, extraterrestrial

irradiance, and clearness index. These models are applied on data from three

regions in Turkey. The results show that the proposed models outperform

Angstrom-Prescott models based on the forecast accuracy.

Novel hybrid adaptive neuro-fuzzy inference system (ANFIS) models with

particle swarm optimization, genetic algorithm and differential evolution are

proposed by Halabi et al. (2018). The proposed ANFIS model with par-

ticle swarm optimization outperformed other hybrid ANFIS models on a

Malaysian dataset. Li et al. (2018) proposed a rolling prediction model com-
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bining empirical mode decomposition (EMD) and ANN techniques which

uses historical solar irradiance data only. The proposed methodology is ap-

plied to a Chinese dataset. The results reveal that the proposed method is

comparable to previous research studies.

2.6 Conclusions from Literature

The use of ANNs and SVR on solar irradiance forecasting has been discussed

in detail under literature. This research project seeks to investigate the

application of ANNs and SVR in forecasting solar irradiance in South Africa.



Chapter 3

Methodology

3.1 Introduction

This chapter discusses the methods and techniques that will be used in this

study to forecast hourly global solar irradiance. The feed forward neural

networks (FFNN), long short-term memory (LSTM) network, and support

vector regression (SVR) are discussed. This chapter will also discuss tech-

niques that are going to be applied in model selection and in assessing forecast

accuracy.

3.2 Feed Forward Neural Networks

A feed forward neural network (FFNN) is a type of artificial neural network

(ANN) in which connections between the nodes do not form a cycle or a loop.

The study of this technique was first initiated by McCulloch and Pitts (1943)

who created a computational model of the concept. Different researchers have

further expanded the concept of ANN to cover many features (Rosenblatt,

1958; Minsky and Papert, 1990). FFNN works by feeding input data in one

12
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end which is then processed by the network and comes out as output in the

other end. Information flows in the forward direction only.

3.2.1 Single-Layer Perceptron

Single-layer perceptron is the simplest type of a neural network which has

a single layer of output nodes (McCulloch and Pitts, 1943). A single-layer

neural network can be described mathematically as follows:

yk =

(
D∑

i=0

ωixi

)
(3.1)

where yk is the output, g(·) is an activation function, xi is input and ωi

represents the corresponding weight for xi. Single-layer neural networks are

not usually used in practice, but help in understanding the basic concept of

neural networks.

3.2.2 Multi-Layer Perceptron

Multi-layer perceptron consists of multiple layers of computational units,

usually interconnected in a feed-forward way (McCulloch and Pitts, 1943).

A multi-layer neural network with one hidden layer can be written as

yk = h

(
M∑

j=0

ω
(2)
kj g(aj)

)
(3.2)

where,

aj = g
( D∑

i=0

ω
(1)
ij xi

)
. (3.3)
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The multi-layer neural network is very similar to single-layer neural network

except that multi-layer neural network’s output of the inner layer is again

multiplied by a new weight vector and wrapped in an activation function.

3.3 Long Short-Term Memory networks

The LSTM (long short-term memory) network is a type of recurrent neural

network (RNN). RNN is used when dealing with sequential data, like time

series data. The LSTM network was originally introduced by Hochreiter and

Schmidhuber (1997) in a paper titled Long Short-Term Memory. The LSTM

network is different from regular RNN due to the reason that it consists of

LSTM blocks instead of nodes. One LSTM block can be represented by the

following system of equations,

ft = g(Wt.[xt, ht−1 + bf ])

it = g(Wi.[xt, ht−1 + bi])

ot = g(Wo.[xt, ht−1 + bo])

ct = ftct−1 + ittanh(g(Wc.[xt, ht−1 + bc]))

ht = ot � tanh(ct),

(3.4)

where g(·) is the sigmoid function, tanh(·) is the hyperbolic tangent, xt is the

input vector, ht is the output vector, ct is a cell state vector, W are weights

and b are biases, ft, it, and ot are gates of the block.
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3.4 Support Vector Regression

Support vector regression (SVR) is based on support vector machine (SVM)

which is a supervised machine learning technique which involves statistical

learning theory and the principle of structural risk minimization. SVR was

introduced by Drucker et al. (1997) and was extended from SVM model.

There are different basic kernel functions that are used in SVM models,

which can be classified as polynomial (Poly), Gaussian kernel, exponential

radial basis function (ERBF), radial basis function (RBF), sigmoid and linear

(Zendehboudi et al., 2018). The SVR works by mapping the input space into

a high-dimensional feature space and constructs the linear regression in it

which can be expressed as

f(x) = ωφ(x) + b, (3.5)

where ω is the weight vector, φ(x) maps inputs x into a high dimensional

feature space that is nonlinearly mapped from the input space x, and b is

the bias term.

To calculate the coefficients ω and b it is required to reduce the regularised

risk function which can be expressed as

1

2
‖ω‖2 + C

1

l

l∑

i=1

Lε(yi, f(xi)), (3.6)

where ‖ω‖2 is a regularised term which maintains the function capacity. C

is a cost error. The empirical term from the second term in equation 3.6 can

be defined as
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Lε(yi, f(xi)) = {|yi = f(xi)| = ε, |yi = f(xi)| ≥ ε}. (3.7)

Equation 3.6 expressed the transformation of the primal objective function in

order to get the values of ω and b by introducing the positive slack variables

ξi(
∗).

minimise
1

2
‖ω‖2 + C

1

l

l∑

i=1

(εi + ξ∗i ) (3.8)

subject to

α(x) =





yi − 〈ω, xi〉 − b ≤ ε+ ξi

〈ω, xi〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

The optimization problem expressed in equation 3.8 has to be transformed

into its dual formulation by using the Lagrange multipliers to solve it in a

more efficient way as follows:

L =
1

2
‖ω‖2 + C

1

l

l∑

i=1

(εi + ξ∗i )−
l∑

i=1

(ηiεi + ηiξ
∗
i )−

l∑

i=1

ai(ε+ ξi + yi + ω.φ(xi) + b)

−
l∑

i=1

a∗i (ε+ ξ∗i − yi − ω.φ(xi) + b),

(3.9)

where L is the Lagrange and ηi, η
∗
i are the Lagrange multipliers. Hence the

dual variables in equation 3.6 have to satisfy positive constraints, η∗i , a
∗
i ≥ 0.

The resulting SVR model can be expressed as follows:

f(x) =
l∑

i=1

(a− a∗i )φ(xi)φ(x) + b (3.10)
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where ai and a∗i are Lagrange multipliers. SVR is known for being effective

in high-dimensional space and effective in memory space since it relies on

using support vectors.

