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Abstract

Wind offers an environmentally sustainable energy resource that has seen increasing

global adoption in recent years. However, its intermittent, unstable and stochastic na-

ture hampers its representation among other renewable energy sources. This work

addresses the forecasting of wind speed, a primary input needed for wind energy gen-

eration, using data obtained from the South African Wind Atlas Project. Forecasting

is carried out on a two days ahead time horizon. We investigate the predictive perfor-

mance of artificial neural networks (ANN) trained with Bayesian regularisation, deci-

sion trees based stochastic gradient boosting (SGB) and generalised additive models

(GAMs). The results of the comparative analysis suggest that ANN displays supe-

rior predictive performance based on root mean square error (RMSE). In contrast, SGB

shows outperformance in terms of mean average error (MAE) and the related mean

average percentage error (MAPE). A further comparison of two forecast combination

methods involving the linear and additive quantile regression averaging show the lat-

ter forecast combination method as yielding lower prediction accuracy. The additive

quantile regression averaging based prediction intervals also show outperformance in

terms of validity, reliability, quality and accuracy. Interval combination methods show

the median method as better than its pure average counterpart. Point forecasts com-

bination and interval forecasting methods are found to improve forecast performance.

Keywords: Additive quantile regression averaging; Forecasts combination; Machine

learning; Point and interval forecasting; Renewable energy; Wind energy.
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Chapter 1

Introduction

Warnings about the various possible consequences of global warming across the planet

as reported in research from several nations has encouraged the use of renewable en-

ergy resources such as wind energy (Ferreira et al., 2019). This is a viable strategy

for mitigating the problem of greenhouse gases (GHG) in the atmosphere from vari-

ous human activities (Crate and Nuttall, 2016). GHG, amongst many other effects of

global warming such as global climate change, has its attendant effect evident in en-

vironmental degradation and pollution (Ferreira et al., 2019; Crate and Nuttall, 2016).

Apart from these, reduction in and skyrocketing prices of conventional energy sources

necessitates the use of renewable energy sources (Lin, 2007; Chen and Folly, 2018).

There are various natural processes for generating renewable energy. These natural

processes involves Wind, Solar, Biomass, Geothermal, Hydro-power among others.

They generate renewable energy through the use of heat from the sun, heat and speed

of wind in the atmosphere, various anthropological activities and the ocean waves (Lin,

2007). The wind is an efficient, affordable, pollution free, renewable and abundant

energy source (Pinson et al., 2013; Barbosa de Alencar et al., 2017). In recent times, the

rising level of the energy generated from the wind has been witnessed in developed

countries and in research publications (Pinson et al., 2013). As of 2012, ‘the world wind
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energy association (WWEA) informed that the world wide cumulative installed wind

power capacity reached 254GW (Pinson et al., 2013). Countries such as Denmark and

Uruguay use 40 and 20 percent of this energy respectively for their power generation

(Barbosa de Alencar et al., 2017). Electric energy generated from wind energy installed

capacity is expected to reach over 800GW before the end of 2021 (Barbosa de Alencar

et al., 2017; Pinson et al., 2013). Wind energy thus presents prospects for an alternative

power source in curbing the power crises South Africa is facing and also a viable power

export to markets deficient of electric energy in the African continent.

The earth’s surface and atmosphere being hit by Solar energy along with planetary

rotation which results in uneven heating of the earth’s atmosphere and differentials in

atmospheric pressures are causalities for wind formation (Pinto et al., 2013; Ferreira

et al., 2019). Wind is thus formed from the displacement in air masses, due to the

difference in atmospheric pressure of two distinct regions, affected by natural effects

of the continent, sea level, heights, longitude, and soil roughness (Barbosa de Alen-

car et al., 2017). Wind energy however, is generated through the contact of the wind

with blades of wind devices such as wind turbines (WT). The blades of the WT when

rotating converts wind speed into mechanical energy. This in turn drives the rotor of

a wind generator to produce electricity (Pinson et al., 2013; Barbosa de Alencar et al.,

2017). According to the kinetic energy equation, the quantity of energy generated from

wind is a function of its speed (v) and mass (m). Hence, for generating electric power

from wind, it is very important to make a good wind speed prediction (Chen and Folly,

2018; Barbosa de Alencar et al., 2017) & (Zhu et al., 2012).

Wind energy generation with many promising prospects, however, is faced with the

challenge of variability of the wind speed. The fluctuating, intermittent, and stochas-

tic nature of the wind makes predicting power generation a Herculean task (Abhinav

et al., 2017). Also, the non-linear, non stationary characteristics of the wind power

temporal series makes accurately forecasting power generation difficult (Barbosa de

2



Alencar et al., 2017). The predictability of the wind speed amongst other wind infor-

mation is essential for the assessment of wind energy exploitation purposes such as

wind power generation. Hence, accurate wind speed prediction helps in maximizing

wind power generating facilities by reducing mistakes and economic cost involved in

the planning and effective running of such facilities (Ferreira et al., 2019).

Wind speed prediction methods for electrical energy exploitation purpose gained

attention in recent research. These methods are broadly classified into deterministic

and probabilistic forecasting models (Yan et al., 2014). Most literature lists different

methods for wind speed/power forecasting some of which are the persistence, numer-

ical, statistical and hybrid methods (Morina et al., 2016; Giebel and Kariniotakis, 2017).

The statistical methods are seen as including the artificial intelligence (AI) methods,

especially the artificial neural networks (ANN) method. ANN is a black-box statisti-

cal method and non-ANN methods are seen as grey-box statistical methods (Giebel

and Kariniotakis, 2017). Other authors, however, classify the AI methods as being

non-statistical and broadly classify wind speed/power forecasting methods into con-

ventional statistical methods and AI methods (Verma et al., 2018; Barbosa de Alencar

et al., 2017; Chen and Folly, 2018). Statistical methods are based on statistical time

series using the previous history of wind data to forecast over the next short period

of time say 1 hour. Models based on statistical methods are easy to use and develop.

They adjust their parameters through the difference between their predicted and ac-

tual wind speed (Barbosa de Alencar et al., 2017). Artificial intelligence methods on

the other hand, make use of Machine learning (ML) models such as Neural Networks

(NNs) and Gradient Boosting Machines (GBM) (Chen and Folly, 2018). ML based mod-

els make use of non-statistical approaches in knowing the relation between input and

output. It makes use of the training ability to learn mappings between output and in-

put (Barbosa de Alencar et al., 2017; Sebitosi and Pillay, 2008). Statistical methods and

machine learning methods especially the neural network methods are both suited for

3



short term prediction. The persistence and numerical methods are known as physical

models (Barbosa de Alencar et al., 2017). The physical models make use of statistical

distributions on physical quantities such as barometric pressure for forecasting. The

hybrid models use a combination of two or more models such as the statistical models

and machine learning models for forecasting (Barbosa de Alencar et al., 2017).

An investigation into techniques for predicting wind speed for wind power fore-

casting is herein reported. Statistical methods along with machine learning methods

were used for forecasting wind speed. These methods were evaluated individually

and combined in order to quantify their ability to carry out the forecasting. Statistical

methods, such as statistical learning, makes use of models such as Auto Regressive

(AR), Moving Average (MA) or both (ARMA) and for non stationary data makes use

of Auto Regressive Integrated Moving Average models (ARIMA). The conventional

statistical learning techniques is the ARIMA (Chen and Folly, 2018). Other statistical

learning techniques involving Generalised Additive models (GAMs) can also be used

for wind speed forecasting (Sigauke et al., 2018). We present the use of GAMs and ML

models for forecasting wind speed using South Africa wind data set. The rest of this

chapter presents the problem statement, research focus where we give the research aim

and objectives, the research significance and scope, contributions envisaged from the

study and a detailed outline of the dissertation.

1.1 Problem Statement
South Africa is an emerging and developing economy, though the most developed

and industrialized in the African Continent (Odhiambo, 2009). South Africa stands as

having more than half of the electricity generated from the continent being the highest

producer and consumer of electricity in Africa, majority of which is being generated

from coal (Odhiambo, 2009; Sebitosi and Pillay, 2008). However, this fossil fuel has had

its toll on the environment through the emission of carbon gases, making the country

the seventh largest emitter of GHG (Sebitosi and Pillay, 2008). There is an urgent need

4



for the main Electricity company of South Africa (Eskom) to source for alternative dis-

tributed energy resources such as renewable energy sources in which, wind energy

serves as the most viable. The unpredictability of the wind has been a deterring factor

in achieving this goal. However, many developed and developing economies in the

world over such as China, USA, India, Denmark among others have successfully em-

braced and implemented electricity generation from wind energy (Barbosa de Alencar

et al., 2017). Wind energy thus contributes a chunk of proportion into their electric-

ity grid in annual increasing rate (Barbosa de Alencar et al., 2017; Sebitosi and Pillay,

2008).

Sebitosi and Pillay (2008) describes the reasons for the reluctance of Eskom in em-

bracing this 21st-century trend. Most power systems are largely unpredictable, hence,

the need for load and demand forecasting. Majority of Eskom’s forecasting for load

balancing has focused largely on Solar power (Buhari et al., 2012). Despite the chal-

lenge with the wind for electricity generation, the results from other developed coun-

tries are appalling. This suggests that there is a need for more research to be carried out,

in the South African context, in increasing the current level of electricity integrated into

the grid from wind sources. Methods that ensure accurate wind forecasting with min-

imum error in short term are crucial to maintain effective load balancing and stability

of the grid system (Abhinav et al., 2017). This research thus presents its investigation

into three of such methods and compare their performance in forecasting wind speed,

a driver of wind power generation using South Africa Wind data set. Also, a combi-

nation of forecasts from these methods, with its evaluated level of certainty will be the

main deliverable of this research.

1.2 Focus of the Study
The main aim and objectives of this study are given in Sections (1.2.1) and (1.2.2),

respectively.
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1.2.1 Research Aim
The research was aimed at performing a comparative analysis of neural network

algorithm (NNA), stochastic gradient boosting (SGB) algorithm, generalised additive

model (GAM) with their combination in short-term forecasting of wind speed. This

aim will be achieved by the following objectives:

1.2.2 Research Objectives
The objectives of this study are to:

• make use of Least absolute shrinkage and selector operator (Lasso) for feature /

variable selection from the Wind data set,

• use NNA, SGB, GAM and their combination for short-term point forecasting of

wind speed,

• evaluate and compare the accuracy of results for the NNA, SGB, GAM along

with their combination using three evaluation metrics involving RMSE, MAE and

MAPE,

• evaluate individual and combined interval forecasts for uncertainty measures.

1.2.3 Research Questions
The following research questions drive this research

• Given selected variables from the Lasso, how does the point forecasts from the

NNA performs in comparison to those of the benchmark models (SGB and GAMs)

using the evaluation metrics?

• Which forecasts combination method out performs the other and the individual

models?

• How can we quantify the uncertainties in the point and interval forecasting mod-

els?
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1.3 Significance of the Study
As mentioned in Section (1.1), the unstable nature of the wind has made wind speed

forecasting difficult. In order to have electric power generation from wind incorpo-

rated into the grid, there is the need to study various methods that can forecast wind

speed and minimise forecasting errors. Thus, the importance of making use of meth-

ods with little or no error for wind speed forecasting cannot be overemphasized. The

use of both Machine Learning, Statistical learning models and a hybrid model formed

from their combination gives significance to the research. It presents point forecasts

with quantified levels of uncertainty.

1.4 Scope of the Study
This research involve the use of wind meteorology (time series) data set obtained

from the Wind Atlas South Africa (WASA) website. The response variable is the wind

speed and the predictor variables used in this study are: wind direction (WD), humid-

ity (H), temperature (T), lagged wind speed (LWS), and barometric pressure, depend-

ing on the variables selected by the Lasso. The NNA was implemented using Python

while the SGB and the GAM were implemented on R respectively. These platforms

are usually the work tool in the field of Data Science for extracting actionable insights

from data.

1.5 Contributions of the Study
Due to the stochastic nature and unpredictability of the wind, majority of forecast-

ing problems for renewable energy resources have been skewed towards solar energy

and solar irradiance forecasting in South Africa (Olaofe, 2013). The study is geared

towards adding to the few studies on renewable energy as it pertains to the wind, in

the South African context. The research findings from this research serves as a contri-

bution to the knowledge regarding how renewable energy, wind energy, can be used

for electric power generation in South Africa by forecasting wind speed.
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Majority of the methods used in time series forecasting involves the ARIMA, SARIMA

and SARIMAX models (Chen and Folly, 2018). To the best of our knowledge, this re-

search serves as the first time GAM is used for forecasting wind speed using South

African data. GAM was used for other types of forecasting but not for the wind fore-

casting in particular. An investigation into the reliability of GAM for time series fore-

casting especially for the wind speed forecasting introduces GAM as an alternative

model for future research.

Another notable contribution of this research is the choice of models, along with

the techniques for combining forecasts. Individual forecasts from the 3 models are

combined using both linear and additive quantile regression averaging in order to have

an improved forecast with smaller errors. Lastly, We hope to report our findings in

reputable journals accredited by the Department of Higher Education and Technology.

1.6 Structure of the Dissertation
The rest of this report is organised as follows: Chapter 2 presents a brief literature

review as it relates to wind speed/power forecasting and various techniques that have

been used for forecasting. Methodology along with the theoretical formulations of our

methods are given in Chapter 3. Empirical results and discussions are presented in

Chapter 4. Chapter 5 concludes the mini-dissertation presenting conclusions, sum-

mary and recommendations for future researches.
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Chapter 2

Literature Review

2.1 Introduction
This chapter summarize what is known on wind speed/power forecasting and var-

ious methods and techniques that have been employed in various works. The first

three aspects of the discussion will focus on the wind speed/power forecast relations,

types of forecast in time scales and forecasting techniques in related works. A brief

discussion on the GAM is presented and the gaps in research. The chapter ends with a

summary.

