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Abstract

Selection of variables is vital in high dimensional statistical modelling as it aims to

identify the right subset model. However, variable selection for discrete survival anal-

ysis poses many challenges due to a complicated data structure. Survival data might

have unobserved heterogeneity leading to biased estimates when not taken into ac-

count. Conventional variable selection methods have stability problems. A simulation

approach was used to assess and compare the performance of Least Absolute Shrink-

age and Selection Operator (Lasso) and gradient boosting on discrete survival data.

Parameter related mean squared errors (MSEs) and false positive rates suggest Lasso

performs better than gradient boosting. Frailty models outperform discrete survival

models that do not account for unobserved heterogeneity. The two methods were also

applied on Zimbabwe Demographic Health Survey (ZDHS) 2016 data on age at first

marriage and did not select exactly the same variables. Gradient boosting retained

more variables into the model. Place of residence, highest educational level attained

and age cohort are the major influential factors of age at first marriage in Zimbabwe

based on Lasso.

Keywords: Boosting, discrete-time hazard model, Lasso, penalised variable selec-

tion methods, unobserved heterogeneity,
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Chapter 1

This chapter briefly discusses basic concepts in survival analysis and variable selection,

problem statement, objectives, proposed methodology and layout of the study.

1.1 Introduction

Survival analysis is a compilation of statistical methods used to describe, explain, or

predict the occurrence and timing of events. The event can be unemployment, occur-

rence of disease, death, marriage or divorce. The duration prior to the occurrence of

a particular event can be measured in days, weeks, months or years. Survival analysis

is a highly active area of research with applications in various fields of study which

include engineering, physical, biological and social sciences (Gould et. al., 2008; Klein

and Goel, 1992). The other names for survival analysis are event history analysis,

failure time analysis, duration analysis or transition analysis. The happening of the

event of interest is termed ‘failure’. Survival time means the duration for the failure

to occur usually denoted by T . The random variable T is presumably to be positive

. The methods of survival analysis are able to handle right censoring (as explained

in subsection 1.1.1 below), a common phenomenon in longitudinal data.

1
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1.1.1 Censoring

Survival data is special because of censoring. Censoring represents a particular type

of missing data or data with partial information. It is a phenomenon that occurs when

there is no fully observation of an individual’s survival time. The precise duration

within one condition is not known. Censoring for instance, occurs if there is an early

drop out from a study by an observation (observations are lost prior to the occurrence

of a phenomenon), or if the happening of an observation occurs later than the time an

investigation has been concluded (Groll and Tutz, 2016). Censoring has three forms

namely right, left as well as interval censoring. With right censoring, the starting of

a spell is well known even though there is no observation on the time a transition

takes place. It is a phenomenon that occurs when the observed time is shorter than

the survival time. Right censoring can be an instance if a subject experience different

event separately from the cause of interest, the study has been finished though the

subject endures. Left censoring is when the event of interest has happened prior

to the observation date though it is unknown exactly when. The entry to state is

unknown though the end of the spell is observed. For example, a situation whereby

the day of medical examination disclosing a sickness is set on yet when a patient has

been infected is not observed. Lastly, interval censoring is when the event arise in a

time span but it is unknown precisely when in the interval. Censoring is independent

when it is unrelated to event occurrence.

1.1.2 Hazard function (λ(t))

The hazard function relates the instant rate of occurrence of a phenomenon in subjects

who are currently at risk of the event (Austin and Leeds, 2016). It is defined as
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the conditional probability for the failure within the interval [at−1, at) provided the

interval is arrived at. The hazard function is defined as:

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
(1.1.1)

The hazard function takes on any shape of a non-negative function.

1.1.3 Survival function

The survival function provides the likelihood of surviving later than a specified time

period t and can be defined as :

S(t) = P (T > t) (1.1.2)

= 1− F (t), (1.1.3)

where F (t) is the cumulative density function of a given distribution (Kalbfleisch and

Prentice, 2002). The survival function is a downward sloping curve, non-increasing

and is estimated by using the Kaplan- Meier method. Note that S(0)=1, S(t) → 0

as t→ ∞

1.1.4 Cox Model

The Cox model is a statistical technique applied to associate various risk factors

or, exposures, considered simultaneously, with survival time (Cox, 1972). The Cox

model is a continuous-time specification. In a Cox proportional hazard model, the

measure of the effect is the hazard rate, which is the possibility of failure given that

the participator has lived up to time t. The proportional hazards model specifies

that:

λ(t| x) =γ0(t)exp (XTγ),
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where γ0(t) is the baseline hazard function (the expected hazard without the effect

of the considered factors). The exp (XTγ) gives the influence of predictors on the

hazard. The baseline hazard function can assume any form while the covariates enter

linearly hence the model is semi-parametric.

1.1.5 Discrete versus continuous survival models

Survival time is either continuous or discrete. The assumptions of continuous models

are that the event to be modelled can arise at anytime and survival time is continuous.

When the exact time at which the events occur is known it is appropriate to use these

models. However, discrete survival-time models assume duration time is banded or

grouped into discrete intervals (Hess and Persson, 2010). Discrete models are better

models in the presence of ties (at least two individuals experiencing a phenomenon

at the same recorded time). Discrete time models do not have a strict proportional

hazard assumption. They can be formulated as binary responses models. This enables

use of software and methods for binary response models for estimation. In this study

the discrete survival model is adopted because of its advantages and also because the

response in the application data is measured in whole years.

1.1.6 Discrete Survival Model

In the case of discrete time, the discrete hazard function is given by:

λ(t|x) = P (T = t|T ≥ t,x), t = 1, 2, ... (1.1.4)

Equation (1.1.5) is the discrete hazard as a function of covariates. It is the conditional

likelihood for failure in the interval [at−1, at) provided the interval is arrived at.
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A discrete survival model has the form:

λ(t|x) = h(γ0t + XTγ), (1.1.5)

where h(.) is a set response function, γ0t is a time varying intercept taken as a

baseline effect ignoring any set of predictors, γ and X are the weights and covariates,

respectively.

This is a statistical technique applied to associate risk factors with ‘survival’ time

when the events arise within a given time period. The risk is evaluated as a conditional

probability that a phenomenon will happen. Discrete time hazard model makes an

assumption of simultaneous occurrence of two or more observations. Hence, discrete-

time hazard models are proposed in the case of heavy ties (Singer and Willet, 2003).

1.2 Variable Selection

The major aim of variable selection is to choose an ideal subset of predictors. It helps

in the identification of null predictors thereby improving the prediction performance

of the fitted model. Classical techniques such as stepwise, penalised likelihood and

bootstrap variables selection methods are used.

1.2.1 Stepwise procedures

Backward elimination

The backward elimination procedure commences with a model with all covariates and

removes predictors with the highest p−values greater than a pre-specified threshold.

The model is re-estimated and the procedure ends when all p− values in the model

do not exceed the significance level. There is no re-addition of previously dropped

variables.
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Forward selection

The forward selection procedure starts a model without covariates except for the

constant. A predictor with the lowest p − value below a pre-specified threshold is

added. The procedure stops when none of the variables is significant at the threshold

value.

Stepwise selection

Stepwise selection integrates backward and forward selection. The addition or removal

of variables at each step is on the basis of p−values. The procedure continues up until

all the remaining variables are significant at the threshold value and every dropped

variable is not significant or until variable to be added is same as last removed variable.

1.2.2 Penalised likelihood approaches

These are also known as shrinkage methods. They use a technique that shrinks

other regression coefficients towards zero by minimising the penalised likelihood.

They include the ridge regression, Least Absolute Shrinkage and Selection Operation

(LASSO) (Tibshirani, 1996), Smoothly Clipped Absolute Deviation (SCAD) (Fani

and Li, 2001), Elastic Net (EN) (Zou and Hastie, 2005) and adaptive LASSO (Zou,

2006) selection methods.

1.2.3 Boosting

Boosting is a model fitting and variable selection technique in settings of high di-

mension. It is a machine learning and optimisation procedure for fitting extensive

regression models with various feasible forms of results and predictor effects (Mayr

et. al., 2014a, b). It is an ensemble learning method wherein many models (weak
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learners) are integrated to build a more robust model (strong learner). Models are

fitted in series with the aim of reducing errors sequentially.

1.3 Statement of the Problem

Continuous time-to-event data has many variable selection procedures available (Groll

and Tutz, 2014). However, the presence of ties and proportional hazards assumption

pose a challenge to models for continuous time, for example, Cox model. Kalbfleisch

and Prentice (2002) indicated that, the prevalence of ties gives rise to asymptotic

bias in both the estimation of the regression coefficients and in the estimation of

the corresponding covariance matrix. When the proportional hazards assumption is

violated (might fail to hold since the effects of explanatory variables on the hazard

may be intrinsically non-proportional), the estimated covariates effects are likely to

be biased (Hess and Persson, 2010). In numerous applications time is quantified in

days, weeks, months or years i.e. a discrete scale. Discrete models assume duration

time is branded or grouped into discrete intervals.

In this study we aim to fit models on age at first marriage for women in Zimbabwe

using Demographic Health Survey (DHS 2015-16) data. The DHS data set is based

on a multistage stratified sampling. It consists of clustered observations. The data

is clustered at individual, household and community level. Clustered observations

usually imply responses not being independent. Thus for instance women belonging

to the same family might tend to give approximately the same age at first marriage

because of cultural or religious beliefs. The same effect can also be observed at

community level due to exposure to the same job opportunities and or educational

facilities. Therefore, ignoring the clustering in the data can result in biased estimates
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of parameters.

Traditional variable selection methods (backward elimination, forward elimination

, stepwise) are argued to have stability problems. They disregard the stochastic errors

projected by the selection process and are mathematically impractical when the num-

ber of covariates gets large. Penalised variable selection shrinks some of the regression

coefficients towards zero by minimising the penalised likelihood estimator. They also

take into account the stochastic errors projected by selection process. Penalised and

boosting methods are relatively new and not widely explored. This study explores

the use of penalised and boosting variable selection techniques in a discrete survival

model with unobserved heterogeneity.

1.4 Aims and Objectives

1.4.1 Aim of the study

To explore the use of lasso and gradient boosting variable selection methods.

1.4.2 Objectives

The objectives of the study are to:

1. conduct a simulation study to evaluate and compare the effectiveness of lasso

and gradient boosting variable selection methods.

2. apply lasso and gradient boosting variable selection techniques to build a model

on the age at first marriage in Zimbabwe.

3. identify the determinants of age at first marriage for women in Zimbabwe.
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1.5 Proposed methodology

A simulation study will be conducted to assess and compare the effectiveness of the

methods. The methods are also going to be applied to data on age at first marriage

for women in Zimbabwe.

