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Abstract

Short-term load forecasting in South Africa using machine learning and statistical mod-

els is discussed in this study. The research is focused on carrying out a comparative

analysis in forecasting hourly electricity demand. This study was carried out using

South Africa’s aggregated hourly load data from Eskom. The comparison is carried

out in this study using support vector regression (SVR), stochastic gradient boosting

(SGB), artificial neural networks (NN) with generalized additive model (GAM) as a

benchmark model in forecasting hourly electricity demand. In both modelling frame-

works, variable selection is done using least absolute shrinkage and selection operator

(Lasso). The SGB model yielded the least root mean square error (RMSE), mean ab-

solute error (MAE) and mean absolute percentage error (MAPE) on testing data. SGB

model also yielded the least RMSE, MAE and MAPE on training data. Forecast combi-

nation of the models’ forecasts is done using convex combination and quantile regres-

sion averaging (QRA). The QRA was found to be the best forecast combination model
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based on the RMSE, MAE and MAPE.

Keywords: Electricity demand forecasting, Machine learning, Lasso, neural networks, sup-

port vector regression, Forecasting, Forecast combination.
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Chapter 1

Introduction

Electrical energy is one of the most widely used energy forms in the world. The amount

of electricity generated balanced with the electricity drawn from the grid is the electric-

ity load. During periods when there are no load-shedding, blackouts and the available

electricity that is generated from sources such as renewable energy, the the electricity

load and electricity demand are equivalent. In this study, the hourly electricity de-

mand is defined as the amount of electricity (load) in MegaWatts (MW) sent out every

hour by Eskom to meet the demand of the consumers (Mokilane et al., 2018).

Electricity has, over time, become a product that is bought and sold for various

purposes in the market environment. Forecasting which is the first step of planning has

become much more important and has been made mandatory for the market partici-
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pants by energy market regulators. In this study, short term electricity load forecasting

is done for 24 hours ahead.

Being a middle income country, South Africa falls under one of the most indus-

trialized countries in the continent of Africa. Electricity has numerous utilities in the

industries, as well as for commercial and household purposes. Stats (2011) reported

that a 1996 census revealed that only 57.6 percent of the households in the country

had access to electricity for lighting. Lehohla (2005) reported that in 2001 the census

showed an increase in household electricity access by up to 70.2 percent.

The 2007 Community Survey indicated that 80.1 percent of the South African house-

holds had access to electricity for lighting (Stats, 2011). The 2011 census showed that

this percentage went up to 84.7 percent (Stats, 2011).

From the year 1996 to 2007, it was shown by the evidence from censuses and

surveys that the newly connected households in the electricity grid could result in

increased demand of household electricity. There was stability in the percentage of

newly connected households between the 2007 and 2011, indicating that household

electricity demand would be expected to have been stable during this period. One

of the contributing factors in the decline in electricity demand could have been the

economy that shrinked between 2007 and 2015 (Lehohla, 2005).
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A decline in electricity demand from Eskom could have been contributed to by

the introduction of other sources of electricity such as renewable energies, such as solar

and wind. Inglesi and Pouris (2010) report that some companies and households had

to find other sources of electricity, since Eskom experienced a lack of capacity in the

generation of electricity in 2007, causing a decline in electricity demand. To date, the

actual capacity of electricity demand market is unclear because of the unavailability

of certain types of data, such as the renewable energy and other forms of electricity

generation (Mokilane et al., 2018).

The combined effect of all these changes in the demography, economy and usage

patterns can be investigated using historical patterns, but contribute to uncertainties

when trying to forecast future electricity demand (Mokilane et al., 2018).

1.1 Background

Accurate short term electrical load forecasting results in economic cost savings and

increased security in operating conditions, allowing electrical utilities to commit their

own production resources in order to optimize energy prices as well as exchanges with

neighbouring utilities.

In forecasting, there are uncertainties. When developing forecasts for an un-

known future, statisticians need to make provisions of quantities of such uncertainties

to the decision makers. Sigauke (2014) reports that the growing usage of technolo-
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gies that utilize electricity, growth in population, general randomness in individual

usage of electricity, seasonal effects, prevailing economic patterns, change in weather

conditions, escalating costs, use of power saving electrical appliances and the grow-

ing sources of renewable energies could result in the uncertainties in future electricity

demand.

The inherent uncertainties in predictions imply that forecasts should ideally be

probabilistic; in other words, they should take the form of probability distributions

over future quantities or events (Gneiting and Katzfuss, 2014). Probabilistic forecasts

could take the form of quantiles, prediction intervals or density forecasts to quantify

uncertainties in predictions. They are an essential ingredient of optimal decision-

making (Gneiting and Katzfuss, 2014). It is important to quantify the uncertainties

around the demand forecasts for planning purposes, to avoid building unnecessary in-

frastructure and to ensure that future electricity demand is met. Tay and Wallis (2000)

define density forecasts of the realisation of a random variable at some future time as

estimates of the probability distribution of the possible future values of that variable.

1.2 Statement of the problem

Electricity demand forecasting is carried out from short term to long term fore-

casting. Short Term Load Forecasting (STLF) is an integral part of the energy plan-

ning industry. Designing a time-ahead power market involves scheduling of demands
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for different divisions of electricity, including generation, transmission and distribu-

tion. STLF supports power system operators with different power system decision-

making, including supply planning, generation reserve, system security, scheduling of

dispatch, management of demand, financial planning and so on. The problem consid-

ered in this study consists of developing accurate forecasting models for short term

hourly electricity demand in South Africa.

1.3 Purpose of the study

1.3.1 Aim

The aim of this research is to carry out hourly electricity demand forecasting in

South Africa using some machine learning models.

1.3.2 Objectives

The objectives of the study are to:

• develop machine learning models for forecasting hourly electricity demand,

• combine forecasts from the developed models using quantile regression averag-

ing,

• evaluate the accuracy of the forecasts.
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1.3.3 Scope of the dissertation

Machine learning (ML) and statistical techniques will be used to predict hourly

electricity demand using South Africa’s electricity data from Eskom. Eskom is South

Africa’s national public power utility company. The hourly historical load data is col-

lected from January 2010 till November 2011.

The statistical models which will be used in this study are SARIMA and GAM mod-

els. The developed models will then be compared with ANN and SVR models. Both

the statistical and machine learning techniques will be performed using the relevant R

statistical packages.