2.2 Wind Speed / Power Relations
Unconditional distribution of wind speed and the potential power generation is

a classical statistical problem dealing with wind energy resource assessments (Brown

et al., 1984). Transition from limiting distribution to dynamic models or linear time

series were first seen in the work of Brown et al. (1984). This is useful for wind farm

siting and design only and not in the operational management of wind power genera-

tion. This is due largely in part to it lacking information on the volatile and conditional

dynamics of wind power generation (Pinson et al., 2013). Dynamic modelling were

majorly based on physical deterministic frameworks involving complex atmospheric
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processes, physical quantities such as pressure, instrumental to understanding wind

origination (Landberg, 1999). The models were useful in generating state variables for

global weather. The evolution of the dynamics of these state variables result in wind

components such as wind speed and wind direction. Recently, wind power genera-

tion is modelled as a stochastic process with the wind speed being the most relevant

meteorological variable (Pinson et al., 2013).

Wind speed is the main variable upon which the power generated from a wind tur-

bine (WT) depends (Abhinav et al., 2017; Barbosa de Alencar et al., 2017). The WT con-

verts the wind speed (and other variables such as density) into wind power through its

power curve shown in Figure 2.1. Cp is the power coefficient denoting the wind power

that can be extracted from the rotor blade of the WT. The maximum wind power a WT

can generate is given according to Beltz’s law Cp ≤ 0.593%. The relationship between

wind and rotor speed, blade design and the blade tip angle determines the Cp for a

particular turbine (Thomas and Cheriyan, 2012; Chen and Folly, 2018). Three regions

are worthy of note in Figure 2.1:

• The Linearly Cp progressing region. This region has the optimum constant Cp

region where increasing wind speed increases wind power.

• A constant power region, produces limited power even at high wind speed, due

to the decrease in Cp, the rotor efficiency.

• Power shut down region, where generation power decreases to zero and the cut-

out point of wind speed is reached between 25-26m/s.

The relationship between wind speed and wind power generation conversion is given

in equations (2.1) and (2.2), respectively as given in Chen and Folly (2018) & Olaofe

(2013).

Prb(v) =
1
2

ρ(t)Av3 (2.1)
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Figure 2.1: Sample Power Curve of a Wind Turbine.

(Source: (Barbosa de Alencar et al., 2017)).

Prp(v) =
1
2

ρ(t)Av3Cp(v), (2.2)

where Prb is the ideal, available power, while Prp is the realizable power (in Watts (W))

the wind turbine generates, ρ(t) is the air density at varying time, which depends on

the surrounding temperature and atmospheric pressure, A is the sweep area of blade

in (m3), Cp is the power coefficient.

Air density, temperature and pressure are related as follows:

ρ(t) = ( P
RT
)e−(

gh
RT ), (2.3)

where ρ(t) is the air density in varying time measured in kg/m3, P is the barometric

pressure in Pascal (pa), T is the temperature of air in kelvin (K), R is the dry air spe-

cific gas constant, 287.058 (j/(KgK)), g is the Earth gravity, 9.8 (m/s2) and h is the hub

altitude above the ground level in (m) (Olaofe, 2013; Chen and Folly, 2018). Lastly,

we consider the power law equation. This applies when the hub altitude of the wind

turbine is higher than hub height of the data. The dataset we have from the WASA is
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at 62m above ground level, in most cases, the height of the WT is higher, hence we use

these formulation for the conversion in order to have the correct wind speed,

v1 = (v0)(
h1

h0
)α, (2.4)

where v1 is the wind speed measured at altitude h1 above the ground, v0 is the wind

speed at height h0 usually of the wind speed data point. We can use h1 as 90 and h0 as

62 with α being the surface roughness as 0.089 (Chen and Folly, 2018). These relations

shows how the wind speed at a particular WT hub can be interpolated along with other

quantities of interest to estimate the wind power realizable.

2.3 Forecast Time Scales
There are majorly four (4) classifications for the time scale forecasting given in Bar-

bosa de Alencar et al. (2017); Chen and Folly (2018) regarding range and application.

The very short/ultra short time forecast ranges from minutes to an hour ahead, and

useful in real time grid operation, regulation action and electricity market clearing.

There is also the short term forecast which deals with forecasts done in the range of 30

minutes to 1 hour and several hours say 6hours ahead, which is useful in applications

such as alternating load decision and economic load dispatch planning (Barbosa de

Alencar et al., 2017).

The medium term forecasting is another time scale classification that ranges from

several hours, or 6hours to 1 day or 1 week ahead forecast and useful in applications

such as reserve requirement decision, operational security in electricity market and

generator online/offline decisions. Lastly, the long term forecast is the longest which

has ranged in multiple days ahead to 1 year or more ahead forecast and useful in ap-

plications such as operation management and optimal operation cost and maintenance

planning decisions and for the feasibility study of wind farm design (Chen and Folly,

2018). However, authors such as Giebel and Kariniotakis (2017); Verma et al. (2018)

classify forecasts ranging from hours to few days as a short-term forecasting time hori-
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zon . Hence, this method is termed Short term because it involves a two day ahead

wind speed forecasting. To achieve this, we used lagged variables that lies in the ultra,

small and medium term time scales. The response variable was lagged in ultra, small

and medium term time scale horizon for the short term wind speed forecasting.

2.4 Related Works on Techniques
This section gave a brief review of the literature surveyed for this mini-dissertation.

The methods used by various authors and their research findings based on their re-

sults, are reviewed in this section.

The first critical literature to this research is the work of Chen and Folly (2018).

With the same wind meteorology dataset used in this research, they made use of three

methods to forecast the wind power generation. Their methods involve one statistical

approach, the ARIMA model and two machine learning methods, the Artificial Neural

Network and the Adaptive Neuro-fuzzy inference systems. They evaluated their re-

sults using Root Mean Squared Error (RMSE) and Mean Average Error (MAE). The re-

sults showed that the machine learning approach performed better for the ultra short,

while the ARIMA model performed better for the short term, 1 hour ahead wind speed

and wind power forecasting. However our approach evaluates the methods using the

MAE, MAPE and the RMSE for the two days short term wind speed forecasting.

A comparison of four wind forecasting models was done by Barbosa de Alencar

et al. (2017) involving the ARIMA, hybrid ARIMA with a neural network, ARIMA

hybridized with two neural networks and a neural network with a SONDA data set in

all time scale forecast horizons. Using four evaluation metrics, the hybridized ARIMA

with two neural network outperformed the rest of the models. In Abhinav et al. (2017),

a wavelet based neural network forecast model, applicable to all seasons of the year,

was used to predict the short-term wind power. Significant accuracy values using the

normalized MAE and normalized RMSE was recorded from the use of less historical

data and a less complex model.
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A hybrid wind power forecasting model constructed from fitting extracted data by

the Boltzmann function, a hybrid neural network comprising of ANN and genetic al-

gorithm was adopted in Lin (2007). Forecasting error was identified from the power

output trend and the target curvature change, whose relative difference gave the error

and its variation can be seen in time series. A statistical approach to the wind power

grid forecasting is discussed in Ying et al. (2012), through the use of wind scale, wind

forecast modeling technology involving correlation matrix of output power and fore-

cast accuracy coefficient. RMSE and MAE were used to evaluate the forecast errors. A

short-term wind farm power output prediction model using fuzzy modeling derived

from raw data of wind farm is presented in Zhu et al. (2012). This model was validated

using the RMSE of the train set and the test set. The fuzzy model outperformed the

NN model and was also able to provide interpretable structure which reveals rules for

the qualitative description of the prediction system.

An investigation comprising of three types of back propagation neural network

variants, Lavenberg Marquardt, Scaled conjugate gradient (SCG) and Bayesian regu-

larization, for a feed forward multilayer perceptron was carried out in Baghirli (2015).

Using the statistical metrics of MAPE, SCG was found to outperform the rest. The work

of Mbuvha (2017) on the use of Bayesian Regularization Back propagation algorithm to

short term wind power forecasting was seen as a viable technique for reducing model

overfitting.

An approach which provides additional information on the variability and uncer-

tainty of forecasts values is seen in Liu et al. (2015). Their method involve the use of

forecast combination based approach to generating prediction intervals (PIs). These

PIs leverage the development in point forecasting and less reliance on high-quality ex-

pert forecast in probabilistic load forecasting on sister forecasts. The authors made use

of Quantile regression averaging (QRA) method for combining point forecasts from

sister forecasts, generated from regression models on publicly available data set from
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Global Energy Forecasting Competition 2014 (GEFC0m2014). Pinball loss function and

Wrinkler score were used to evaluate the performance of this model for a day ahead

forecast. According to these evaluation metrics, the methodology generates better PIs

than did the benchmark Vanilla methods (Liu et al., 2015).

Combining probabilistic load forecasts using a constrained quantile regression av-

eraging (CQRA) method, an ensemble, formulated as a linear programming (LP) prob-

lem, each corresponding to a quantile, that minimises a pinball loss is seen in Wang,

Wang, Qu and Liu (2018). This study was conducted using publicly available datasets

from ISO NE and CER in Ireland. The results showed that the ensemble method per-

formed better in improving the performance in terms of the pinball loss compared to

the individual models. The work of Nowotarski and Weron (2015) investigates inter-

val or density forecast on forecasting electricity spot prices. They made use of QRA for

constructing PIs on data downloaded from GDF Suez website. The QRA method out-

performed the best of the individual 12 models in terms of the PI coverage percentage

and PI width.

The need to quantify the uncertainty and risk associated with point forecasts through

probabilistic forecasting drives the work of Abuella and Chowdhury (2017). Using

an ensemble learning tool, the random forest for combining individual models and

hourly-ahead combined point forecasts were obtained. This was used for obtaining

the ensemble based probabilistic solar power forecasts. The comparison carried out on

an Australian 1 year data showed that the ensemble based and analog ensemble based

probabilistic forecast have similar accuracy using the pinball loss function. Using Ex-

treme learning machine, optimised with a two step symmetric weighted objective func-

tion and particle swarm optimization, a deterministic forecast with a quantifiable pre-

diction uncertainty was seen in Sun et al. (2017). This was carried out on benchmark

datasets and real world byproduct gas datasets. The results using Prediction Interval

Coverage Probability (PICP), Prediction Interval Normalised Average Width (PINAW)
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and Prediction Interval Normalised Average Deviation (PINAD) showed high quality

PIs constructed for byproduct gas forecasting application.

The challenge of resolving intermittency and uncertainty in renewable energy espe-

cially wind power forecasting was the sole aim of the work of Shen et al. (2018). These

authors achieved this aim by quantifying the potential uncertainties of wind power

via constructing prediction intervals and prediction models using Wavelet Neural Net-

work (WNN) optimized by the Evolutionary knowledge Multi-objective Artificial Bee

Colony (EKMOABC) algorthm on an Alberta interconnected electric system 2015 wind

power data. The prediction interval constructed was evaluated using PICP and PI

covered-normalized average width (PICAW). Indices such as Coverage width-based

criterion (CWC) and PI multi-objective criterion (PIMOC) based on certain relations

between, the PINAW, PICAW and the PICP were also used to evaluate their models,

showing the PI constructed from PIMOC as more reliable. The EKMOABC optimised

WNN is the proposed method in this reference and was contrasted with WNN opti-

mised with multi objective particle swarm optimization (MOPSO) and non-dominated

sorting genetic algorithm II (NSGAII), showing the wind power PI forecasting by EK-

MOABC -WNN with higher accuracy and reliability (Shen et al., 2018).

To assess the predictability of wind information needed for evaluation of wind

power generation projects, an investigation into wind speed prediction using math-

ematical models was reported in Ferreira et al. (2019). The mathematical models used

were the Holt Winters, ANN, and the Hybrid time series models on SONDA and SEIN-

FRA/CE data. Using the MAE and the RMSE for model evaluation, the hybrid model

presented lesser errors amongst the other models. For extensive review on probabilis-

tic forecasting of wind power generation and wind energy forecasting management

and operational challenges, see Zhang et al. (2014); Giebel and Kariniotakis (2017);

Pinson et al. (2013) respectively.

Given the approaches used in existing literature for various kinds of forecasting,
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it is evident that the methods employed in this study had been used on different

datasets around the world and evaluated, mostly using the same metrics employed

in this study. This approach involves a comparative use of three of such methods for

point forecasting and two other methods for interval forecasting on a dataset created

and curated in South Africa. This was done to ascertain the viability of these methods

for point forecasting of wind speed and interval forecasting with a step further into

interval combination in order to have a forecast with small error values, whose un-

certainties are also quantified. Considering the foregoing reviews on techniques, one

begin to wonder if GAM is not been used for forecasting. A review on literature that

has GAM used as a forecasting model is hereby presented in the next section.

2.5 The Generalized Additive Model
Linear regression models, a class of additive models are normally used with GAMs

(Jones and Wrigley, 1995). GAMs are suitable for exploring the dataset and visualizing

the relationship between the dependent and independent variables (Liu, 2008). Goude

et al. (2014) use GAMs in modelling electricity demand for the French distribution

network at both short and medium term time scales for more than 2200 substations.