1.6 Layout of the project

The entire dissertation is organised as follows. Chapter two presents the literature

review. Chapter three discusses the methodology. Chapter four presents a simula-

tion study and chapter five discusses application to data on age at first marriage in

Zimbabwe. Lastly, chapter six presents conclusion, recommendations and limitations

of the study.



Chapter 2

Literature Review

The chapter discusses related literature on lasso and boosting variable selection meth-

ods, unobserved heterogeneity and age at first marriage in Zimbabwe and elsewhere

in the world.

2.1 Stepwise procedures

The stepwise approaches fit regression models. An automated procedure carries out

the choice of a predictive variable. At every step, a variable is examined for inclusion

or elimination from the set of explanatory variables on the basis of some predefined

criterion. These criteria include adjusted R2, Mallows’ Cp, Bayesian Information Cri-

terion (BIC), Akaike’s Information Criterion (AIC) and p-values. Stepwise regression

is a procedure in selecting a model developed by statisticians when model uncertainty

was started to be taken into consideration. It is available in almost any statistical

software. Stepwise regression with a range of criteria is found in the R package leaps

(Lumley, 2017). There are three approaches to stepwise regression namely stepwise

selection, backward elimination and forward selection.

10
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With forward selection, the model commences without covariates. A univariate

model for each variable is fitted. The variable having the largest partial F-statistic

is entered into the base model. The previous strategy is redone up until no new

variable may enter the model anymore. Forward selection results to minimal error on

prediction and bias when compared to other regressions.

Backward elimination starts with every covariate included in the model. Sequen-

tially, the least useful predictor (predictor having the highest p− value greater than

a predefined threshold) is withdrawn from the model. The model is re-evaluated and

the procedure stops when all p− values in the model are below the significance level.

Variables eliminated cannot be re-added to the model.

Stepwise selection is an integration of forward and backward selection techniques.

Variables are included or withdrawn at each step on the basis of the p− values. The

procedure continues until every variable not included is not significant or up until a

variable to be entered is same as previous deleted variable (Ekman, 2017).

An effective variable selection results in a better model prediction and interpreta-

tion. However, traditional stepwise procedures are argued to ignore the stochastic

errors inherited in variable selection stages and lack stability (Breiman, 1996). The

computations in stepwise procedures are infeasible when there is a large-sized num-

ber of covariates. Hurvich and Tsai (1990) as well as Steyerberg and Marius (1999)

demonstrated biasness in estimation and inconsistent selection of stepwise regression.

Some alternatives to traditional stepwise variable selection procedures are regularisa-

tion techniques which are penalty methods and boosting.
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2.2 Penalised likelihood variable selection

Penalised regression methods are also known as shrinkage methods. The variables are

selected by optimising a penalised likelihood. Lasso is the most well known penalised

likelihood variable selection method. Lasso conducts variable selection and shrinkage

simultaneously. With lasso, a weighted penalty is added to the log-likelihood function.

The absolute values of all the variables are contained in the penalty. The lasso penalty

enforces variable selection. All or limited coefficients of the variables are shrunk to

zero. This depends on the size of the penalty. Small coefficients are shrunk to be

precisely zeros. This results in a sparse solution (Friedman et. al., 2007).

In discrete survival modelling, estimation of parameters is complicated by the pres-

ence of the baseline hazard parameters as the estimates tend to be unstable even

for small sample sizes. Stability of the baseline hazard estimates is crucial. To en-

sure that stability, a second penalty is added to the log-likelihood. The ridge type

penalty is the most convenient approach when the baseline hazard is expressed as a

sum of dummy variables representing time periods at which observations are made.

However, if the baseline hazard is expressed as the summation of basis functions as in

Efron, 1988; Fahrmeir, 1994; Möst et. al., 2016, a difference penalty can be used. The

penalties ensure that parameters are estimated smoothly and give sufficient estimates

of the baseline.

In R, there are packages that can be used for penalised variable selection in dis-

crete survival models. Well known packages include glmnet (Friedman et. al., 2010),

penalised (Goeman, 2010), glmmlasso (Groll and Tutz, 2017), grplasso (Meier et. al.,

2008) and grpreg (Breheny and Jian, 2015). However, glmnet, grplasso and grpreg
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cannot penalise the baseline parameters separately as the functionality is not avail-

able. For effective penalised likelihood variable selection, glmmlasso is chosen among

the packages while glmnet and penalised by Goeman have shown weak performance

as no random effects can be incorporated. For discrete survival models both with

and without unobserved heterogeneity, the glmmlasso package has displayed high

performance (Groll and Tutz, 2017).

2.3 Boosting

Boosting is a statistical variable selection as well as model fitting technique which

originated from machine learning community designed as a tool to predict binary

outcomes (Mayr et. al., 2014a, b). The AdaBoost algorithm was the first boosting

method (Freund and Schapire, 1996). However, boosting was afterwards adapted

into the area of statistical modelling. Boosting is now employed in the selection and

estimation of the impact of covariates in a wider range of regression models. Like

lasso, boosting is applicable and stable in large-sized settings where the number of

covariates surpasses the number of observations (p > n). In large-sized setting, most

convectional estimation algorithms for regression setting fail. In addition, statistical

boosting algorithms are very flexible in terms of the type of explanatory variables that

enter into final model. Computerised variable selection together with model choice

are included in the fitting procedure (Mayr et. al., 2014a, b). Boosting produces a

prediction model by iteratively applying simple models (learners). The solutions of

the models are combined to produce a much better prediction outcome. Prominent

boosting algorithms are gradient algorithm (Friedman, 2001; Bühlmann and Hothorn,

2007) and likelihood-based boosting (Tutz and Binder, 2006). In gradient boosting,



14

errors are reduced successively as models are fitted in series. Like lasso’s tuning

parameter, the stopping iteration (mstop) is vital for variable selection in the boosting

algorithm. It controls the shrinkage effects of estimates. Optimal mstop values ensure

early stopping that prevents overfitting and improves prediction accuracy. Cross

validation is used to decide on the mstop optimal value.

In R software, the gradient boosting algorithm is executed in the package mboost

(Hothorn et. al., 2015). The mboost package provides a sizeable number of families

and base learners which may be combined by the user resulting in a wide-range

possibilities for nearly every statistical setting where regression models can be applied.

We are not aware of any work where mboost and glmmlasso functions are compared.

2.4 Unobserved heterogeneity

In trying to capture disparity in the hazard rate across individuals in the population,

predictors are included in a discrete survival model. In most instances, not all key

variables are usually included. Some variables are not included since they are not in a

data set. Unobserved heterogeneity is described as variation between individuals that

is because of unmeasured characteristics. The excluded variables give rise to model

misspecification. If unobserved heterogeneity is not accounted for, biased parameters

are the result (Guo and Rodriguez, 1992). The discrete time logit model can be

expanded to account for heterogeneity (Lewis and Raftery, 1999; Biggeri et. al.,

2001; Manda and Meyer, 2005). As a remedy for unobserved heterogeneity, a random

effect is included within the model. The random effect is well known as frailty.

It is presumed to have a normal distribution. Frailty constitutes unobserved risk
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factors that are particular to an individual and fixed overtime. The significance

of the frailty term is tested by using the estimated variance of the frailty effect.

A zero variance shows the independence of observations from the same household

or community. However, a large variance shows large heterogeneity across a given

household or community. This implies greater correlation among individuals from

the same household or community.

2.5 Age at first marriage

In many communities the most vital life event for all men and women is marriage.

It signifies the emergence to adulthood (Jensen and Thornton, 2003). It marks the

transition to adulthood and beginning of even social allowable time for sensual activity

and bearing of children (Palamuleni, 2011). The age at first marriage is defined as

the age at which the respondent in this case, a woman began inhabiting with first

husband or partner as a wife irrespective of the legality or otherwise of their union

(ZIMSTATS, 2012).

The Zimbabwe Demographic Health Survey reported the median age at first mar-

riage amongst women of 19.7 in 2011. It was amongst the highest in African states

(ZIMSTATS, 2012 and Harwood-Lejuence, 2001). Most countries declared 18 years

as the minimum legal age at which a woman can enter into marriage or union. In

Sub-Sahara Africa, Zimbabwe is one of the countries with marriage age rising along

with Kenya and Senegal (UNICEF, 2001). However, the marriage of children and

adolescents under 18 years is yet a common phenomenon. Globally, about sixty mil-

lions of women aged between 20 and 24 years entered marriage before 18 years of age
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(UNICEF, 2007). Conversely, women were married in their mid to late twenties prior

to the Industrial Revolution (Gaskin, 1978 and Hajnal, 1953).

The important aspect of women’s reproductive conduct with extensive consequences

especially for the sexual health and social standing is the timing of the first marriage

or union (Singh and Samara, 1996). It is a measure of vulnerability to the risk of preg-

nancy and childbearing (Blesoe and Cohen, 1993) and affects fertility level (McDevitt

et. al., 1996) and population growth especially in countries with low contraceptive

rate (Lesthaeghe et. al., 1989). Entry into motherhood lengthens the reproductive

period thereby increasing fertility (Islam, 1999).

Women with low age at first marriage or union are possibly to perceive moth-

erhood the only focal point of the woman’s life at the expense of some areas of

development for instance, education, job experience and self-development (Singh and

Samara, 1996). It is also associated with early pregnancy and childbirth resulting

to heightened chances of premature, labour complications during delivery and mor-

bidity. Researchers have shown that children born to young mothers face low scores

in achievement tests and high scores on the problem behaviour index (Hoffertn and

Reid, 2002; Mirrowsky, 2005; Kamal, 2012).

Various studies show that the demographic, social and economic variables influence

age at which a woman get married for the first time (Pamuleni, 2011; Garrence, 2004;

Bracher and Santow, 1998; Axinn and Thornton, 1992). Amongst these variables are

education, wealth status, region, place of dwelling, religion, ethnicity and work status.

There is considerably minimal studies, if not none, looking at age at first marriage in
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Zimbabwe. Many previous studies were focusing on fertility and contraceptive use.

The research sought to ascertain determinants of age at first marriage at national

level through penalised and boosting variable selections.



Chapter 3

Methodology

This chapter covers a more detailed theoretical background of the proposed method-

ology. Discrete time survival models, penalised and boosting estimation and model

accuracy are discussed. In addition, given is a brief description of the real data the

variable selection methods are to be applied on.

3.1 Basic discrete survival model

Let T be the a non-negative random variable ‘discrete time’ with feasible values T

ε{1, ..., k}. This implies T = t is observed if an event happens within the interval

[at−1, at). The discrete hazard function is defined by

λ(t|x) = P (T = t|T ≥ t,x), t = 1, ..., k, (3.1.1)

where x is a set of predictors. The hazard function is the conditional probability

for failure in the interval [at−1, at) provided the interval is arrived (Tutz and Schmid,

2016). The corresponding survival function is defined by

S(t|x) = P (T > t|x) =
t∏

s=1

(1− λ(s|x)). (3.1.2)

18
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It is the likelihood that an incident happens after a specified discrete time t.