3.5 Principal Component Regression

Principal Component Regression (PCR) is a regression analysis that is used

to deal with multiple regression data that has multicollinearity (Liu et al.,

2003). PCR model will be used in this study as a benchmark model. Multi-

collinearity occurs when one predictor variable in a multiple regression model

can predicted with other variables linearly. It leads to least squares estimates

which have large variances, which means they maybe distant from their true

values. A multiple regression model is given by

Y = Xβ + ε, (3.11)

where Y is a vector of observed values, X is a matrix of explanatory variables,

β is a parameter vector, and ε is vector of error terms. The least squares

solution of equation 3.11 is given by

β̂ = (XTX)−1XTY. (3.12)

To get the first b Principal Components (PCs), we approximate the matrix

X using singular value decomposition (SVD):

X = X̃(b) + εX = (U(b)D(b))V
T
b + εX = T(b)P

T
(b) + εX, (3.13)

where T represents orthogonal scores and P loadings. Now regressing Y on

the scores leads to

β̂ = P(TTT)−1TTY. (3.14)



18

3.6 Variable Selection

Variable Selection involves selection of feature variables that explains a tar-

get variable thereby reducing number of feature variables. This process is

beneficial in terms of avoiding overfitting, making a model easier to inter-

pret, and reduces in computational time. There are many variable selection

methods, however, in this study we use Lasso (least absolute shrinkage and

selection operator) via hierarchical interactions (Bien et al., 2013). Lasso

via hierarchical interactions considers pairwise hierarchical interactions only,

however, it can be extended to higher order interactions. We assume a regres-

sion model with response variable Y and predictors X1,...,Xp with pairwise

interactions between these predictors. Lasso hierarchical model is given as

Y = β0 +
∑

j

βjXj +
1

2

∑

j 6=k
ΘjkXjXk + ε, (3.15)

where ε ∼ N(0, σ2), β ∈ Rp, and Θ ∈ Rp×p. There are two categories of

hierarchical restrictions, which are strong and weak hierarchy.

Strong hierarchy : Θ̂jk 6= 0 ⇒ β̂j 6= 0 and β̂k 6= 0

Weak hierarchy : Θ̂jk 6= 0 ⇒ β̂j 6= 0 or β̂k 6= 0

The major advantage of Lasso via hierarchical interactions is that it leads

to simpler and more interpretable models that involve only a subset of the

predictors.

3.7 Forecast Combination

Forecast combination is a method used to combine forecasts from different

fitted models with a purpose of improving forecast accuracy (Gaba et al.,
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2017). There are many forecast combination methods, but this research will

only focus on quantile regression averaging (QRA) and convex combination

method.

3.7.1 Quantile Regression Averaging

Quantile regression averaging (QRA) was first initiated by Maciejowska et al.

(2016). QRA treats forecasts from different models as independent variables

and actual observations as a dependent variable (global horizontal irradi-

ance). Let ŷt,τ be hourly global horizontal irradiance, K be methods used

to forecast the next m observations, i.e. m is the total number of forecasts.

The forest combination, ŷQRAt,τ , is given by

ŷQRAt,τ = β0 +
K∑

k=1

βt,kŷt,k + εt,τ , τ ∈ (0, 1), t = 1, ...,m, (3.16)

where ŷt,k represents predictions from method k, ŷQRAt,τ is the combined fore-

casts, and εt,τ is the error term. QRA aims to minimise

argmin
β

n∑

t=1

ρτ (ŷ
QRA
t,τ − β0 −

K∑

k=1

βt,kŷt,k). (3.17)

In matrix form, we have

argmin
β∈IR

n∑

t=1

ρτ (ŷ
QRA
t − xTt β). (3.18)

3.7.2 Convex Combination

Convex combination method computes the sequence of instantaneous losses

suffered by the predictions from the experts (models) using a loss function
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(Gaillard and Goude, 2015). The loss function can be based on square, ab-

solute, percentage, or pinball loss. The combined forecasts will be compared

with forecasts from each model using the equation given as

ŷct,τ =
M∑

m=1

ωmtŷmt,τ , (3.19)

where ωmt is the weight given to forecast m.

3.8 Prediction Intervals

The prediction interval widths (PIWs) for every model, Mj, j = 1, ..., k, are

denoted as PIWij, i = 1, ...,m, j = 1, ..., k. PIWij is calculated as

PIWij = ULij − LLij, (3.20)

where ULij and LLij are the upper and lower limits of the prediction interval,

respectively. Probability density plots and box and whisker plots will be used

in this study to find the model which yields narrower PIWs.

Evaluation of Prediction Intervals

A prediction interval with nominal confidence (PINC) of 100(1 − α)% is

defined as the probability that the forecast ŷt,τ lies in the prediction interval

(LLij,ULij) (Sun et al., 2017). PINC is given by

PINC = P (ŷt,τ ∈ (LLij, ULij) = 100(1− α)%. (3.21)

There are many indices used to evaluate the reliability of prediction intervals,

however, in this study we use the prediction interval coverage probability
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(PICP), the prediction interval normalised average width (PINAW) (Sun

et al., 2017). PICP is given by

PICP =
1

m

m∑

i=1

Iij, (3.22)

where m is the number of forecasts and I is a binary variable given by,

Iij =

{
1, if yi ∈ (LLij, ULij)

0, otherwise.
(3.23)

PINAW is another index used to evaluate the reliability of prediction intervals

and is given by

PINAW =
1

m(max(yij)−min(yij))

m∑

i=1

(ULij − LLij), j = 1, ..., k. (3.24)

3.9 Evaluation of Forecasts

The mean absolute error (MAE) and root mean squared error (RMSE) are

going to be used to evaluate the accuracy of our forecasts. The equations of

the above measures are respectively given by

MAE =
1

m

m∑

t=1

|yt − ŷt| , (3.25)

RMSE =

√∑m
t=1(yt − ŷt)2

m
, (3.26)

where ŷt are predicted values by the model, yt are the values actually ob-

served, and m is the number of predictions.
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3.10 Data and Features

This study uses data obtained from the Southern African Universities Ra-

diometric Network (SAURAN) database, accessible at http://sauran.net.

We focus our work on only one radiometric station found at an inland re-

gion in Pretoria, South Africa. The station of focus is the University of

Pretoria radiometric (UPR) station. The exact location of the station is at

28◦13′42.924′′E and 25◦45′11.088′′S as shown in Figure 3.1. This research

project seeks to model hourly solar irradiance (global horizontal irradiance

(GHI)) using independent variables such as temperature, wind speed, relative

humidity, barometric pressure, wind direction standard deviation, rainfall,

hour, month, a non-linear trend, and a lagged hourly solar irradiance at lags

1 and 2.