The relationship between the load and the explanatory variables was estimated by

their model. The proposed model is given in equations (2.5) and (2.6), respectively.

yt =

p

∑
i=1

fi(xit) + εt, t = 1, · · ·, n, (2.5)

yt = f1(x1t) f2(x2t) + · · ·+ fp(xpt) + εt, t = 1, · · ·, n, (2.6)

where εt is the error term, yt is a univariate response variable, xpt are the covariates

that drive fi, the smooth functions. Non linear functions are meant to be smoothed that

they can be relatively well estimated by penalized regression on a spline basis (Goude

et al., 2014). Effects that drove the French hourly load consumption was modelled

using GAM and compared with the operational one in Pierrot and Goude (2011). The
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effect of different variables was estimated with GAM given in equation (2.7).

Lt = f1(Lt−24) f2(Lt−168) + f3(Tt) + f4(µ(Tt−24, Tt−48)) + f5(cc) + f6(posit) + C + εt,

(2.7)

where Lt, Lt−24 and Lt−168 are the t instant load to forecast, one day lagged load and the

one week lagged load respectively, Tt−24, Tt−48 are the t instant temperature, one day

lagged temperature and the two day lagged temperature, µ is the mean, cc represents

the cloud cover, posit is the position of the day through the year (September to August)

C is the intercept and εt is the residual error.

GAM is good for interpretability, regularization, automation and flexibility (Liu,

2008). It finds a balance between the biased and yet interpretable algorithm, linear

models and extremely flexible grey box learning algorithms composing the movement,

seasonality and climate change variables. GAM was fitted on weekly load demand in

Cho et al. (2013). The existence of functional form trend between two variables and

their shape whether linear or non linear, should it exist was examined using GAMs in

the work of Shadish et al. (2014).

The use of GAMs in forecasting wind speed is very rare, there is a dearth of GAMs

to wind power forecasting especially, in literature. Hence, this research investigates

the use of GAM as an alternative to the ARIMA models and its variants that have been

the most used approach in wind power forecasting in the existing literature.

2.6 Identified Gap
This research investigates methods for wind speed forecasting with minimal error

values along with the combination of these methods. The major gap in research iden-

tified from the foregoing literature review presents Generalised additive model and

Stochastic gradient boosting (a Gradient boosting variant) as alternative methods for

enhanced performance when combined with the Neural network algorithm using Ad-

ditive quantile regression averaging method for forecasts combination. The worthiness
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of this intervention was presented using these models. Evaluations of the approach by

the error metrics are given in the results section in chapter 4 of this mini-dissertation.

2.7 Summary of Chapter
This chapter began with a brief introduction of what it would entail, in which the

relationship between wind speed and the wind power along with other parameters

of note was discussed. The time scale classification horizons and their applications

was also presented. A brief perusal on techniques that have been used for various

forms of forecasting and forecast combinations was featured. The chapter presented

the theoretical formulation for GAMs that have been used for various works on the

GAMs and identified the gap filled by the research. The Literature review concludes

by summarising the chapter accordingly.
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Chapter 3

Methodology

3.1 Introduction
This chapter gave the methods that was employed in carrying out the research.

Three crucial aspects are laid out in order, to include the variable selection and data

pre-processing, the Artificial neural network (ANN), and the benchmark models which

are Generalized additive models (GAM) and the Stochastic gradient boosting (SGB).

The report presents the ANN, GAM, SGB and the model for variable selection in the

light of their theoretical and mathematical formulations for their working principles.

Also, a brief discussion on forecast combination is also presented. This chapter con-

cludes with model evaluation metrics in terms of point forecasts, prediction intervals

evaluation metrics and prediction interval combination towards quantifying the un-

certainties in the predictions made by the models,along with a summary of the overall

methodology of the research.

3.2 Variable Selection and Data Pre-processing
Various data pre-processing methods were employed before feeding the data into

the models. For a time series short term forecasting problem, the following data pre-

processing methods are used: Data cleaning, data sampling, stationarity check, data
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transformation, data de-trending, data de-seasonalization and data normalization (Baghirli,

2015). The main pre-processing process employed is the data cleaning. Missing values

were eradicated so that data could be prepared for variable selection needed for imple-

menting these models. Data was also checked to see that it exhibit properties needed

for producing good forecasts. Not all the wind meteorological dataset available on

WASA website could be used for forecasting. Data exhibiting needed properties such

as trends, seasonality and having residuals were adjudged to yield good forecasts than

those which do not have these properties from their plots. Selecting relevant features

from a dataset needed for the forecasting task is the process of variable selection. Not

all variables are necessary predictors, among such predictors, there is a need for select-

ing the best predictor variables. There are many methods for variable selection. Least

absolute shrinkage and selection operator (Lasso) for variable selection was used in

this study (Lim and Hastie, 2015).

3.2.1 The Least Absolute Shrinkage and Selection Operator, LASSO
Suppose there are N pair of predictor variables x and response variables y, i.e.

{xi, yi}N
i=1. The aim is to give an approximate value for the response variable yi from

the predictors linearly combined, as it is in linear regression such as given in equation

(3.1)

η(xi) = β0 +

p

∑
j=1

xij β j. (3.1)

The vector (β = (β0, β1, · · · , βp) ∈ R p of regression weights which parameterizes the

model along with an intercept term β0 ∈ R . An estimation for (β) using least-squares

method is based on minimizing squared error loss using equation (3.2)

β̂ = min
β

{
1

2N

N

∑
i=1

(
yi − β0 −

p

∑
j=1

xijβ j
)2
}

. (3.2)
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Due to the problems of interpretability and prediction accuracy associated with least

squares method, the need for the Lasso thus emerged (Hastie et al., 2015). Lasso per-

forms better in prediction accuracy measured in terms of the mean squared error by

shrinking regression coefficient values or setting some of them to zero thereby intro-

duces bias and reduces the variance of predicted values. Lasso also helps with an

improved interpretability by identifying smaller subsets of predictors with stronger

effect from a large set of predictors. The Lasso provides an automatic way for variable

selection in linear regression problems because it solves a convex, quadratic program

with convex constraint optimization problem. It works by combining the least square

loss of equation (3.2) and the `1− constraint or bounded on sum of the absolute values

of the coefficient (Hastie et al., 2015).

The Lasso solves β̂ using the optimization problem of (3.2) subject to
p

∑
j=1

|β j| ≤ t

which is the `1 − norm constraint written as ||β||1 ≤ t. A comparable method before

the Lasso is the ridge regression which solves (3.2) subject to
p

∑
j=1

β2
j ≤ t2. The best form

for estimating the Lasso problem is by having the predictors xi standardized, making

all the columns centered such that ( 1
N

N

∑
i=1

xij = 0) with unit variance ( i
N

N

∑
i=1

x2
ij = 1) and

the response values yi centered such that ( 1
N

N

∑
i=1

yi = 0) with an omitted intercept term

β0 produces the optimal solution in which equation (3.2) becomes equation (3.3)

min
β∈R p

{
1

2N

N

∑
i=1

(
yi −

p

∑
j=1

xijβ j
)2

+ λ

p

∑
j=1

|β j|
}

(3.3)

Expression (3.3) is known as the Lagrangian form which produces an effective, conve-

nient and simple computational algorithm for the numerical computation of the Lasso

using coordinate descent procedure among other methods (Hastie et al., 2015).

The complexity of the Lasso is controlled by the value of its constraint, t. Smaller
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values of t produces sparse and easily interpretable models less closely fitted to the

training data whereas larger values of t free up more parameters, more closely fitted to

the data. These two extremes of t hamper the generalization ability of the Lasso model

by recording a large error value in the prediction error test set. A trade off between

overfitting and sparsity is desirable for the Lasso generalization ability. This is carried

out by the cross-validation procedure which strikes a balance in the value of t that gives

the accurate model for predicting individual test data set. Hastie et al. (2015) give more

details concerning the theoretical framework of the Lasso whereas, Plan and Vershynin

(2016) explain how the Lasso could be used for non-linear observations as we have in

this research.

3.2.2 Generalized Cross Validation
Cross-validation (CV) entails splitting the dataset into training or calibration and

test or validation subset in order to evaluate models. Mpfumali (2019) identified some

types of a CV such as; a hold out method or the 2-fold CV, repeated random data sam-

pling, k-fold CV, leave-one-out CV which extends to the Generalised CV (Friedman

et al., 2001). The model is split into 75/25% or 80/20% for the training and testing sub-

set respectively and used for CV. One of the packages in R that implements cross vali-

dation is the ”mgcv” developed by Hastie and Tibshirani (1990); Wood (2001). Gener-

alised cross validation measures the goodness of fit considering the model complexity

and residual error. GCV criterion is expressed as in equation (3.4) as given by Craven

and Wahba (1978).

GCV(M) =

i
n

n

∑
t=1

[yt − f̂M(Xt)]2

[]1− G(M)
n ]2

(3.4)

where n is the number of observation G(M) estimates the cost penalty measure of

a model with M basis function. Lack of fit on a M basis function model f̂M(Xt) is

determined by numerator while the denominator determines the penalty for model

23



complexity G(M). The lower the GCV criterion value the preferred the model.

Mathematical underpinnings of the functions executed by the implementation plat-

form is given in these last two sections. The Lasso, GCV and the rest of the theoretical

explanations of the models are given as we proceed in this chapter on methods.

3.3 Artificial Neural Networks
Artificial Neural networks (ANNs) are mathematical means of computation in-

spired by the field of Biology, especially the nervous system. It simulates the biological

neuron in the human brain (Lin, 2007; Zhang et al., 1998). ANNs can learn, be taught

and generalise to new experiences. It is characterized as robust, parallelizable and self-

co0rdinating and is popularly useful in most areas. The basic element of the ANNs

is the neuron shown in Figure 3.1. Its architecture is built of many neurons organ-

ised in 3 major layers of input, hidden and output layers respectively. A simple ANN

architecture is shown in Figure 3.2.

Mathematically, ANNs can be formulated as:

Yk = ϕ(Σ(x1w1 + x2w2 + x3w3 + · · ·+ xkwk) + βk)

Yk = ϕ(uk − θk)

uk =

k

∑
i=1

xiwi

βk = −θk

(3.5)

From equation (3.5), a composite formulation of Figure 3.1 can be inferred. While

the first two lines gives the overall formulation for ANN, the last two lines explains

the unit terms. The symbol ϕ denotes the activation or transfer function, which can be

sigmoid, threshold, piece-wise, identity function, βk is the bias and θk is the threshold,

uk is the weighted sum, wi is the weight at neuron i and xi are data points.

The most commonly used ANN for forecasting is the feed forward multi-layer net-
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Figure 3.1: The schematic Neuron representation

(Source: Lin (2007)).

work because it does not allow for loops in the network. The ANN learns, learning is

defined as the modifiable components of a system, to which applied change(s) is/are

responsible for the success or failure of, and can improve performance of the system

(Schmidhuber, 2015). The learning process in ANNs thus involve tuning parameters

such as weights and thresholds. Learning involves basically, two types which are su-

pervised learning in which case a dataset and the target output is provided to the ANN,

while the unsupervised learning is a self organised learning with no input target data

for classifying patterns (Schmidhuber, 2015).

The weights in the neurons (i, j) in the network at a given layer k is modified thus:

∆Wk
ij(t + 1) = η∆Wk

ij(t) + α∆Wk
ij(t− 1), (3.6)

where α is the momentum term which tracks the effects of the previous training

iteration on the current one, while the η is the learning or convergence rate based on

the learning rule such as gradient decent formulated as:

∆Wk
ij = η

δEk

Wk
ij

, (3.7)

where η is the learning rate and η δEk
Wk

ij
is the derivative of the error gradient w.r.t. weight

from neuron j to i at layer k. Other learning rules involves Delta rule and Hebb’s rule

(Haykin, 1994; Heaton, 2008).
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Figure 3.2: Neural Network Architecture

(Source: Lin (2007)).

3.4 Training Algorithm
The training algorithm is the main determinant of the ANN taxonomy and nomen-

clature (Lim and Hastie, 2015). This phase involves minimizing the error by updat-

ing the weight until the desired output is reached or a terminating criterion is satis-

fied. Training algorithm finds the function that evaluates the ANN error rate using

the learning rule. Different types of training algorithms are used for the ANN such

as the Back propagation Hunga (2018), Genetic algorithm Lin (2007), Gene expression

programming Haykin (1994), Simulated annealing among others (Schmidhuber, 2015).

The training algorithm used for this research is the Back propagation algorithm (with

Bayesian regularised), used for training the multilayer perceptron neural networks.

This algorithm is chosen because it generalises well with small and messy data sets

and therefore reduces over fitting (Chen and Folly, 2018). The algorithm and mathe-

matical formulations of its steps along with its flowchart are presented in this section.

3.4.1 Back Propagation Algorithm
The Back Propagation Neural Network (BPNN) is implemented in two phases which

are the forward phase, the layer by layer introduction of the input pattern without
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changing the weights and the backward phase which involves a layer by layer back

propagating of error signals from comparing the target output with the network out-

put by changing weights for each layer. BP is done in the following steps:

• Selection of the paired input-target vectors from the training data set; and appli-

cation to the ANN input nodes.

• Process the network output.

• Compute the errors between the network output and the target.

• Minimise the errors by adjusting the neuron weights connection.

• Iterate 1 to 4 for all the paired input-target vectors in the training set until a rea-

sonable error is reached for the entire set or terminating criterion is satisfied.