The discrete survival model shows the hazard as a function of the covariates through

an equation written below:

λ(t|x) = g(γ0t + XTγ), (3.1.3)

where g(.) is a fixed response function. It connects the response probability with the

linear predictor γ0t+XTγ. It is presumed to be stringently increasing unconditionally.

The parameter γ0t represents the baseline hazard which captures the influence of time

on the hazard. The vector of predictors is denoted by xT and γ are the parameter

estimates.

There are many discrete hazard models. A discrete hazard model depends on

the chosen response function linking the response probability to the linear predictor

which contains the effects of covariates. Below are some widely used discrete survival

models.

3.2 Commonly used link functions

3.2.1 Logistic Discrete Hazard Model

It is a binate regression model. It uses the logistic distribution function obtained

from the log-Burr distribution of the following form:

g(η) =
exp(η)

1 + exp(η)
(3.2.1)

The logistic model is written in the form:

λ(t|x) =
exp(γ0t + XTγ)

1 + exp(γ0t + XTγ)
. (3.2.2)
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Another expression for the above model is:

log

(
P (T = t|x)

P (T > t|x)

)
= γ0t + XTγ. (3.2.3)

It makes a comparison between the likelihood of an occurrence at t and the like-

lihood of an occurrence after t (Tutz and Schmid, 2016).

3.2.2 Grouped Proportional Hazard Model

It is a grouped form of the Cox’s proportional hazard model. It applies the Gompertz

distribution of the form:

g(η) = 1− exp(− exp(η)) (3.2.4)

as the response function which is asymmetrical.

The Gompertz model has the form:

λ(t|x) = 1− exp(− exp(γ0t + XTγ)) (3.2.5)

or alternatively

log(− log(P (T > t|T ≥ t)) = γ0t + XTγ. (3.2.6)

It is also called the complementary log-log (“clog-log”) model. The hazards in various

groups are assumed to be proportional.

3.2.3 Probit Model

It make use of the cumulative standard normal distribution φ(.).

The Probit Model has the form:

λ(t|x) = φ(γ0t + XTγ). (3.2.7)
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The probit model is most preferred in economic applications over logistic model in

modelling binate responses. This study make use of the logistic link function. The

logistic discrete hazard model is used on data application.

3.3 The baseline hazard

In the Model (3.1.3), γ0t denotes the baseline hazard function which is the risk for a

discrete when the entire covariates are set to zero. For q number of time points, the

parameters of the baseline hazard function are given by γ0(1), γ0(2), . . . , γ0(q).

Therefore, the baseline hazard is expressed as:

γ0t = γ0(1)D1 + γ0(2)D2 + ..., γ0(q − 1)Dq-1, (3.3.1)

where γ0(s) for s = 1, ..., q − 1 being parameters to be estimated and Di for s =

1, 2, ..., q are fixed basis functions. If the number of time points is large, the number

of parameters becomes larger as well (Tutz and Schmid, 2016). This might result in

erroneous maximum likelihood estimates. In this study models which consider time

as a smooth function are used.

The usual approach to fit a smooth function is to make an assumption that the

function can be approximated by a finite summation of basis functions. Let the

parameters γ0(1), γ0(2), . . . , γ0(q) be approximated by

γ0t =
m∑
s=1

γ0sφs(t), (3.3.2)

where φs(.) are basis functions being fixed. Usual options are polynomial splines in

the form of the truncated power series and B-splines (Tutz and Schmid, 2016).
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3.4 Penalised estimation and variable selection

3.4.1 Models without unobserved heterogeneity

Considering the model of the form in equation (3.1.3), the unknown parameter esti-

mates can be attained by the maximum likelihood method. However, observations

in survival analysis are subjected to censoring. Right censoring is considered in this

study. Suppose Ci represents the censoring time and Ti the exact failure time of the

observation i. Ti and Ci are assumed independent. The observed time is given by

ti = min(Ti;Ci) as the minimal of survival time Ti and censoring time Ci (Groll and

Tutz, 2016). The introduction of an indicator variable for censoring is vital. It is

given by :

δi =

1 if Ti ≤ Ci

0 if Ti > Ci

where the assumption is that the censoring happens at the end of the interval (Tutz

and Schmid, 2016). The chances of observing the exact survival time (ti, δi = 1) is

given by

P (Ti = ti, δi = 1) = P (Ti = ti)P (Ci ≥ ti). (3.4.1)

The possibilities of observing censoring at time ti is defined as

P (Ci = ti, δi = 0) = P (Ti > ti)P (Ci = ti). (3.4.2)

Under random censoring (the assumption that the random variables Ti and Ci are

independent and that the finite sequence (Ti, Ci), i = 1, . . , n are measured

independently), combining probability equation (3.4.1) and equation (3.4.2) leads to

the likelihood contribution or the probability of observing ( ti, δi ) given by

P (ti, δi|xit) = P (Ti = ti)
δiP (Ti > ti)

1−δiP (Ci ≥ ti)
δiP (Ci = ti)

1−δi . (3.4.3)
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Let the contribution of the censoring distribution be ci defined by

ci = P (Ci ≥ ti)
δiP (Ci = ti)

1−δi . (3.4.4)

If the assumption is that ci is independent of the variables determining the survival

time, meaning uninformative of the censoring mechanism (Kalbfleisch and Prentice,

2002) then the minimised likelihood function is of the form

P (ti, δi|xit) = ciP (Ti = ti)
δiP (Ti > ti)

1−δi . (3.4.5)

Sequences of binary data are used in re-writing the probability and the correspond-

ing likelihood in discrete survival modelling (Groll and Tutz, 2016). If the sequence

for a non-censored observation (δi= 1) is defined by (yi1, . . ., yti) = (0, . . . 0, 1)

and (yi1, . . ., yti) = (0, . . . , 0 ) for a censored (δi= 0), the likelihood (including ci)

can be presented as

P (ti, δi|xit) = ci

ti∏
s=1

λ(s|xit)yis(1− λ(s|xit))1−yis . (3.4.6)

For a discrete survival-time model, the log-likelihood is of the form:

l =
n∑
i=1

ti∑
s=1

(yis log λ(s|xi)) + (1− yis)log(1− λ(s|xi)). (3.4.7)

Selection of variables can be achieved by penalising the log-likelihood. The most

famous implementation of this is the lasso where a penalty of the form ν
∑p

i=1 |γi|

is added to equation (3.4.7). Another second penalty is added to stabilize baseline

hazard estimates resulting in a penalised likelihood of the form:

l =
n∑
i=1

ti∑
s=1

(yis log λ(s|xi)) +(1−yis)log(1−λ(s|xi))−ν
p∑
i=1

|γi|−γsPen(γ0). (3.4.8)
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The penalty term puts restriction on ν that enforces variable selection and relies on a

scalar tuning parameter, ν ≥0. The strength of penalisation is controlled by the size

of ν. For ν=0, no penalty, the ordinary maximum likelihood is obtained implying no

variable selection. All variables are permitted into the model. However, as ν→ ∞,

all predictors are removed from the model.

One possibility for a penalty for the baseline hazard function is a ridge penalty of the

form:

Pen(γ0) =

q∑
t=1

γ2
0t. (3.4.9)

It is used if the baseline is expressed as a sum of dummy variables representing time

periods at which observations are made.

Alternatively, if the baseline is expressed as the summation of basis functions as in

Efron, 1988; Fahmeir, 1994; Möst et. al., 2016, a difference penalty can be used. In

this study use was made of B-splines of order three and difference penalty of the form:

Pen(γ0) =
m∑

j=r+1

(∆rγ0j)
2, (3.4.10)

where ∆ is the difference operator, working on adjacent B-splines coefficients and r

is the order of ∆. This penalty ensures smooth parameter estimation with the level

of smoothness set on the tuning parameter γs.

AIC, BIC and cross-validation are used to ascertain the tuning parameters ν and γs.

BIC uses all data to fit a model and places a heavier penalty than the AIC statistic on

models with many covariates. This results in models with few covariates. However,

through simulations, Groll and Tutz (2017) established that it is not necessary to

select both parameters using either information criteria or cross-validation. They

recommended carefully selection of ν and an optimal value of γs to be used. In this
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study, BIC was used as criterion for ν and the value of γs was set at 10. The process

involved creating a vector of possible values of ν, fitting a model using each value and

noting the value that gives the minimum value of the BIC. The parameter estimates

of the prior fit were used as starting values for the next fit to enhance fast convergence

at each value of ν. It is essential to make sure that the ν sequence starts at the value

big enough such that all covariates are shrunk to zero.

3.4.2 Models with unobserved heterogeneity

Model (3.1.3) ignores heterogeneity among individuals that can lead to biased pa-

rameter estimates. In a discrete-time model, frailty is integrated by adding a random

effect with a normal distribution to the linear predictor. The basic frailty model for

the ith observation at the time t has the form:

λ(t|xit, zit,bi) = g(γ0t + xTitγ + zTitbi) (3.4.11)

with explanatory variables xit, zit, that may change after a while, and random effect

vector bi. The frailties are usually presumed to follow a normal distribution with

mean zero and variance σ2. The variance for the random effect is the variance be-

tween individuals that is attributable to time-invariant characteristics not observed

i.e. residual variance.

In a random effect model, the marginal probability is given by

P (ti, δi|xit, zit) =

∫
P (ti, δi|xit, zit, bi)p(bi)dbi (3.4.12)

equivalent to

P (ti, δi|xit, zit) =

∫
P (Ti = ti)

δi .P (Ti > ti)
1−δip(bi)dbi. (3.4.13)
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expressed as

P (ti, δi|xit, zit) =

∫ ti∏
s=1

λ(s|xit, zit, bi)yis(1− λ(s|xit, zit, bi))1−yisp(bi)dbi (3.4.14)

the unconditional probability of a random effects model (frailty model) for well struc-

tured binary data.

For the distribution ρ(.) of the random effect, it is presumed that bi v N(0, Q(ρ))

where ρ is a vector of parameters not known that determines the baseline hazard

collected in γT0 = (γ01, ..., γ0k). By maximising the marginal log-likelihood, the pa-

rameters are estimated. The marginal log-likelihood is as follows:

l(γ0, γ, ρ) =
n∑
i=1

log(

∫ ti∏
s=1

λ(s|xit, zit, bi)yis(1− λ(s|xit, zit, bi))1−yisp(bi)dbi). (3.4.15)

Representing a discrete survival model by a binary regression model whose log-

likelihood is in a more simplified form, the marginal log-likelihood will be of the

form:

l(γ0, γ, ρ) =
n∑
i=1

log(

∫
f(yi|γ0, γ, ρ)p(bi)dbi). (3.4.16)

The random effects model is estimated using Gauss-Hermite integration (Hinde, 1982;

Anderson and Aitkin, 1985). Gaussian quadrature can be used to approximate

the marginal likelihood by numerical integration. Gaussian-Hermite quadrature is

a form of Gaussian quadrature for approximating the value of integrals of the nature∫ +∞
−∞ e−x

2
dx.