Figure 3.1: Map showing the location and altitude of the University of Pre-
toria radiometric (UPR) station with some selected stations in South Africa
(Zhandire, 2017).
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The data used is hourly solar irradiance from 1 January 2014 to 31 December

2018 with 20056 observations with hours from 7:00 AM to 5:00 PM considered

to be sunshine hours. The UPR data set is split into training data, 1 January

2014 to 31 December 2017, i.e., n1 = 16044 and testing data, from 1 January

2017 to 31 December 2018, i.e., n2 = 4012, which is 20% of the total number

of observations.

3.11 Computational Tools

The software packages that are used for data analysis in this study are R and

Python. The FFNN and LSTM networks algorithm are implemented in this

study using the Keras deep learning package (https://keras.io/). SVR is

implemented using sklearn python package.



Chapter 4

Data Analysis

4.1 Introduction

This chapter presents data analysis and discussion using the methodology dis-

cussed in Chapter 3. The predictive performance of long short-term memory

(LSTM) networks, support vector regression (SVR), and feed forward neural

networks (FFNN) are compared in this chapter for forecasting hourly solar

irradiance.

4.2 Exploratory Data Analysis

The summary statistics of hourly solar irradiance for the sampling period

January 2014 to December 2018 is given in Table 4.1 for the UPR radio-

metric station. The distribution of hourly solar irradiance is not normally

distributed since it is skewed to the right and platykurtic as shown by the

skewness value of 0.089 and a kurtosis value of -0.997 given in Table 4.1.

Figure 4.1 shows the time series plot of hourly solar irradiance together with

density, normal quantile to quantile (QQ) and box plots which all show that

24
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Figure 4.1: Diagnostic plots for hourly solar irradiance (W/m2).

the data is not normally distributed.

Table 4.2 summarises the weather variables considered for this study and

their ranges.
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Table 4.1: Descriptive statistics for hourly solar irradiance (W/m2).

Min Median Mean Max St.Dev. Skewness Kurtosis
0.0 496.7 496.6 1173.9 298.760 0.089 -0.997

Table 4.2: Weather variables and their value ranges.

Weather variable Value range
Temperature (◦C) 1.95 - 37.28
Barametric pressure(mbar) 814.00 - 878.00
Relative humidity (%) 5.09 - 97.90
Rainfall (mm) 0.00 - 21.84
Wind speed (m/s) 0.01 - 9.93
Wind direction (◦) 0.05 - 360.00
WD standard deviation (◦) 6.72 - 76.51

The non-linear trend values used in this project are obtained or extracted by

fitting a cubic smoothing spline function which is given by:

π(t) =
n∑

t=0

(yt − f(t))2 + λ

∫
{f ′′(t)}2dt (4.1)

where λ is a smoothing parameter which is estimated using the generalised

cross validation (GCV) criterion. Figure 4.2 shows the non-linear trend,

cubic smoothing spline fitted with an estimated λ value. The fitted non-

linear trend values are extracted and used to model solar irradiance.

Figure 4.3 shows box plots of the distribution of hourly irradiance data from

2014 to 2018 for each month and hour of the day, respectively. It can be

clearly seen that solar irradiance shows seasonality, since its values are low

during the winter season and are high during the summer season. The solar

irradiance series is also highly correlated with hour of the day since it tends
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Figure 4.2: Plot of hourly solar irradiance from 1 January 2014 to 31 Decem-
ber 2018 superimposed with a fitted cubic smoothing spline trend (non-linear
trend).

to be low in the morning and increases towards the peak in the afternoon

and decreases towards the evening.
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Figure 4.3: Distribution of monthly and hourly solar irradiance data.

Variable selection using Lasso

Different weather variables are recorded by SAURAN at different radiometric

stations. Variable selection is done in this study using the Least Absolute

Shrinkage and Selection Operator (Lasso) in order to remain with significant

variables in predicting global solar irradiance. Figure 4.4 shows the impor-

tance of 13 weather variables in predicting global solar irradiance as assessed

by Lasso. Wind direction (Wd) and day of the month have the least signifi-

cance in forecasting solar irradiance and are therefore not considered in the

modelling stage.
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Figure 4.4: Variable selection using Lasso.

4.3 Machine Learning Models

The models considered are M2 (LSTM), M3 (SVR), and M4 (FFNN) which

are all machine learning models and M1 (PCR) which is a benchmark model

in this study. RMSE and MAE are normally used for forecast evaluation and

are used in this study.

Table 4.3 shows a comparative analysis of the fitted machine learning models,

together with the benchmark model. All machine learning models outper-

form the benchmark model on both training set and testing set. The M4

(FFNN) model has the least RMSE (83.087) and MAE (51.237), showing

that it is the best fitting model according to the summary of the error mea-

sures for evaluation of the models on the training set.
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Table 4.3 also summarises the error measures for evaluation of the models

on the testing set. From Table 4.3 model M4 (FFNN) has the least RMSE

(88.326) and MAE (53.719) among the three machine learning models. This

means that model M4 is the best forecasting model.

Table 4.3: Comparative analysis of the fitted machine learning models.

Evaluation of the models on the training set
M1 (PCR) M2 (LSTM) M3 (SVR) M4 (FFNN)

RMSE 130.241 91.884 95.251 83.087
MAE 94.346 55.878 68.705 51.237

Evaluation of the models on the testing set
M1 (PCR) M2 (LSTM) M3 (SVR) M4 (FFNN)

RMSE 129.449 94.131 99.302 88.326
MAE 94.554 56.291 72.606 53.719

The graphical plot of the out of sample forecasts for the models M1, M2, M3

and M4 for the period January 2018 to December 2018 are given in Figure

4.5. The test set has 4012 observations. M2 and M4 forecasts appear to be

the same. M1 and M3 forecasts differ with other forecast models, especially

at the lower tails.

The probability densities of hourly solar irradiance and the forecasted values

for the period January 2018 to December 2018 for machine learning models

M2, M3, M4, are shown in Figure 4.6, including that of M1. The forecasts

from the three models appear to have some slight difference with the actual

observations.

