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ABSTRACT 

Background: Staphylococcus species and Eschericia Coli has been predominantly 

found to cause mastitis in dairy farms. Milk harbor various pathogenic 

microorganisms that causes foodborne and intramammary infections. The aim of this 

study was to characterize Staphylococcus spp. and Eschericia coli spp. isolated from 

clinical and subclinical cases of bovine mastitis in the Limpopo dairy farm. 

Methods: Semi structured questionnaire was used prior milk sampling to acquire 

farm management strategies.  A total of 253 milk samples were collected from the 

dairy farm between 2018 and 2019. California mastitis test was done to screen for 

mastitis and culture methods were used for the isolation and identification of E. coli 

and Staphylococcus species. Further identification and biochemical confirmation for 

bacterial isolates were performed using API test kit and automated VITEK® 2 

system. Eschericia coli isolates were characterized using a multiplex PCR. 

Automated VITEK® 2 system and Kirby Bauer disc diffusion method were also used 

to determine antibiotic susceptibility of the isolates. 

Results: The study reported fair farm practices and management system with low 

mastitis burden. California mastitis test revealed an overall mastitis on 94/250 (37%) 

of the samples. Of 94 samples cultured, a total of 32 (34%) were positive for E. coli 

strains and 48 (51%) were positive for Staphylococcus spp. [Staphylococcus sciuri 

19 (40%) and Staphylococcus xylosus 10 (21%)]. Out of 32 Escherichia coli isolates 

27 (93%) and 19 (66%) were detected with astA gene and sta  which encodes for 

enteroaggregative E. coli respectively. Most Staphylococcus species isolates were 

highly resistant to Erythromycin (93%); Nalixidic acid (86%). The presence of 

pathogenic E. coli and Staphylococcus species in milk may pose health risks or 

problem and improving sanitary conditions may reduce the burden of mastitis. For 

future studies, further analysis of both E. coli and Staphylococcus species to 

determine virulence and resistant genotyping in order to investigate possible 

mutations is recommended.    

Keywords: Microbiological quality, Safety, Raw milk, Characterization, PCR, 

Mastitis, Occurrence.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 BACKGROUND 

South Africa (SA) is a developing country with an estimated population of 58,78 

million (Statistics South Africa, 2016). The average annual consumption of 

unprocessed milk in 2018, was 4,8% which makes approximately 0.5% of the 

world milk production (Milk Producers’ Organisation, 2019). The recorded capita is 

estimated to be far below the World Health Organization's (WHO) recommendation 

of 200 liters per capita annually (Lassen, 2012). The reduction in milk production is 

caused by conditions such as mastitis which has a known negative impact in milk 

production. Milk from cows with mastitis harbors pathogenic microorganisms of 

various types that may cause foodborne infections (Law et al., 2015; Oliver et al., 

2005). 

Mastitis, regarded as inflammation of the mammary gland, bacterial infection, 

trauma, or injury to the udder has been found to be the cause, and leads to 

decreased productivity of the cow as well as the quality of milk causing. This 

consequently leads to enormous losses for breeders and the economy of the 

country. Studies have shown that there is change in the prevalence of mastitis 

pathogens in SA (Petzer, 2009), it was also noted that the incidence of such 

environmental pathogens such as Escherichia coli (E. coli) and Staphylococcus spp. 

(Staphylococcus spp.) has increased (Blignaut et al., 2018). The increased 

prevalence may possibly be attributed to the persistence of environmental pathogens 

in the udders, and difficulties in decreasing their population in the reservoirs (Milk 

South Africa, 2013). 

The most common mastitis causing organisms are Staphylococcus spp., 

Streptococcus spp. E. coli, Klebsiella, Salmonella, Mycoplasma and 

Corynebacterium (Benic et al., 2012). These microorganisms are normal skin, nasal 

and gut microflora inhabitants, thus harmful and opportunistic when conditions 

become favorable. Among the Staphylococcus spp., Staphylococcus aureus (S. 
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aureus) predominantly cause mastitis in milk herds worldwide (Pekana et al., 2015; 

Petzer et al., 2009; Wang et al.,2008; Allore et al., 1997). The Staphylococcal 

pathogens may infect cows, during lactation or dry season (Petzer et al., 2009). 

Several dairy farms are still experiencing high levels of Staphylococcal mastitis 

infested with biofilm formations and exotoxin production (Lee et al., 2014; Takeuchi 

et al., 2001; Aguilar et al., 2001). Mastitogenic zoonoses and toxin transmission is a 

potential public health hazard (Blum et al., 2008). Specific conditions such as 

scalded skin syndrome, food toxicity and toxic shock syndrome may be caused by 

these products (Becker et al., 2014). 

Mastitis commonly develops in dairy cows due to invasion of the mammary gland 

tissue. These mammary glands seem to be a good reservoir of Staphylococcus spp. 

(Samad, 2008). The invasion of these glands allows multiplication and dissemination 

of the pathogen and increases toxin production (Samad, 2008). These pathogens 

have long survival periods in cow surroundings including bedding and milking 

machinery. The consequential effects of mastitis on the economic and public health 

are detrimental (Sharma et al., 2013). India which is a leader in milk production, and 

SA which depends on the agricultural sector as a greatest employer is concerned 

due to losses as a result of milk disposal, reduced milk production, costs for 

treatment and loss of jobs (Mohanty et al., 2013; MPO, 2009).  

Management of mastitis, in many commercial dairy farms, plays a major role in 

determining raw milk products quality and other derivatives (Gonzalez and Wilson, 

2003). A number of factors, that include the quality of raw milk, economic viability of 

the farmer, reductions in antimicrobial use and animal welfare, also influence the 

necessity of controlling mastitis (Asfaw and Negash, 2017). Farms characterized by 

low levels of sanitation, poor teat dip application, inadequate dry cow therapy, poor 

milking techniques or poor maintenance of machines experience higher levels of 

mastitis (Schroeder, 2012). Raw milk serves as an ideal medium in the growth of 

various pathogenic microorganisms (Kadariya et al., 2014; Zecconi and Hahn, 

1999).  

Furthermore, milk is also an important source of income for commercial farmers and 

household livestock farms (Shete and Rutten, 2015). South African nutritionists are 

calling on people to increase their intake of milk products to achieve a balanced 
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healthy diet (Wenhold et al., 2016). However, milk production industry rarely meets 

the standard requirements because of various factors such as mastitis (Seid et al., 

2015). When the udder is colonized by pathogenic Staphylococcus species, it may 

cause primary clinical signs such as swelling, redness and floccules in the milk, 

abscesses and fibrosis of the udder (Branch‐Elliman et al., 2013). Treating 

Staphylococcus mastitis is difficult because of secretion of B-hemolysin potentially 

leading to fatal gangrene mastitis (Mellenberger and Kirk, 2001). 