1.3.4 Significance of the study

The economic growth of any country is dependent on the security of electricity. For

a country to meet the electricity demand, there should be a reliable supply of electricity

at any given time. Accurate load forecasts will enable effective load shifting between

transmission substations, scheduling of start-up times of peak stations, load flow anal-

ysis and power system security studies (Sigauke, 2014). The forecasting accuracy and

precision would be useful for planning and strategy in the 56 electricity generation and

supply of energy resources.
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1.3.5 Structure of the dissertation

The rest of the proposal is organized as follows: Chapter 2 reviews existing litera-

ture on machine learning and statistical techniques as well as the summary of studies

that used methods similar to the proposed ones. Chapter 3 provides general theory of

the methods that will be used in this study, i.e. machine learning as well as statistical

techniques. Chapter 4 provides the of the final research report. A summary of research

findings, contributions, suggested areas for further studies and concluding remarks

are presented in chapter 5.
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Chapter 2

Literature review

2.1 Introduction

Of late, Short Term Load Forecasting (STLF) has been given a significant amount

of attention (Hyndman and Fan, 2010). There is an increasing number of models for

STLF models that are developed, reviewed, and published every year. This chapter

provides an overview of STLF, factors that affect STLF, as well as summarized studies

previously done on the proposed methodology for electricity demand forecasting.

Short term load forecasting (STLF) has been receiving significant attention of late

(Hyndman and Fan, 2010). Various models for short term load forecasting are devel-

oped, applied, reviewed and published every year. This chapter provides an overview

of STLF, factors that affect STLF, as well as summarized studies previously done on the

proposed methodology for electricity demand forecasting.
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2.2 An overview of short term load forecasting (STLF)

One of the most important field of research for efficiency and reliability in operation

of energy that has emerged in the previous decade is STLF. This is primarily for its sig-

nificance in the field of scheduling, contingency analysis, load flow analysis, planning,

as well as maintenance of power system (Baliyan et al., 2015).

The importance of short term load forecasting has been discussed by Lira et al.

(2009) as the core of power system planning, scheduling and control of electricity. Lira

et al. (2009) further expressed that factors such as multiple seasonalities, temperature

and effect in the calendar have major effects on the forecasting of short term electricity

demand. The accuracy and efficiency in forecasting are of importance to any energy

supplying entity, since the forecasts come in handy in the prevention of some impli-

cations such as overloading which include load shedding, blackouts, or overloading,

which includes the production of capacity that exceeds demand, which lead to suppli-

ers accruing more costs (Feinberg and Genethliou, 2005; Pierrot and Goude, 2011).

Electric companies have been, for a long time, using models developed for fore-

casting. Such models have been perfected by adding onto them structures and appli-

cations. STLF, globally, has become more relevant as a consequence of market liberali-

sation.
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In the literature that has been done to date, short term electricity demand fore-

casting has had significant attention since it contributes a lot in power system control,

unit commitment and electricity markets.

Unlike short term load forecasting, medium- and long-term forecasting have not re-

ceived as much attention so far, although they add value for system planning and

budget allocation (Hyndman and Fan, 2010). Short term load forecasting still domi-

nates the literature.

2.3 Factors influencing STLF

The complexity in nature of the electricity demand is due to the presence of several

factors in this field of study. Such factors include metereological, environmental, time,

and many other factors (Gross and Galiana, 1987). There has been a number of studies

done to evaluate the influence that such factors have on the short term load forecasts.

Meterelogical effects have, in most studies, been the main focus as they have significant

influence on electricity demand. Hinman and Hickey (2009) suggest that an inclusion

of weather variables in the forecast models could improve the accuracy in the forecast.

Fahad and Arbab (2014) highlight that having knowledge about weather conditions

help in the reduction of operational costs.

Various weather variables can be considered for load forecasting: temperature

and humidity are the most commonly used, but wind and cloud cover are often taken
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into account (Apadula et al., 2012). Many researchers use temperature in their fore-

casting models as it is one of the major drivers of electricity demand. Chikobvu and

Sigauke (2013), did a study on the impact of temperature on the daily peak electricity

demand in South Africa and their study established that temperature is indeed an im-

portant factor in electricity demand. Chikobvu and Sigauke (2013) also found that in

South Africa, cold weather conditions increases electricity demand.

Gupta and Kaur (2012) highlight that time factors in forecasting are essential.

Time factors include different seasonal effects and cyclical behaviours such as the daily

and weekly oscillations, and public holidays as well. Electricity demand over the

weekend is different from the demand during the week (weekend or holiday load

curve is lower than the weekday curve). Such differences are a result in variation of

consumers’ lifestyles and patterns such as working time, leisure time, sleeping time,

and other lifestyle patterns.

2.4 Statistical technique for Short Term Load Forecasting

Various models for STLF have been developed by researchers from different coun-

tries. The main purpose for this study is to find the model that will produce the best

11



or offer accuracy in load estimates.

Statistical techniques assume the load data follow a pattern and try to forecast the value

of the future load by employing different time series analysis techniques. This study

explores the GAM statistical technique.

Linear regression models, a class of additive models are normally used with Gen-

eralized Additive Models (GAMs) (Jones and Wrigley, 1995). GAMs are suitable for

exploring the data set and visualizing the relationship between the dependent and

independent variables (Liu, 2008). Nedellec et al. (2014) use GAMs in modelling elec-

tricity demand for the French distribution network at both short and medium term

time scales for more than 2200 substations. The relationship between the load and the

explanatory variables was estimated by their model. The proposed model is given in

equations (2.1) and (2.2).

yt =
p

∑
i=1

fi(xit) + εt, t = 1, · · ·, n, (2.1)

yt = f1(x1t) + f2(x2t) + · · ·+ fp(xpt) + εt, t = 1, · · ·, n, (2.2)

where yt is a univariate response variable, xpt are the covariates that drive fi, the

smooth functions. Non linear functions are meant to be smoothed that they can be

relatively well estimated by penalized regression in a spline basis (Nagy et al., 2016).

Effects that drove the French hourly load consumption was modelled using GAM and

12



compared with the operational one in (Pierrot and Goude, 2011). The effect of different

variables was estimated with GAM given in equation (2.3).

Lt = f 1(Lt−24) + f2(Lt−168) + f3(Tt) + f4((Tt−24, Tt−48) + f5(cc) + f6(posit) + C + εt,

(2.3)

where Lt, Lt−24 and Lt−168 are the load to be forecasted, one day lagged load and the

one week lagged load respectively, Tt−24, Tt−48 are the temperature, one day lagged

temperature and the two day lagged temperature, cc represents the cloud cover, posit

is the position of the day through the year, C is the intercept and εt is the residual error.

2.5 Machine Learning Techniques

2.5.1 Support Vector Regression

Shmilovici (2009) defines support vector machines (SVM) as a set of associated tech-

niques for supervised learning, that can be applied in both classification and regression

models.

Vapnik (1998) developed support vector machines. Milidiu et al. (n.d.) notes that

while the traditional neural network models takes into implementation the empirical

risk minimization principle, which seeks to minimize the misclassification error, the

SVM implements the structural minimization principle that seeks to minimize an up-

per bound of generalization error.
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Mohandes (2002) did a study that introduced support vector machines in the elec-

trical load forecasting and compared their performance with that of the auto-regression

model. The results showed that the support vector regression performed better than

auto-regressive moel, for both the training and tesing data. The study used the root

mean square error for metric evauation between the actual and predicted data. Sup-

port vector machines allow the training data set to be increased beyond what is possi-

ble using the auto-regressive model or other neural networks methods. Increasing the

training data further improves the performance of support vector machines method.