Figures 4.7, 4.8, and 4.9 show the true solar irradiance values and their fore-

cast results for M2 (LSTM), M3 (SVR), and M4 (FFNN), respectively, for
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selected days. Each of the figures show forecasts for the first day of four sea-

sons in South Africa which are: autumn (March-May), winter (June-August),

spring (September-November), and summer (December-February). The se-

lected days are March 1 (autumn), June 1 (winter), September 1 (spring),

and December 1 (summer), all in 2018. The forecasts from the three mod-

els appear to be fairly close with the actual observations, especially on the

chosen spring and summer days.
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Figure 4.5: Graphical plot of (a) Top left panel: Forecasts (dashed line)
using model M1 (PCR) and actual hourly irradiance (solid line) (b) Top
right panel: Forecasts (dashed line) using model M2 (LSTM) and actual
hourly irradiance (solid line) and (c) Bottom left panel: Forecasts (dashed
line) using model M3 (SVR) and actual hourly irradiance (solid line) (d)
Bottom right panel: Forecasts (dashed line) using model M4 (FFNN) and
actual hourly irradiance (solid line).
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Figure 4.6: Probability densities of (a) Top left panel: Forecasts (dashed
line) using model M1 (PCR) and actual hourly irradiance (solid line) (b)
Top right panel: Forecasts (dashed line) using model M2 (LSTM) and
actual hourly irradiance (solid line) and (c) Bottom left panel: Forecasts
(dashed line) using model M3 (SVR) and actual hourly irradiance (solid line)
(d) Bottom right panel: Forecasts (dashed line) using model M4 (FFNN)
and actual hourly irradiance (solid line).
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Figure 4.7: Graphical plot of forecasts (dashed line) using model M2 (LSTM)
and actual hourly irradiance (solid line) for the first day of season in (a) Top
left panel: Autumn (1 March 2018)and (b) Top right panel: Winter (1
June 2018) (c) Bottom left panel: Spring (1 September 2019) and (d)
Bottom right panel: Summer (1 December 2019).
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Figure 4.8: Graphical plot of forecasts (dashed line) using model M3 (SVR)
and actual hourly irradiance (solid line) for the first day of season in (a) Top
left panel: Autumn (1 March 2018) and (b) Top right panel: Winter
(1 June 2018) (c) Bottom left panel: Spring (1 September 2019) and (d)
Bottom right panel: Summer (1 December 2019).
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Figure 4.9: Graphical plot of forecasts (dashed line) using model M4 (FFNN)
and actual hourly irradiance (solid line) for the first day of season in (a) Top
left panel: Autumn (1 March 2018) and (b) Top right panel: Winter
(1 June 2018) (c) Bottom left panel: Spring (1 September 2019) and (d)
Bottom right panel: Summer (1 December 2019).
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4.4 Forecast Combination

This section gives results of forecast combination of machine learning models

forecasts. Two forecast combination methods are used, which are convex

combination and quantile regression averaging.

4.4.1 Convex Combination

It is known that combining forecasts often leads to better forecast accu-

racy. The forecasts from different regression based time-series which are

fitted above may be improved by combining them using R package called

‘opera’ developed by Gaillard and Goude (2016). The models developed

are also referred to as experts. To combine forecasts we find aggregation of

experts and analyse them by looking at the oracles. The opera package com-

putes weights when combining the forecasts. Convex combination method

works by computing the sequence of instantaneous losses suffered by the pre-

dictions from the experts (models) using loss function.

The loss function can be based on square, absolute, percentage, or pinball

loss. Table 4.4 summarises the results for forecast combination models. It is

giving weight 0.370 to model M2, 0.0821 to model M3, and 0.630 to model

M4 when the loss function is specified as square. The pinball and absolute

loss function are giving weight 0.108 to model M2, 0 to model M3, and 0.814

to model M4. From the accuracy measures Mix 2 and Mix 3 have the same

least RMSE (88.732) and MAE (52.405) values compared with Mix 1.

The absolute loss suffered by the experts are given in Figure 4.10. From
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Table 4.4: Evaluation of forecast combination models.

Models (experts)
M2 M3 M4

Square (Mix 1) 0.108 0.0821 0.810
Pinball (Mix 2) 0.370 0 0.630

Absolute (Mix 3) 0.370 0 0.630
Accuracy measures

Mix 1 Mix 2 Mix 3
RMSE 88.128 88.732 88.732
MAE 53.339 52.405 52.405

Figure 4.10: Average loss suffered by the models.

Figure 4.10 the convex combination model is shown as the best forecast-

ing mode1 followed by model M4 (fFFNN), uniform combination (Uniform),

model M2 (fLSTM), and model M3 (fSVR) respectively.
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4.4.2 Quantile Regression Averaging

Quantile regression averaging (QRA) is another technique normally used to

combine forecasts by using forecasts from each model as independent vari-

ables. The three models M2 (LSTM), M3 (SVR), and M4 (FFNN) are com-

bined based on QRA, resulting in model M6. Model M6 (QRA) is given

by:

yt,τ (QRA) = β0 + β1fM2 + β2fM3 + β3fM4 + εt (4.2)

where fM2, fM3, and fM4 represent the forecasts from models M2, M3, and

M4, respectively.

Table 4.5 gives a summary of the accuracy measures for the machine learning

models, the M5 (Convex) model, and the M6 (QRA) model. Based on MAE,

model M6 is the best forecasting model compared with the convex model

and the machine learning models. MAE shows a slight improvement after

forecast averaging. The results of absolute loss suffered by the models based

on pinball losses shows M6 as the best model since it has the smallest average

pinball loss value (26.017).

Combining forecasts from individual models improves the accuracy of our

hourly solar irradiance predictions. Since model M6 is giving us the best

forecasts we plot its forecasts in Figure 4.11. Figure 4.12 shows plots of fore-

casts on the first day of each season in South Africa. The forecasts are fairly

close to the actual observations, especially in spring and summer.
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Table 4.5: Comparative analysis of the machine learning models, Convex
model, and QRA model.

Accuracy measure M2 M3 M4 M5 (Convex) M6 (QRA)
RMSE 94.131 99.302 88.326 88.732 88.600
MAE 56.291 72.606 53.719 52.405 52.034

Average Pinball loss 28.146 36.303 26.859 26.202 26.017

Figure 4.11: Model M6 (QRA) forecasts with density plot.
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Figure 4.12: Plots of M6 (QRA) forecasts on the first day of each season in
South Africa.
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4.5 Comparative Analysis of the Models

This section presents the evaluation of the fitted models based on the empir-

ical prediction intervals (PIs) and forecast error distributions of each model

forecasts.