3.4.2 Mathematical Formulations for BP
In equation (3.8) wij interconnects the Ith output Oi from neuron i to its jth input

neuron, if the neuron at layer k is not an input neuron then its state can be formulated

mathematically as:

Ok = f (∑
i

wijOi), (3.8)

where f (x) = 1/(1 + e−x) is the sigmoid activation function, the summation is done

in all neurons in all the layers with a target t the output of the neuron can be specified

as:

Ek =
1

2(tk −Ok)2 , (3.9)

where E is the error and k is the neuron on the output layer. Using the gradient error,

the gradient descent algorithm modifies the weights thus:

∆Wk
ij = −(

δE
δOj

)x(
δOj

δWk
ij
) = −( δE

δWk
ij
), (3.10)
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where δj = −( δE
δOj

) is the error signal so that we have:

∆Wk
ij = εδjOi, (3.11)

where ε is the learning rate and δk depends on whether neuron j is an output layer in

which case we have:

∆j = Oj(1−Oj)∑
k

δwjk, (3.12)

in order to mitigate premature convergence, the momentum rate α is included so that

we have:

∆Wk
ij(n + 1) = εδjOi + α∆Wk

ij(n), (3.13)

n represents the number of iterations or epochs. The flowchart of a BP training algo-

rithm for a NN is as shown in Figure 3.3.
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Figure 3.3: Flowchart for Back Propagation

(Source: Hunga (2018)).

3.4.3 Generalization
The ANNs learn in the training phase however, it should be able to generalize well

when different sets of input data is used by producing output similar to the target.

Hence, it means that the NN does not overfit its training data. There are variants of the

BPNN among which Bayesian Regularization is best suited for generalization because

it does not overfit its training data (Baghirli, 2015). The Bayesian Neural Network

(BNN) as expressed in Mbuvha (2017) is the method towards which our ANN was
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adapted.

3.5 Benchmark Models

3.5.1 Generalized Additive Models (GAMs)
GAMs are models which allow for an additive relationship between its dependent

and independent variables (Hastie and Tibshirani, 1990). GAM is unlike the General-

ized linear Model (GLM) which allows for a functional relationship between response

and predictor variables, and it is more flexible to model. GAMs make use of non-linear

form and smooth function of predictor variables in its modelling that is applicable in

different forms. A GAM can be formulated in its simplest form as (3.14):

g(µt) = Aθ +

p

∑
j=1

f j(xjt) + εt, Yt ∼ EF(ut, φ) t = 1, · · · , n, (3.14)

where Yt represents the independent univariate response variable from an exponential

family distribution having mean ut, scale parameter φ, g represents the smooth mono-

tonic link function, A is a design matrix, θ represents an unknown parameter vector,

f j is an unknown smooth function of the predictor variable xj that may have a vector

value, εt is an independent identical distribution random error (Hastie and Tibshirani,

1990; Pya and Wood, 2016).

3.5.2 Stochastic Gradient Boosting
The Gradient Boosting Machine or Gradient TreeBoost were the terms previously

used for Gradient Boosting when it was implemented newly by Friedman (Friedman,

2002). Gradient Boosting is a Machine learning model used for classification and re-

gression problems (Mpfumali et al., 2019). It stage-wisely builds weak predictive mod-

els generalised by optimization of arbitrary differentiateable function. The Statistical

framework of gradient boosting describes it as an optimization problem which min-

imizes the loss in a model by a stage-wise addition of weak learners to the models

using a gradient descent procedure (Friedman, 2002; Mpfumali et al., 2019). Gradient
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descent traditionally minimizes set of parameters such as coefficient of regressors or

ANN weights through loss or error calculation and weight update (Friedman, 2001).

The weak learners are organised in substructures or decision trees that replaces the

parameters. Parameterized tree is added to the model, thereby reducing the error and

the residual losses using the parameters of the trees following the direction of the gra-

dient (Friedman, 2001). The gradients spots the error in the weak learners. The major

drawback to the gradient boosting is that it is a greedy algorithm that can easily over

fit training data (Friedman, 2001; Hastie et al., 2005). One of the variants of gradient

boosting is the stochastic gradient boosting (SGB) formed by taking a random sam-

ple of the training data set without replacement (Friedman, 2002, 2001). Its general

formulation is given in equation (3.15).

Figure 3.4: Stochastic gradient boosting algorithm (Friedman, 2002)

Stochastic gradient boosting can be expressed algorithmically as shown in the Al-

gorithm in Figure 3.4.
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F(x) =
M

∑
m=1

βmh(x; γm) (3.15)

where h(x; γm) ∈ R are functions of x with characteristics of γm and βm expansion

parameters that limits over fitting (Friedman, 2001; Hastie et al., 2005).

The use of SGB in forecasting wind speed/wind power, like the GAMs, is also

very rare. Hence, this research investigates the use of SGB specifically as a variant of

the gradient boosting models that have been mostly used in forecasting problems in

the literature. This will enhance the provision of knowledge to the forecasting and

machine learning community about the problems SGB is capable of solving.

3.6 Forecasts Combination
Wind speed forecasting presented in this research report requires that the perfor-

mance of individual forecasts be improved. The overarching forecast which is the main

deliverable of the research work will be an improved forecast obtained from forecasts

using the ANN, SGB and the GAM. The combined forecast has a superior quality in

terms of accuracy and reduced error when compared to its components. One viable

way of achieving this is through the forecast combination first introduced by Bates and

Granger (1969). Forecast combination is an approach for ensuring increased forecast

accuracy and error variability. The combination of forecasts from different methods

reduces the error margin. This is useful in uncertain and unpredictable situations as

wind prediction. The theoretical justification for forecast combination involves testing

and averaging individual forecast models according to their probabilities when the

problem is viewed from the perspectives of Bayesian Model averaging (BMA) (Hoet-

ing et al., 1999).

Forecast combination is important because it provides a means of compensating

for the drawbacks in component forecasts. It helps to avoid the risk involved in using

one forecast and also provides a way of benefiting from various interactions among
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component forecasts (Wang, Wang, Qu and Liu, 2018). The motivation for forecasts

combination lies in the following: possibility for insufficiency of forecasts from indi-

vidual component models, forecasts from the components are from different and com-

plementary perspectives, considerable grounds are covered from component forecasts

which gives a complete picture of the forecasts when combined and improved fore-

casts accuracy due to the effects of model uncertainties, structural breaks, and model

mis-specification being forestalled by forecasts combination (Wang, Wang, Qu and Liu,

2018).

Depending on the forecasting intervals, the loss function is an important param-

eter in forecast combination. It is the main performance evaluation criterion and the

sole ingredient in forecast combination formulae (Sigauke, 2017). Forecasts combina-

tion schemes, involving adaptive forecast combination scheme and regression based

combination make use of loss function for combining forecasts (Sigauke, 2017). A re-

gression based approach is the quantile regression averaging (QRA) used for combin-

ing forecasts and computing prediction intervals (Sigauke, 2017). Convex combination

of models make use of various algorithms based on minimizing losses from pinball,

absolute error, percentage error and square losses. The forecast combination method

presented in this study is according to Sigauke (2017); Mpfumali et al. (2019) as given

in equation (3.16)

yi,τ =

K

∑
k=1

wi,k,τ ŷi,k + εi,τ τ ∈ (0, 1) i = 1, · · ·, m, (3.16)

where yi,τ is the combined forecast for the wind speed, k is the number of forecasting

methods used to predict the next observation i of yi,τ, m is the total number of point

forecast models, wi,k,τ is the weight assigned to each forecast ŷi,k and εi,τ is an error

term having to do with the loss function.
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3.7 Quantile Regression Averaging
Simple averaging methods of forecast combination from individual point forecasts

use equal weight and had proven to be a viable means of improving forecast accuracy

(Hoeting et al., 1999). However, the inability of the interval forecasts resulting from

point forecast of simple averaging combined models to ensure a nominal coverage rate

requires the application of unequal weights in the forecast combination (Nowotarski

and Weron, 2015). The estimation of interval forecast follows a complex process and

involves applying weights based on the quantiles (Taieb et al., 2016). Quantile Re-

gression (QR) thus processes and applies quantile based weight to individual point

forecasts from a number of forecasting models to give interval forecast with nominal

coverage rate that can be used to ascertain the uncertainties in the combined forecast

as well as in the individual forecasting models. In this QR setting, the individual point

forecast and the combined interval forecasts models the predictor variables and the

response variable respectively. In order to combine point forecasts from individual

models, we present the use of Quantile regression averaging (QRA) methods to gen-

erate interval forecast for the forecasting process. Along with the combined interval

forecasts, we also generate interval forecast from individual forecast models by using

QRA to assess the uncertainties in each constituent model comparable to that of the

combined model. The QR problem can be expressed as (3.17) as given in Nowotarski

and Weron (2015)

Qy(q|Xi) = Xiβq, (3.17)

where Qy(q|.) stands as the conditional qth quantile of the actual wind speed (yi), Xi

are the independent variables treated as regressors and βq is a vector of quantile q
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parameters estimated by minimizing a loss function for a qth quantile using (3.18)

min
βq

{
∑

(nyi≥Xiβq)

q|yi − Xiβq|+ ∑
(nyi<Xiβq)

(1− q)|yi − Xiβq|
}

= min
βq

{
∑

i

(q− 1yi<Xiβq)(yi − Xiβq)

}
,

(3.18)

where yi is the actual wind speed and Xi = [1, ŷ1, · · · ŷm.i] is the vector of point fore-

casts from m individual forecasting models.

3.7.1 Linear Quantile Regression Averaging
Linear qauntile regression averaging is the general form for QR averaging as de-

fined in section (3.6). It contains a model involving the response variable and the in-

dependent variables of the combined forecast. Let yiτ be the 2day wind speed, with

M total number of methods for predicting the next observation, yi+1, yi+2··· of yi+Mτ,

using M = 1, · · ·M methods, the combined forecast is expressed as (3.19) as given in

Sigauke et al. (2018).

ŷLQRA
iτ = β0 +

K

∑
k=1

βkŷik + εiτ, (3.19)

where yik represent forecast from kth method, and ŷLQRA
iτ is the combined forecast

while εiτ is the error term we seek to minimize equation (3.20)

arg min
β

( N

∑
i=1

ρτ(ŷLQRA
i − β0 −

K

∑
k=1

βiŷik)

)
(3.20)

We express equation (3.20) in reduced matrix form (Maciejowska et al., 2016) analogous

to equation (3.18) as seen in equation (3.21)

arg min
β∈Aρ

[
∑

i:ŷLQRA
i >xτ

i β

τ(ŷLQRA
i − xτ

i β) ∑
i:ŷLQRA

i <xτ
i β

(1− τ)(ŷLQRA
i − xτ

i β)

]
. (3.21)
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3.7.2 Additive Quantile Regression Averaging
A hybrid regression model based on Additive Quantile Regression (AQR) model

consists of GAM and QR. Its first use was seen in Gaillard et al. (2016), extended in

Fasiolo et al. (2017), used in Sigauke et al. (2018) and given in equation (3.22).

yiτ =

p

∑
k=1

sk,τ(xik) + εik τ ∈ (0, 1), (3.22)

where xik are p covariates terms, from xi1, xi2···, xip, Sk,τ are smooth functions while εiτ

are the error terms. Smooth function (s) can be expressed as equation (3.23)

sk(x) =

j

∑
q=1

βq,kbsqk(xik) (3.23)

where bsk represents the kth basis function with j dimension and βk is the kth parameter.

Parameter of equation (3.22) are estimated by minimizing the expression in equation

(3.24):

Qy|x(τ) =

N

∑
i=1

ρτ

(
yi,τ −

p

∑
k=1

sk,τ(xik)

)
, (3.24)

where ρτ is the pinball loss function, however the loss function it minimises is that of

equation (3.18).

3.8 Forecast Evaluation Metrics
This section discussed the three evaluation metrics for the individual and combined

point forecasts. Mathematical formulation for these evaluation metrics are presented

herein. Three main accuracy metrics for evaluation of the point forecasts made from

the prediction models and their combination (ANN, SGB, GAM and QRA) are the

mean absolute error, (MAE), mean absolute percentage error (MAPE) and the root

mean squared error (RMSE). They are as formulated in equations (3.25 through 3.27),
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where m is the number of observations in the test data set, yt is the estimated values of

the response variables, and εt is the residual of the ith observation given as εt = yt − ŷt

MAE =
1
m

m

∑
i=1

|εt| (3.25)

MAPE =
100
m

m

∑
i=1

| εt

ŷt
| (3.26)

RMSE =

√√√√√ 1
m

m

∑
i=1

|ε2
t | (3.27)

3.9 Prediction Intervals Formulation and Evaluation Met-

rics
In order to ascertain the uncertainty in point forecasts, it is necessary to provide the

prediction intervals (PIs) so as to quantify these uncertainties (Mpfumali et al., 2019).

This section gives the formulation of the PIs and various metrics for evaluating the

performance of estimated PIs:

3.9.1 Prediction Interval Formulation
Given a set of data containing point forecasts from different models at certain quan-

tiles (say 90, 95 & 99 ) along with the actual prediction value such that D = {(xi, yi), i =

1, 2, · · ·m}. xi represents an input vector corresponding to a particular variable in D

and yi represents the actual value. The PI with nominal confidence (PINC) 100(1− α)%

for the yi is given in equation (3.28)

Qα(xi) =
[
Lα(xi), Uα(xi)

]
(3.28)

where Qα(xi) represents the range of PI values within the actual yi having Lα(xi) and

Uα(xi) as its Lower and upper bound estimate (LUBE) values respectively. Thus the
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probability that Qα(xi) lies within yi is expected to be 100(1− α)% can be expressed in

(3.29) (Sun et al., 2017).

PINC = Pr(Qα(xi) ∈ yi) = 100(1− α)% (3.29)

3.9.2 Prediction Interval Width (PIW)
The first index for estimating PI is the PIW. It is estimated using Lower and upper

bound estimate (LUBE) as seen in (Shen et al., 2018). The difference between the con-

tent of Qα(xi) i.e. the upper limit and the lower limit gives the PIW as expressed in

equation (3.30) (Mpfumali et al., 2019).