Hong (2009) did a study on support vector regression that applied the structural

risk minimization principle to minimize an upper bound of the generalization errors,

rather than minimizing the training errors which are used by ANNs. The purpose of

the study done by Hong (2009) was to present a SVR model with immune algorithm

(IA) to forecast the electric loads. IA was applied to the parameter determine of SVR

model. The empirical results indicated that the SVR model with IA (SVRIA) results

in better forecasting performance than the other methods, namely SVMG, regression

model, and ANN model.

(Yuancheng et al., 2002) presented a paper on least squares support vector machines

14



(LS-SVM) approach to short-term electric load forecasting (STLF). The proposed algo-

rithm was found to be more robust and reliable as compared to the traditional ap-

proach when actual loads are forecasted and used as input variables. In order to pro-

vide the forecasted load, the LS-SVM interpolates among the load and temperature

data in a training data set. Analysis of the experimental results proved that this ap-

proach can achieve greater forecasting accuracy than the traditional model.

2.5.2 Stochastic Gradient Boosting

(Touzani et al., 2018) assessed the performance of stochastic gradient boosting method

dataset of 410 commercial buildings. The model training periods were varied and

several prediction accuracy metrics were used to evaluate the model’s performance.

The results showed that using the gradient boosting machine model improved the R-

squared prediction accuracy and the RMSE in more than 80 percent of the cases, when

compared to piecewise linear regression, and to a random forest algorithm.

Another study by Papadopoulos and Karakatsanis (2015) compared four different

methods, seasonal autoregressive moving average (SARIMA), seasonal autoregressive

moving average with exogenous variable (SARIMAX), random forests (RF) and gra-

dient boosting regression trees (GBRT) in forecasting day ahead load demand. The
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forecasting performance of each model was evaluated by the mean absolute percent-

age error (MAPE) and root mean square error (RMSE). The results of this study showed

that the GBRT model is superior to the others for 24 hours ahead forecasts. This study

claims that gradient boosting regression trees can be appropriate for load forecasting

applications and yield accurate results.

(Mayrink and Hippert, 2016) presented a hybrid method for short-term load fore-

casting. The study combined Exponential Smoothing, a classical method for time se-

ries forecasting, with Gradient Boosting, a powerful machine learning algorithm. The

proposed model was tested with real data and the results showed a considerable im-

provement in forecasting accuracy.

2.5.3 Neural Networks

Pao (2006) forecasted Taiwan energy consumption by neural networks and linear

models. Neural network functioned better than the linear models. But depending on

situation, accuracy of Artificial Neural Network (ANN) methods decreases because

of several reasons. Forecasting accuracy of ANN depends on learning data set and

their adequacy. Moreover ANN methods sometimes get stuck in local minimum, so

choosing proper data set, is too critical in neural network models and these models get
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good results only when the number of data is high (Padmakumari et al., 1999).

Ho et al. (1992) designed an algorithm in which the momentum is automatically

adapted in the training process. Lee et al. (1992a) proposed a nonlinear electricity fore-

casting model and several structures of ANNs were tested. Inputs to the ANN include

past electricity values, and the output is the forecast for a given day. Lee et al. (1992a)

also demonstrated that the ANN could be successfully used in STLF with accepted

accuracy.

(Lee et al., 1992b) Applied artificial neural network (ANN) method to forecast the

short-term load for a large power system. The load had two distinct patterns: weekday

and weekend-day patterns. The sudy proposed a nonlinear load model is proposed

and several structures of an ANN for short-term load forecasting were tested. Inputs

to the ANN are past loads and the output of the ANN is the load forecast for a given

day. The network with one or two hidden layers was tested with various combinations

of neurons, and results are compared in terms of forecasting error. The results of the

study showed that neural network, when grouped into different load patterns, gave

good load forecasts.

A study was done by Din and Marnerides (2017) on the application of the Feed-

forward Deep Neural Network (FF-DNN) and Recurrent Deep Neural Network (R-

DNN) models on the basis of accuracy and computational performance in the context
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of time-wise short term forecast of electricity load. The outcome of the study showed

that Feed-forward Deep Neural Network (FF-DNN) has higher accuracy in the fore-

casting of electricity demand.

2.6 Conclusions from Literature

The use of GAM, SVR, SGB and NN on electricity demand forecasting has been

dicussed in detail in this chapter. This research project seeks to investigate the applica-

tion of the above mentioned models in the forecasting of electricity in South Africa.
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Chapter 3

Methodology

3.1 Introduction

Weron et al. (2004) indicate that forecasting models could be classified into two

broad streams: those that use statistical methods (e.g., multiple regression, autoregres-

sive (AR), autoregressive integrated moving average , autoregressive-generalised au-

toregressive conditional heteroscedasticity AR-GARCH, jump diffusion, factor mod-

els, regime switching models, multilevel models, mixed models and semi-parametric

models) and those that use computational intelligence techniques (such as fuzzy tech-

niques, support vector machines and, in particular, artificial neural networks (ANNs).

Statistical techniques vary from ANN in that the statistical techniques forecast the

current value of a variable by using mathematical combination of the previous val-

19



ues of that variable and sometimes the previous values of exogenous factors (Weron

et al., 2004). Weron et al. (2004) pointed out that the reviewers of ANN-based forecast-

ing systems have concluded that much work still needs to be conducted before they

are accepted as established forecasting techniques. ANN is considered a black-box

modelling approach. In electricity demand forecasting, statistical models are attractive

because physical interpretation may be attached to their components, and hence allow

forecasters to understand behaviour (Weron et al., 2004).

3.2 Generalized Additive Model (GAM)

The generalized additive model (GAM) was first introduced by Hasties and Tib-

shirani (1990) and follows from the additive models. It has relation to a generalized

linear model (GLM) but additionally the linear predictors include a sum of smooth

functions of the independent variables and a consistent parametric component of the

linear prediction. Henceforth, GAM incorporates both parametric and nonparametric

model components and the model can indicate the dependence of the response on the

independent variable in a flexible way, not relying upon the assumption that all rela-

tions can be modelled as linear. The general formula for GAM is given by as follows

Hasties and Tibshirani (1990):
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g(µt) = Aθ +

p

∑
j=1

f j(xjt) + εt, Yt ∼ EF(ut, φ)t = 1, · · ·, n, (3.1)

where Yt denotes the independent univariate response variable from an exponen-

tial family distribution having mean ut, scale parameter φ, g represents the smooth

monothonic link function, A is a design matrix of order n X k, θ represents an unknown

parameter vector of order k X 1, f j is an unknown smooth function of the predictor

variable xj that may have a vector value, and εt is an independent identical distribu-

tion random error k X 1 (??). The non-linear (non-parametric) functions are assumed to

be smooth. It can be relatively well estimated by penalised regression in a spline basis.