4.5.1 Evaluation of Prediction Intervals

Table 4.6 gives summary statistics of the PIWs for the models M2 to M6 for

PINC value of 95% level of confidence. Model M2 has the narrowest standard

deviation which indicates that it has narrower PIWs compared to models M3

to M6. All the PIWs distributions are approximately normally distributed

since a normally distributed data should have a skewness value of zero. The

values for kurtosis are all less than 3, showing that the distributions are all

platykurtic since for a normally distributed (mesokurtic) data kurtosis value

should be equal to three.

Table 4.6: Model PIWs comparisons.

Mean Median Min Max St.Dev. Skewness Kurtosis
M2 420.3 419.4 277.2 584.8 75.801 0.058 -1.002
M3 399.1 401.2 221.9 571.9 77.437 0.002 -0.865
M4 381.0 382.7 209.2 578.6 91.181 0.062 -0.977
M5 384.4 384.9 225.6 566.9 84.032 0.064 -0.989
M6 381.2 382.1 215.0 569.6 86.962 0.062 -0.984

Figure 4.13 shows box plots of widths of the PIs for all the fitted models.

From the figure, M2 has the narrowest PI compared to models M3 to model

M6. Figure 4.14 density plots of widths of the PIs for the forecasting models

M2 to M6. The density plots are all similar except for the PI from model
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Figure 4.13: Prediction interval widths for models M2 (PILSTM), M3
(PISVR), M4 (PIFFNN), M5 (PIConvex), and M6 (PIQRA).

M3 which has the widest PI.

In order to select the best model based on the analysis of the PIWs, we need

to calculate the PICPs and PINAWs including a count of the number of

predictions below and above the PIs. This is done for various PINC values,

which are 90%, 95% and 99%, respectively. A model with a PICP value close

to the PINC value is preferred. A fitted model that has better PIWs has the

lowest value of PINAW, and is one which is preferred over other fitted mod-

els. Table 4.7 shows a comparative evaluation of the models using PI indices

for different PINC values. All models have valid PICPs for the three PINC
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Figure 4.14: Density plots of the Prediction interval widths for models M2
(PILSTM), M3 (PISVR), M4 (PIFFNN), M5 (Convex), and M6 (PIQRA).

values. Model M2 and M3 have the same lowest PICPs at 90% and 95%,

with model M3 having the lowest PICP at 99% compared to all other mod-

els. The best model based on PINAW at 90% is M6, M4 at 95%, and M3 at

99%. There is no consistency in the PICPs and PINAWs for different PINC

values. However, due to results in Table 4.5, model M6 (QRA) is selected as

the best model.
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Table 4.7: Model PINCs comparisons.

PINC Model PICP (%) PINAW (%) Below LL Above UL
90% M2 90.03 25.58 200 200

M3 90.03 26.59 201 199
M4 90.05 23.91 199 200
M5 90.05 23.88 200 199
M6 90.03 23.67 200 200

95% M2 95.04 36.17 100 99
M3 95.04 34.35 100 99
M4 95.06 32.79 99 99
M5 95.06 33.08 99 99
M6 95.06 32.81 99 99

99% M2 99.05 58.03 19 19
M3 99.03 53.35 19 20
M4 99.05 54.96 19 19
M5 99.05 55.12 19 19
M6 99.05 54.94 19 19

Combination of interval limits

Suppose we have 100(1−α)% forecast intervals [LLij, ULij], i = 1, ...,m, j =

1, ..., k, where m is the number of forecast point and k is the number of

forecasters. In this study we use three basic methods for combining in-

terval forecasts which are; average method, median method, and envelop

method discussed by Gaba et al. (2017). Average (Av) limits are given by

LLAv = (1/k)
∑k

j=1 LLij and ULAv = (1/k)
∑k

j=1 ULij. Median (Md) limits

are given by LLMd = {LLi1, ..., LLik} and ULMd = {ULi1, ..., ULik}. En-

velop (En) limits are given by LLEn = min{LLi1, ..., LLik} and ULEn =
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max{ULi1, ..., ULik}. Table 4.8 shows a comparative analysis of PIWs after

combining the PIWs of individual models based on the average, median, and

envelop methods. All combination methods have valid PICPs for the three

PINC values with the median method having the lowest PINAWs for the

three PINC values. Combining interval limits yield better results since the

number of forecasts below and above limits decreases significantly.

Table 4.8: PINCs comparisons based on average, median, and envelop of
lower and upper PIs.

PINC Model PICP (%) PINAW (%) Below LL Above UL
90% Average 90.68 24.73 194 180

Median 90.18 23.89 200 194
Envelop 93.82 30.03 136 112

95% Mean 95.26 33.84 99 91
Median 95.09 33.05 98 99
Envelop 96.68 39.09 72 61

99% Mean 99.10 55.28 20 16
Median 99.10 55.08 19 17
Envelop 99.33 59.79 14 13

4.5.2 Residual Analysis

Summary statistics of the residuals of the models are given in Table 4.9. It

can be seen that model M4 has the smallest standard deviation which indi-

cates that it has the narrowest error distribution compared to models M3 to

M6, this implies that M4 is the best compared to other models, followed by

model M6. All the error distributions are skewed to the left since the values

of their skewness are all negative. The values for kurtosis are all greater than

3, showing that the distributions are all leptokurtic.
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Table 4.9: Model residuals comparisons.

Mean Median Min Max St.Dev. Skewness Kurtosis
M2 -6.371 -2.965 -711.639 634.962 93.927 -1.006 8.436
M3 19.050 33.090 -637.200 600.870 97.471 -1.263 5.436
M4 3.045 8.223 -662.404 624.515 88.285 -1.181 8.829
M5 -0.439 4.169 -680.111 628.380 88.742 -1.158 9.153
M6 -5.450 0.000 -681.130 619.630 88.443 -1.213 9.177

Figure 4.15 shows box plots of the forecast errors for all the fitted models.

From the figure, M4 has the narrowest error distribution compared to models

M3 to M6, implying that M4 is the best model compared to other models.

Figure 4.16 shows density plots of the forecast errors for the forecasting

models M2 to M6. The density plots are all similar except for the forecast

errors from models M2 and M3, respectively.

4.5.3 Percentage Improvement

Table 4.10 gives the percentage of improvement rates of the best model over

other models. The percentage improvement of M6 over M2, M3, and M4 are

found to be 7.56%, 28.33%, and 1.30% respectively. This means M4 (FFNN)

is the second best model after M6 (QRA) and their predictive performance

are very close to one another.

Table 4.10: Percentage improvement rates.