PIWi = Uα(xi)− Lα(xi) i = 1, · · · , N (3.30)

3.9.3 Prediction Interval Coverage Probability (PICP)
The PICP is an important index that evaluates the reliability of the formulated PIs.

It can be expressed as equation (3.31)

PICP =
1
N

N

∑
i=1

qi (3.31)

Where N is the number of observations in the data set, q is defined in (3.32):

qi =


 1 i f yi ∈ Qα(xi)

0 i f yi 6∈ Qα(xi)


 (3.32)

3.9.4 Prediction Intervals Normalized Average Width (PINAW)
The PINAW is one of the indices for assessing the PI. It gives quantitative width of

the PIs and it is described as equation (3.33)

PINAW =
1

NR

N

∑
i=1

PIWi (3.33)

where R = ymax − ymin represents the range of the highest and lowest values of the

actual yi.
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3.9.5 Prediction interval Normalized Average Deviation (PINAD)
The PINAD is an index for describing the deviation of the PIs from the actual values

quantitatively (Shen et al., 2018; Mpfumali et al., 2019). It is expressed as equation (3.34)

PINAD =
1

NR

N

∑
i=1

dvi (3.34)

dvi is defined in (3.35)

dvi =




Lα
i − yi i f yi < Lα

i

0 i f Lα
i ≤ yi ≤ Uα

i

yi −Uα
i i f yi > Uα

i


 (3.35)

3.9.6 Prediction Interval Covered-Normalized Average Width (PICAW)
The indices described above are only about the PIs covered by the actual values.

The PICAW estimate involves the PIs not covered by the actual values, since this affects

the PI widths negatively, it is therefore a new evaluation index for the width defined

as equation (3.36) (Shen et al., 2018).

PICAW =
1
R

(
1

Np+

Np+

∑
i=1

PIWi + λ
1

Np−

Np−

∑
i=1

PIWi

)
(3.36)

Where Np+, Np− respectively represents the number of the actual values that the PIs

does or does not cover respectively. A control parameter that widens the difference

between the PIs and the actual values is λ > 1 else if λ = 1, PICAW becomes PINAW.

The PICAW gives more accurate PI construction evaluation when actual values are

farther off from the PIs.

3.10 Combined Prediction Intervals
Combining point forecasts have the tendency to improve accuracy as shown in re-

search (Nowotarski and Weron, 2015; Wang, Zhang, Tan, Hong, Kirschen and Kang,
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2018). The combined point forecast can also be improved in terms of its prediction in-

terval by combining its prediction limits. A comparison of the combined PI and the PIs

from constituent models is presented in this section. Lower and upper prediction lim-

its from N number of forecasting models can be represented as [Ln, Un]n = 1, · · · , N to

denote the resulting 100(1− α)% PI, the combined 100(1− α)% PI can also denoted as

[LC, UC] from PI combination method C. Two prediction interval combination methods

(C) which are the Simple Averaging and the Median Method combining PIs was used

as applied in (Mpfumali et al., 2019).

3.10.1 Simple Averaging PI Combination Method
This method makes use of the Arithmetic means of the prediction limits from the

forecasting models. This can be expressed as (3.37)

LAv =
1
N

N

∑
n=1

Ln UAv =
1
N

N

∑
n=1

Un (3.37)

A very much robust interval is known to be produced from this fairly simple approach

(Mpfumali et al., 2019)

3.10.2 Median PI Combination Method
A method that is less sensitive to outliers and has a considerable ease of use is

expressed as equation (3.38) given in (Mpfumali et al., 2019).

LMd = Median(L1, · · · , LN) UMd = Median(U1, · · · , UN) (3.38)

The Mathematical formulae presented in this chapter fits into our study because

these formulae are either implemented in the computational tools employed or they

are explicitly programmed in order to measure the performance and the uncertainties

in predicting wind speed. Results from these metrics are reported in chapter 4 accord-

ingly.
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3.11 Chapter Summary
This chapter began with stating what it will cover and proceeded to a discussion

on variable selection and data preprocessing under which it presents the mathematical

(theoretical) formulations for the Lasso and the Generalised CV. It further discusses

the ANN and the BPNN as its training algorithm in terms of the mathematical frame-

work of this blackbox model. GAM and SGB along with forecast combination are the

successive points of discussion in terms of their theories and methods in which an

in-depth study on the QRA methods involving LQRA and AQRA are also expressed

methodically. The chapter summary is preceded by various formulae for point forecast

and interval forecast evaluation metrics. Table 3.1 presents an overall summary of the

methodology for the research. A summary of the models, description and motivations

for their use is presented in Table 3.1.

Model Description Motivation

ANN, SGB and GAM Machine and Statistical learning, Deterministic methods Point forecasting

LQRA and AQRA Statistical and Probabilistic Methods Forecasts combinationand Prediction interval construction

The LASSO Mathematical Variable/feature selection

MAE, RMSE, and MAPE Mathematical Point forecast evaluation metrics

PIW, PICP, PINAW, PINAD and PICAW Mathematical formulations and Interval forecasting metrics To quantify uncertainties in the forecasts

Simple Average and Median PI Mathematical Prediction Interval combination (Improves forecast)

Table 3.1: Summary of models, description and motivations
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Chapter 4

Analysis, Results and Discussions

4.1 Introduction
This chapter gave a brief discussion on the data source along with its features (or

variables) and observations. It proceeds to give the exploratory data analysis in terms

of the variables selected using Lasso. The approach employed in this study only uses

other covariates in a wind meteorology dataset to forecast wind speed and does not

extend to wind power forecasting using the power curve and other methods, as dis-

cussed in Giebel and Kariniotakis (2017); Yan et al. (2014). The report of the results of

various point forecasts and PI accuracy values and compare models using these accu-

racy measures are presented in this chapter.

4.2 Source and Description of Dataset
The dataset contain meteorological data with features such as wind speed, wind

direction, humidty, barometric pressure and air temperature (Brown et al., 1984; Land-

berg, 1999). The data was obtained from the Wind Atlas South Africa website

(http://wasadata.csir.co.za/wasa1/WASAData). Much data for various locations

where readings were carried out are available on this website. The data corresponding

to the location 3 (WM03) which is the Vredendal in the Western Cape province of South
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Africa was used for this research. WM03 was picked because it has small amount of

null and nan values also known as missing data, they could be easily computed and

cleaned up in data pre-processing. Another reason for chosing WM03 is because the

needed properties for time series forecasting, such as trend, periodic seasonality, resid-

uals were observed in its visualization compared to other points, See Appendix B for

the visualization of the decomposition for the response variable of the dataset. Vre-

dendal is located on Longitude 18.4199160E and Latitude 31.7305070S, respectively.

The data were curated from 1st of January 2018 through 1st of March 2019. The dataset

contains 61057 rows of observations and was reduced to 60769 by the final two days

lagged variable added to the selected variables. The data was divided into training and

test data. While training data corresponds to data from January - November 2018, tak-

ing 45576 observations of 10 minutes recordings, testing data on the other hand spans

through Dec to 1st March 2019 with 15193 observations of 10 minutes interval record-

ings. A pictorial representation of the point location and map representation along

with the mast used on the location corresponding to Vredendal is shown in Figures 4.1

and 4.2, respectively.

4.3 Exploratory Data Analysis
The meteorological dataset thus obtained contains dirty data. The messy data was

cleaned up using data cleaning approaches in Python and R used for implementing

the models. Nan and NULL values makes data dirty. Hence, our first exploratory data

analysis focused on various methods of cleaning up data. We explore the summary

statistics of the response variable (WS 62 mean) as shown in Table 4.1.

Table 4.1 shows that the distribution of the Wind speed at 62m/s is right skewed

and platykurtic, as seen in the skewness and kurtosis values, hence not normally dis-

tributed. Another reason for the non normality assertion is that the mean and median

have different values. Time series plot, density, QQ (normal quantile to quantile) and

boxplots as shown in Figure 4.3 all show that the predictor variable (wind speed at

43



Figure 4.1: Vredendal Point and Map Location.
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Figure 4.2: Site showing Mast for wind speed at 62m.

(Source: WASA station and site description report pg29).

62m) distribution is not normally distributed.

Min 1st Qu Median Mean 3rd Qu Max Std. Skewness Kurtosis

0.2134 4.3674 6.8670 7.1725 9.6473 20.8555 3.475177 0.3963677 -0.4654862

Table 4.1: Wind Speed 62m/s Summary Statistics.

We also visualized the variations in the wind speed measured at 62m, the predictor

variable, in order to envisage the possibility of forecasting it. The visualization was

carried out using a box plot as shown in Figure 4.4. As can be seen from Figure 4.4,

various patterns that are expected from the unpredictability nature of the wind are
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Figure 4.3: Diagnostic plots for the predictor variable, Wind Speed 62 mean (m/s).

visible. There are no clear patterns visible when visualized in terms of the weeks in

the year and the days of the month, other than the availability of the wind. However,

the hours of the day and the months of the year show some clear patterns. Seasonal

variation can be inferred from the months of the year boxplots, and a trend can be seen

from the hours of the day boxplots. The 10th month corresponding to the peak of the

spring season has the largest wind speed as seen in the month of the year boxplots.

Whereas, the wind speed is seen to progress from the early hours of the day to the

later hours of the day. The box plots show that wind is available throughout the days,
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however in varying and unpredictable quantity. This further shows how viable the

wind is for generating renewable energy.

Figure 4.4: Distribution of Wind Speed(m/s) measured at 62m WT hub height across

the week, month, day and year in the dataset.

4.4 Variable Selection using Lasso
This section of the chapter is discussed in two parts. The first part gives the variable

selection for the ANN using the Python 3 computational tool. The second part, on the

other hand, gives the variable selection from the benchmark models, i.e. the GAM and

the SGB respectively on R software.

4.4.1 ANN Variable Selection
The variable selection for the ANN was done using the Python 3 programming lan-

guage. We made use of the ordinary Lasso and the cross-validation Lasso (Lassocv)
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in the variable selection process. As explained in chapter 3, the Lassocv proved more

robust than the Lasso because more variables were selected using it compared to using

the standard Lasso. We hereby feed the ANN model with the variables selected from

the Lassocv. Table 4.2 shows the differences recorded from using Lasso and Lassocv

for the ANN model variable selection process. With the same training and testing ratio

of 75% and 25% for training and testing data respectively. Lassocv selected more vari-

ables with larger train and test score values along with a smaller training and testing

data mean squared error (MSE) values, respectively, as seen in Table 4.2. The visual-

ization of the variables against their coefficients along with the plot of the coefficient

magnitude against the coefficient index (variables) using Lassocv of the python 3 com-

putational tool for the process of variable selection for the ANN model is shown in

Figure 4.5. From Figure 4.5, few variables or features within the coefficient index be-

tween 20 and 30 have negative coefficient magnitude, as shown by the small spike to

the left in the left-hand side of Figure 4.5 and the spike below the zero line at the right-

hand side of the figure. Majority of the variables have their magnitude on the zero line

in the plot of coefficient magnitude and coefficient index. The various spikes in the

right hand plot show the variables with non zero positive magnitude, which are repre-

sented by different colours of lines pointing in the right direction by the coefficient of

Lasso model plot.
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Metric Lasso Lassocv

Data Split ratio 0.75/0.25 0.75/0.25

Number of Variables selected 10 out of 47 14 out of 47

Training Score 0.9859 0.9964

Testing Score 0.98565 0.9963

Training data MSE 0.1704 0.0431

Testing data MSE 0.1736 0.0447

Table 4.2: Comparison between Lasso and Lassocv.

Figure 4.5: Variable selection and coeficient of LassocV plots.

4.4.2 Benchmark Variable Selection
The variable selection process for the benchmark, GAM and SGB models was done

using the ”glmnet” library available on the R computational tool. This library imple-

ments both the ordinary Lasso and the Lasso cross-validation. A plot generated from

the Lasso computation for the benchmark models on R is shown in Figure 4.6. It shows
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the L1 norm which is the Lasso along with the coefficient for selection of variables. The

MSE plot against the log lambda shows that few variables lie between 0 and 1 on the

log lambda axis and these are the selected variables for the variable selection process.

Figure 4.6: Benchmark Lasso plots.

Table 4.3 gives the selected variables along with their coefficients from these two

programming tools. For the Lassocv from the python 3 kernel, the selected 14 variables

were added with the other lagged variables and used for the ANN model. Also, the

benchmark (BMlasso) model from the R kernel, selected 10 variables, lagged variables

were added to the selected variables and used for both the GAM and the SGB models,
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respectively. The lagging was done from 10 mintute lag, 1 hour lag, 1 day lag and 2

days lag accordingly. In all the variable selection process only the 10minute lag was

selected by the various Lasso variable selection processes.

Variable ANN Lasso ANN Lassocv BMLasso

WS 62 min 0.088897 0.314418 3.643221 e -01

WS 62 max 0.410781 0.337446 2.614169e-01

WS 60 mean 0.253464 0.120781 1.454732 e-01

WD 60 mean 0.000287 0.000134 9.436018 e-05

WD 60 min – 0.000068 –

WD 60 max -0.000591 0.000007 –

WD 60 stdv -0.015175 -0.005907 -4.402683e-03

WD 20 mean 0.000834 0.000048 –

WD 20 stdv -0.001630 — –

RH min -0.000793 0.000169 –

lag1 0.119809 0.094290 8.940951e-02

WS 40 mean – 0.148194 1.581057 e-01

WD 20 min – -0.000036 –

WD 20 max – 0.000082 –

WS 60 stdv – – 2.898686e-01

Tair min – 0.000590 -7.744566e-05

Tair mean – – -2.311307e-04

Table 4.3: Variables and their co-efficients from the Lasso.
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4.5 Benchmark Model Process Analysis

4.5.1 Stochastic Gradient Boosting
For this first benchmark model to perform forecasting, it’s working principle en-

tails some form of variable selection out of the variables fed into it. With each vari-

able’s relative importance, selection was made amongst the provided variables in its

training data. Table 4.4 shows some of the variables picked by the model and their

relative importance and visualised using Figure 4.7. The plot for this selection is given

in Figure 4.7, where the vertical axis represents the variables selected by the model

with incresing relative degree of importance. The SGB model run using the following

final values n.trees = 150, interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode =

10. Various computational metrics evaluating the SGB model given by the R computa-

tional tool is seen in Table 4.5.