In this case ∫ +∞

−∞
e−x

2

f(x)dx '
p∑
i=1

aif(xi), (3.4.17)
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where p is the number of sample points used. The xi are the roots of the Hermite

polynomial Hp(x)(i = 1, 2, ..., p), and the associated weights ai are given by

ai =
2p−1p!

√
π

p2[Hp−1(xi)]2
. (3.4.18)

Following ideas in Groll and Tutz (2017) it can be shown that l(γ0, γ, ρ) can be

presented as

l(γ0, γ, ρ, b) =
n∑
i=1

log(f(yi|γ0, γ, ρ)− 1

2
bTQb(ρ)−1b, (3.4.19)

where bT = (b1
T. . . , bn

T) collects the random effects and Qb is the diagonal

covariance matrix.

To incorporate penalisation in discrete survival as in equation (3.4.8), two penalty

terms are added to equation (3.4.19) resulting in a penalised likelihood of the form:

l(γ0, γ, ρ, b) =
n∑
i=1

log(f(yi|γ0, γ, ρ))− 1

2
bTQb(p)

−1b−γ
p∑
i=1

|γi|−γsPen(γ0). (3.4.20)

Before estimating the likelihood functions in equation (3.4.8) and equation (3.4.20)

appropriate design matrices must be constructed. To transform discrete survival data

into binary representation, the dataLong function is used. The dataLong function is

found on the R add-on package discSurv.

For a subject who experiences the outcome of an event (non-censored), δ = 1 at time

ti, the augmented data matrix is given by:

Binary observation Dummies Covariates

0 1 xi1 · · · xip

0 2 xi1 · · · xip
...

...
...

...
...

1 ti xi1 · · · xip


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Similarly, when the individual has been censored (δ = 0) the augmented matrix is of

the form: 

Binary observation Dummies Covariates

0 1 xi1 · · · xip

0 2 xi1 · · · xip
...

...
...

...
...

0 ti xi1 · · · xip


The binary observation column represents the binate responses yi1, . . . , yit while

the dummies column is the time interval ranging from 1 to ti. For fixed parameters

for γ0t, the column is a nominal variable such as ‘dummy variables’. The remaining

columns are the effects of the explanatory variables.

3.4.3 Software packages for penalised regression

The glmmlasso package in R was selected to estimate models (3.4.8) and (3.4.20)

based on high performance as demonstrated in Groll and Tutz (2017).

3.5 Boosting estimation

Gradient boosting starts with the response variable y, a set of covariates x and a

loss function ρ(y, g(x)). The loss function measures the deviation of the prediction

function from the outcome. In Gaussian regression, the loss function is defined as:

ρ(y, g(x)) = (y − g(x))2 (3.5.1)
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i.e. the squared error loss.

The loss function is supposed to be differentiable with respect to the prediction func-

tion g(x) i.e.

∂ρ

∂g
= −2(y − g(x)). (3.5.2)

Gradient boosting aims at modelling the link between y and x:= (x1, . . ., xp)
T and

to get the optimal prediction of y given x. This is achieved by minimising a loss

function ρ(y, g(x)) ε R over a prediction function g(x).

The optimal prediction function g∗ is defined by:

g∗ = argmingEY,X [ρ(y, g(xT))]. (3.5.3)

In practice, dealing with realisations (yi, xi
T), i= 1, . . . , n of (y, xT) and the

expectation given above is therefore unknown. As a result, instead of minimising the

expected value, boosting algorithms minimise the observed mean such that:

R :=
1

n

n∑
i=1

ρ(yi, g(xi)) (3.5.4)

called the empirical risk (Hofner et. al., 2014).

Consider the prediction function equation (3.1.3). The empirical risk R in equation

(3.5.4) can be taken into consideration for the estimation of g∗ with boosting.

Gradient boosting algorithm is given as follows:

1. Initialise ĝ [0] with an offset value. Usual options are

ĝ[0](.) ≡ argcmin
1

n

n∑
i=1

ρ(Yi, c) (3.5.5)

or ĝ [0] (.)≡ 0. Set the iteration counter m to zero i.e m=0
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2. Augment m by 1. Determine the negative gradient - ∂
∂g
ρ (Y, g) and evaluate at

ĝ [m-1](Xi):

Ui = − ∂

∂g
ρ(Yi, g) |g=ĝ[m−1](Xi) (3.5.6)

for i= 1, . . . , n

3. Fit the negative gradient vector U1, . . . , Un to X1, . . . , Xn by the

real-valued base procedure (For example, regression)

(Xi,Ui) → f̂ [m](.) .

Thus, f̂ [m](.) can be regarded as an approximation of the negative gradient

vector.

4. Update ĝ [m] (.) = ĝ [m-1](.) + ν .̂f [m](.) where ν ε (0,1] is a step-length factor,

that is, proceed along an estimate of the negative gradient vector.

5. Iterate steps 2 to 4 until m= mstop for some stopping iteration mstop.

The principal tuning parameter mstop can be set on by cross-validation or AIC-based

techniques. Boosting algorithms must not run until convergence. Large stopping

iteration, overfitting resulting in a suboptimal out-of prediction accuracy are likely

to happen (Bühlmann and Hothorn, 2007). Large stopping iteration mstop leads to

a high number on non-informative covariates incorporated in the estimation of g∗

hence the algorithm should be stopped early (before convergence) and to select mstop

thus out-of sample prediction accuracy becomes optimal. However, choosing the step

length factor ν has proven to be of less significant for the predictive performance of

a boosting algorithm provided it is “minimal” (For example, ν=0.1, see Schmid and

Hothorn , 2008). Small step length warrants that estimated effect increase steadily

in the course of the boosting algorithm, and the estimates stop increasing once the
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optimal stopping iteration mstop is arrived at. It ensures that the algorithm will not

exceed the minimal of the empirical risk R.

Having gradient boosting algorithm, the most appropriate discrete hazard model

loss function has to be specified. The empirical risk, R, is equated to the negative

binomial log-likelihood function (Tutz and Schmid, 2016) such that

R = −
n∑
i=1

ti∑
s=1

yis log λ(s|xi) + (1− yis)log(1− λ(s|xi)), (3.5.7)

where yis codes the move to the next period. The linear predictor f(xit) = xTit β

with xTit= (0, . . ., 0, 1, . . . , 0, xTi ) and βT= (γ01, γ02, . . . , γ0q, γT )

are used. Finally, the boosting algorithm is applied to the augmented data. The

boosting algorithm can be implemented using gamboost function from the package

mboost. The function is flexible and powerful in fitting linear or non-linear additive

models through component-wise boosting (Hofner et. al., 2014). The package mboost

can handle random effects as random effects base-learners are specified with a call to

brandom. The cvrisk function is used to determine optimal stopping iteration.

3.6 Inferences on predictors

Considering the discrete survival model in equation (3.1.3), the hypothesis about γ,

the effects of explanatory variables on survival or not, Wald’s, the likelihood ratio and

score tests are applied. These test the null hypothesis, H0: γi =0 versus alternative,

H1: γi 6=0.
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3.6.1 Wald’s test

The test statistic is given by:

w = γ̂T I(γ̂)−1γ̂. (3.6.1)

3.6.2 Likelihood ratio test

The test statistic used in the likelihood ratio test is given by:

Lr = −2{l(γ̃)− l(γ̄)} (3.6.2)

Lr follows a χ 2- distribution.

3.6.3 Score test

The score statistic has the form

u = sT (γ̃)F−1(γ̃)s(γ̃), (3.6.3)

where s(γ̃) being the score function and F -1 denoting the Fisher information matrix.

The score statistic like the likelihood ratio and Wald statistics, also follows a χ 2-

distribution.

3.7 Goodness-of fit of the model

To asses the goodness of fit of a model, several methods are employed. The methods

measure how well fitted failure probabilities match with the corresponding observed

proportions.

For models not nested, the AIC and BIC aim to penalise the log-likelihood for the
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number of explanatory variables in the model. For a model with q parameters, the

AIC has the form:

AIC = −2 log(Lm) + 2q, (3.7.1)

where Lm is the maximum log-likelihood.

The BIC is given by

BIC = −2 log(Lm) + q log(n), (3.7.2)

with sample size n.

Small values of the criteria (AIC or BIC) indicate a better fitted model i.e. the

model that has the minimal AIC or BIC is chosen as the best model.

Alternatively, model fitness can be assessed by using martingale residuals. Martingale

residuals take into account censoring and make a comparison between the observed

number of events up to time ti for each individual and the expected number of events

up to ti (Tutz and Schmid, 2016). Martingale residuals are given by

ri =

ti∑
s=j

(yij − λ̂ij), i = 1, ..., n (3.7.3)

for binary variables with (yi1, . . . , yit) = (0, . . . , δi).

If the martingale residuals are random and there is no correlation with the covari-

ate values then model fits well.

3.8 Model Prediction Accuracy

It is vital to evaluate the performance of estimated survival models. Below are ways

to quantify the predictive performance of survival models. For all the approaches,

the assumption is that training data (ti, δi, xi), i = 1, ..., n is used to fit the model
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and test data set (tτi , δτi , xτi ), i = j, ..., nτ used to assess predictive performance of

the model. The learning data and test data should have the same distribution.

3.8.1 Predictive Deviance

Predictive deviance is a predictive accuracy measure based on likelihood and evaluated

on the test data. For discrete survival times, it has the form:

D = −2
nτ∑
i=1

(δτi log(P̂L(T τi = tτi )) + (1− δτi ) log(P̂L(T τi > tτi ))) (3.8.1)

= −2
nτ∑
i=1

tiτ∑
t=1

((yτit log(λ̂L(t|xτi )) + (1− yτit) log(1− λ̂L(t|xτi ))), (3.8.2)

where yi1, . . . , yit is the binary transitions over time periods and λ̂L shows the

fitting of the hazard rate using learning data and evaluation based on test data (Tutz

and Schmid, 2016). Predictive deviance is equated to the negative log-likelihood of a

binomial regression model evaluated on the test data. A model has a large predictive

performance if the given deviance is small.

3.8.2 Concordance Index

The concordance index is a method to evaluate prediction accuracy based on dis-

crimination measures. The measures uses the predictor ηit= xTi γ. In discrimination

measures, responses are considered as time-dependent binary outcomes with classes

namely event at t (cases) and event after t (controls). Prediction performance is

high if ηit has a high discriminative power i.e. correctly specifying cases in the test

data. Concordance Index is a popular discrimination measure used with its roots in

Receiver Operating Characteristics (ROC) methodology.
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For binary responses, the discriminative power can be summarised through time-

dependent sensitivity and the time-dependent specificity (Heagerty and Zheng, 2005)

defined by

senst(c, t) = P (ηit > c|T = t) (3.8.3)

and

specf(c, t) = P (ηit ≤ c|T > t) (3.8.4)

where c is a threshold of the linear predictor ηit (Tutz and Schmid, 2006).