Staphylococcus spp. is known as commensal and opportunistic zoonotic pathogens 

(Fitzgerald, 2012). Staphylococcal infections are problematic due to their virulence 

mechanisms, ease of transmission, persistence, and the ability to colonize the skin 

or mucosal epithelia as well as antibiotic resistance to conventional treatments 

(Rainard et al., 2018). Staphylococcus spp. and E. coli are regarded as the priority 

or critical pathogens that require a thorough research for the development of new 

antibiotics because they have exhibited antibiotic resistance to a vast array of 

antibiotics that are used for their control (WHO, 2017; WHO, 2015).  

 

1.2 STUDY RATIONALE 

The dairy industry has been greatly devastated by bovine mastitis that results in the 

decrease of milk production consequently leading to great economic loss for the 

industry worldwide (Xi et al., 2017). In countries where dairy industry is still in 

developmental phase, mastitis may be caused by transmissible pathogens. 

Environmental mastitis caused by Staphylococcus and E. coli may also become 

prevalent due to lack of knowledge and routine control measures application (Sharif 

and Muhammad, 2009). Various studies have greatly contributed knowledge on 

epidemiological characteristics of these aetiological agents (Argaw, 2016 Blignaut, 

2015; Joshi and Devkota, 2014). Due to their impact in economy, food security and 

issues related with antibiotic use, there is a need to develop the tools available to 

monitor environmental mastitis (Rainard et al., 2018 Sordillo et al., 1997). 

Mastitis not only influences the quality of milk but the yield as well and causes culling 

of animals until the undesirable characteristics have been satisfactorily treated. It is 

for these reasons that the processing and value of processed dairy foods or milk 

derivatives get affected since the valuable components in milk (lactose, casein and 
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fats) are reduced and defective milk constituents like ions and enzymes are inflated 

(Mekibib, 2010). There is a lot of documented information on the pathogenesis of 

Staphylococcal mastitis, however, reasons why these pathogens remain a threat in 

the invasion of the mammary glands have not been clearly identified (Rainard et al., 

2018). 

In contrast, Escherichia coli became a major pathogen causing acute bovine mastitis 

which usually recovers fast. The rate of recovery is rapid due to the exchange of 

genetic material between strains through horizontal transfer (Schmidt et al., 2015). 

The horizontal transfer could give rise to virulent and resistant strains and/or stealthy 

and contagious strains that could greatly effect agriculture through creation of new 

variants (Dyszel et al., 2010). This exchange of Mobile Genetic Elements (MGE) 

encoding virulence and resistance between human and bovine strains is a global 

issue (Sung, 2008). It is thus possible that the zoonotic risks linked 

to Staphylococcus spp. and E. coli (environmental) mastitis will be a future problem 

(Rainard, 2018).  

Staphylococcus aureus can harbour vast number of putative virulence genes that 

may play a role in clinical or subclinical manifestation of the infection in both humans 

and animals (Åvall-Jääskeläinen et al., 2018). Since variations of strains is 

associated with virulence potential, to characterize S. aureus by phenotype alone 

can no longer be a reliable control measure for mastitis caused by this organism 

(Pilla et al., 2013). There are no previous studies that have ever reported about 

these virulence factors amongst S. aureus isolated in dairy farms within the Vhembe 

District. Data from a previous study conducted in the Limpopo dairy farm showed 

high prevalence of Staphylococcus spp. (Badugela et al., 2018 unpublished). 

Therefore, the present study aims to phenotypically and genotypically characterize 

the Staphylococcus spp. isolates in bovine mastitis cases by evaluating their 

virulence genes and antibiotic susceptibility profile. 

 

1.3 OBJECTIVES OF THE STUDY 

1.3.1  PRIMARY OBJECTIVE 



    
 

  6 
 

To characterize Staphylococcus spp. and E. coli spp. isolated from clinical and 

subclinical cases of bovine mastitis at the Limpopo dairy farm.  

 

1.3.2 SECONDARY OBJECTIVES  

 To evaluate farm management strategies and determine mastitis prevalence in 

the Limpopo dairy farm using questionnaire 

 To isolate and identify Staphylococcus spp. and E. coli from clinical and 

subclinical cases of bovine mastitis using culture methods and biochemical 

tests.  

 To amplify and identify the specific virulence genes using conventional 

multiplex polymerase chain reaction (m-PCR).   

 To determine the antibiotic susceptibility patterns of the isolates using Kirby 

Bauer disk diffusion method and automated VITEK® 2 system.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Mastitis represents the biggest economic losses for dairy farms in many countries ar

ound the world (Petroviski et al., 2006). It is generally accepted that inflammatory 

reaction is caused by microorganisms that infiltrate the teat canal and mammary 

tissues. The organisms multiply and proliferate to manifest as the different types of 

mastitis affecting the cow‘s udder. The infection results in a negative relationship 

between somatic cell count (SCC) and the yield of milk (Khan and Khan, 2006). Milk 

from healthy quarters generally contain between 100, 000 - 200,000 somatic cells 

per millilitre, a value that exceeds 300,000 is abnormal and indicates inflammation in 

the udder and secretory disturbance (Viguier et al., 2009).  

 

2.2 CLASSIFICATION OF MASTITIS 

Mastitis is classified based on the extent of the inflammation with predisposing 

factors like age, breed, nutrition, shed management and stage of lactation. 

Classification as ‗contagious‘ or ‗environmental‘ may be used following their primary 

source of infection and route of transmission (Blowey and Edmondson, 1995; 

Gomes et al., 2016). All the classes categorised as contagious are caused by the 

presence of bacteria in the teat canal and udder (Schukken et al., 2004). They are 

capable of establishing sub-clinical infections (Radostits et al., 1994). The main 

reservoir of environmental mastitis pathogens is the cows inhabit (Gomes et al., 

2016). The 3 sub-classes are clinical, subclinical and chronic mastitis (Figure 2.1). 