Figure 4.7: SGB variable selection plots.
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Selected Variable Relative Importance

WS 40 mean 4.379310e+01

WS 60 mean 4.117128e+01

WS 62 max 1.411519e+01

WD 60 mean 4.687078e-01

WD 60 stdv 3.892787e-01

WS 60 stdv 6.227314e-02

Tair min 1.768753e-04

Tair mean 0.000000e+00

Table 4.4: Variable selection by the SGB Model.

Interaction.depth n.trees RMSE R-2quared MAE

1 50 0.5661520 0.9800269 0.3959074

1 100 0.3781487 0.9883580 0.2662815

1 150 0.3302557 0.9908337 0.2339422

2 50 0.3850630 0.9885786 0.2712526

2 100 0.2699944 0.9938029 0.1930438

2 150 0.2418027 0.9949749 0.1750470

3 50 0.3110675 0.9922893 0.2177381

3 100 0.2260250 0.9956210 0.1625230

3 150 0.2000053 0.9965582 0.1454654

Table 4.5: SGB Computational Model Evaluation.

4.5.2 Generalised Additive Model, GAM
The same number of variables were used in the GAM as in the SGB model. The

GAM as given in previous chapter uses crucial computational parameters. In fitting
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the GAM model, these computational parameters were given along with various sta-

tistical error measure terms, in relation to the variables selected by the model from

among the fitted variables for its computation. The values for these parameters and

their statistical significance were given. The crucial parameters to the GAM model

therefore involves the parametric coefficient for the intercept term, significance of the

smooth terms, smooth parameter convergence and the basis terms. The ’mgcv’ opti-

mizer values, RMS gcv values, model rank and Hessian among other parameters were

given. See Appendix A for values recorded for these parameters using the GAM.

The GAM and SGB being the benchmark models for this study produced point

forecasts from the test set given the training set. The point forecasts from these two

models are expressed graphically in Figure 4.8.

Figure 4.8: Benchmark Density and Point Forecasts Plots.

From Figure 4.8, the highest wind speed values both for the actual and forecasts
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hovers close to 20 m/s. We can also infer that the wind speed at point very close to

5m/s is the densest plot of the wind speed with a density value very close to or a

bit above 0.10. In the density plot the lines showing the actual point forecasts values

and the lines showing the benchmark model’s point forecasts values are very close

showing the performance of the models in forecasting. This reflects a considerable

acceptable performance in the two benchmark models. Table 4.6 presents a summary

of the accuracy metrics.

4.6 Artificial Neural Networks and Additive Quantile Re-

gression Averaging
This section provides the analysis and results from making use of the Artificial neu-

ral network (ANN) and the Additive quantile regression averaging (AQRA) model for

point forcasting. The ANN was implemented using the computational tool known

as python 3 programming language. Following the steps from data curation, to data

explorations and visualisations along with data normalisation, this model is ready to

carry out predictions from the variables selected by the Lassocv model. The ANN

model was constructed from the SKLearn Library by importing MLPRegressor. The

major determinant of an ANN is the number of layers in the network, the number of

hidden layers and the number of nodes used for the hidden layer. Our ANN was con-

structed using three layers of input, hidden and output. The number of the hidden

layer was made to be 1 by default, and the number of nodes in the hidden layer was

given as 5. This makes the neural network thus constructed similar to the Bayesian

Neural Network (BNN) in Mbuvha (2017). In a BNN, the values of the α and β are

very crucial, in which case are between 0 and 1 for a BNN. We thus performed hyper-

parameter tuning to find the best α values, best parameter and best accuracy making

use of the GridSearchCV from the SKLearn model selector library.

The AQRA on the other hand is a model formed from combining point forecasts
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from the other models. The model is fitted with forecasts from the BNN, and the

benchmark models (GAM and SGB) as its predictor variables, while the response vari-

able are combined point forecasts of the AQRA model. The model was implemented

using ”ggam” library developed by Fasiolo et al. (2017) on the R computational tool.

The model was set at a seed of 1000 and functions such as tune-learn-fast has its object

containing the actual forecasts and the point forecasts from the other 3 models fitted at

a quantile value of τ = 0.5. A plot of the point forecast from the ANN and the AQRA

models are shown in Figure 4.9.

Figure 4.9: ANN & AQRA Density and Point Forecasts Plots.

From Figure 4.9, we found that the highest wind speed forecast lies between 15 and

20 m/s and the highest dense plot for the wind speed is at a position very close to

5m/s with density of a little above 0.10. These two density plots also presents these

two models as viable models for wind speed forecasting because of the proximity of
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the actual and point forecasts values as represented by the two lines in the density

plots.

The forecasts from these four models show the wind speed values lies in range of

5-20m/s. This corresponds to the linearly progressing and constant power region of

the graph in Figure 2.1 of chapter two. This shows that both the actual values and

the values from forecasts are within the range of values where electric power is being

generated from the wind turbine. A strong, increasing and constant electrical energy

can thus be realized from the wind speed values, which depicts the richness of this

renewable energy for generating electrical power.

4.7 Forecasts Accuracy Measures

4.7.1 Point Forecasts Accuracy Measures
This section presents the error measures for our point forecasting models. This

study made use of a total of five (5) forecasting models. The main model is the ANN

model and compared with two benchmark models which are the SGB (A machine

learning model) and GAM (Statistical learning model). The other two (2) models are

a statistical learning model called the Additive quantile regression averaging and the

Linear quantile regression averaging (LQRA) formed by the point forecasts combina-

tion of the other three (3) models. We present three (3) accuracy metrics in order to

evaluate these five (5) point forecasting models. The various accuracy of point fore-

casts from these models are presented in Table 4.6. These provide answers to the first

two research questions in section 1.2.3.
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Model No of used Variables RMSE MAE MAPE

BNN 14 0.2091 0.1526 2.7437

SGB 8 0.2553 0.1397 2.3754

GAM 8 0.2468 0.1579 3.0356

AQRA 3 0.1888 0.1167 2.0330

LQRA 3 0.1928 0.1204 2.0986

Table 4.6: Accuracy Measures for the Point Forecasting Models.

From Table 4.6, model BNN, is the first model whose forecasts is from the ANN,

the second model is the SGB forecasts, the third model is the GAM forecasts, while the

fourth and fifth models are the forcasts combination models which is the AQRA fore-

casts and the forecasts corresponding to the LQRA model respectively. Our discussion

evaluates Table 4.6 in the lines of individual model and combined models.

BNN made use of 14 variables from its Lassocv variable selection model to fit the

neural networks. It recorded the lowest RMSE value followed by GAM amongst the

individual point forecasting methods. SGB on the other hand recorded the lowest MAE

value followed by the BNN while GAM recorded the highest MAPE value followed

by the BNN. Hence, accuracy measures using the MAE and the MAPE presents SGB

as the best individual point forecasting model followed by the BNN while the GAM

performed the least amongst the three models.

Considering the combined forecasting models, the fourth model which is the AQRA

performed better than its counterpart fifth model which is the LQRA in all accuracy

metrics axis. Model AQRA also outperformed all of the individual point forecasting

models as can be seen from Table 4.6. This is in tandem with most literature findings

that combining point forecasts presents forecasts whose accuracy measures are lower

than the individual forecasting models (Nowotarski and Weron, 2015; Shen et al., 2018;

Sun et al., 2017). This finding holds sway for both methods of forecasts combination as
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can be seen from their accuracy metrics values which are lower than that of the three

individual accuracy metrics’ values for the point forecasting models. When we com-

bine forecasting models, the resultant combined forecasts perform better than the indi-

vidual point forecasting models. Hence, we retain model AQRA as the main forecast

combination model, while we drop model LQRA going forward. The next sections are

geared towards proffering answers to the last research question which is to quantify

the uncertainties in the point forecasts and interval forecasts.

4.7.2 Prediction Interval Width
The analysis of the prediction interval width (PIW) at 95th quantile is presented in

this section. Table 4.7 gives the summary statistics of the generated PIW which gives

the nature of the PI generated.

Model Min Max Mean Median St.Dev Skewness Kurtosis

BNN 0.3281 0.9217 0.8148 0.8613 0.1016 -0.7914 -0.7346

SGB 0.4378 0.8313 0.7099 0.7487 0.1124 -1.0610 -0.0271

GAM 0.2461 1.1725 0.8762 0.8744 0.1952 -0.2188 -0.7905

AQRA 0.3843 0.7759 0.6277 0.6399 0.1213 -0.5330 -0.9302

Table 4.7: Summary Statistics for PIW at 95th quantile.
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Figure 4.10: PIW of Models BNN-AQRA.

From Table 4.7, model BNN has the least standard deviation followed by model

SGB, hence, the PIW from these two models are narrower than those from AQRA and

GAM respectively. The skewness measures the distribution of a model and shows

from the table that the PIWs are not normally distributed, although close to a normal

distribution (except SGB), because a normal distribution has a skewness value of 0.

All of the models are also negatively skewed showing that they are left skewed. The

Kurtosis value for a distribution is expected to be 3 and all the Kurtosis values for the

models shows them to be negative and less than 3 are therefore said to be platykurtic.

A visualization for the PIW is presented in Figure 4.10. The figure presents the PIW

from Model AQRA as the most symmetrical and best model followed by the Model

SGB. Model BNN and GAM are skewed and much narrower than the other two. We

can still visualize the PIW using the density plots in Figure 4.11, presenting model
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BNN as the most narrow model.

Figure 4.11: Density Plots for PIW of model BNN through AQRA

4.7.3 Prediction Intervals Evaluation
Forecasting using models is known to be filled with much uncertainties given good

point forecasts performance evaluation. In this section, we describe the method for

quantifying the uncertainties in point forecasting models and also in the combined

point forecasting model. In order to measure uncertainties the needed feature to be

used is the prediction interval. Along with making use of the AQRA for forecast com-

bination, we also used it to construct prediction intervals through the lower and upper

bound estimate (LUBE ) (Shen et al., 2018) for the models and for itself at different

quantiles. The quantiles considered are the: 90th quantile, the 95th quantile and the

99th quantile respectively.

To quantify uncertainties, five (5) prediction interval evaluation metrics are used
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in this study and results summarised in Table 4.8. These metrics provide the quantifi-

able answer to the third research question by presenting the means to evaluate con-

textually the uncertainties in the point and interval forecasts. The 5 metrics are the

prediction interval nominal coverage (PINC), the prediction interval coverage percent-

age (PICP), the prediction interval normalised average width (PINAW), the prediction

interval normalised average deviation (PINAD) and the prediction interval coverage

average normalised width (PICAW). The theoretical formulations of these metrics had

been given in Chapter 3 (Equations 3.29, 3.31 through 3.36 ). We present these uncer-

tainty metrics relating to quantifying the uncertainty in wind speed forecasting using

the individual point forecasting models and the AQRA forecasting combination model

through the use of AQRA to construct prediction intervals whose values according to

these metrics are presented in Table 4.8:

PINC% Model %PICP %PINAW %PICAW %PINAD ABLL AAUL

90 BNN 90.4956 3.7853 8.3489 0.0130 717 727

SGB 90.6997 3.8336 8.4560 0.1101 701 712

GAM 90.6334 3.8259 8.4432 0.1109 702 721

AQRA 90.7194 2.8583 6.3140 0.0650 707 703

95 BNN 95.2807 4.7673 10.5152 0.0388 358 359

SGB 95.4058 4.1536 9.1076 0.0659 348 341

GAM 95.3992 5.1263 11.3586 0.0665 345 354

AQRA 95.3926 3.6725 8.1101 0.0534 342 358

99 BNN 99.0654 7.3491 16.1999 0.0083 72 70

SGB 99.0983 7.8238 17.9690 0.0298 66 71

GAM 99.0259 8.8693 19.6512 0.0198 78 70

AQRA 99.0588 7.1009 15.8021 0.0133 70 73

Table 4.8: Prediction Interval Evaluation.
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From Table 4.8, five metrics are used to evaluate PIs from individual and the com-

bined models. Four (4) models in all was evaluated using these metrics. Using the

PINC as the predetermined confidence value or the quantile from which the PI is being

evaluated. PICP is used to ascertain the reliability of the constructed PIs. Therefore,

the more the actual values are covered by the PI, the higher the PICP values (Shen

et al., 2018). Also, the PICP value is expected to be greater or equal to the PINC or

confidence value else deemed as invalid (Sun et al., 2017). Accurate and satisfactory PI

performance is indicative of a higher PICP value and a lower PINAW values (Sun et al.,

2017; Shen et al., 2018). Both PICP and PICAW value indicates the quality of the con-

structed PI. Hence, a high PICP value with small PICAW value is required for a quality

PI construction (Shen et al., 2018). Also, given a high PICP, the deviation value of the

PIs from the actual value is expressed by the PINAD. Hence, a higher PICP should give

a lower PINAD value showing less deviation from the actual value (Mpfumali et al.,

2019).