A time-dependent ROC curve results from summarising sensitivity and specificity.

The ROC curve is given by:

ROC(c, t) = {1− specf(c, t), senst(c, t)}cεR (3.8.5)

The ROC curve plots sensitivity against false positive rates and usually concave in

shape. If the ROC curve is closely concave and the area under it is large then the

linear predictor ηit has a high discriminative power.

Computing the area under the ROC which for each time point t yields a time depen-

dent Area Under the Curve (AUC) curve. Time-dependent AUC curve measures the

discriminative power of a ηit at each time under consideration. Values of the AUC

curve should be greater than 0.5

Uno et. al. (2007) and Schmid et. al. (2014) stated that sensitivity and specificity

can be estimated by

senst(c, t) =

∑
i=1 δ

τ
i I(η̂τit > c

⋂
tτi = t)/ĜL(tτi − 1|xτi )∑

i=1 δ
τ
i I(tτi = t)/ĜL(tτi − 1|xτi )

(3.8.6)

specf(c, t) =

∑
i=1 I(η̂τit > c

⋂
tτi > t)∑

i=1 I(tτi > t)
(3.8.7)
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where η̂τit, i= 1,..., nτ is the estimated linear predictor using observations from the

test data while estimated parameters are from the learning data.

Numerical integration of the estimated ROC curve results to estimates of AUC(t).

However, by means of the time-dependent estimated area under the curve ÂUC(t),

the concordance index for discrete is given by

C∗ =
∑
t

P̂L(T = t).P̂L(T > t)∑
t .P̂

L(T = t).P̂L(T > t)
ÂUC(t) (3.8.8)

Concordance Index computes the likelihood that observations with large values of the

linear predictor have shorter survival times than the observations with small values

of n. A Concordance Index of one (C∗=1) shows a perfect discriminating linear

predictor.

3.9 Application: Age at first marriage

3.9.1 Data description

The study uses data drawn from the Zimbabwe Demographic Healthy (ZDHS) con-

ducted in 2015-16. This includes data on adult and child health, mortality, fertility,

marriage, contraceptive use and maternal health (ZIMSTATS and ICF International,

2012). The 2015-16 ZDHS is a nationwide representative survey of 9955 women aged

15-49 and men aged 15-54. The three questionnaires used in the survey are the

household questionnaire, man’s questionnaire and woman’s questionnaire. The 9955

women interviewed from the 9 provinces is the sample in this study. Cases with miss-

ing data were eliminated and a sample of size 2000 to ensure timely convergence as

in model building. Glmmlasso had convergence problems on a sample of more than

2 000 observations. These women were either married or ever-lived with a man as a
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wife irrespective of the legality or otherwise of their union. A woman’s age, in years

at the time she started to live with a man is her age at first marriage. Women who

had never been in a union or lived with a man were censored at their age on the date

of the interview single hence no information given on their age at first marriage.

3.9.2 Model building

The response variable in the study is age at first marriage. It is defined as the age in

years at which the respondent started to live with a man.

The explanatory variables considered in the study are given in Table 3.1 below.

Table 3.1: Table of names and descriptions of variables used in the study

Variable Description
Place of residence The type of place where the respondent was interviewed;

categorical: Rural or Urban, Urban (reference)
Employment status Whether the respondent is currently working or not; cat-

egorical: Yes or No, No (reference)
Region The province in which the participant was interviewed;

categorical: Mashonaland, Manicaland, Matebeleland,
Masvingo, Midlands, Manicaland (reference)

Religion The religious belief of the respondent; categorical: Chris-
tian, Muslim, Traditional,Apostolic faith, None, Apos-
tolic faith (reference)

Birth Cohort The year interval the respondent was born; categorical:
<1970, 1970 - 1979, 1980 - 1990, >1990, <1970 (refer-
ence)

Education Highest educational level attended by the respondent;
categorical: No education, Primary, Secondary, Higher,
No education (reference)

Cluster The cluster number identifying the sample point; cate-
gorical
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Having the response variable and covariates, two discrete survival models are fitted,

one without random effect and the other one with random effect. The models are of

the form:

λ(t|xit,bi) = h(γ0t + γ1Place+ γ2Education+ γ3BirthCohort

+γ4Region+ γ5Religion+ γ6EmploymentStatus+ bi),
(3.9.1)

where h(.) is the logistic link function, γis for i = 1, ..., 6 the weight of the covariates

place, education, birth cohort, region, religion and employment status and bi, the

random effect. This study models age at first marriage using community random

effect on the hazard model, which permits the dependence observations in the same

community into the model.

A simulation study is to be conducted to evaluate and compare the performance of

lasso and gradient boosting with and without unobserved heterogeneity. More details

are given in the next chapter.



Chapter 4

Simulation study

To be able to study how well the two variable selection methods perform, we will

use simulated data. This chapter presents simulation set up employed and results

obtained from the simulation exercise.

4.1 Simulation approach

This section describes how data was simulated and measures applied to evaluate the

results from the simulations.

The simulation study was carried out to compare the performance between penalised

and boosting variable selection methods. The data generating process used here was

adopted from the simulation schemes employed by Groll and Tutz (2014). Data was

simulated from a logistic hazard function of the form:

λ(t|xi, bi) =
exp(γ0t + x1 + x2 + ...+ xp + bi)

1 + exp(γ0t + x1 + x2 + ...+ xp + bi)
(4.1.1)

with p= {15, 50, 100}

The time-varying baseline hazard is given by γ0t= 2ξt - 2.3 where ξt= fΓ(t-2) where

fΓ(t) being a Gamma distribution density Γ(ζ, θ) with shape parameter ζ = 5 and

39
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scale parameter θ = 1. This results in a baseline function with a moderate hump, as

shown in Figure 4.1 below. B-splines approach is used for γ0t. Right-censoring was

considered for all duration above 12.

0 2 4 6 8 10

−2.3
−2.2

−2.1
−2.0

−1.9

Baseline Hazard Function

Time

Bas
eline

Figure 4.1: Discrete baseline hazard function

The settings of 100 observations (n = 100) for p covariates, Xi1, Xi2, . . ., and

Xip are drawn independently and follow a uniform distribution within the interval [0,

1] i.e. Xi2 . . ., Xip ∼ U(0, 1). The linear effects γ1, . . . , γ5 are non-zero while γj=

0 for j= 6, . . . , p. The random effects bi are simulated from a normal distribution

i.e. bi ∼ N(0, σ2
b ) with σb = {0, 1, 2}. Censoring times are simulated from the

binomial distribution i.e. C ∼ bin(1, πCN) where πCN= 0.05. Binary response is

simulated from the binomial distribution i.e yit ∼ bin(1, λ(t | xi)) where λ(t | xi)

is the hazard rate and t = {1, 2, ..., 12}. The values ”0” and ”1” are used for yit ,

yit = 1 showed that the subject experienced the event. Logistic link is used and the

simulation scheme is replicated 100 times.
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On lasso, finding a good value for the tuning parameter (lambda) is the main

concern. This study used the BIC as a criterion for choosing the optimal tuning

parameter. The method involves sequentially fitting models each with a different

value of the tuning parameter value and selecting the parameter value with the lowest

BIC. To ensure fast convergence, the parameter estimation of the previous iteration

was used as starting values on each iteration. A lambda sequence starting at a big

value ensures that all covariates are shrunk to zero. To ensure smooth estimates

of the baseline hazard, an additional penalty, νs is included. In this study lambda

sequence has started at 40 and additional penalty value of 10 used (Groll and Tutz,

2014). The cluster number (ID) was used as the random effect.

The distinct variable selection methods’ performance will be evaluated using a

number of different measures. Performance of estimators was assessed for both the

structural components and the variance. After the estimation of the coefficients γj,

the results are compared to the true parameter. For every simulation run, mean

squared error (MSEγ) is calculated where;

MSEγ = ‖γ − γ̂‖2 (4.1.2)

False positive rates (FPR) and False Negative Rates (FNR) are also accounted for

each run. False positive denotes a single parameter value that is exactly zero is set

to not zero . Conversely, false negative means that a single non-zero parameter is set

to zero.

FPR =
Number of exactly zero set to not-zero

Number of exactly zero
(4.1.3)

FNR =
Number of not-zero set to zero

Number of truly not zero
(4.1.4)
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The average of the mean squared errors, false positive and false negative are computed

and presented in Table 4.1 and 4.2 below.

4.2 Simulation Results

Table 4.1: Results for MSEγ for glmmLasso and boosting, πcensor=0.05 and n = 100

σb p glmLasso glmmLasso boosting with-
out random
effect

boosting with
random effect

0 15 4.72 8.64 44.16 81.32
0 50 6.76 9.88 50.56 81.34
0 100 10.18 14.84 58.69 91.4
1 15 13.81 8.47 85.11 52.08
1 50 17.06 9.81 85.21 55.83
1 100 35.44 34.06 86.02 61.53
2 15 26.87 21.95 86.21 70.6
2 50 37.88 36.74 90.9 70.28
2 100 41.89 40.21 94.8 78.69

The summary of the mean square error referring to covariates (MSEγ) are shown in

Table 4.1. For all values of σb = {0, 1, 2}, Lasso methods outperform boosting. Lasso

methods with and without random effect, i.e. glmmLasso and glmLasso respectively

have smaller mean squared errors than those of boosting. For example, for a frailty

Lasso model with 100 covariates (p = 100) and σb = 1, the MSEγ is 34.06 compared

to 61.53 for boosting. Gradient boosting showed poor results for MSEγ. GlmmLasso

works best for small p. When the number of covariates in a model increases, MSEγ

increases. For example, for glmmLasso with σb = 1, MSEγ for p = 15 and p = 100

are 8.47 and 34.06 respectively.
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When there are no random effects i.e. σb = 0, glmLasso outperforms glmmLasso. For

example, for σb = 0 and p = 100 , MSEγ for glmLasso model is 10.18 compared to

14.84, the MSEγ for the model with the random effect. However, for non-zero σb i.e.

σb = {1, 2}, the methods that account for heterogeneity outperform those that do not

include the random effect. For example, in boosting, for σb = 2 and p = 50, MSEγ

for boosting with random effect is 70.28 compared to 90.9 the MSEγ for boosting

model that does not account for heterogeneity. Overall, for the estimate of covariates

covariance, Lasso yields better than gradient boosting.