Clinical mastitis is characterized by inflammation and cuts on the cow‘s teats, this 

class is more common in housed cattle because they stay in close proximity (de 

Vliegher et al., 2012).  
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Figure 2.1: Classification of Mastitis severity (Farm Health Online, 2018) 

Hyperthermia, anorexia, rapid cardiac rate and profound depression are 

characteristic for para-acute mastitis which is usually sudden in onset. Patches of 

blue decolouration from ischaemic gangrene, preferably at the base of the udder and 

around, appear in the most serious cases. Sub clinical mastitis is more threatening 

because it does not show any apparent signs on the host but it changes the physical 

and chemical composition of milk. Chronic mastitis manifests in the host for a longer 

period of time, usually can last from one lactating period to another (Hughes and 

Watson, 2018). Clinical mastitis is generally more severe in cows than in small 

ruminants (goat and sheep) (Contreras et al., 2007). Most of the infections are 

chronic and vary in bacterial shedding (concentration of viable bacteria) in milk, and 

frequent during continuous lactation. 

 

2.3  MICROORGANISMS CAPABLE OF CAUSING MASTITIS 

Bacterial organisms are the most common cause of mastitis frequently isolated from 

dairy cows (Dieser et al., 2014). It has been indicated in ancients‘ reports that more 

than 137 microbes are mastitogenic (Singh et al., 2016; Watts, 1988), mainly 

divided into different groups. These groups are contagious, environmental, 
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opportunistic pathogens, etc (De Souza, 2018; Schmidt et al., 2015). These 

pathogens are further subdivided into major and minor pathogens based on the 

source of transmission.  

The organisms that cause frequent infections fall within the contagious type of 

bacteria including S. aureus (coagulase positive staphylococci), Streptococcus 

agalactiae and the less common infections are caused by Corynebacterium bovis 

and Mycoplasma bovis ( M. bovis) (Kulkarni and Kaliwal., 2013). The 

microorganisms are primarily found on the teat surface causing udder infection on 

healthy teats. Environmental mastitis, caused by coliforms (E. coli strains) is 

opportunistic infection which is directly proportional to sanitation and hygiene 

practice ( Azerverdo et al. 2015) 

 

2.4 CONTAGIOUS PATHOGENS 

The two mains contagious mastitogens are major and minor contagious pathogens. 

The major pathogens are mainly found in infected udder quarters. They are called 

contagious because they spread from infected quarters to healthy quarters (cow to 

cow transmission). These are the kinds of pathogens that can be found in recurring 

infections. The major contagious pathogens mainly cause clinical mastitis. These 

organisms are S. aureus, Streptococcus and M. bovis  (Jones and Beiley, 2009). 

2.4.1 STAPHYLOCOCCUS GENUS  

Morphological characteristics, classification and structure of Staphylococcus  

Staphylococcus belongs to the family Micrococcaceae, organisms that are often 

found as normal human skin and nasal cavity microbiota (Gomes et al., 2016) They 

exist as non-motile, non-spore forming with about 90% found encapsulated (Harris 

et al., 2002). These bacterial species are facultative anaerobes, with diameter of 0.5-

1.5 µm and appear as grape-like clusters of gram-positive spherically shaped 

organisms when magnified.  

The genus comprises over 50 species separated into two groups based on their 

coagulase activity (Costa et al., 2013). Amongst the Staphylococcus spp. , S. 

aureus ranks top in causing diseases and food poisoning possibly because of its 

virulence factors (Figure 2.2 and Table 2.1) (Costa et al., 2013; Montville and 
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Mathews, 2008). Pereira et al. (2011) reported that S. aureus cells are able to 

invade epithelial cells of the mammary glands where they cause chronic infection. A 

large number of animal species, such as horses, pigs, dogs, cats, rabbits and poultry 

may be infected by S. aureus (Fitzgerald and Holden, 2016). 

The cellular structure of Staphylococcus is composed of surface proteins that are 

expressed for the attachment to host proteins. These proteins forms the extracellular 

matrix of the epithelia and the endothelial surfaces. A study done by Thakker et al. 

(1998) reported that over 90% of strains isolated in clinical studies possess capsular 

polysacharides. The encapsulated strains of Staphylococus spp. are more virulent 

than non-encapsulated forms. This could be because bacterial capsulation has been 

reported to help avoid phagocytosis and also facilitates adhesion to host surface 

(Figure 2.2). 

 

 

Figure 2.2: Schematic representation of Staphylococcus structure showing various virulence 

proteins (Skipworth, 2009). 
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Virulence factors of Staphylococcus species 

Broad range of Staphylococcal infections is associated with a vast number of 

virulence factors that aid in adherence to surfaces, invade the host immune system 

and produce harmful toxic effects. Some of the species develop resistance to 

antibiotics (Lowy, 1998). 

I) Staphylococcus Adherence factors (Adhesins) 

Most of surface proteins act as adhesins and in damaged tissues as fibrinogens, 

fibronectins, collagen and extracellular matrix (Merriman, 2015). These factors are 

functional in disease establishment that is usually lethal since S. aureus clump in the 

presence of antibodies against cell associated factors. To date, there have been 

about 22 Staphylococcal adhesins that have been identified and characterized. 

Staphylococcal protein A (SpA) and clumping factor (Clf A and B ) are also a typical 

member of MSCRAMM (Foster and Hook, 1998). 

II) Staphylococcal exoproteins 

All pathogenic strains of Staphylococcus spp. secretes exotoxins and enzymes such 

as nucleases, proteases, lipases, hyaluronidase and collagenases. The proteins are 

functional for the degradation of the host tissues and convert them into nutrients 

necessary for growth of bacteria (Dinges et al., 2000).  These exoproteins belong to 

a group of toxins known as pyrogenic  toxin superantigens (PTSAgs) (Lina et al., 

2004). The widely studied characteristic of this group is the super antigenecity, which 

refers to its ability to stimulate  proliferation of lymphocytes. The most important 

superantigens are known as Staphylococcal enterotoxins A and B (ETA and ETB) as 

well as toxic shock syndrome toxin-1 (TSST-1). These toxins have been implicated 

in disease including menstrual toxic shock syndrome, endorcaditis, sepsis and food 

poisoning (Spaulding et al., 2013). ETA and ETB have been implicated in 

Staphylococcal scalded skin syndrome (SSSS) (Handler and Schwartz, 2014).   

The effect that some of the exoprotein have on host cell is that the cytolytic activity 

they posses perforates the plasma membrane and cause cytolytic cell leakage 

leading to cell lysis (Foster, 2005). The exoproteins that posses such activity include 

Panton-Valentine leukocydin as well as hemolysins (Kaneko and Kamio, 2004). 
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Alpha hemolysin is permeable through the eukaryotic cell membrane and once 

passed through, it oligomerize into a b-barrel that perforates the membrane and 

causes osmotic cytolysis. The cytolysis particullarly occurs on the human platelet 

and monocytic cells (Craven et al., 2009).The functions of various virulent 

exoproteins are summarized in Table 2.1. 