Each function is given by

f j(xjt) =

kj

∑
t=0

β j,tb
j
t(xjt) (3.2)

where k j denote the dimension of the spline basis to model the effect ft(xjt) and bj
t

is the corresponding spline functions, i.e. B-splines or cubic regression splines and β j,t

are coefficients to be estimated.

3.3 Stochastic Gradient Boosting (SGB)

The Gradient Boosting Machine or Gradient TreeBoost were the terms previously

used for Gradient Boosting when it was implemented newly by Friedman (Friedman,

2002). Gradient Boosting is a Machine learning model used for classification and re-
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gression problems (Mpfumali et al., 2019). It stage-wisely builds weak predictive mod-

els generalised by optimization of arbitrary differentiateable function. The Statistical

framework of gradient boosting describes it as an optimization problem which mini-

mizes the loss in a model by a stage-wise addition of weak learners to the models using

a gradient descent procedure (Friedman, 2002; Mpfumali et al., 2019).

Gradient descent traditionally minimizes set of parameters such as coefficient of re-

gressors or ANN weights through loss or error calculation and weight update (Fried-

man, 2001). The weak learners are organised in substructures or decision trees that re-

places the parameters. Parameterized tree is added to the model, thereby reducing the

error and the residual losses using the parameters of the trees following the direction

of the gradient (Friedman, 2001). The gradients spots the error in the weak learners.

The major drawback to the gradient boosting is that it is a greedy algorithm that can

easily over fit training data (Friedman, 2001; Hastie et al., 2005). One of the variants of

gradient boosting is the stochastic gradient boosting (SGB) formed by taking a random

sample of the training data set without replacement (Friedman, 2002, 2001). Its general

formulation is given in equation (3.15).

f (x) =
M

∑
m=1

βmh(x; γm), (3.3)
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where h(x; γm) ∈ R are functions of x which are characterised by the expansion

parameters γm and βm. The parameters γm and βm are fitted in a stage-wise way, a

process which slows down over-fitting Friedman (2002).

The use of SGB in electricity demand forecasting is rare. Hence, this research in-

vestigates the use of SGB specifically as a variant of the gradient boosting models that

have been mostly used in forecasting problems in the literature. This will enhance the

provision of knowledge to the forecasting and machine learning community about the

problems SGB is capable of solving.

3.4 Neural Networks (NN)

The non-linear aspects of the time series can be uncovered by the assistance of Ar-

tificial Neural Network (ANN) model. The structure of the ANN is similar to that

of human brain in that the neurons are substituted by nodes which are arranged in

various layers.

This study focuses on one Feed Forward Neural Network (FFNN) which is a type

of Artificial Neural Network (ANN) in which connections between the nodes do not

form a cycle or a loop. The study of this technique was first initiated by McCulloch and

Pitts (1943) who created a computational model of the concept. Different researchers

have further expanded the concept of ANN to cover many features
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3.4.1 Single-layer perceptron

Single-layer perceptron is the simplest type of a neural network which has a single

layer of output nodes. A single-layer neural network can be described mathematically

as follows,

yk = g

(
D

∑
i=0

ωixi

)
, (3.4)

where yk is the output, g(.) is an activation function, xi is input and ωi represent the

corresponding weight for xi. Single-layer neural networks are not usually used in

practice, but help in understanding the basic concept of neural networks.

3.4.2 Multi-layer perceptron

Multi-layer perceptron consists of multiple layers of computational units, usually

interconnected in a feed-forward way. A multi-layer neural network with one hidden

layer can be written as,

yk = h

(
M

∑
j=0

ω
(2)
kj g(aj)

)
(3.5)

where,

aj = g
( D

∑
i=0

ω
(1)
ij xi

)
. (3.6)
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The multi-layer neural network is very similar to single-layer neural network except

that multi-layer neural network’s output of the inner layer is again multiplied by a

new weight vector and wrapped in an activation function.

3.5 Support Vector Regression

Support Vector Regression (SVR) is based on Support Vector Machine (SVM) which

is a supervised machine learning technique which involves statistical learning theory

and the principle of structural risk minimization. SVR was introduced by Drucker

et al. (1997) extended from SVM model. There are different basic kernel functions

that are used in SVM models, which can be classified as polynomial (Poly), Gaussian

kernel, exponential radial basis function (ERBF), radial basis function (RBF), sigmoid

and linear (Zendehboudi et al., 2018). The SVR works by mapping the input space into

a high-dimensional feature space and constructs the linear regression in it which can

be expressed as,

f (x) = ωφ(x) + b, (3.7)

where ω is the weight vector, φ(x) maps inputs x into a high dimensional feature space

that is nonlinearly mapped from the input space x, and b is the bias term.

To calculate the coefficients ω and b it is required to reduce the regularized risk func-

25



tion which can be expressed as:

1
2
‖ω‖2 + C

1
l

l

∑
i=1

Lε(yi, f (xi)), (3.8)

where, ‖ω‖2 is a regularized term which maintains the function capacity. C is a cost

error. The empirical term from the second term in equation 3.8 can be defined as:

Lε(yi, f (xi)) = {|yi = f (xi)| = ε, |yi = f (xi)| ≥ ε}. (3.9)

The equation 3.8 expressed the transformation of the primal objective function in order

to get the values of ω and b by introducing the positive slack variables ξi(
∗).

minimize
1
2
‖ω‖2 + C

1
l
(εi + ξ∗i ) (3.10)

subject to

α(x) =





yi − 〈ω, xi〉 − b ≤ ε + ξi

〈ω, xi〉+ b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0

The optimization problem expressed in equation 3.10 has to be transformed into its

dual formulation by using the Lagrange multipliers to solve it in a more efficient way.
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Data

The data used in this project is obtained from Eskom. The dataset will be split into

training dataset (80%) and testing dataset (20%).

Features

All models developed in this project will use load to predict hourly electricity de-

mand.

3.6 Variable Selection

Variable Selection involves selection of feature variables that explains a target vari-

able thereby reducing number of feature variables. This process is beneficial in terms

of avoiding overfitting, making a model easier to interpret, and reduces in compu-

tational time. There are many variable selection methods, however, in this study we

use Lasso (least absolute shrinkage and selection operator) via hierarchical interactions

(Bien et al., 2013). LASSO via hierarchical interactions considers pairwise hierarchical

interactions only, however, it can be extended to higher order interactions. We assume

a regression model of respond variable Y and predictors X1,...,Xp with pairwise inter-

actions between these predictors. Our LASSO hierarchical model is given as

Y = β0 + ∑
j

β jXj +
1
2 ∑

j 6=k
ΘjkXjXk + ε, (3.11)
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where ε ∼ N(0, σ2), β ∈ Rp, and Θ ∈ Rp×p. There are two categories of hierarchical

restrictions, which are strong and weak hierarchy.