Our discussion on Table 4.8 follows from the foregoing theoretical and literature

findings. Using the PICP at the 90% PINC, all forecasts are valid and the Model AQRA

has the highest value and presents more coverage than the rest of the models. Model

SGB is next and the last is model BNN showing that the PI from model BNN cov-

ers less actual values than the rest. Taking the PICP and the PINAW, model AQRA

presents both the highest PICP value and the lowest PINAW, thus the most reliable

model at this confidence level. This is seconded by Model BNN and the least is model

GAM. Although the PI from model BNN covers less actual values, the covered values

presents a closely fit weight than SGB and GAM. Taking the PICP and the PICAW,

AQRA is the model with the best quality PI since it has the lowest PICAW value and

the highest PICP value followed by the BNN and the least is the SGB. The degree of

deviation from the actual value is shown by the PINAD and BNN has the least degree

of deviation followed by the AQRA, GAM has the highest degree of deviation from the
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actual value. The ABLL and AAUL columns represents the number of actual values

that are not within the range of the PIW. They represent the number of actual values

that are below the lower limit and the actual values that are above the upper limit

respectively.

For the 95% confidence value, SGB recordedd the highest PICP value, the GAM is

next and the AQRA, while the BNN has the lowest PICP value. At the 99% confidence

values, model SGB and BNN gives higher PICP values than the GAM and AQRA.

The PICAW and PINAW values presents AQRA as the best model followed by an

interchange of SGB and BNN respectively while GAM remains constantly the least

considering these two confidence values. Using the PINAD, BNN has the best degree

of deviation, secondly the AQRA followed by an interchange between SGB and GAM

respectively. The number of target values outside of the lower and upper limit range

keep reducing as the confidence level increases. Model AQRA is thus the best model at

90% confidence value, however best models are evaluated based on what these metrics

measures such as validity, reliability, quality and degree of deviation at a particular

confidence value.

4.7.4 Evaluation of Combined Prediction Intervals
Just as point forecasts can be combined and estimate the evaluation of its accuracy,

prediction intervals can also be combined and estimate the accuracy of the resultant

combined PI. In this study, two prediction interval combination methods which are

the Simple average and the Median method were combined to produce a combined PI.

Simple average gets the arithmetic mean of the PIs from individual models using the

lower and upper bound estimate. A row wise summation of the lower and upper limits

is carried out and averaged by taking each model at the three quantiles considering the

total number of models used. The mathematical formulation is given in equation (3.37).

The Median method also follows as the simple average method. The median values

of all the models considered are at a particular quantile. The mathematical expression
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was given in equation (3.38). Given in Table 4.9 is the combined prediction interval

evaluation using the same metrics as the individual PI model evaluation.

PINC% Model %PICP %PINAW %PICAW %PINAD ABLL AAUL

90 SAverage 93.1743 3.5780 7.9661 0.0250 513 524

Median 92.3978 3.5510 7.8617 0.0250 579 576

95 SAverage 97.1500 4.4299 9.9499 0.0370 198 235

Median 96.8012 4.2181 9.3775 0.0330 235 251

99 SAverage 98.4137 7.7858 11.2930 0.0110 198 43

Median 99.3148 7.2292 16.7254 0.0044 52 48

Table 4.9: Combined Prediction Interval Evaluation.

From Table 4.9, the simple average prediction interval combination method gives

better PI than the median method at the 90% and 95% confidence values using the

PICP. However, it gives an invalid PI in the 99% confidence level recording a value

smaller than the confidence level value, while the median method gave a satisfactory

coverage value for its PICP. The median method provided reliable and better quality

PI than the simple average method, since it records lower values for its PINAW and

PICAW at the 90% and 95% confidence levels. The 99% confidence value presents the

median method as better than the average method using the PINAW, while the PICAW

shows the opposite. The PINAD value for the 90% confidence level records a tie for

the two combination methods, while the median method recorded the best value for

its degree of deviation using PINAD at the 95% and 99% confidence levels respectively.

Lastly, an increment was seen in the number of PI not within the lower and upper limit

range for the two methods at the 90% and 95% confidence values. The 99% confidence

value shows more number of actuals below the lower limit. These present the median

method as the best PI combination method over the simple average method.
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4.8 Residual Analysis
The Summary statistics of errors or residuals for the models is seen in Table 4.10.

The table shows Model AQRA as having the least standard deviation which means that

its error distribution is the narrowest of all the models which can also be seen from the

box plot of Figure 4.12. This shows that the best Model is the AQRA in comparison to

the others. The minimum values are all negative and the skewness values are far from

being normally distributed. The kurtosis value shows erratic patterns, however, since

they are all more than 3, they are termed leptokurtic data. The density plot in Figure

4.13 shows similar patterns and no much information can be inferred from these plots

except that they are all in between the negative 1 and positive 1 regions in the forecast

error axis. This concludes the uncertainty measure for the point and interval forecasts

as needed to answer the third research question.

Model Min Max Mean Median St.Dev Skewness Kurtosis

BNN -1.2156 4.8961 0.0235 -0.0304 0.2077 1.4241 29.9048

SGB -1.1015 8.4607 -0.0128 -0.0180 0.2550 11.4720 273.8021

GAM -1.4350 6.4689 0.0028 0.0045 0.2468 4.0097 72.3618

AQRA -0.9845 4.5838 0.0061 0.0004 0.1887 4.9086 78.1724

Table 4.10: Summary Statistics for the Residuals.
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Figure 4.12: Box Plots of Residuals.

4.9 Chapter Summary
This chapter focused majorly on the reporting of various analysis, the results and

discussions from the results. It began by giving a brief introduction of the chapter con-

tents. The discussion proceeded by giving the source and description of the research

dataset. Exploratory data analysis and variable selection using lasso under which the

discussion focused on ANN variable and benchmark variable selection. Benchmark

model process analysis was presented under which the SGB and GAM was discussed

showing their forecast and density plots. ANN and AQRA forecasts was presented

next. Forecast accuracy measures in which point forecasts, interval and its combined

forecasts error measures were presented giving a further discussion of each of our find-

ings, thereby proffering answers to the research questions of section 1.2.3. Presented

also was the residual analysis and a concluding remarks summarizing the chapter. This
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Figure 4.13: Density Plots of Residuals.

report proceeds by giving a summary of each chapter and a conclusion of the findings

along with recommendations based on these findings, for future research in the next

chapter.
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Chapter 5

Summary, Conclusions and

Recommendations

5.1 Introduction
This chapter presents the summary of the mini-dissertation from the first chapter to

the fourth chapter. It proceeds to give conclusions of the findings after which recom-

mendations based on these conclusions will also be given. The report is concluded by

stating areas for future works and research regarding wind speed prediction for power

generation.

5.2 Research Summary
The report started with a brief introduction and problem formulation in which the

intermittency and variability of the wind makes prediction near an impossible task.

The research was focused on carrying out a comparative analysis of Statistical and Ma-

chine learning methods along with their combination to wind speed point and interval

forecasts for wind power generation. These informs the research questions poised for

answers. The research is significant in that wind speed forecasting is needed for incor-

porating the resulting electrical power into the electricity grid of a country, thereby in-
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creasing the overall electrical power generated for distribution. The research scope was

to make use of the methods on a South African wind data set obtained from WASA. It is

expected that contributions from this research will bring about an equal representation

in the exploitation of wind as a renewable energy amongst others such as solar energy.

Another envisaged contribution is to present GAM as a viable model for forecasting,

comparable to the ARIMA and SARIMAX.

Chapter two gave the theoretical foundations on forecasting regarding the various

time scales horizon and their various applications as found in the literature. It ex-

plored also, the various relations between the wind speed, the electrical energy and

consequently electrical power generation from wind speed forecasting. Various tech-

niques that have been used for various forms of forecasting and forecast combinations

along with uncertainty measures were explored. The use of GAM for other forms

of forecasting but not for wind speed forecasting was the major identified gap the

research fills. Chapter 3 gave many mathematical underpinnings of the models and

performance metrics along with uncertainty metrics. Chapter 4 presented the results

from various analyses carried out in the implementation using the Python and R for

the Lasso variable selection and the models under study. to as certain performance,

accuracy measures and uncertainty metrics were used to select best models, proffering

answers to the three research questions in section 1.2.3. In most of the discussions, it

was found that the model AQRA which is the Additive quantile regression averaging

method out performed other models for wind speed forecasting using both the point

forecasts accuracy metrics (such as the MAE, RMSE, and MAPE) and the prediction in-

tervals uncertainty measures involving the PINC, PICP, PICAW, PINAW and PINAD.

5.3 Conclusions from Research Findings
This research was geared towards investigating methods useful for forecasting short-

term unpredictable and intermittent wind speed for power generation. A method with

smaller errors indicates the most desirable method. Two approaches were investi-
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gated, viz: individual forecasting models and forecast combination models. Amongst

the individual models employed are the Bayesian NN for the ANN compared with

two bench mark models involving SGB (ML method) and GAM (Statistical Learning

method). The evaluation of these three methods presented ANN as the best using the

RMSE while the SGB is the best from the MAE and MAPE forecasts accuracy measures.

On the other hand two forecast combination methods, both of which are statistical

learning methods were investigated for the forecast combination and the AQRA out

performed the LQRA. It also out performed the individual forecasts from the 3 meth-

ods (ANN and the two benchmark models) using all the 3 forecast accuracy metrics

involving the RMSE, MAE and MAPE. Therefore, we present AQRA from forecasts

combination as the best method for point forecasting of wind speed having less error

values and the most desirable model.

Furthermore, the prediction interval uncertainty measure, using only the AQRA,

the first uncertainty measure employed was the prediction interval width. Using this

metric, our analysis at 95% confidence level showed that the model AQRA was the

most symmetrical and the best model followed by the SGB even though ANN and

the GAM presented narrower prediction intervals than the others. All these models

did not give a normal distribution and were all platykurtic. Further investigation on

interval forecast involved prediction intervals against the target values.

Three confidence levels were considered which are the 90%, 95%, and 99% respec-

tively. All the interval forecasts were checked in the context of their validity, reliability,

quality and degree of deviation from the actual values. All the models were valid

models since the PICP values were greater than the predetermined confidence levels.

AQRA presented more reliable prediction intervals at the 90% having the highest cov-

erage value. Also, this constructed prediction interval at this level of confidence was

desirable and having satisfactory performance and quality since the lowest PINAW

and PICAW values were recorded by the AQRA followed by the ANN. However, the
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PINAD value shows the ANN as the model with the least deviation. Actual values

below and above the lower and upper limit kept decreasing showing the AQRA with

the least values.

Forecasts from the SGB model have the highest coverage at the 95% confidence

level followed by the GAM. Using the PINAW and PICAW for quality, desirable and

satisfactory performance evaluation, presented the AQRA as the best model, while

ANN and AQRA have the least degree of deviation. A constant decrease was seen

with the actual values below and above the lower and upper limits respectively. The

99% confidence level shows the SGB as the most reliable from its highest PICP value

followed by the GAM while the quality, accurate and satisfactory performance PI was

seen to be the AQRA from its PINAW and PICAW values. The least deviation was seen

in the ANN followed by the AQRA. The actual values below and above the lower and

upper limit showed no consistency at this confidence level. It also concluded that the

best model is the AQRA followed by the SGB.

Analysis from the interval combination method as well was reported. The simple

average method and the median method were employed. The simple average gave an

invalid PICP at the 99% confidence level. The median method outperformed the sim-

ple average method in all prediction interval (accuracy measurement) metrics consid-

ered and thus, the best interval combination method. Residual analysis also presents

AQRA as the best having the narrowest error non-normal distribution along with the

other models.

5.4 Recommendation
From the findings reported in the last section, we hereby recommend short term

wind speed prediction to have wind power generation, a rigorous point and interval

forecasts along with forecasts combination and intervals combination inorder to have

desirable and less prone to error methodology to the electricity generation and distri-

bution company of South Africa (Eskom).
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5.4.1 Future Works
Forecasts combination has been seen in this research as a viable means of wind

speed forecasting. We recommend more sophisticated methods for forecast combina-

tion. Methods such as Deep neural networks and a hybridization of machine learning

and statistical learning for combining point forecasts. We also recommend point fore-

casts using deep learning algorithms such as the Recurrent neural networks-Long and

short term memory amongst others. Prediction intervals investigated in this research

are the basic forms for constructing PIs, we recommend using Machine/Deep learning

based methods for constructing prediction intervals in order to quantify uncertainties

in point forecasts.
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Appendix A

Model GAM Parameters

Estimate Std. Error t value Pr(> |t|)
(Intercept) 7.042363 0.001105 6373 < 2e− 16 ∗ ∗∗

Table A.1: Parameter Coefficients.

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

74



edf Ref.df F p-value

s(WS 62 max) 7.986 8.544 2438.30 < 2e− 16 ∗ ∗∗
s(WS 60 mean) 9.000 9.000 1598.67 < 2e− 16 ∗ ∗∗
s(WS 60 stdv) 8.792 8.981 612.39 < 2e− 16 ∗ ∗∗
s(WS 40 mean) 8.496 8.921 759.12 < 2e− 16 ∗ ∗∗
s(WD 60 mean) 9.000 9.000 2180.36 < 2e− 16 ∗ ∗∗
s(WD 60 stdv) 8.899 8.997 416.60 < 2e− 16 ∗ ∗∗
s(Tair mean) 9.000 9.000 24.20 < 2e− 16 ∗ ∗∗
s(Tair min) 7.731 8.626 24.59 < 2e− 16 ∗ ∗∗

Table A.2: Approximate significance of smooth terms:

— Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.995 Deviance explained = 99.5% GCV = 0.055736 Scale est. = 0.05565

n = 45576

Method: GCV Optimizer: magic Smoothing parameter selection converged after 27

iterations.