In terms of MSEγ, the results are different from Groll and Tutz (2014) as procedures

with frailty (glmmlasso) perform better than those without (glmlasso).
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Table 4.2: Results for false positive (f.p) and false negative (f.n), πcensor=0.05 and
n = 100

glmLasso glmmLasso boosting boosting
(frailty)

σb p f.p f.n f.p f.n f.p f.n f.p f.n
0 15 0.14 1.99 0.32 1.96 6.7 0.5 0.3 1
0 50 0.62 1.97 1.08 2.08 18 1 1.6 1.1
0 100 0.77 2.04 2.11 2.14 23 1 2.2 1.1
1 15 0.19 1.98 0.27 2.13 5.6 0 0.51 1
1 50 1.06 2.01 1.33 2.24 17 0.5 1.2 1.4
1 100 5.57 2.14 1.53 2.46 30 0.9 4.4 1
2 15 0.19 2.28 0.34 2.57 5 0.3 1 1.7
2 50 1.28 2.37 1.55 2.7 18.5 0.45 2.3 1.5
2 100 4.36 2.72 4.11 2.76 29 0.5 6 1.1

The performance of lasso and gradient boosting algorithms were evaluated using

false positive and false negative. The average over 100 simulations of the number of

truly zero variables set to non-zero (f.p) and the number of truly non-zero variables

set to zero (f.n) are computed. From Table 4.2, lasso methods perform better than

boosting methods in terms of false positives as shown by their smaller values of f.p .

For σb = 1 and p = 100 glmmLasso recorded mean false positive of 1.53 compared to

4.4 for boosting with a random effect. A big σb results in large false positive compared

to small values such as σb = 0. Furthermore, an increase in the number of variables in

a model results in large false positives. Methods that account for heterogeneity have

small mean false positives. However, in terms of false negative, boosting methods

have lower values than lasso methods.
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4.3 Conclusion Remarks

Evidence from the Mean Squared Error, False Positives and False Negatives from

the simulation study suggest that the lasso variable selection outperformed gradient

boosting regardless of whether the random effect was included or not in the model.

Lasso methods (glmLasso and glmmLasso) recorded smaller values of MSEs and False

Positives than gradient boosting. In addition, the two approaches improve on their

performance when few covariates are present, and σb is kept small.



Chapter 5

Empirical data analysis results

5.1 Descriptive Results

This section presents both the univariate and bivariate results in the form of tables

and graphs.

5.1.1 Univariate analysis

Table 5.1 below shows that most of the respondents lived in rural areas and account

for about 58.5% of the sample population as compared to 41.5% found in urban areas.

In terms of educational level attained, Table 5.1 shows that the majority of the

respondents attained secondary education and account for 61.6% of the sample popu-

lation. The percentage of women reported having no education is 0.8. Table 5.1 also

shows that 28.7% and 8.9% of the sample had attained primary and higher education,

respectively.

46
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Table 5.1: Summary statistics on independent variables considered for analysis

Variable Category Frequency (sample proportion)
Place of residence Urban 829 (41.5%)

Rural 1171 (58.5%)
Education No education 16 (0.8%)

Primary 575 (28.7%
Secondary 1 231 (61.6%)
Higher 178 (8.9%)

Employment status No 1095 (54.7%)
Yes 905 (45.3%)

Birth cohort <1970 124 (6.2%)
1970-1979 536 (26.8%)
1980-1990 851 (42.5%)
>1990 489 (24.5%)

Religion Christian 1035 (51.8%)
Muslim 8 (0.4%)
Tradition 14 (0.7%)
Apostolic Faith 827 (41.3%)
Other/None 116 (5.8%)

Region Manicaland 215 (10.8%
Mashonaland 877 (43.9%)
Masvingo 205 (10.2%)
Matabeleland 470 (23.5%)
Midlands 233 (11.6%)

From Table 5.1 it is seen that more women from the sample population were unem-

ployed (54.7%). Approximately 67% of the respondents from the sample were born

after 1980, while 6.2% comprised of those born before 1970. More than half (51.8%)

of the respondents in the study believed in Christianity with the smallest percentage

being Muslims (0.4%). The table also shows that 41.3% and 5.8% of the sampled

respondents are in Apostolic Faith and other or no religious groups, respectively.
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According to Table 5.1, more women of the sampled population are from Mashona-

land (43.9%). The region with the least number of women in the sample is Masvingo

accounting for 10.2%. Matabeleland and Midlands regions account for 23.5% and

11.6% respectively.

5.1.2 Bivariate analysis

The Kaplan-Meier plots are used to describe how the risk of age at first marriage

is distributed across the strata of the chosen covariates. The Kaplan-Meier survival

estimator is used for comparison of survival curves in two or more groups (Kleinbaun

et. al., 2008).
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Figure 5.1: Kaplan-Meier survivorship for age at first marriage by place of residence

Figure 5.1 above seems to suggest that no woman respondent married under the

age of 15 years. However, women living in rural areas have a higher risk of first

marriage in comparison to those living in urban areas.
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Figure 5.2: Kaplan-Meier survivorship for age at first marriage by education

Figure 5.2 presents survival probability on the educational level attained. From the

plot, it seems to show that women who are highly educated are associated with
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lower probabilities of early marriages. Women without education or attained primary

education have a high likelihood of first marriage in comparison to those who reached

secondary and/or higher education. At the age of approximately 19 years, all the

respondents that reported to have no education in the sample population had already

entered into first marriage. Conversely, at the same age i.e. 19 years, about 80% of

the women that had higher education survived early first marriage.
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Figure 5.3: Kaplan-Meier survivorship for age at first marriage by employment status

Survivorship probabilities for age at first marriage by employment status are pre-

sented in Figure 5.3 above. It is suggested that unemployment of a woman increases

the chances of early first marriage in Zimbabwe. Employed women were not highly

exposed to the risk of having first early marriage compared to the unemployed ones.

For example, from the plot, at the age of 20, about 50% of the women employed

survived first marriage compared to 30% for those who are working.
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Figure 5.4: Kaplan-Meier survivorship for age at first marriage by birth cohort

Figure 5.4 seems to reveal that those women in the study who were born after

1990 were related to a higher probability of early first marriage. Those born before

1970 had a lower risk of first marriage. Between the ages of 20 and 30 years women

born before 1970 and those born 1970-1980 had almost the same risks of entering into

marriage. For example, nearly 42% of women in these cohorts would have survived

first marriage at the age of 22. However, beyond 30 years, those born before 1970

have the highest survival rate.
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Figure 5.5: Kaplan-Meier survivorship for age at first marriage by region

Figure 5.5 below seems to show that there is a slight difference in the risks of first

marriage between regions. However, women from the Matabeleland region had a low

risk of first marriage when compared to those from other regions such as Manicaland

and Mashonaland. At 20 years, approximately 30% of the women would have survived

marriage in Manicaland compare to nearly 50% in Matabeleland.
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Figure 5.6: Kaplan-Meier survivorship for age at first marriage by religion
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Figure 5.6 presents survival probabilities by religious beliefs of respondents in a

sample population. The diagram appears to reveal that the risks of first marriage for

those from Muslim and traditional religious groups are higher compared to Christians.

Before the age of approximately 25 years, all the women that reported to be Muslim

or believe in traditions would have entered into their first marriage. At the age of 20

years about 20% of Muslim women would have survived early first marriage.

5.2 Estimated linear effects

5.2.1 Estimation from lasso and gradient boosting without

random effect

Table 5.2: Predictors’ effects without random effect

Variable Category Lasso without random effect gradient boosting
Place of residence Rural 0.2207 0.0449
Education (i)Primary 0.1512 -0.0814

(ii)secondary -0.4631 -0.4041
(iii)higher -0.9253 -0.6692

Employment Yes 0.0000 -
Age Cohort (i)>1990 1.0792 0.4753

(ii)1970-1979 -0.1525 -0.1139
(iii)1980-1990 0.2819 0.0422

Region (i)Mashonaland 0.0000 0.0121
(ii) Masvingo 0.0000 -0.1248
(iii)Matebeleland 0.0000 -0.1832
(iv)Midlands 0.0000 -0.0096

Religion (i)Christian 0.0000 -0.0819
(ii)Muslim 0.0000 0.1189
(iii)Other/None 0.0000 0.1661
(iv)Traditional 0.0000 -0.1112
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Table 5.2 gives the estimates of regression coefficients from lasso and boosting

without random effect. In glmLasso, the regression coefficients of employment, region

and religion including all their categories were shrunk until the complete variables

were removed from the model. Place of residence, education and age cohort were

selected into the model as their coefficients are non-zero. With boosting only employ-

ment was not selected into the model.

Gradient boosting retained region and religion into the model though their coeffi-

cients are small. This is not surprising in light of higher false positives observed for

boosting in the previous chapter. However, the variables with small coefficients were

not selected by lasso.

5.2.2 Estimation from lasso and gradient boosting with ran-

dom effect

Table 5.3 gives the regression coefficients of predictors from the lasso and boosting

models that account for heterogeneity. In glmmLasso, region and religion are not

selected into the model. However, with gradient boosting two variables, place of

residence and employment status were not included in the model. Gradient boosting

retained more variables into the model compared to lasso.
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Table 5.3: Predictors’ effects with random effect

Variable Category Lasso with random effect gradient boosting
Place of residence Rural 0.1407 -
Education (i)Primary 0.0764 0.1208

(ii)secondary -0.5387 -0.1692
(iii)higher -1.0921 -0.4445

Employment Yes -0.1052 -
Age Cohort (i)>1990 1.1866 0.2594

(ii)1970-1979 0.2205 -0.2062
(iii)1980-1990 0.5851 -0.0973

Region (i)Mashonaland 0.0000 0.0159
(ii) Masvingo 0.0000 -0.0579
(iii)Matebeleland 0.0000 -0.1042
(iv)Midlands 0.0000 0.020

Religion (i)Christian 0.0000 -0.0393
(ii)Muslim 0.0000 -0.1661
(iii)Other/None 0.0000 0.0536
(iv)Traditional 0.0000 -0.1287

5.2.3 Boosting iterations

Most covariates can be used for fitting a model though no extensive variable selec-

tion being performed. Early stopping support in gradient boosting helps to find the

least number of iterations which is sufficient to build a model. Early stopping avoid

overfitting. In this study, cross-validation was employed in determining the optimal

stopping iterations. Figure 5.7 and Figure 5.8 below are the graphs showing the op-

timal number of boosting iterations for the two boosting models, without and with

random effect.

From Figure 5.7 and Figure 5.8 boosting with random effect has less number of
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Figure 5.7: Optimal number of boosting iterations= 1887

boosting iterations (951) compared to the boosting model that excludes the random

effect (1887).
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Figure 5.8: Optimal number of boosting iterations= 951

5.3 Model diagnostics

5.3.1 Residual analysis

Figure 5.9 and Figure 5.10 show the normal quantile plots of the adjusted residuals

obtained from boosting and lasso models with and without random effect. From the

plots in Figure 5.9 and Figure 5.10, it can be deduced that all the models performed

moderately well as points are forming a line that is roughly straight except at the
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tails.