Strong hierarchy : Θ̂jk 6= 0 ⇒ β j 6= 0 and Θ̂ 6= 0

Weak hierarchy : Θ̂jk 6= 0 ⇒ β j 6= 0 or Θ̂ 6= 0

The major advantage of lasso via hierarchical interactions is that it leads to simpler and

more interpretable models that involve only a subset of the predictors.

3.7 Forecast Combination

Forecast combination is a method used to combine forecasts from different fitted

models with a purpose of improving forecast accuracy. There are many forecast combi-

nation methods, but this research will be based only on Quantile regression averaging

(QRA) and convex combination method.

3.7.1 Quantile Regression Averaging

Quantile Regression Averaging was first initiated by Maciejowska et al. (2016).

QRA treats forecasts from different models as independent variables and actual ob-

servations as a dependent variable. Let ŷt,τ be hourly electricity load, K be methods

used to forecast the next m observations, i.e. m is the total number of forecasts. The

forest combination, ŷQRA
t,τ , is given by

ŷQRA
t,τ = β0 +

K

∑
k=1

βt,kŷt,k + εt,τ, τ ∈ (0, 1), t = 1, ..., m, (3.12)

28



where ŷt,k represents predictions from method k, ŷQRA
t,τ is the combined forecasts, and

εt,τ is the error term. QRA aims to minimize

β

n

∑
t=1

ρτ(ŷ
QRA
t,τ − β0 −

K

∑
k=1

βt,kŷt,k). (3.13)

In matrix form, we have

β∈IR

n

∑
t=1

ρτ(ŷ
QRA
t − xT

t β). (3.14)

3.7.2 Convex Combination

ŷc
t,τ =

M

∑
m=1

ωmtŷmt,τ, (3.15)

where ωmt is the weight given to forecast m.

Convex combination method computes the sequence of instantaneous losses suf-

fered by the predictions from the experts (models) using a loss function. The loss

function can be based on square, absolute, percentage, or pinball loss. The combined

forecasts will be compared with forecasts from each model using the equation given as

ŷc
t,τ =

M

∑
m=1

ωmtŷmt,τ, (3.16)

where ωmt is the weight given to forecast m.
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3.8 Prediction Intervals

The prediction interval widths (PIWs) for every model, Mj, j = 1, ..., k, are denoted

as PIWij, i = 1, ..., n, j = 1, ..., k.

PIWij is calculated as

PIWij = ULij − LLij, (3.17)

where ULij and LLij are the upper and lower limits of the prediction interval, respec-

tively. Probability density plots and box and whisker plots will be used in this study

to find the model which which yields narrower PIWs.

3.9 Evaluation of Forecasts
Root mean square error

The Root mean square error (RMSE) is a measure of the differences between pre-

dicted values by the model and the actual observed values.

RMSE =

√
∑n

t=1(yt − ŷt)2

n
, (3.18)

where, ŷt are predicted values by the model, yt are the values actually observed, and n

is the number of predictions.
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Mean absolute error

The mean absolute error (MAE), root mean squared error (RMSE), and mean ab-

solute percentage error (MAPE) are going to be used to evaluate the accuracy of our

forecasts. The equations of the above measures are respectively given by: Mean Abso-

lute Error (MAE) is a measure of how close forecasts are relative to the values actually

observed. MAE is given by:

MAE =
1
n

n

∑
t=1

yt − ŷt, (3.19)

where, ŷt is the predicted value by the model, yt is the value actually observed, and n

is the number of fitted points. MAE uses the same scale as the data being measured.

This is known as a scale-dependent accuracy measure and therefore cannot be used to

make comparisons between series using different scales.

Mean absolute percentage error

The mean absolute percentage error (MAPE) is a measure of prediction accuracy

of a forecasting method in statistics. The accuracy of a fitted model is expressed as a

percentage by the following equation:

MAPE =
100
n

n

∑
t=1

yt − ŷt

yt
, (3.20)

where, ŷt are predicted values by the model, yt are the values actually observed,
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and n is the number of predictions.

3.10 Implementation

The GAM and SVR algorithm will be implemented by using the relevant packages

in R software.
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Chapter 4

Data Analysis

4.1 Introduction

This chapter presents detailed analysis of the data using the methods discussed in

Chapter 3. Generalised additive models (GAMs) are discussed and compared to the

machine learning models; support vector regression (SVR), stochastic gradient boost-

ing (SGB), and feed forward neural network (NN), for the forecast of hourly electricity

demand in South Africa.

4.2 Data

4.2.1 Data source

Hourly load data from Eskom, South Africa’s power utility company is used. The

data is from all the sectors of the South African economy, i.e., industrial, commercial,

agricultural including the residential sectors. The data is divided into two subsets: a
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training set and a testing set to build the base forecasting methods and evaluate the

performance.

4.2.2 Exploratory data analysis

The summary statistics of hourly electricity demand for the sampling period Jan-

uary 2010 to November 2011 is given in Table 4.1. The distribution of hourly load is not

normal since it is skewed to the left and platykurtic as shown by the skewness value

-0.242 and a kurtosis value of -0.989 given in Table 4.1 .

Table 4.1: Summary statistics for hourly electricity demand (MW).

Descr. Stats. Min 1st Qu. Median Mean 3rd Qu. Max Skewness Kurtosis

Load 19563 24963 28809 28114 30732 36664 -0.2423795 -0.9895812

It is considered important to first get the analysis of historical data before setting

up the forecasting models. The time series, density, box and normal (Q-Q) plots for the

dependent variable (Load (in MW)) are given in Figure 4.1

(a) Top left panel: Plot of DPED (b) Top right panel: Probability density function of

HED. The distribution is left skewed. (c) Bottom left panel: Normal QQ plot of HED

(d) Bottom right panel: Box plot of HED, which all show that the data is not normally

distributed.
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Figure 4.1: Diagnostic plots for hourly electricity demand in South Africa.
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The non-linear trend values used in this project are obtained or extracted by tting a

cubic smoothing spline function which is given by:

π(t) =
n

∑
t=0

(yt − f (t))2 + λ
∫

f ”2
(t)dt, (4.1)

where lambda is a smoothing parameter which is estimated using the generalised

cross validation (GCV) criterion. Figure 4.2 shows the non-linear trend, cubic smooth-

ing spline fitted with an estimated lambda value. The fitted non-linear trend values

are extracted and used to model hourly electricity demand.
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Figure 4.2: Plot of hourly electricity demand from 1 January 2010 to 15 November 2011

superimposed with a fitted cubic smoothing spline trend (non-linear trend).
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Variable selection using Lasso

Variable selection using Lasso is done and found that all variables are significant as

shown in Table 4.2.

Table 4.2: Variable selection using Lasso.

Variable Coefficient

Intercept 2.2328x104

hour 1.8705x102

month 3.5518x102

daytype 1.1975x102

holiday −2.1699x103

minT −1.6420x101

maxT 2.3024x102

aveT −1.3994x102

nolTrend 1.4017x101
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4.3 Machine Learning Models

The models considered for this study are the M2 (SVR), M3 (SGB), and M4 (NN) and

M1 (GAM) which is the benchmark model. RMSE, MAE and MAPE are normally used

for forecast evaluation and this study considers them. Table 4.3 and Table 4.4 shows a

comparative analysis of the fitted machine learning models and the benchmark model.