Models MAE (best model) MAE (other model) Percentage improvement
QRA & LSTM 52.034 56.291 7.56%
QRA & SVR 52.034 72.606 28.33%
QRA & FFNN 52.034 53.719 1.30%
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Figure 4.15: Box plots of residuals from models M2 (ResLSTM), M3
(ResSVR), M4 (ResFFNN), M5 (ResConvex), and M6 (ResQRA).
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Figure 4.16: The error distribution of forecasting techniques for M2
(ResLSTM), M3 (ResSVR), M4 (ResFFNN), M5 (ResConvex), and M6
(ResQRA).
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4.6 Discussion and Plots of out of Sample

Forecasts

From the comparative analysis in Table 4.5 based on MAE and average pin-

ball losses, M6 (QRA) is the best fitting model and can be used for predicting

hourly solar irradiance. From the PIWs analysis at 95% level of confidence,

M2 (LSTM) has the narrowest PI compared to models M3 to M6, implying

that M2 is the best compared to other models. Further analysis of the PIWs

based on the PICPs and PINAWs including a count of the number of predic-

tions below and above the PIs shows no consistency. The best model based

on PINAW at 90% is M6 (QRA), M4 (FFNN) at 95%, and M3 (SVR) at 99%.

There is no consistency in the PICPs and PINAWs for different PINC values.

The residual analysis shows M4 (FFNN) as the best model with narrowest er-

ror distribution compared to other models, followed by model M6. However,

due to results in Table 4.5 and Table 4.10, we stick with model M6 (QRA)

as our best model. Table 4.8 shows a comparative analysis of PIWs after

combining the PIWs of individual models based on the average, median, and

envelop methods. All combination methods have valid PICPs for the three

PINC values with the median method having the lowest PINAWs for the

three PINC values. Combining interval limits yield better results since the

number of forecasts below and above limits decreases significantly.

The plot of actual hourly solar irradiance superimposed with forecasted irra-

diance from model M6 (QRA) (1 January 2018 to 31 December 2018) given

in Figure 4.17 shows that the forecasts follow hourly solar irradiance very
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well.

Figure 4.17: Model M6 (QRA) forecasts.

Table A.1 in Appendix A summarises the error measures for out of sample

evaluation using model M6 for the month January to December 2018. The
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accuracy measures are significantly lower from April to August. Figures A.1-

A.6 show hourly solar irradiance superimposed with forecasts together with

their respective densities. The forecasts follow actual hourly solar irradiance

very well, especially from June to October 2018.



Chapter 5

Conclusion

5.1 Introduction

This chapter summarises the research findings that were discussed in Chapter

4 and presents recommendations, limitations of the study and suggest areas

for future research.

5.2 Research Findings

Solar irradiance forecasting is important for programming back-up, opera-

tional planning, short-term power purchases, switching other energy sources,

planning for reserve usage and peak load demand. This research project

focused on forecasting hourly solar irradiance (global horizontal irradiance

(GHI)) using the irradiance data for the period 2014 to 2018 obtained from

the Southern African Universities Radiometric Network (SAURAN) database

for University of Pretoria radiometric (UPR) station.

Modelling hourly solar irradiance using long short-term memory (LSTM)

53
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networks, support vector regression (SVR), and feed forward neural networks

(FFNN) models were discussed in Chapter 4. Before modelling hourly solar

irradiance, the variable selection was done using the least absolute shrinkage

and selection operator (Lasso) which showed that wind direction and day of

the month are not important in forecasting solar irradiance amongst other

features, and were therefore not considered in the modelling stage.

According to findings in Chapter 4, among the three fitted machine learning

models in Section 4.3, the FFNN model produced the best forecast accuracy

based on the MAE and RMSE. Later, the forecasts from the machine learning

models were combined in Section 4.4 using the convex combination method

and quantile regression averaging (QRA). Based on MAE and average pin-

ball losses, the QRA model was found to be the best forecast combination

method, and also the best forecasting model compared with the machine

learning models.

From the prediction interval widths (PIWs) analysis in Section 4.5, at 95%

level of confidence M2 (LSTM) has the narrowest PI compared to model

M3 to model M6, this implies that M2 is the best compared to other mod-

els. Further analysis of the PIWs based on the prediction interval cover-

age probabilities (PICPs), and prediction interval normalised average widths

(PINAWs) including a count of the number of predictions below and above

the PIs showed inconsistency. The best model based on PINAW at 90% is

M6 (QRA), M4 (FFNN) at 95%, and M3 (SVR) at 99%. There is incon-

sistency in the results of PICPs and PINAWs for different PINC values. In
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Section 4.5.1, a comparative analysis of PIWs after combining the PIWs of

individual models based on the average, median, and envelop methods was

done. The results show the all combination methods have valid PICPs for

the three PINC values with the median method having the lowest PINAWs

for the three PINC values. Combining interval limits yield better results

since the number of forecasts below and above limits decreases significantly.

The residual analysis in Section 4.5.2 shows M4 (FFNN) as the best model

with narrowest error distribution compared to other models.

Finally, in Section 4.5.3, the percentage improvement rates of the best model

over other models were calculated. The percentage improvement of M6 over

M2, M3, and M4 were found to be 7.56%, 28.33%, and 1.30% respectively.

This means M4 (FFNN) is the second best model after M6 (QRA) and their

predictive performance is very close to one another. However, based on the

results from MAE and average pinball losses, model M6 (QRA) was selected

as the as the best forecasting model. The median method for combining

interval limits gave the best results on PIWs analysis.

5.3 Recommendations

The information derived from this research study on forecasting solar irra-

diance is important to electricity utility decision-makers in South Africa in

balancing demand and supply of electricity in an effective way which favours

future economic prosperity and environmental security. This research study

recommends forecast combination and combining interval limits for forecast-

ing solar irradiance in South Africa.
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5.4 Limitations of the Study

One of the limitations of this research study is that only some of the weather

variables were used as covariates to model solar irradiance. It would have

been interesting to forecast hourly solar irradiance with the inclusion of other

predictor variables such as precipitation and cloud cover. Another limitation

of this study is that only one radiometric station in South Africa out of 19

radiometric stations which are owned by SAURAN was studied.

5.5 Future Research

Future work will focus on including more radiometric stations based in South

Africa and also consider different weather conditions at a coastal and inland

region by doing spatial analysis.



Appendix A

Forecasts for the Months
January to December 2018

Table A.1: Forecast accuracy measures root mean square error (RMSE),
mean absolute error (MAE) for the forecasts of January to December 2018.