Table 2.1: The virulence factors and their function (Costa et al., 2013) 

Virulence factors Putative function 

Cell surface factors: 

Staphylococcal protein (SpA) 

 

Collagen binding protein 

Clumping factor protein          (Clfp A and 

Clfp B) 

 

Bind to IgG, interfering with opsonization 

and phagocytosis 

Adherence to collagenous tissues and 

cartilage 

Mediate clumping and adherance to 

fibrinogenin the presence of fibronectin 

Secreted factors:  

Staphylococcal enterotoxins (SEA, A, B, C, 

D, E, G) 

Toxic shock syndrome 

 

 

Massive activation of T cells and antigen 

presenting cells 

Induce lysis on leukocytes 
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Epidemiology of Staphylococcus spp. 

There is a wide distribution of Staphylococcus spp. in nature that is present in about 

25-30% of normal individuals in the anterior nares and skin, of which 50% are 

intermittent carriers (Grundmann et al., 2006). Bacterial colonization is a risk factor 

for subsequent infection caused by the colonizing clone (Von Eiff et al., 2001). In 

various parts of the world reports, Staphylococcus spp. is isolated from domestic 

animals (pets), wild animals and livestock. In some parts of Europe, the zoonotic risk 

associated with the emerging burden of livestock-associated MRSA is high (Köck et 

al., 2010). This trend has been recognised in Africa in different age groups (Butaye 

et al., 2016).  

Coagulase negative Staphylococcus spp. 

The importance of Coagulase negative Staphylococcus group is that they are 

indicators for intramammary infections in cows. In adequately mastitis controlled 

herd, minor organism can still be found causing opportunistic mastitis. They are 

increasingly found incriminated for more than 30% of subclinical and 20% of clinical 

cases (Radostits et al., 2007). Coagulase negative Staphylococci are composed of 

over 30 typical opportunistic species, representing one of the major nosocomial 

pathogens. These organisms have a substantial impact on human life and health.  

Coagulase-negative Staphylococci prevalence have increased in many countries 

and are now predominant emerging mastitis pathogens over S. aureus in most 

countries (Gomes and Henriques, 2016; Tremblay et al., 2013). Staphylococcus 

epidermidis is the most crucial species among the coagulase negative species. It 

has been implicated in infections associated with prosthetic devices and catheters. 

Coagulase negative Staphylococci possess fewer virulence properties as compared 

to S. aureus, thus presents different disease spectrum (Cunha et al., 2004). 

Coagulase positive Staphylococci  

Coagulase-positive Staphylococci (CPS) are common commensal microorganisms 

and opportunistic pathogens in humans and animals. Several reports have described 

zoonotic transmission of methicillin Resistant Staphylococcus aureus (MRSA) strains 

between human and animals they work closely with (Schmidt et al., 2015; Torres et 

al., 2010). The α and β hemolysins are the important factors that are commonly 

linked to the pathogenesis of Staphylococcus (Linehan et al., 2003). In S. aureus, 
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the accessory gene regulator also has a down-regulating function that yields 

determinants of cell- associated virulence in a density-dependent pattern (Lyon et 

al., 2000).  

 

2.5 ENVIRONMENTAL PATHOGENS 

Environmental pathogens are sourced from the environment and transferred to the 

cow not from the infected cow to another (Radostis et al., 2000). They are the most 

ubiquitous pathogens that even the well-controlled herd may still encounter in high 

incidences of clinical mastitis caused by environmental pathogens. Poorly designed 

over-crowded unhygienic bedding with zero grazing systems is one of the most 

important factors that favours the growth of these pathogens. The preventive 

strategies such as teat dipping after milking and dry cow therapy are unable to 

control environmental pathogens (Pekana et al., 2016).  

 

2.5.1 ESCHERICHIA COLI  

Morphological characteristics, classification and structure of E. coli 

Escherichia coli belong to gram-negative rod that ranges about 2.0 μm long and 

0.25–1.0 μm in diameter. E. coli is a common humans and animals gut flora. Species 

that are flagellated are usually mobile and those that are non-flagellated are not. 

Figure 2.3 shows typical E. coli with characteristic features. 

 

Figure 2.3: Morphology of E. coli (online source) 

https://en.wikipedia.org/wiki/Micrometers
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Epidemiology of E. coli 

Coliforms are the major environmental pathogens. They belong to the family 

Enterobactericiae, consisting of gram-negative rod-like, lactose fermenting bacteria.  

Coliforms are natural inhabitants of the colon flora. Approximately 20% of clinical 

mastitis cases caused by E. coli (Sandholm et al. 1995). The course of the infection 

depends on the host response rather than the virulence factors of the pathogenic 

strains (Bramley, 1991). Isolation of the E. coli strains is often not possible in 

mastitis cases since they release endotoxins once they induce cells to undergo 

apoptosis or necrosis. 

E. coli pathogenic pathotypes classified based on virulence 

 Escherichia coli pathogenic strains are able to cause various diseases in organisms. 

Some strains exist with the ability of colonizing ruminants that produce food without 

showing any signs and symptoms, and the may be recognised as a public threat 

within the farm community and general public. Nataro and Kaper (1998) categorized 

E. coli pathogens into five major pathotypes based on their virulence factors. The 

phathothotypes are: Enteroaggregative E. coli (EAEC), Enterohaemorrhagic E. coli 

(EHEC), Enteroinvasive E. Coli (EIEC), Enterotoxigenic E. coli (ETEC), 

Enteropathogenic E. coli (EPEC) and the fifth pathotype is the Diffuse Adhering E. 

coli (DAEC) which is proposed recently and not significantly established. Some 

studies report Verotoxigenic E. coli (VTEC) among the pathogenic pathotypes which 

include a small proportion of O157: H7 serotype (Nguyen and Spendario, 2012; 

Msolo et al., 2016). 