Table 4.3 summarises the error measures for evaluation of the models on the train-

ing set. From Table 4.3, model M3 (SGB) has the lowest RMSE (760.042), MAE (565.936)

and MAPE (2.005). This indicates that M2 outperporms all other models and thus it is

the best forecasting model on training data set.

The M3 (SGB) has the least RMSE (392.629), the least MAE (304.687) and also the

least MAPE (1.079), showing that it is the best fitting model according to the summary

of the error measures for evaluation of the models on the testing data set.

Table 4.3: Comparative analysis of the fitted models (Evaluation of the models on train-

ing data).

M1 (GAM) M2 (SVR) M3 (SGB) M4 (NN)

RMSE 3275.55 2572.83 760.042 3354.34

MAE 2783.628 2020.61 565.936 3626.45

MAPE 10.416 7.149 2.005 13.339
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Table 4.4: Comparative analysis of the fitted models (Evaluation of the models on test-

ing data).

M1 (GAM) M2 (SVR) M3 (SGB) M4 (NN)

RMSE 3107.431 1112.273 393.621 3539.911

MAE 2641.669 864.627 304.687 2649.795

MAPE 9.456 3.157 1.079 2.439

The graphical plot of the out of sample forecasts for the models M1, M2, M3 and

M4 are given in the following figures:

Figure 4.3 : Graphical plot of model M1 (GAM) forecasts (dashed line) and actual

hourly electricity demand (solid line).

Figure 4.4 : Graphical plot of model M2 (SVR) forecasts (dashed line) and actual

hourly electricity demand (solid line).

Figure 4.5 : Graphical plot of model M3 (SGB) forecasts (dashed line) and actual

hourly electricity demand (solid line).

Figure 4.6 : Graphical plot of model M4 (NN) forecasts (dashed line) and actual

hourly electricity demand (solid line).
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Figure 4.3: GAM forecasts.

4.4 Forecast Combination

This section gives results of forecast combination of machine learning models fore-

casts. Two forecast combination methods are used, which are convex combination and

quantile regression averaging.
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Figure 4.4: SVR forecasts.

4.4.1 Convex Combination

It is known that combining forecasts often leads to better forecast accuracy. The

forecasts from different regression based time-series which are fitted above may be

improved by combining them using R package called opera developed by Devaine

et al. (2013). The models developed are also referred to as experts. To combine fore-
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Figure 4.5: SGB forecasts.

casts we find aggregation of experts and analyse them by looking at the oracles. The

opera package computes weights when combining the forecasts. Convex combination

method works by computing the sequence of instantaneous losses suffered by the pre-

dictions from the experts (models) using loss function.

The loss function can be based on square, percentage, or pinball loss. Table 4.5 sum-
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Figure 4.6: NN forecasts.

marises the results for forecast combination models. It is giving weight 0.264 to model

M2, 0.063 to model M3, and 0.721 to model M4 when the loss function is specified as

square. The pinball and absolute loss function are giving weight 0.992 to model M2, 0

to model M3, and 0.0083 to model M4. The percentage loss function is giving weight

0.879 to model M2, 0 to model M3, and 0.0065 to model M4. From the accuracy mea-

sures Mix 3 has the least RMSE (1164.774), MAE (935.214) and MAPE (3.402) compared
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to other mix models.

Table 4.5: Models (experts).

M2 M3 M4

Square (Mix 1) 0.264 0.063 0.721

Pinball (Mix 2) 0.992 0 0.0083

Percentage (Mix 3) 0.879 0 0.0065

Table 4.6: Accuracy measures.

Mix 1 Mix 2 Mix 3

RMSE 1588.83 1479.104 1164.774

MAE 1372.697 1252.565 935.215

MAPE 3.402 4.607 4.95

Figure 4.7 shows that the M3 (SGB) model is the best forecasting model followed by

the convex combination model, M2 (SVR), uniform combination (Uniform), and model

M4 (NN) respectively.

4.4.2 Quantile Regression Averaging

Quantile regression averaging (QRA) is another technique normally used to com-

bine forecasts by using forecasts from each model as independent variables. The three

models M2 (SVR), M3 (SGB) and M4 (NN) are combined based on QRA, resulting in

model M3. Model M6 (QRA) is given by:
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Figure 4.7: Average loss suffered by the models.

yt,τ(QRA) = β0 + β1 f M2 + β2 f M3 + β3 f M3 + εt. (4.2)

where fM2, fM3 and fM4 represent the forecasts from models M2, M3 and M4 re-

spectively.

Table 4.7 gives a summary of the accuracy measures for the models, including M5

(Convex) and the M6 (QRA) model. Based on MAE, model M2 is the best forecasting

model compared with other models. MAE shows a slight improvement after forecast
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Table 4.7: Comprative analysis of the machine learning models, Convex model and

QRA model.

Accuracy measure M2 M3 M4 M5 (Convex) M6 (QRA)

RMSE 1112.273 392.629 3539.911 1164.774 1030.524

MAE 2641.669 304.687 2649.795 786.940 786.940

MAPE 9.456 1.079 2.349 3.402 2.826

averaging.

4.5 Comparative Analysis of the Models

This section presents the evaluation of the fitted models based on the empirical

prediction intervals (PIs) and forecast error distributions of each model forecasts.

4.5.1 Evaluation of Prediction Imtervals

gives summary statistics of the PIWs for the models M2 to M6 for PINC value of

95% level of confidence. Model M4 has the narrowest standard deviation which indi-

cates that it has narrower PIWs compared to models M2, M3, M5 and M6. All the PIWs

distributions are skewed to the left. The values for kurtosis are all less than 3, showing

that the distributions are all platykurtic since for a normally distributed (mesokurtic)

data kurtosis value should be equal to three.

Figure 4.9 shows box plots of widths of the PIs for all the

fitted models. From the figure, M4 has the narrowest PI compared to models M2,
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Figure 4.8: Model M6 (QRA) forecasts.

M3, M4, M5 and model M6. Figure 4.10 shows density plots of widths of the PIs for the

forecasting models M2 to M6. The density plots are all similar except for the PI from

model M4 which has the widest PI.

4.5.2 Residual Analysis

Summary statistics of the residuals of the models are given in Table 4.8. It can be

seen that model M4 has the smallest standard deviation which indicates that it has the
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Table 4.8: Model PIWs comparisons.