5.3.2 Concordance Index

Concordance index evaluates prediction accuracy based on discrimination measures.

The results from the concordance indices show models with boosting variable selection

performing better than lasso models. The concordance indices for boosting with and

without random effect are 0.5734 and 0.5453, respectively. C∗ is larger than 0.5

showing better prediction (Tutz and Groll, 2016). For lasso models with and without

the concordance indices are 0.2170 and 0.2424, respectively. Lasso indices are far less

than 0.5 showing low prediction. Boosting models have higher C∗ probably because

they have retained more covariates than lasso.

5.4 Model comparison

Table 5.4: Anova table comparing Lasso models with and without the random effect

Model AIC BIC Deviance
glmLasso 9492.3 9549.1 9476.3
glmmLasso 9707.4 9778.5 9687.4

Table 5.5: Testing the significance of the random effect

Group Name Variance Std.Dev
Cluster (intercept) 0.0000 0.0000
Residual 0.1724 0.4152

Table 5.4 contains the AIC, BIC and Deviance from lasso model without random

effect and the lasso frailty model. The model without the random effect has AIC, BIC
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and Deviance values of 9 492.3, 9 549.1 and 9 476.3 respectively lower than those of the

frailty model. The frailty model model has AIC, BIC and Deviance values of 9 707.4,

9 778.5 and 9687.4 respectively. From Table 5.5, the random effect (cluster) has a

variance of 0.0000 indicating that the level of between-group variance is not sufficient

to warrant incorporating random effect in the model hence the interpretation of results

in this study based on lasso model without random effect.

5.5 Interpretation of the results based on the model

with lasso variable selection

Table 5.6: Results of Discrete-Time Logit Model without random effect

Predictor Estimate se P-value Hazard ratio 95% C.I
Place(Rural) 0.2207 0.0664 0.0009 1.2469 1.0947; 1.4202
Edu(Primary) 0.1512 0.0767 0.05 1.1632 1.00; 1.3519
Edu(Secondary) -0.4631 0.1359 0.0007 0.6229 0.4772; 0.813
Educ
(Higher)

-0.9253 0.5595 0.0982 0.3964 0.1324; 1.1868

Employment
status

0.0000 - - 1 -

Cohort(>1990) 1.0792 0.0732 2.2e-16 2.9423 2.549; 3.3962
Cohort(1970-
1979)

-0.1525 0.0811 0.0599 0.8586 0.7324; 1.006

Cohort(1980-
1990)

0.2819 0.2142 0.1880 1.3256 0.8711; 2.0172

From Table 5.6, the effect of each predictor in the model is determined by its

hazard ratio. The hazard ratio measures the increase or decrease in the hazard of age

at first marriage due to the influence of the respective risk factor. The significance of

each predictor is determined by its respective p− value.
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As observed from Table 5.6, place of residence by the respondents was found to

be significant in describing the hazard for age at first marriage. Rural residence is

associated with high risk of first marriage. The hazard ratio for this group was 1.2469

indicating that Zimbabwean women residing in rural areas are 24.69% more likely to

enter into first marriage than their urban counterparts. At 95% confidence level, the

hazard for rural women ranges from 9.47% to 42.02% higher than that for women

residing in urban areas.

From Table 5.6, it is also observed that educational level attained by the respon-

dents had a significant association with the risk of first marriage. It is observed that

the hazard of having early first marriage is significantly (p<0.05) lower (37.71%) for

respondents with secondary education than their counterparts with no education.

We are 95% confident that for this category, the hazard for first marriage is between

18.2% and 52.28% lower than those women with no education. However, primary and

higher educational levels were not associated with the probability of first marriage as

shown by their p − values greater than 0.05 and 95% confidence intervals of hazard

ratios (1.00; 1.3519) and (0.1324; 1.1868) respectively containing 1.

Age cohort was found to have a significant effect on age at first marriage in Zim-

babwe. Women in the study who were born after 1990 were associated with a

higher probability of early first marriage. The group was 194.23% more probably

to marry earlier than women born before 1970. At 95% confidence level, the hazard

for cohort(>1990) women ranges from 154.9% to 239.69% higher than that for women

born before 1970.
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Finally, the age cohorts 1970-1979 and 1980-1990 for Zimbabwean women in the

study were observed not to have an association with the timing of first marriage as

shown by p− values of 0.0599 and 0.1880 respectively. These p− values are greater

than 0.05. Their corresponding interval of hazard ratios (0.7324; 1.0065) and (0.8711;

2.0172) respectively contain 1.
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Figure 5.9: Normal Q-Q (Quantile to Quantile) plots of the adjusted residuals for
models without random effect
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Figure 5.10: Normal Quantile-Quantile plots of the adjusted residuals for models with
random effect



Chapter 6

Conclusion

6.1 Introduction

This chapter covers a summary of the significant findings of the study and limitation

6.2 Conclusion

The study was set to evaluate and compare the effectiveness of lasso and gradient

boosting variable selection methods in discrete survival models. The effect of a ran-

dom effect in a model was investigated.

A simulation study was conducted for the two-variable selection methods. Mean

Squared Errors, False Positives and False Negatives were used to evaluate the perfor-

mance of the two methods. From the simulation study, lasso performed better than

gradient boosting method, especially with small number of covariates in the model

as shown by small MSEs and False Positives.

64
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The methods mentioned above were used to build models on age at first marriage

for women in Zimbabwe using the 2015-16 Demographic Health Survey (DHS) data.

Discrete Logit Models with and without random effects were fitted.

It was found that the two methods, lasso and gradient boosting do not select

exactly the same variables. The results based on lasso revealed that place of residence,

highest educational level attended and birth cohort had a significant impact on the

probability of age at first marriage. Women from rural areas and those born after 1990

were significantly more likely to get married earlier. However, women with secondary

education were significantly less likely to enter into early first marriage. Region,

religion and employment status of a woman were not significant determinants of age

at first marriage.

6.3 Limitations of the study

This study focused on variable selection in discrete survival models with smooth

baseline hazard and a logistic family of link functions. Perhaps as future research,

a comparison between discrete survival models with smooth and discrete baseline

hazards and/or flexible link function can be investigated.
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6.5

Appendix

rm(list = ls())

library(glmmLasso)

library(foreign)

library(survival)

library(discSurv)

library(mgcv)

library(gamlss.mx)

library(mgcv)

library(MASS);

library(nlme)

library(Hmisc)

library(mboost)

library(car)

library(Ecdat)

source(”C:/Users/Mabvu/Desktop/Discret/SurvivalSimulation/bs.design.r”)

MYFUNC <- function(M)

y<-NULL

CN<-NULL

for (i in 1:nrow(M))

y[i] <-rbinom(1,1,M[i,3])

if (y[i]==1)

v<-c(rep(0,i-1),1)

P<-M[1:i,] oup<-as.data.frame(cbind(P,v))

Error1<-NULL

Error2<-NULL
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Sigma<-NULL

FN<-NULL

FP<-NULL

ni<-100

for (ii in 1:ni)

print(paste(”ii ”, ii,sep=””))

df<-matrix(NA,100*12,15)

colnames(df)< colnames

(df) < - paste0(’x’, 1:(ncol(df)))

print(df)

set.seed(23)

Xs< -c(6,-4,4,0.2,-6, rep(0,10))

tm <-c(1:12)

baseline< -dgamma(tm-2, shape=5, scale = 1)*2-2.3

beta< -c(baseline,Xs)

cvs< -df

cvs < -rowSums(cvs)

bi <-rep(rnorm(100, mean = 0, sd = 1),each=12)

t <- rep(1:12, times=100)

t <- rep(1:12, times=100)-2

ID <- as.factor(rep(1:100, each=12))

bh <-2*dgamma(t, shape=5, scale= 1)-2.3

beta <-2*dgamma(c(1:12), shape=5, scale= 1)-2.3

h <-exp(bh+cvs+bi)/(1+exp(bh+cvs+bi))

D2 <-NULL

D3 <-NULL

D4 <-NULL

D5 <-NULL
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D6 <-NULL

D7 <-NULL

D8 <-NULL

D9 <-NULL

D10 <-NULL

D11 <-NULL

D12 <-NULL

for (i in 1:1200)

D2[i]<-ifelse(t[i]==2,1,0)

D3[i]<-ifelse(t[i]==3,1,0)

D4[i]<-ifelse(t[i]==4,1,0)

D5[i]<-ifelse(t[i]==5,1,0)

D6[i]<-ifelse(t[i]==6,1,0)

D7[i]<-ifelse(t[i]==7,1,0)

D8[i]<-ifelse(t[i]==8,1,0)

D9[i]<-ifelse(t[i]==9,1,0)

D10[i]<-ifelse(t[i]==10,1,0)

D11[i]<-ifelse(t[i]==11,1,0)

D12[i]<-ifelse(t[i]==12,1,0)

for i DF<-data.frame(cbind(ID,t,h,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,df))

CM<- data.frame(matrix(ncol = 30, nrow = 0))

sq<-seq(0,1200,12)

w<-length(sq)-1

for (j in 1:w)

L<-sq[j]+1

U<-sq[j+1]

DT<-DF[L:U,]

DD<-MYFUNC(DT)
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CM<-data.frame(rbind(CM,DD))

CMID < −as.factor(CMID)

formula.1 <- as.formula(paste(”v ”,paste(”x”,(1:15),sep=””,collapse=”+”),sep=””))

mean.vec<-apply(CM[,c(15:29)],2,mean)

sigma.vec<-apply(CM[,c(15:29)],2,sd)

CM[,c(15:29)]<-scale(CM[,c(15:29)])

family = binomial(link = logit)

lambda <- seq(40,0,by=-2)

BICvec<-rep(Inf,length(lambda))

Delta.start<-as.matrix(t(rep(0,100+16)))

Q.start<-0.1

for(j in 1:length(lambda))

print(paste(”Iteration ”, j,sep=””))

glm3 <- glmmLasso(formula.1 ,rnd = list(ID= 1), family = family, data = CM,

lambda=lambda[j], switch.NR=F,final.re=TRUE, control = list(smooth=list(formula= -

1 + t, nbasis=7,spline.degree=3, diff.ord=2, penal=10), start=Delta.start[j,],qstart=Q.start[j]))

print(colnames(glm3Deltamatrix)[2:16][glm3Deltamatrix[glm3conv.step,2:16]!=0])

BICvec[j]<-glm3bic

Delta.start<-rbind(Delta.start,glm3Deltamatrix[glm3conv.step,])