VI. Enterotoxigenic E. coli (ETEC) 

The most commonly known diarhoeagenic E. coli is the Enterotoxigenic E. coli 

(ETEC). Its virulence is associated with secretion of heat labile (LT) and heat stable 

(HS) enterotoxins which triggers the gastrointestinal mucosa causing secretion of 

fluid responsible for diarrhea (Qadri et al., 2005). The transmission of ETEC is 

mostly through ingestion food and water of contaminated with fecal (Centers   for   

Disease   Control   and   Prevention, 2005). It has been observed that this 

pathotype rarely cause recurrent infection since the host develop immunity towards 

successive encounters (Walker and Black, 2010). 
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VII.  Vero toxigenic producing E. coli (VTEC) / Shiga producing E. coli 

(STEC) 

The Verotoxigenic E. coli (VTEC), commonly known as Shiga toxin-producing E. coli 

(STEC) is the major cause of foodborne infections transmitted to humans primarily  

through consumption of contaminated foods such as raw milk, raw or undercooked 

ground meat profducts, and contaminated raw vegetables (WHO, 2015). The most 

prevalent animal associated serotype is the serotype 0157: H7. It has been 

implicated in numerous outbreak cases reported worldwide. The affected populaces 

were highly concerned with such outbreaks (Nguyen and Sperandio, 2012). The 

STEC or enterohaemorrhagic term came about because of its ability to induce fatal 

human infections known as the hemorrhagic colitis and the hemolytic uremic 

syndrome (Orden et al., 2008).  

Literature revealed the discovery of VTEC dating back to the late 1970s. Since the 

discovery of VTEC in the 1970s, various studies have reported been reporting 

different serotypes isolated from humans and animals and specifically around 380 

isolates in study conducted by Nguyen and Sperandio (2012) have been reported 

with serotype 0157: H7. Symptoms of STEC infections can vary, but mostly incude 

severe diarrhoea (often bloody and accompanied with little or no fever), stomach 

cramps and vomiting. 

VIII.  Enteropathogenic E. coli (EPEC) 

Enteropathogenic E. coli strain has been associated with infants‘ diarrhea in the 

developing countries (Olesen, 2005). The strain is identified by the gene eaeA and 

bfpA which are intimin and bundle-forming pilli inducer and promoter genes 

functional for adhesion and wiping out the intestinal microvilli lesions (Alizade et al., 

2014). Strain isolated from animals differs from strain recovered from animals in that 

it lacks bundle-forming pilli (Cortés et al., 2005). Most cases related with EPEC are 

confused with E. coli infections because the infection onset is not distinct. The 

symptoms include watery diarrhea, bloody, vomiting and rarely fever (Lee et al., 

2012). 

IX.  Enteroaggregative E. coli (EAEC)  

Enteroaggregative E. coli (EAEC) strain is associated with severely persistent 

diarrheal infections in children from developing countries (Okhuysen and Dupont, 
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2010). Most commonly reported symptoms of foodborne illness associated with this 

pathotype are watery diarrhea with or without blood, vomiting and low grade fever. 

The literature does not well describe the role and virulence factors of EAEC strain as 

well as the EIEC pathotypes, however studies report mainly on (Puño-Sarmiento et 

al., 2013). 

X.  Enteroinvasive E. coli (EIEC) 

Enteroinvasive E. coli (EIEC) has similar biochemical characteristics with Shigella. 

The two are usually confused because they both cause mild diarrhea or dysentery 

and it have been suggested that they share common ancestors (Liu et al., 2013; 

Aribam et al., 2013). Infection is initiated by producing several outer membrane 

proteins that service the pathogen for binding and invading the intestinal wall and 

causing diarrhea that often resemble that caused by ETEC (Prats and Llovet, 

1995).  

 

2.6 PATHOGENESIS 

Animals are regarded as reservoir of virulent E. coli pathogens and serves as 

carriers of diseases to humans. Sometimes transmission may be via foods derived 

from farm animals due to fecal contamination and this is phenomenal in developing 

countries (Alpers et al., 2009). The larger global population contact pathogen via 

global distribution of food and once an outbreak occurs, it is impossible to trace and 

control the foodborne pathogen (Werber et al., 2012). 

Pathogenesis of S. aureus in intramammary infection was scrutinized in detail when 

Staphylococcus comes in direct contact with the teat. The pathogen passes through 

the teat channel and establishes intramammary infections (Ndyamukama, 2016). 

Both strain-virulence and host condition are determined by the severity of the 

condition. Experiments with experimentally induced infections demonstrated that 

very little colony forming units (CFU) is necessary to induce an infection. Healthy 

mammary glands are highly sensitive to S. aureus infection (Rainard et al., 2018).  

The early stage of infection can contribute to infection by other strains adhering to 

the intact epithelia and spread across the cisterns of the canals (Rainard et al., 

2018). Only an intramammary epithelium, which causes an inflammatory response to 
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the tissue and lumen, has thus far been characterized when they reach a threshold 

concentration. The direct interaction of bacteria with the epithelium, also released 

and secreted bacterial products such as pathogen-associated molecular patterns 

(MAMPs) that enhances bacterium detection by the immune system (Lebeer, 2010).  

The host and infecting strain are likely to be dependent on the incubation period, 

epithelium of cisterns and ducts and then alveoli will be damaged by growing 

Staphylococci (Rainard et al., 2018). The epithelium lining is wounded by 

haemolysins and enzymes. Staphylococci may then use their numerous adhesins to 

adhere to the basal membrane and the extracellular matrix (Chavakis, 2002).  

There can be a number of reactions at the initial clinical stage of an acute clinical 

phase in which host body temperature and anorexia are elevated. Figure 2.4 shows 

manifestation of bacteria invading the teat canal and the mammary glands. The 

bacteria adhering to the interior tissue lining of the mammary gland is prevented from 

being eroded during milking (I A-C). Bacteria then secrete virulence factors that 

inflame and damage the mammary glands (Kulkarni and Kaliwal, 2013). The 

produced toxins increase permeability of the blood vessels promoting the adherence 

of polymorphonuclear neutrophilic leukocytes (PMN) to the infection site. 

Polymorphonuclear neutrophilic leukocytes may phagocytose the bacteria or may be 

destroyed by the invading organism (Sharma and Jeong., 2013).  Both scenarios 

result in secretion of other substances that induce vasodilation of blood vessel, 

thereby increasing the number of PMN that allows blood clotting factors to settle into 

the infection area. The influx of these substances constitutes the inflammatory 

response (National Mastitis Council, 1996). The secretary glands function and 

potential milk production decrease once mammary stomal and parenchymal tissues 

begin, and the effect is irreversible (Sharma and Jeong, 2013).  
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Figure 2.4: Schematic representation of the process of mastitis and subsequent damage to 

the mammary gland (Sharma and Jeong, 2013). [I] Bacterial evade the surface of 

mammary gland (udder, A) gain entrance and adhere onto the teat canal (B). Onset of the 

disease when environment is conducive within the mammary gland (C), [II] A diagram of 

normal mammary gland without any inframammary infection, [III] After disease onset, cellular 

defence mechanism is induced and PMN cells proliferate and influx the into the infected site 

as well as release toxins that cause fibrosis and necrosis of the mammary tissues (A to F), 

[IV] mastitis affected teats. 