The RMS GCV score gradient at convergence was 7.271268e-08 . The Hessian was

positive definite. Model rank = 73 / 73
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k‘ edf k-index p-value

s(WS 62 max) 9.00 7.99 0.99 0.14

s(WS 60 mean) 9.00 9.00 1.00 0.35

s(WS 60 stdv) 9.00 8.79 0.94 < 2e− 16 ∗ ∗∗
s(WS 40 mean) 9.00 8.50 1.02 0.92

s(WD 60 mean) 9.00 9.00 0.74 < 2e− 16 ∗ ∗∗
s(WD 60 stdv) 9.00 8.90 0.98 0.08 .

s(Tair mean) 9.00 9.00 0.98 0.07 .

s(Tair min) 9.00 7.73 0.99 0.36

Table A.3: Basis dimension (k) checking results.

. Low p-value (k-index¡1) may indicate that k is too low, especially if edf is close to

k’. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Appendix B

Visualizations from Python

Figure B.1: WindSpeed decomposition.
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Figure B.2: Plots of the BNN forcasts

Figure B.3: Scores for the simple forecasts and BNN.
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Figure B.4: AQRAM Plots.

Figure B.5: Dated AQRAM Plots.
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Figure B.6: Dated Plots for all the Models.
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Appendix C

Sample R code
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###################################################################### 

# Major libraries used in R 

library ( ggplot2 ) 

library ( tseries ) 

library ( e1071 ) 

library(glmnet) 

library(dplyr) 

library(caret) 

library(gbm) 

library(mgcv) 

library(forecast) 

###############################  Accuracy #########################################  

library(forecast) 

accuracy(SGBF, actual) 

accuracy(GAMF, actual) 

accuracy(NNPred, actual) 

accuracy(fQRA, actual) 

## calculating summary statistics , skewness and kurtosis of GHI ############################ 

summary (W) 

library ( e1071 ) 

sd(W) 

skewness (W) 

kurtosis (W) 

# ############################################################################## 

# Distributions: time series , qqnorn , density and box plot for Wind Speed  

# ################################################################### 

win.graph() 

par ( mfrow =c(2 ,2)) 

W <-ts( analyticdata$WS_62_mean ) 

plot(W, xlab =" Observation number ",ylab =" Wind Speed 62 (m/s ^2) " 

          ,main ="(a) Plot of Wind Speed ",col = " blue ") 



81 
 

plot ( density (W),xlab =" Wind Speed 62 (m/s ^2) 

       ",main ="(b) Density plot ",col = " blue ") 

qqnorm (W, col = " blue ",main ="(c) Normal QQ plot ") 

qqline (W) 

boxplot (W, main ="(d) Box plot ",varwidth =TRUE , 

         xlab =" Wind Speed (m/s ^2) ", col = " blue ", horizontal = TRUE ) 

############################ Density and Box Plots ################################# 

PIW95 = c(" NNPIW95 "," GAMPIW95 "," SGBPIW95 "," AQRAPIW95 ") 

 win.graph () 

 boxplot ( NNPIW95 ,SGBPIW95 , GAMPIW95 , AQRAPIW95  , names = PIW95 , 

              horizontal = FALSE , main =" 95% prediction intervals ", 

               ylab =" Prediction interval width (m/s) ", col = " blue ") 

 

win.graph () 

par ( mfrow =c(2 ,2)) 

plot ( density ( NNPIW95 ),xlab =" Prediction interval width (m/s) ", col =" blue ", 

           main =" NNPIW95 ") 

 plot ( density ( SGBPIW95 ),xlab =" Prediction interval width (m/s) ", col =" blue ", 

           main =" SGBPIW95 ") 

 plot ( density ( GAMPIW95),xlab =" Prediction interval width (m/s) ", col =" blue ", 

           main =" GAMPIW95 ") 

 plot ( density ( AQRAPIW95 ),xlab =" Prediction interval width (m/s) ", 

        col =" blue",main =" AQRAPIW95 ") 

# ################################################################# 

# #################Lagging the Wind Speed 62m ##################################### 

require(dplyr) 

analyticdata$lag1 <-lag(analyticdata$WS_62_mean, 1) 

analyticdata$lagD <-lag(analyticdata$WS_62_mean, 144) 

analyticdata$lagTD <-lag(analyticdata$WS_62_mean, 288) 

analyticdata<-slice(analyticdata, 289:n()) 

################# Filling Nans #################################################### 
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na.zero <- function (x) { 

    x[is.na(x)] <- 0 

    return(x) 

  }   

  analticDATA = na.zero(analticDATA) 

################# towards Variable selction via LASSO ################################## 

ibrary(glmnet) 

#attach(site1analyticdata) 

y<-analticDATA$WS_62_mean 

#s(y) 

x<-as.matrix(data.frame(analticDATA[5:50])) 

#s(x) 

print(x) 

summary(x) 

 

LAsso<-glmnet(x, y=y,alpha=1,family="gaussian") 

plot(LAsso) 

coef(LAsso) 

cv.lasso<-cv.glmnet(y=y,x=x,family="gaussian") 

cv.lasso 

plot(cv.lasso) 

coef(cv.lasso,s="lambda.min") 

predict.1<-predict(cv.lasso,newx=x) 

predict.1 

write.table(predict.1,"~/gam1.forecast2.txt",sep="\t") 

m.lasso<-mean((y-predict.1)^2) 

m.lasso 

####################################################################### 

################################################################################# 

## GAM models 

############################################## 
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library(mgcv) 

#fit2 <-

gam(WS_62_mean~s(WS_62_stdv)+s(WS_60_mean)+s(WS_60_min)+s(WS_60_max)+s(WS_60_stdv)

+ #s(WS_40_mean)+s(WS_40_min)+s(WS_40_max)+s(WS_40_stdv)+s(WS_20_mean)+s(WS_20_min)          

# s(WS_20_max)+s(WS_20_stdv)+s(WS_10_mean)+s(WS_10_min)+s(WS_10_max)+s(WS_10_stdv)          

#+s(WD_60_mean)+s(WD_60_min)+s(WD_60_max)+s(WD_60_stdv)+s(WD_20_mean)+s(WD_20_mi

n)  # +s(WD_20_max)+s(WD_20_stdv)+s(Tair_mean)+s(Tair_min)+s(Tair_max)+s(Tair_stdv)   # 

+s(Tgrad_mean)+s(Tgrad_min)+s(Tgrad_max)+s(Tgrad_stdv)+s(Pbaro_mean)+s(Pbaro_min)   # 

+s(Pbaro_max)+s(Pbaro_stdv)+s(RH_mean)+s(RH_min)+s(RH_max)+s(RH_stdv),           

#family=gaussian,data = data_train)# insample 

fit2 <-

gam(WS_62_mean~s(WS_62_max)+s(WS_60_mean)+s(WS_60_stdv)+s(WS_40_mean)+s(WD_60_m

ean)+s(WD_60_stdv)+s(Tair_min),     family=gaussian,data = data_train)# insample 

summary(fit2) 

par(mfrow = c(2,2)) 

gam.check(fit2) 

box() 

########################################################################### 

library(forecast) 

fit.fore <- ts(fit.fore) 

ws <- ts(data_test$WS_62_mean) 

accuracy(fit.fore,data_test$WS_62_mean) 

fit.fore <- predict(fit2, newdata=data_test) 

fit.fore 

fit.fore <- round(fit.fore,4) 

write.table(fit.fore,"~/fGAM.txt",sep="\t") 

win.graph() 

z <- ts(data_test$WS_62_mean) 

f1 <- ts(fit.fore) 

plot(z,xlab="Date",lwd=3,ylab="Wind speed (62m)") 

lines(f1,col="red", lty=2,lwd=3) 

legend("topright",col=c("black","red"), lty=1:2,lwd=3, 

       legend=c("Actuals", "Forecasts (GAM)")) 

############################################################################### 
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### Stochastic GRADIENT BOOSTING################################################# 

#install.packages("caret", dependencies = TRUE)#, quiet = TRUE) 

#install.packages("gbm", dependencies = TRUE)#, quiet = TRUE) 

library(caret) 

library(gbm) 

#win.graph(width=5,height=7,pointsize=8) 

#fit <- train(WS_62_mean~WS_62_stdv+WS_60_mean+WS_60_min+WS_60_max+WS_60_stdv+              

#WS_40_mean+WS_40_min+WS_40_max+WS_40_stdv+WS_20_mean+WS_20_min+WS_20_max+

WS_20_stdv+     

#WS_10_mean+WS_10_min+WS_10_max+WS_10_stdv+WD_60_mean+WD_60_min+WD_60_max+

WD_60_stdv+              

#WD_20_mean+WD_20_min+WD_20_max+WD_20_stdv+Tair_mean+Tair_min+Tair_max+Tair_stdv

+#Tgrad_mean+Tgrad_min+Tgrad_max+Tgrad_stdv+Pbaro_mean+Pbaro_min+Pbaro_max+Pbaro_st

dv+ #RH_mean+RH_min+RH_max+RH_stdv,data = data_train, method = "gbm")# insample 

fit <- train(WS_62_mean~WS_62_max+WS_60_mean+WS_60_stdv+WS_40_mean+               

WD_60_mean+WD_60_stdv+Tair_min,data = data_train, method = "gbm")# insample 

fit 

summary(fit) 

box() 

#warnings() 

# Calculate the out-of-sample forecasts, based on the available information 

fit1.forecast <- predict(fit, newdata = data_test) 

fit1.forecast <- round(fit1.forecast,4) 

write.table(fit1.forecast,"~/fSGB.txt",sep="\t") 

write.csv(fit1.forecast,file = 'Dset4Model.csv') 

?write.csv 

fit1.for<-as.data.frame(fit1.forecast) 

install.packages("writexl") 

library(writexl) 

FrSGB <- write_xlsx(fit1.for) 

#install.packages("forecast", dependencies = TRUE) 

view(tempfile) 

library(forecast) 

accuracy(fit1.forecast,data_test$WS_62_mean) 



85 
 

#################################################################### 

## Linear QUNATILE REGRESSION AVERAGING ###################################### 

attach(ForecastL2) 

head(ForecastL2) 

win.graph() 

y <- ts(actual) 

plot(y, xlab="Observation number", ylab="Wind speed") 

library(quantreg) 

qr.wind = rq(actual ~ SGBF+GAMF+NNPred,data= ForecastL2, tau=0.5) #tau = 0.025, 0.5, 0.975 

#+ Drift+RanF + Mean+ Snaive+NF 

summary.rq(qr.wind,se="boot") # can use se = "nid" or se="ker"  

lines(qr.wind$fit, col="red") 

fQRA =round(fitted(qr.wind),4) 

write.table(fQRA,"~/UL0975.txt",sep="\t") #LL0025, QRA05, UL0975 

####################################################################### 

## OR  Additive QRA########################## 

## THIS OPTION TAKES LONG, I SUGGEST YOU USE THE OPTION ABOVE 

################################################################# 

library(qgam) 

# Calibrate learning rate on a grid 

set.seed(5235) 

tun <- tuneLearnFast(form=load~s(fGAM, bs="ad")+s(fAQR, bs="ad")+s(fGAMI,bs="ad")+s(FAQRI, 

bs="ad")   ,err = 0.05, qu = 0.5, data = forecasts) #qu = 0.5, 0.025=LL, 0.975=UL 

tun 

fit1 <-qgam(load~s(fGAM, bs="ad")+s(fAQR, bs="ad")+s(fGAMI,bs="ad")+s(FAQRI, bs="ad"), 

            err = 0.05, qu = 0.5, lsig = tun$lsig, data = forecasts)# insample 

summary(fit1, se="boot") #se =" ker" " nid" "boot" 

lines(fit1$fit, col="red") 

#plot(fit1, pages=5) 

#check.qgam(fit1, pch=19, cex=.3) 
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fQRA = fitted(fit1) 

write.table(fQRA,"~/fQRA05.txt",sep="\t") 

############## Residual Analysis ######################################### 

NNRes = ForecastL2 $ actual - ForecastL2 $ NNPred 

 GAMRes = ForecastL2 $ actual - ForecastL2 $ GAMF 

 SGBRes = ForecastL2 $ actual - ForecastL2 $ SGBF 

 AQRARes = ForecastL2 $ actual - ForecastL2 $ AQRAM 

 ## Summary Statistics for forecast errors 

 ## ResLSTM , ResSVR , ResFFNN , ResConvex , ResQRA 

 library ( e1071 ) 

 summary ( AQRARes) 

 sd( AQRARes ) 

 skewness ( AQRARes) 

 kurtosis ( AQRARes ) 

# Residual box - pot and density plot 

Boxres = c(" NNRes "," GAMRes "," SGBRes "," AQRARes ") 

win.graph () 

 boxplot ( NNRes , GAMRes , SGBRes , AQRARes , names = Boxres ,  

           horizontal= FALSE , main ="",ylab =" WSResiduals (m/s) ",  

           col = " blue ") 

win.graph () 

par ( mfrow =c(2 ,2)) 

plot ( density ( NNRes ),xlab =" Forecast error (m/s) ", col =" blue ", 

       main ="NNRes ") 

plot ( density ( GAMRes ),xlab =" Forecast error (m/s) ", col =" blue ", 

       main =" GAMRes") 

plot ( density ( SGBRes ),xlab =" Forecast error (m/s) ", col =" blue ",  

       main ="SGBRes ") 

plot ( density ( AQRARes ),xlab =" Forecast error (m/s) ", col =" blue ", 

       main =" AQRARes") 

####################################################################### 
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