Month RMSE MAE
January 103.389 69.195
February 124.483 91.413
March 103.091 75.659
April 92.043 58.864
May 59.154 33.180
June 34.847 20.039
July 44.066 24.256
August 40.814 23.729
September 53.305 30.064
October 98.832 51.750
November 118.346 71.924
December 121.898 77.909
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Figure A.1: Hourly irradiance with forecasts for the months January and
February 2018.
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Figure A.2: Hourly irradiance with forecasts for the months March and April
2018.
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Figure A.3: Hourly irradiance with forecasts for the months May and June
2018.
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Figure A.4: Hourly irradiance with forecasts for the months July and August
2018.



62

Figure A.5: Hourly irradiance with forecasts for the months September and
October 2018.
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Figure A.6: Hourly irradiance with forecasts for the months Noveber and
December 2018.



Appendix B

Some selected R Code

1 # The following packages in R are used:

2 # forecast , ggplot2 , qgam , mgcv , tseries , e1071 , glmnet , hierNet.

3 #####################################################################

4 library(forecast)

5 library(ggplot2)

6 library(tseries)

7 library(e1071)

8 library(glmnet)

9 library(hierNet)

10 ####################################################################

11 # time series , qqnorn , density and box plot for solar irradiance

12 ####################################################################

13 attach(UPRanlyticdata)

14 head(UPRanlyticdata)

15 win.graph()

16 par(mfrow=c(2,2))

17 A<-ts(GHI)

18 plot(A,xlab="Observation number",ylab="Solar irradiance (W/m^2)"

19 ,main="(a) Plot of irradiance",col = "blue")

20 plot(density(A),xlab="Solar irradiance (W/m^2)

21 ",main="(b) Density plot",col = "blue")

22 qqnorm(A,col = "blue",main="(c) Normal QQ plot")

23 qqline(A)

24 boxplot(A,main="(d) Box plot",varwidth=TRUE ,

25 xlab="Solar irradiance (W/m^2)", col = "blue",horizontal= TRUE)

26 ##################################################################

27 ## calculating summary statistics , skewness and kurtosis of GHI

28 ###################################################################

29 summary(A)

30 library(e1071)

31 sd(A)

32 skewness(A)

33 kurtosis(A)

34 ##################################################

35 ## Fitting and extracting Non -linear Trend values

36 ####################################################

37 z <- ts(GHI)

64
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38 win.graph()

39 plot(z, xlab="Observation number",ylim=c(0 ,1200),type="l",

40 ylab="Solar irradiance (W/m^2)")

41 length(GHI)

42 r=smooth.spline(time(z), z)

43 r # 0.1112481

44 lines(smooth.spline(time(z), z, spar= 0.1112481) , lwd=3,col="red")

45 dpdfits = fitted (( smooth.spline(time(z), z, spar= 0.1112481)))

46 write.table(dpdfits ,"~/GHIfittedspline.txt",sep="\t")

47 ##########################################################

48 ## PRINCIPAL COMPONENT REGRESSION (PCR)

49 ##########################################################

50 attach(UPRnewdata) # Data will all features

51 head(UPRnewdata)

52 library(pls)

53
54 GHI_data_test <- 16045: nrow(UPRnewdata)

55 GHI_data_test

56 data_train <- UPRnewdata[-GHI_data_test , ]

57 data_train

58 data_test <- UPRnewdata[GHI_data_test , ]

59 data_test

60
61 m1 <- pcr(GHI~Temp+BP+RH+RainTot+WS+WD+WD_SD+Lag1+Lag2+noltrend+Hour+Month+

Day ,

62 ncomp = 12, data = data_train , validation = "CV")

63 summary(m1)

64 forecasts <- predict(m1, ncomp = 1:12, newdata = data_test)

65 forecasts <- data.frame(forecasts)

66 forecasts

67 write.table(forecasts ,"~/forecastsPCA.txt",sep="\t")

68 f12 <- forecasts$GHI .12. comps

69 x <- data_test$GHI

70 accuracy(f12 ,x)

71
72 #######################################

73 ## FORECAST COMBINATION OPERA

74 ######################################

75 library(forecast)

76 attach(ForecastsUPRnew) # Forecasts from all ML models

77 head(ForecastsUPRnew)

78 win.graph()

79 accuracy(Flstm , GHI)

80 accuracy(Fsvr , GHI)

81 accuracy(Fffnn , GHI)

82 ########################################

83 Y <-GHI

84 X <- cbind(Flstm , Fsvr , Fffnn)

85 matplot(cbind(Y,X), type="l", col =1:4)

86 fLSTM <- Flstm

87 fSVR <- Fsvr

88 fFFNN <- Fffnn

89 X <- cbind(fLSTM , fSVR , fFFNN)

90 # How good are the expert? Look at the oracles

91
92 library(opera)

93 oracle.convex <- oracle(Y = Y, experts = X, loss.type = "pinball",
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94 model = "convex")

95 oracle.convex

96 plot(oracle.convex)

97 print(oracle.convex) # print is same as plot in results

98
99 mix1 = 0.37*Flstm + 4.99e-21*Fsvr + 0.63*Fffnn # pinball

100 mix2 = 0.108*Flstm + 0.0821*Fsvr +0.81*Fffnn # square

101 mix3= 0.37*Flstm + 4.86e-21*Fsvr+ 0.63*Fffnn # absolute

102 # Accuracy measures

103 accuracy(mix1 , GHI)

104 accuracy(mix2 , GHI)

105 accuracy(mix3 , GHI)

106
107 mix1

108 write.table(mix1 ,"~/Fconvex.txt",sep="\t")

109 ################################################

110 ## QUANTILE REGRESSION AVERAGING

111 ################################################

112 attach(ForecastsUPRnew)

113 head(ForecastsUPRnew)

114 win.graph()

115 y <- ts(GHI)

116 plot(y, xlab="Observation number", ylab="Hourly irradiance")

117
118 library(quantreg)

119 qr.GHI = rq(GHI ~ Flstm+Fsvr+Fffnn ,data= ForecastsUPRnew , tau =0.5) #tau =

0.025, 0.5, 0.975

120
121 summary.rq(qr.GHI ,se="boot") # can use se = "nid" or se="ker"

122 lines(qr.GHI$fit , col="red")

123 fQRA = fitted(qr.GHI)

124 write.table(fQRA ,"~/QRA05.txt",sep="\t") #LL0025 , QRA05 , UL0975

125 accuracy(fQRA ,GHI)

126 ##########################################################

127 ## Pinball loss function using r-package gefcom2017

128 ##########################################################

129 #install.packages (" remotes ")