 

2.7 HOST IMMUNE RESPONSE TO STAPHYLOCOCCUS AND E. 

COLI PATHOGEN 

Neutrophils protects the host against S. aureus infection by sensing pathogen entry 

and replication and destroy tissues that secrete inflammatory signals 

(chemoattractants and cytokines). Immune cells interact with Staphylococcal 

products via Toll-like receptors and G-protein combined receptors, while cytokines 

activate immune receptors (Thammavongsa et al., 2015 Spaan et al., 2013). 

Staphylococcus aureus secretes several proteins that interrupts the deposition of 

complement on the surface of the bacteria. Complement factor 3 (C3) is cleaved by 

aureolysin (Zn-dependent metalloprotease) to generate functionally active C3a and 
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C3b. Complement factors I (fI) and H (fH) degrade or bind C3b, preventing its 

accretion on the cell surface. Different S. aureus lineages are associated with this 

polymorphic aureolysin gene (aur) (Laarman, 2011). 

 

2.8 LABORATORY DIAGNOSIS OF MASTITIS 

Supreme mastitis infections cases (new) are experienced during the first 10 days 

and last 2 weeks of the dry period. Culture method has remained the golden 

standard in diagnosis of illnesses (Reither et al., 2007). The only challenge in 

culture methods is selecting pathogenic strain from non-pathogenic strain. PCR 

assays may be conducted to detect E. coli based on amplification of specific genes 

(Bekal et al., 2008). 

Majority of clinical mastitis cases appears immediately after calving (Baillargeon 

and LeBlanc, 2010). Subclinical mastitis detection is not apparent because the milk 

appears normal but contain elevated somatic cell count and potential presence of 

pathogen in milk (Sharma et al., 2010).  

The methods used to analyse and count Staphylococcus depend on the cause for 

testing the food and also on the history of the test material (Cowan and steel, 2004). 

Culture method may be done for diagnosis where Baird-parker or Mannitol salt agar 

is used for isolation to provide suggestive evidence by fermentation of Mannitol 

(Eley, 1992).  

Baird-Parker agar, lysostaphin sensitivity, coagulase, thermo-nuclease production, 

glucose and mannitol fermentation can be conducted on enterotoxigenic and non-

enterotoxigenic strains of S. aureus to study their colonial morphology (Argaw and 

Addis, 2015). Definitive identification using biochemical and enzyme based tests 

can be used for samples sent to the laboratory. Furthermore, for differentiation at 

species level, catalase, coagulase, deoxynuclease (DNAse) as well as phosphatase 

tests can be done (Mathanraj, 2009). In some cases, phage typing can also be done 

(Roberts and Chambers, 2005). 
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2.8.1 CULTURE BASED AND BIOCHEMICAL TESTS  

The traditional identification of bacteria in the clinical microbiology laboratory is 

carried out by isolating microorganism on agar and analysed for phenotypic 

characteristics (De Souza, 2018).  For selective growth of the Staphylococcus 

genus, culture media such as Baird-Parker agar (BPA), Mannitol salt agar (MSA) 

and blood agar can be used. Baird parker agar comprises of lithium chloride, 

potassium tellurite and egg yolk that selects Staphylococcus by reducing tellurite that 

result to formation of black colonies (De Souza, 2018).  

On blood agar, it shows haemolytic characteristic and grows as yellow colonies on 

nutrient agar (Mathanraj, 2009). When S. aureus is cultivated on mannitol salt agar, 

it ferments the mannitol and produces yellow colonies (Kateete et al., 2010). This 

particular yellow pigment is called staphyloxanthin and is a carotenoid that is 

regarded as a virulence factor. The synthesis of this carotenoid helps the bacterial 

cell to evade the destruction by the host immune reactive oxygen (Chambers and 

Deleo, 2009). 

The identification of Staphylococcus spp. in milk samples has been shown to 

increase by freezing, thawing and incubation before plating or centrifugation and 

cultivation of sediments (Artursson et al., 2010). To differentiate the strains, 

coagulase positive Staphylococcal strain produce lipase and lecithinase which break 

down lipids and lecithin in the egg yolk the resultant is a formation of dual halo (De 

Souza, 2018). Mannitol salt agar selects Staphylococcus due to the presence of 

7.5% sodium hydroxide (NaCl) and other bacteria are inhibited (De Souza, 2018).   

To determine the cell purity, typical Staphylococcus colonies are subjected to gram 

staining for observation of their morphology and specific stain. When the 

morphological characteristics are confirmed catalase and coagulase tests can be 

done to identify Staphylococcus aureus (S. aureus) and other coagulase positive 

species (De Souza, 2018). Staphylococcus aureus is catalase positive, oxidative 

negative also hydrolyses urea and reduces nitrates to nitrites.  

2.8.2 AUTOMATED COMMERCIAL KITS  

Automated tests and commercial kits based on miniature biochemical experiments 

are also perfected for the detection and isolation in research laboratories to identify 
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and isolate Staphylococcus spp. (De Souza, 2018).  The commercial API staph 

system kit (BioMérieux, Marcy-I‘Etoile, France) consist of 19 dehydrated miniature 

tests (Figure 2.5) that are inoculated for microbial resuspension. The incubation for 

biochemical tests takes 18- 24 hour at 37ºC (De Souza, 2018).  The microorganisms 

are identified from the database by generating a seven-digit profile number following 

manufacture instructions.  

 

 

Figure 2.5: API 20E test system (Adapted online) (Beckman Coulter, California, United 

States) panels contains 27 miniature biochemical tests for conventional identification 

(Figure 2.6) of which 18 are used for identification of Staphylococcus spp. The 

panels are read visually or automatically after incubation for 24- 48 hours. A six-digit 

code number generated by microscan walk/ away system is used to identify the 

microorganism in the database. (De Souza, 2018).  
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Figure 2.6: MicroScan ID/AST panels (Accessed online) 

Another automated system-VITEK® 1 system consist of 30 microcavities of which 28 

are the actual/ experimental test and the other 2 are the control tests. The cavities 

contain references for identification of Staphylococcus spp. The identification is 

achieved by insertion of a card filled with a suspension of the microorganism 

prepared in saline and sealed with the VITEK® filling/sealing module (De Souza, 

2018). Analysis is done after 10-13 hours. Limitation that has been noticed to VITEK 

1 is that it failed to identify coagulase negative species which led to evolution of the 

system to VITEK® 2 which automatically performs all bacterial identification (Ferreira 

et al., 2012). The VITEK® 2 automated microbiology system uses growth-based 

technology. The system is compacted into three formats (VITEK® 2 compact, VITEK 

2, and VITEK® 2 XL) has different automation. The VITEK® 2 compact system is 

shown on Figure 2.7a. All three systems have the same colimetric reagent cards, 

which are automatically incubated and interpreted. The identification card that the 
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VITEK® 2 system uses are called reagent card and they are four identification 

(Figure 2.7b). Each card contains 64 wells evaluating different metabolic activities, 

including acidity, alkanity, hydrolysis and growth in the presence of inhibitors. 