Mean Median Min Max St.Dev. Skewness Kurtosis

M2 22960 23009 19120 24978 2937.579 -0.241 -0.741

M3 27218 27940 18233 35991 3257.451 -0.257 -1.012

M4 28397 28407 23209 32699 1531.893 -0.171 -0.536

M5 26436 26879 17467 36439 2958.601 -0.187 -0.658

M6 28123 28603 18421 38950 3202.281 -0.187 -0.658

Figure 4.9: Prediction interval widths for models M2 (svrPI), M3 (sgbPI), M4 (nnPI),

M5 (convexPI), and M6 (qraPI).
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Figure 4.10: Density plots of the Prediction interval widths for models M2 (svrPI), M3

(sgbPI), M4 (nnPI), M5 (convexPI), and M6 (qraPI).

narrowest error distribution compared to models M1,M2 and M4, this implies that M4

is the best compared to other models, followed by model M1. All the error distribu-

tions for the models M1, M2 and M4 are skewed to the left since the values of their

skewness are all negative. The values for kurtosis are all smaller than 3 for all the

models, showing that the distributions are all platykurtic.
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Table 4.9: Models residuals comparisons.

Mean Median Min Max St.Dev. Skewness Kurtosis

M2 28123 28671 19455 38483 3090.884 -0.241 -0.743

M3 28114 28833 19172 36846 3242.529 -0.257 -1.011

M4 28116 28351 22684 32433 1697.357 -0.240 -0.950

M5 2109 2127 1702 2433 127.317 -0.240 -0.950

M6 -8.542 0 -5138 4568 1030.52 -0.126 1.134

Figure 4.11 shows box plots of the forecast errors for all the fitted models. From

the figure, M2 has the narrowest error distribution compared to models M1, M2 and

M4, implying that M2 is the best model compared to other models. Figure 4.11 shows

density plots of the forecast errors for the forecasting models M2 to M6. The density

plots are similar for the forecast errors from models M2 and M6, the rest of the boxplots

are all different.
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Figure 4.11: Box plots of residuals from models M2 (ResSVR), M3 (ResSGB), M4

(ResNN), M5 (ResConvex), and M6 (qraPI).
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Figure 4.12: Density plots of residuals from models M2 (ResSVR), M3 (ResSGB), M4

(ResNN), M5 (ResConvex), and M6 (qraPI).
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4.6 Chapter Summary

The chapter served a purpose of reporting on different analysis and the discussion

of the results. Exploratory data analysis and variable selection using lasso under was

discussed. The benchmark model, GAM, was presented and then the machne learning

models, SVR, SGB, NN were presented and using tables and plots. Forecast accuracy

measures in which point forecasts, interval and its combined forecast accuracies were

presented giving a further discussion of each of the findings. Finally, the residual anal-

ysis on the models was presented. The summary of the findings will be presented in

the next chapter.
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Chapter 5

Conclusion

5.1 Introduction

This chapter summarises the research findings that were discussed in Chapter 5

and presents recommendations, limitations of the study and suggests areas for future

research.

5.2 Research Findings

The economy of every country is heavily dependent on energy. Electricity is used

for a number of purposes that include industrial, commercial and household purposes.

Thus, forecasting electricity demand is of importance for the purposes of planning by

the responsible institution that supplies electricity. This project was based on the fore-

casting of hourly electricity demand in South Africa for the period 2010 to 2011. The

data was obtained from Eskom.
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Modelling hourly electricity demand using support vector regression (SVR), stochas-

tic gradient boosting (SGB) and feed forward neural networks (FFNN) was discussed

in Chapter 4. The least absolute shrinkage and selection operator (Lasso) was used for

variable selection.

The findings in Chapter 4, Section 4.3 showed that the SGB model produced the best

forecast accuracy based on the accuracy measured MAE, MAPE and RMSE, among the

machine learning models.

Later, the forecasts from the machine learning models were combined using the

convex combination method and quantile regression averaging (QRA). Based on MAE,

MAPE and RMSE, the QRA model was found to be the best forecast combination

method, and also the best forecasting model compared with the machine learning mod-

els.

From the prediction interval widths (PIWs) analysis in Section 4.5, at 95% level of

confidence, M4 (NN) has the narrowest PI compared to models M2, M3,M5 and M6,

implying that M4 is the best compared to other models.
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5.3 Recommendations

The main contribution of this dissertation is the inclusion of nonlinear trend vari-

ables and the extension of combining forecasting models using QRA. This study could

be useful to system operators, including decisionmakers in power utility companies

such as Eskom.

5.4 Limitations of the Study

There are many factors that affect the demand of electricity and this study did not

include all of them. As the data is averaged, perhaps considering the electricity de-

mand for households and various industrial sectors could have been considered.

5.5 Future Research

Future work will focus on modelling electricity demand for each of the nine provinces

of South Africa separately including analysis by sector (i.e. residential, commercial,

agricultural and industrial sectors). More forecasting techniques will also be used.
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Appendix A

Some selected R codes

# The following packages in R are used :

# forecast , ggplot2 , qgam , mgcv , tseries , e1071 , glmnet , hierNet .

# ####################################################################

library ( forecast )

library ( ggplot2 )

library ( tseries )

library ( e1071 )

library ( glmnet )

library ( hierNet )

# ###################################################################

# time series , qqnorn , density and box plot for electricity demand

# ###################################################################

attach ( analyticDATA_1_ )

head ( analyticDATA_1_ )

win.graph()
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par ( mfrow =c(2 ,2))

A <- ts(load )

plot (A, xlab =" Observation number ",ylab =" Hourly electricity demand (MW) "

,main ="(a) Plot of HED ",col = " blue ")

plot ( density (A),xlab =" Hourlr electricity demand (MW)

",main ="(b) Density plot ",col = " blue ")

qqnorm (A, col = " blue ",main ="(c) Normal QQ plot ")

qqline (A)

boxplot (A, main ="(d) Box plot ",varwidth =TRUE ,

xlab = " HED (MW) ", col = " blue ",horizontal = TRUE )

# #################################################################

## calculating summary statistics , skewness and kurtosis of load

# ##################################################################

summary (A)

library ( e1071 )

sd(A)

skewness (A)

kurtosis (A)

# #################################################

## Fitting and extracting Non - linear Trend values

# ###################################################

win.graph()

e = ts(load)

plot(e)

z = (smooth.spline(time(load), load))

z
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lines(smooth.spline(time(load), load, spar=0.014408),col="red",lwd=3,)

dpdfits = fitted((smooth.spline(time(load), load, spar=0.014408)))

plot(dpdfits)

write.table(dpdfits,"~/nolfits.txt",sep="\t")

z <- ts( load )

win.graph ()

plot (z, xlab =" Observation number ",ylim =c (20000,35000) ,type ="l",

ylab =" HED (MW) ")

length ( load )

r= smooth.spline ( time (z), z)

r # 0.1112481

lines ( smooth.spline ( time (z), z, spar = 0.1112481) , lwd =3, col="red ")

dpdfits = fitted (( smooth.spline ( time (z), z, spar = 0.1112481) ))

write.table ( dpdfits ,"~/ loadfittedspline . txt ",sep ="\t")

########################################

##GAM model###

library(mgcv)

#library(qgam)