130 #remotes :: install_github (" camroach87/gefcom2017 ")

131 attach(ForecastsUPRnew) ## Load all forecasts

132 library(gefcom2017)

133 pinball_loss <- function(tau , y, q) {

134 pl_df <- data.frame(tau = tau ,

135 y = y,

136 q = q)

137
138 pl_df <- pl_df %>%

139 mutate(L = ifelse(y>=q,

140 tau/100 * (y-q),

141 (1-tau/100) * (q-y)))

142
143 return(pl_df)

144 }

145
146 tau= 50

147 y= GHI

148 q= Fconvex # Flstm , Fsvr , Fffnn , Fconvex , Fqra

149 z = pinball_loss(tau , y, q)
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150 z

151 write.table(z,"~/pinballFconvex.txt",sep="\t")

152 qloss =z$L

153 a=ts(qloss)

154 plot(a)

155 mean(qloss)

156
157 ### Forecast plot with 2 lines

158 ### Forecast plot for LSTM , SVR , FFNN , Convex , QRA , PCR

159 ## Flstm , Fsvr , Fffnn , Fconvex , Fqra , f12

160 y=ts(GHI)

161 win.graph()

162 plot(y,xlab="Observation number",ylim=c( -100 ,1400),type="l",

163 ylab="Solar Irradiance (w/m^2)")

164 lines(Fsvr ,col="red", lty =2)

165 legend("topleft",col=c("black","red"), lty=1:2,lwd=2,

166 legend=c("Actuals", "SVR forecasts"))

167
168 # Density plot with 2 lines

169 ### Density plot for LSTM , SVR , FFNN , Convex , QRA , PCR

170 ## Flstm , Fsvr , Fffnn , Fconvex , Fqra , f12

171 x1= density(GHI)

172 plot(x1 ,ylim=c(0.0 ,0.0014) , xlim=c( -100 ,1400),col="blue", main=" Density of

irradiance (LSTM)",

173 xlab="Solar irradiance (W/m^2)")

174 x2=density(Flstm)

175 lines(x2,col="red", lty=2)

176 legend("topright",lty=c(1,2), lwd=2,col=c("blue","red"),

177 legend=c("Actuals", "LSTM forecasts"))

178 ####################################################################

179 ### Prediction Interval Width for all models

180 #####################################################################

181
182 ## Flstm , Fsvr , Fffnn , Fconvex , Fqra

183 qr.GHI = rq(GHI ~ Flstm ,data= ForecastsUPRnew , tau =0.05) #LL = 0.05, 0.025 ,

0.005

184 #UP = 0.950, 0.975, 0.995

185 summary.rq(qr.GHI ,se="boot") # can use se = "nid" or se="ker"

186 #lines(qr.GHI$fit , col="red")

187
188 fQRA = fitted(qr.GHI)

189 write.table(fQRA ,"~/Flstm005.txt",sep="\t") #LL0025 , QRA05 , UL0975

190 accuracy(fQRA ,GHI)

191
192 ######################################################################

193 #### Model PIWs comparisons at 95%

194 ######################################################################

195 attach(PIs_UPRnew)

196 head(PIs_UPRnew)

197
198 PIW = c("PILSTM","PISVR","PIFFNN","PIConvex","PIQRA")

199 win.graph()

200 boxplot(PIlstm95 , PIsvr95 , PIffnn95 , PIconvex95 ,PIqra95 , names= PIW ,

horizontal = FALSE ,main="95% prediction intervals",

201 ylab="Prediction interval width (w/m^2)", col = "blue")

202
203 win.graph()
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204 par(mfrow=c(3,2))

205 plot(density(PIlstm95),xlab="Prediction interval width (w/m^2)", col="blue",

main="PILSTM")

206 plot(density(PIsvr95),xlab="Prediction interval width (w/m^2)", col="blue",

main="PISVR")

207 plot(density(PIffnn95),xlab="Prediction interval width (w/m^2)", col="blue",

main="PIFFNN")

208 plot(density(PIconvex95),xlab="Prediction interval width (w/m^2)", col="blue

",

209 main="PIConvex")

210 plot(density(PIqra95),xlab="Prediction interval width (w/m^2)", col="blue",

main="PIQRA")

211
212 ## Summary statistics for PIWs

213 ## PIlstm95 , PIsvr95 , PIffnn95 , PIconvex95 , PIqra95

214 library(e1071)

215 summary(PIqra95)

216 sd(PIqra95)

217 skewness(PIqra95)

218 kurtosis(PIqra95)

219
220 #################################################################

221 #Residual Error Analysis

222 #################################################################

223 attach(ForecastsUPRnew)

224 head(ForecastsUPRnew)

225 ResLSTM= ForecastsUPRnew$GHI - ForecastsUPRnew$Flstm

226 ResSVR= ForecastsUPRnew$GHI - ForecastsUPRnew$Fsvr

227 ResFFNN= ForecastsUPRnew$GHI - ForecastsUPRnew$Fffnn

228 ResConvex= ForecastsUPRnew$GHI - ForecastsUPRnew$Fconvex

229 ResQRA= ForecastsUPRnew$GHI - ForecastsUPRnew$Fqra

230
231 ## Summary Statistics for forecast errors

232 ## ResLSTM , ResSVR , ResFFNN , ResConvex , ResQRA

233 library(e1071)

234 summary(ResQRA)

235 sd(ResQRA)

236 skewness(ResQRA)

237 kurtosis(ResQRA)

238
239 #Residual box -pot and density plot

240
241 RESID = c("ResLSTM","ResSVR","ResFFNN","ResConvex", "ResQRA")

242 win.graph()

243 boxplot(ResLSTM , ResSVR , ResFFNN , ResConvex ,ResQRA , names= RESID , horizontal

= FALSE ,main="",

244 ylab="Residuals (w/m^2)", col = "blue")

245
246 win.graph()

247 par(mfrow=c(3,2))

248 plot(density(ResLSTM),xlab="Forecast error (w/m^2)", col="blue", main="

ResLSTM")

249 plot(density(ResSVR),xlab="Forecast error (w/m^2)", col="blue", main="ResSVR

")

250 plot(density(ResFFNN),xlab="Forecast error (w/m^2)", col="blue", main="

ResFFNN")
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251 plot(density(ResConvex),xlab="Forecast error (w/m^2)", col="blue", main="

ResConvex")

252 plot(density(ResQRA),xlab="Forecast error (w/m^2)", col="blue", main="ResQRA

")
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