(Murray et al., 2007). 

 

                         

Figure 2.7: a) VITEK 2 Compact Instrument and Workstation b) VITEK 2 GN Colorimetric 

Identification Card (Pincus, 2006). 

 

2.8.3 MATRIX ASSISTED LASER DESORPTION/ IONIZATION TIME OF 

FLIGHT SPECTROMETER (MALDI-TOF) 

Recently microorganisms are identified using techniques of protein profile analysis. 

Matrix assisted laser desorption/Ionization time of flight mass spectrometry (MALDI-

TOF MS) promise to be a new technology for bacterial identification (De Souza, 

2018). Results produced by MALDI-TOF MS have shown high rates of agreement 

between the reference identification techniques such as PCR and sequencing 

(Dubois et al., 2010).  

The method is based on pouring the sample onto a conducive metal plate with a 

matrix (De Souza, 2018). The desorbed and ionized molecules are accelerated 

through an electric field and enter a metal tube submitted to the vacuum (the travel 

tube through which the molecule pass) before they arrive to the detector (De Souza, 
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2018). Small ions (m/z) migrate rapidly through the flight tube than bigger 

ionsDepending on the sample, the time of arrival of the detector varies, producing va

rious peaks and mass spectra according to their m / z ratio. The results are 

transferred to a graph, which gives multiple peaks and obtains a particular graph for 

each bacterial species (De Souza, 2018). 

Results are translated fast in a computerized database to compare sample spectrum 

with database. (De Souza, 2018).The available commercial systems are MALDI 

Biotyper (Bruker Daltonics) and VITEK MS (BioMérieux, Marcy-I‘Etoile, France) 

(Figure 2.8). Rapidity of the systems is an advantage but the cost limits its use. It 

has been predicted that since the use of MALDI-TOF MS has more economical 

advantages (rapid results, labour, uncomplicated, requires less training, and the 

results are more easily interpreted) in comparison to traditional methods, the 

technology might replace traditional methods of bacterial identification (De Souza, 

2018). 

 

     

Figure 2.8: The MALDI-TOF MS systems (adapted online) 
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2.9 PREVENTION AND CONTROL OF MASTITIS 

To manage mastitis, it is essential to decrease exposure of the teat to potential 

pathogens or by increasing resistance of dairy animals to the infection (Kulkarni and 

Kaliwal, 2013). It is impossible to entirely eliminate mastitis from a herd,  but it can 

be minimised through comprehensive husbandry practices and sanitation, post-

milking teat dipping, treatment during non-lactating periods, and culling of chronically 

infected cows (Kulkarni and Kaliwal, 2013; Kurjogi and Kaliwal, 2011; Khan and 

Khan, 2006). The hygienic approach of washing hands with soap and water, 

washing teats and udder in sanitizing solution was also suggested as a control 

measure (Jones, 2006).  

The washing step is followed by thorough drying of the teats and udder with 

individual paper towels then dipping teats in an effective germicidal teat dip 

(Kulkarni and Kaliwal, 2013). About 30 seconds of contact time is allowed before 

wiping off the teat dip with an clean towels and thoroughly scrubbing the teat end 

with a cotton swab soaked in alcohol. In cases where in all four quarters are being 

treated, cleaning starts from the farthest teat toward the closest (Gooder, 2014). 

Commercial antibiotic products are used in single dose containers formulated for 

intramammary infusion and lastly the teats are dipped in an effective germicidal teat 

dip after treatment (Kulkarni and Kaliwal 2013). 

 

2.10 TREATMENT OF MASTITIS 

In South Africa, animal producers have unrestricted access to 12 of 22 prescriptions 

free FDA approved registered medicines, whereas the remaining 10 intramammary 

drugs are restricted to veterinary clinics usage (Karzis et al., 2016). The prescription 

free antibiotics can be improperly used and may contribute to increase in antibiotic 

resistant strain emergence and/or persistence in cows, humans or both 

(Henton et al., 2011; Burgos et al., 2005). Research studies have indicated that the 

resistance of Staphylococcus spp. to antibiotic may be improved through diet 

(increasing vitamin E, selenium, vitamin A and β-carotene), genetics, and to a lesser 

extent, vaccination (Mathew et al., 2007). 
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The economic effect of mastitis as a chronic disease in dairy farming needs further 

study into the development of new antimicrobial therapy technologies. Increasing 

concern for human health, mainly due to the emergence of bacteria with resistance, 

also necessitates the production of alternative anti-effective agents (Pieterse and 

Todorov, 2010). Bacteriocins can be seen as an alternative and provide some 

advantages over traditional antibiotic therapy (Kulkarni and Kaliwal, 2013; Dos 

Santos et al., 2005). 

Penicillin can be used for the treatment of Staphylococcal infection if the strain has 

not developed antibiotic resistance mechanism. An alternative may be ampicillin, but 

the choice of antibiotic depends on the type and severity of the infection (Stewart 

and Costerton, 2001). Drug-resistant pattern can also determine the antibiotics to 

be used: Cefazolin, Cefuroxime, Vancomycin, Clindamycin and Rifampin have been 

used. Some strains such as MRSA are resistant to methicillin and several β-lactam 

antibiotics including Penicillin due to the production of Penicillinase which inactivates 

the antibiotic (Boyce et al., 2005). The gene that is responsible for MRSA resistance 

is the mecA gene that encodes Penicillin binding protein 2 (PBP2a) (Ehlert, 1999).  

 

2.11 ANTIMICROBIAL SUSCEPTIBILITY TESTING  

The most commonly used methods of antimicrobial detection include broth 

microdulutio or rapid automated instrument methods that use commercially available 

products and equipment, as well as methods of disk diffusion (Reller et al., 2009).  

The reference methods recommended by the Clinical Laboratory Institute (CLSI) for 

detecting resistance in Staphylococcus spp. include the determination of minimum 

inhibitory concentrations (MICs) by method of Agar or broth dilution and by the disc 

diffusion method (Wayne, 2015). 