#library(caret)

fit1 <-gam(load~s(hour, bs="cc", k=24)+s(month, bs="ps",k=12)+s(daytype, bs="ps",k=7)

+s(holiday,bs="ps")+s(minT,bs="cc")+s(maxT,bs="cc")+s(aveT,bs="cc"),

family=gaussian,data = data_train)# insample
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summary(fit1)

par(mfrow = c(2,2))

gam.check(fit1)

fit1.forecast <- predict(fit1, newdata = data_test)

fit1.forecast <- round(fit1.forecast,0)

#write.table(fit1.forecast,"~/fSGB.txt",sep="\t")

f <- ts(fit1.forecast)

x <- ts(data_test$load)

library(forecast)

accuracy(f,x)

win.graph()

plot(x,xlab="Observation number",lwd=3,ylab="Hourly load")

lines(f,col="red", lty=2,lwd=3)

legend("topright",col=c("black","red"), lty=1:2,lwd=3,

legend=c("Actuals", "Forecasts (GAM)"))

# ######################################

## FORECAST COMBINATION OPERA

# #####################################
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library (forecast)

attach ( GAMSVRforecasts_1_ ) # Forecasts from all ML models

head ( GAMSVRforecasts_1_ )

win.graph()

accuracy (GAMf , load )

accuracy (SVRf , load )

#accuracy (Fffnn , load )

# #############################################

Y <-load

X <- cbind (GAMf , SVRf )

matplot ( cbind (Y,X), type ="l", col =1:4)

fGAM <- GAMf

fSVR <- SVRf

#fFFNN <- Fffnn

X <- cbind (fGAM , fSVR )

# How good are the expert ? Look at the oracles

library ( opera )

oracle.convex <- oracle(Y = Y, experts = X, loss.type = "percentage",model ="convex")

oracle.convex

summary(oracle.convex)

plot( oracle.convex )

print ( oracle.convex ) # print is same as plot in results

# Accuracy measures
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accuracy (mix1 , load )

accuracy (mix2 , load )

accuracy (mix3 , load )

mix1

write.table (mix1 ,"~/ Fconvex . txt ",sep="\t")

# ###############################################

## QUANTILE REGRESSION AVERAGING

# ###############################################

attach ( GAMSVRforecasts_1_ )

head ( GAMSVRforecasts_1_ )

win.graph ()

y <- ts( load )

plot (y, xlab =" Observation number ", ylab =" Hourly irradiance ")

library ( quantreg )

qr.load = rq( load ~ GAMf + SVRf , data = GAMSVRforecasts_1_ , tau =0.5) # tau = 0.025 , 0.5 , 0.975

summary.rq(qr.load ,se="boot") # can use se = " nid" or se =" ker"

lines (qr.load $fit , col="red")

fQRA = fitted (qr.load )

write.table (fQRA,"~/ QRA05 . txt ",sep ="\t") #LL0025 , QRA05 , UL0975

accuracy (fQRA , load)

# ###################################################################
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### Prediction Interval Width for all models

# ####################################################################

## Fsvr ,Fsgb, Fnn , Fconvex , Fqra

qr.load = rq( load ~ Fconvex , data = Fconvex , tau =0.05) #LL = 0.05,0.025 ,

0.005

#UP = 0.950 , 0.975 , 0.995

summary.rq(qr.load ,se="boot") # can use se = " nid" or se =" ker"

# lines (qr. load $fit , col =" red ")

fConvexx = fitted (qr.load )

write.table (fConvexx ,"~/ PIcon .txt",sep ="\t") # LL0025 , QRA05 , UL0975

accuracy (Fconvex , load)

# #####################################################################

# ### Model PIWs comparisons at 95%

# #####################################################################

attach ( PIs )

head ( PIs )

PIW = c(" PIgam "," PIsvr "," PIqra "," PIconvex ")

win.graph ()

boxplot ( PIgam , PIsvr , PIqra , PIconvex , names = PIW ,

horizontal = FALSE , main =" 95% prediction intervals ",

ylab =" Prediction interval width (MW)", col = " blue ")
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win.graph ()

par ( mfrow =c(3 ,2))

plot ( density ( PIgam ),xlab =" Prediction interval width (mw)", col =" blue ",

main =" PIGAM ")

plot ( density ( PIsvr ),xlab =" Prediction interval width (mw) ", col =" blue ",

main =" PISVR ")

#plot ( density ( PInn95 ),xlab =" Prediction interval width (w/m ^2)", col =" blue ",

# main =" PINN ")

plot ( density ( PIconvex ),xlab =" Prediction interval width (mw) ", col=" blue",

main =" PIConvex ")

plot ( density ( PIqra ),xlab =" Prediction interval width (mw) ", col =" blue ",

main =" PIQRA ")

## Summary statistics for PIWs

library ( e1071 )

summary ( PIgam )

sd( PIgam )

skewness ( PIgam )

kurtosis ( PIconvex )

PIsvr

# ################################################################

# Residual Error Analysis

# ################################################################
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attach ( GAM )

head ( GAMSVRforecasts_1_ )

ResGAM = GAMSVRforecasts_1_ $load - GAMSVRforecasts_1_ $ GAMf

ResSVR = GAMSVRforecasts_1_ $ load - GAMSVRforecasts_1_ $ Fsvr

ResFFNN = GAMSVRforecasts_1_ load - GAMSVRforecasts_1_ $ Fnn

ResConvex = GAMSVRforecasts_1_ $ load - GAMSVRforecasts_1_ $ Fconvex

ResQRA = GAMSVRforecasts_1_ $ load - GAMSVRforecasts_1_ $ Fqra

## Summary Statistics for forecast errors

## ResSVR , ResSGB. ResNN , ResConvex , ResQRA

library ( e1071 )

summary ( ResQRA )

sd( ResQRA )

skewness ( ResQRA )

kurtosis ( ResQRA )

# Residual box - pot and density plot

RESID = c(" ResSGB "," ResSVR "," ResFFNN "," ResConvex ", " ResQRA ")

win.graph ()

boxplot ( ResSGB , ResSVR , ResNN , ResConvex , ResQRA , names = RESID , horizontal

= FALSE , main ="",

ylab =" Residuals (w/m ^2)", col = " blue ")

win.graph ()

par ( mfrow =c(3 ,2))
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plot ( density ( ResSGB ),xlab =" Forecast error (w/m^2)", col =" blue ", main ="

ResSGB ")

plot ( density ( ResSVR ),xlab =" Forecast error (w/m ^2) ", col =" blue ", main ="

ResSVR")

plot ( density ( ResNN ),xlab =" Forecast error (w/m^2)", col =" blue ", main ="

ResNN ")

plot ( density ( ResConvex ),xlab =" Forecast error (w/m ^2) ", col=" blue ", main ="

ResConvex ")

plot ( density ( ResQRA ),xlab =" Forecast error (w/m ^2) ", col =" blue ", main ="

ResQRA")
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