Q.start<-c(Q.start,glm3Qlong[[glm3conv.step+1]])

opt3<-which.min(BICvec)

glm3final <- glmmLasso(formula.1, rnd =list(ID= 1) , family = family, data =

CM, lambda=lambda[opt3], switch.NR=F,final.re=TRUE, control = list(smooth=list(formula= -

1 + t, nbasis=7,spline.degree=3, diff.ord=2, penal=10),start=Delta.start[opt3,],qstart=Q.start[opt3]))

summary(glm3final)

spline.ma<-bs.design(1:12, diff.ord=glm3finaldiff.ord,

Design<-cbind(spline.maX[,-1],spline.maZ)
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final.coef<-glm3finalcoef/c(1,sigma.vec[1:15])

final.coef[1]<-final.coef[1]-(mean.vec[1:15]/sigma.vec[1:15])

Error2[ii]<-sum((beta[1:12]-t(Design)

Sigma[ii]<-glm3finalStdDev

FN[ii]<-sum(final.coef[2:7]==0)

FP[ii]<-sum(final.coef[8:16]!=0)

Error1<-Error1[Error1<500]

Error2<-Error2[Error2<500]

Sigma<-Sigma[Sigma<2.5]

print(mean(Error1))

print(mean(Error2))

print(mean(Sigma))

print(mean(FN))

print(mean(FP))

dataset = read.spss(”D:/zimwomen.sav”, to.data.frame=TRUE,use.value.labels=TRUE)

dataset1<-data.frame(cbind(dataset[,c(3,4,13,15,29,45,51,66,3634,3684)]))

colnames(dataset1)[1] <- ”CL”

colnames(dataset1)[3] <- ”BirthYear”

colnames(dataset1)[5] <- ”Pres”

colnames(dataset1)[10] <- ”EmplmntStatus”

attach(dataset1)

AFI<-NULL

CNS<-NULL

Ctime<-NULL

Cohort<-NULL

Religionm<-NULL

Regionm<-NULL
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for (i in 1:length(AFM))

#print(MaritalS[i]==1)

AFI[i]<-ifelse(is.na(AFM[i])==TRUE,Age[i],AFM[i])

CNS[i]<-ifelse(is.na(AFM[i])==TRUE,0,1)

#Time

if (AFI[i]>=8 & AFI[i]<11)

Ctime[i]<-1

else if(AFI[i]>=11 & AFI[i]<14)

Ctime[i]<-2

else if(AFI[i]>=14 & AFI[i]<17)

Ctime[i]<-3

else if(AFI[i]>=17 & AFI[i]<20)

Ctime[i]<-4

else if(AFI[i]>=20 & AFI[i]<23)

Ctime[i]<-5

else if(AFI[i]>=23 & AFI[i]<26)

Ctime[i]<-6

else if(AFI[i]>=26& AFI[i]<29)

Ctime[i]<-7

else if(AFI[i]>=29 & AFI[i]<32)

Ctime[i]<-8

else if(AFI[i]>=32& AFI[i]<35)

Ctime[i]<-9

else if(AFI[i]>=35 & AFI[i]<38)

Ctime[i]<-10

else if(AFI[i]>=38 & AFI[i]<41)

Ctime[i]<-11

else if(AFI[i]>=41 & AFI[i]<44)
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Ctime[i]<-12

else

Ctime[i] <-13

#BirthCohort

if(BirthYear[i]<1970)

Cohort[i] <-”< 1970”

else if(BirthYear[i]<1980 & BirthYear[i]>=1970)

Cohort[i] <-”1970-1979”

else if(BirthYear[i]<1990 & BirthYear[i]>=1980)

Cohort[i] <-”1980-1990”

else

Cohort[i] <-”>1990”

#Religion

if(Religion[i]==”Traditional”)

Religionm[i]<-”Traditional”

else if(Religion[i]==”Muslim”)

Religionm[i]<-”Muslim”

else if (Religion[i]==”Other” — Religion[i]==”None”)

Religionm[i]<-”Other/None”

else if(Religion[i]==”Apostolic sect”)

Religionm[i]<-”Apostolic Faith”

else

Religionm[i]<-”Christian”

#Region

if(Region[i]==”Bulawayo” —Region[i]==”Matabeleland North” —Region[i]==”Matabeleland

South”)

Regionm[i]<-”Matabelaland”

else if (Region[i]==”Masvingo”)
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Regionm[i]<-”Masvingo”

else if (Region[i]==”Midlands”)

Regionm[i]<-”Midlands”

else if (Region[i]==”Manicaland”)

Regionm[i]<-”Manicaland”

else

Regionm[i]<-”Mashonaland”

dataset1<-data.frame(cbind(dataset1,AFI,CNS,Ctime,Cohort,Religionm,Regionm))

attach(dataset1)

dataset1<-dataset1[complete.cases(dataset1), ]

dataset1<-dataset1[sample(nrow(dataset1), 2000), ]

dtLong <-as.data.frame(dataLong (dataSet=dataset1, timeColumn=”Ctime”,

censColumn=”CNS”))

head(dtLong)

dtLong$CL<-as.factor(dtLong$CL)

dtLong$timeInt<-as.numeric(dtLong$timeInt)

dtLong$timeInt<-dtLong$timeInt-mean(dtLong$timeInt)

formula.1<-y ãs.factor(Pres)+as.factor(Educ)+as.factor(EmplmntStatus)+as.factor(Cohort)+as.factor(Regionm)+as.factor(Religionm)

family<-binomial(link = ”logit”)

m1<-gamboost(as.factor(dtLong$y)b̃bs(timeInt,center=TRUE,knots=20,degree=2,differences=1,lambda=150)+bols(Pres,intercept=FALSE)+bols(Educ,intercept=FALSE)+bols(EmplmntStatus,intercept=FALSE)+

bols(Cohort,intercept=FALSE)+ bols(Regionm,intercept=FALSE)+bols(Religionm,intercept=FALSE)#+brandom(CL)

,data = dtLong,family = Binomial(),boost control(mstop = 100,stopintern =

TRUE,nu = 0.09,trace = TRUE,center = TRUE),offset = mean(dtLong$y))

m1[2000]

set.seed(23)

cvm <-cvrisk(m1)

print(cvm)

plot(cvm)
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bn<-mstop(cvm)

vv<-m1[mstop(cvm)]

coef(vv)

IDsample <- sample(1:dim(dataset1)[1], 600)

sub <- dataset1 [IDsample, ]

names(sub)<-names(dataset1)

datLong <-as.data.frame(dataLong (dataSet = sub,

timeColumn=”Ctime”,censColumn=”CNS”))

datLong$timeInt<-as.numeric(datLong$timeInt)

#datLong$timeInt<-datLong$timeInt-mean(datLong$timeInt)

m2<-gamboost(as.factor(dtLong$y) bbs(timeInt,center=TRUE,knots=20,degree=2,differences=1,lambda=150)+bols(Pres,intercept=FALSE)+bols(Educ,intercept=FALSE)+bols(EmplmntStatus,intercept=FALSE)+

bols(Cohort,intercept=FALSE)+ bols(Regionm,intercept=FALSE)+bols(Religionm,intercept=FALSE)#+brandom(CL)

,data = dtLong,family = Binomial(),boostcontrol(mstop = 100,stopintern = TRUE,nu =

0.09,trace = TRUE,center = TRUE),offset = mean(dtLong$y))

m2[2000]

set.seed(23)

cvm<-cvrisk(m2)

print(cvm)

plot(cvm)

mstop(cvm)

vv<-m2[mstop(cvm)]

coef(vv)

#hazPreds <- predict(gamFit, type=”response”)

hazPreds <- predict(vv, type = ”response”, newdata = datLong)

adj <- adjDevResidShort ( dataSet = datLong , hazards = hazPreds )

$Output$ AdjDevResid l <- quantile (adj ,0.1)

u <- quantile (adj ,0.90)

tadj<-adj[adj>l & adj <u]
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df <- data.frame(y = tadj)

p <- ggplot(df, aes(sample = y)) p + stat qq() + stat qq line()

tadjq <-data.frame (y = tadj )

pq <- ggplot (tadjq , aes( sample = y)) pq + stat qq () + stat qq line()+

theme ( axis.text.x = element text ( colour =” grey20 ”, size = 12 , angle = 0,

hjust = .5 , vjust = .5 , face =”bold”), axis.text.y = element text(colour =” grey20

”,size = 12 , angle = 0, hjust = 1, vjust = 0, face =”bold”),

axis.title.x = element text ( colour =” grey20 ”, size = 12 , angle = 0, hjust =

.5 , vjust = 0, face =”bold”,), axis.title.y = element text( colour =” grey20 ”,

size = 12 , angle = 90 , hjust = .5 , vjust = .5 , face =”bold”))

# Extract subset of data set.seed (3) IDsample <-sample(1:dim(dataset1)[1] ,

600)

Sub <- dataset1 [IDsample , ]

set.seed(-7)

TrainingSample<-sample(1:600 , 400)

Train <- Sub[TrainingSample, ]

Test<-Sub [-TrainingSample, ]

# Convert to long format

TrainL<-dataLong(Train,timeColumn =”Ctime”, censColumn =”CNS”)

TrainL$timeInt<-as.numeric(TrainL$timeInt)

#TrainL$timeInt1<-TrainL$timeInt-mean(TrainL$timeInt)

#Test$Ctime<-Test$Ctime-mean(TrainL$timeInt)

m3<-gamboost(as.factor(dtLong$y) bbs(timeInt,center=TRUE,knots=20,degree=2,differences=1,lambda=150)+bols(Pres,intercept=FALSE)+bols(Educ,intercept=FALSE)+bols(EmplmntStatus,intercept=FALSE)+

bols(Cohort,intercept=FALSE)+ bols(Regionm,intercept=FALSE)+bols(Religionm,intercept=FALSE)#+brandom(CL)

,data = dtLong,family = Binomial(),boost control(mstop = 100,stopintern =

TRUE,nu = 0.09,trace = TRUE,center = TRUE),offset = mean(dtLong$y))

m3[2000]

set.seed(23)
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cvm<-cvrisk(m3)

print(cvm)

plot(cvm)

mstop(cvm)

vv<-m3[mstop(cvm)]

#coef(vv)

gamFitPreds2 <- predict (vv , newdata = cbind (Test , timeInt = Test $Ctime))

fprGamFit <- fprUnoShort (timepoint =6, marker = gamFitPreds2,newTime =

Test$Ctime)

tprGamFit <- tprUnoShort (timepoint =6 , marker = gamFitPreds2 , newTime

= Test$Ctime, newEvent = Test$CNS , trainTime = Train$Ctime , trainEvent =

Train$CNS)

tryAUC <- aucUno ( tprObj = tprGamFit , fprObj = fprGamFit )

tryAUC

plot (tryAUC)

tryConcorIndex<- concorIndex (tryAUC, printTimePoints=TRUE) tryConcorIndex

summary(tryConcorIndex)