There are also several automated systems available for the Staphylococcus spp. 

antimicrobial susceptibility test. The largest market is shared by two products: Vitek 

(BioMérieux, Marcy-I‘Etoile, France) and Microscan (Beckman Coulter, California, 

United States). VITEK® 2 technology represents a smarter way to automate ID/AST 

testing. It provides rapid, automatic, standardised validation of every test result with 

next generation expert software. VITEK® 2 is a unique system that uses a 
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phenotypic expert system instead of commonly used rules-based expert systems 

which are incapable of recognizing unusual results (i.e. mixed cultures) and new 

resistance phenotypes for which no rules exist (Winstanley et al., 2014). 

 

2.11.1 BROTH DILUTION TESTS 

The earliest tool for measuring antimicrobial resistance was the microbroth or tube di

lution test (Figure 2.9) described on the study done by Ericson and Sherris (1971). 

The procedure encompasses preparing the two-fold dilutions of antibiotics in a broth 

then dispensed in test tubes inoculated with standardized bacterial suspension of 

1x105 CFU/ml. The incubation occurs at 35ºC and the tubes are visualised for 

potential bacterial growth shown by turbidity. The minimum inhibitory concentration 

(MIC) is represented by the lowest concentration of antibiotic that inhibited bacterial 

growth. The MIC results are quantitative, which serves as an advantage to the 

technique. But the technique also has its limitations in that it mostly involves manual 

preparations of antibiotics for each individual test which is work intensive. As an 

addition, errors may possibly occur during the preparations of antibiotic solutions 

(Murray et al., 2007). 

 

Figure 2.9: The Broth Dilution Method (online web) 

2.11.2 ANTIMICROBIAL GRADIENT METHOD 

The antimicrobial gradient method blends dilution methods theory with diffusion 

methods principle in order to determine the Minimum Inhibitory Concentrations (MIC) 
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value (Varley et al., 2009). It is based on the possibility of creating the antimicrobial 

agent concetration gradient measured in the agar medium. The E-test (BioMérieux, 

Marcy-I‘Etoile, France) is a commercial version of this technique. Briefly, a strip 

impregnated with an increasing concentration gradient of the antimicrobial agent 

from one end to the other is placed on the agar surface, previously inoculated with 

the microorganism to be tested. E-tests (Figure 2.10) are calibrated to give 

performance substantially equivalent to the US CLSI reference methods and the 

MIC. The BSAC comparison methods vary from CLSI, in particular with the test 

media and the MIC breakpoints used to measure susceptibility. It is more practical to 

use similar gradient test conditions as used by BSAC methods in routine tests 

(Mushtaq et al., 2010). 

 

Figure 2.10: Etest®/Biomerieux test (Adapted online) 

 

3 DISK DIFFUSION TEST 

Diffusion techniques were discovered in the same year the broth dilution was 

discovered. In the year 1959 Kirby–Bauer method was introduced. This method uses 

paper discs impregnated with various defined concentrations of different antibiotics 

to determine drug resistance. The impregnated discs are placed onto the surface of 

the agar. After incubation (16–24 h at 35 °C) zones of growth inhibition around each 

of the antibiotic discs are measured to the nearest millimetre (Figure 2.11). A clear 

circular zone of no growth in the immediate vicinity of a disc indicates susceptibility 
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to that antimicrobial. The size of the zone can be compared to the MIC using 

reference tables, and results can be reported as the organism is susceptible (S), 

intermediate (I) or resistant (R) (Vijayakumar et al., 2016). This method has 

relatively low cost. In contrast its limitation is that it is not suitable for slow and 

anaerobically growing microorganisms. To add more, as this test relies on proper 

diffusion, the molecular weight of drug molecules is an important factor. Also, false 

results due to imperfections and unevenness of the agar plates if diffusion is possibly 

affected. The fact that the test only provides qualitative results and no quantitative 

MIC values, is a major drawback (Mushtaq et al., 2010) 

 

 

Figure 2.11: Disc Diffusion Method (Accessed from online web) 

2.12 POLYMERASE CHAIN REACTION (PCR) METHOD 

2.12.1 MULTIPLEX PCR   

Multiplex PCR (m-PCR) is the simultaneous detection of multiple genome targets in 

a single reaction using different primers specific for each target.  A m-PCR protocol 

was designed by Rocchetti (2014) for direct detection of 

a wide range of Staphylococcus spp. on blood cultures. The method was found to be 

sensitive, specific, and fast, and showed good agreement with the phenotypic results 

(De Souza, 2018).  The principle involves the primer mediated DNA amplification 

based on the ability of DNA polymerase to synthesize a new strand of DNA 

complementary to the template strand (Demidov, 2002). Amplification cannot occur 

without primers because they are required for DNA polymerase to add a nucleotide 
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to their pre-existing 3‘ OH group. More nucleotides are added when DNA 

polymerase elongate its 3‘ end to generate an extended region of the double 

stranded DNA (Demidov, 2002). 

 

2.12.2 REAL-TIME PCR 

Real-time PCR has been used to classify fastidious pathogens which were 

historically examined by conventional PCR. As the technique is now more widely 

available and more user friendly, it has been applied to investigating commonly 

found bacteria like S. aureus (De Souza, 2018). Studies have showed that real-time 

PCR is an effective and rapid tool for differentiating S. aureus from other coagulase 

positive Staphylococci and for identifying negative coagulase Staphylococci (Skow 

et al., 2005). 

 

2.12.3 SPA LOCUS TYPING 

The spa typing approach is based on the sequencing of the protein A gene (spa) 

polymorphic X region present in all strains of S. aureus (Hallin et al., 2009). This 

technique integrates sequence knowledge from several household genes to 

compare strains close to the multilocus enzyme electrophoresis (MLEE) (Shopsin et 

al., 1999). 
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CHAPTER 3 

 MATERIALS AND METHODS 

3.1 ETHICAL CLEARANCE  

This study was approved by University of Venda Research and Ethics Committee. 

Ethical clearance was obtained (SMNS/18/MBY/32/0712) and permission to conduct 

the study within the farm premises was sought from the Farm managers/owners and 

a written consent form was granted (Appendices A). 

 

3.2 STUDY SITE AND POPULATION 

The study was conducted in the Limpopo dairy processing company in 

Madombidzha, a few kilometres from Makhado. It is the biggest enterprise in the 

Limpopo Province that has tons of dairy products supplied across the Province as 

well as to the neighbouring countries like Zimbabwe. The farm is situated about 80 

km from the University of Venda in Thohoyandou (Figure 3.1). There are 2 

operational divisions, manufacturing and production of dairy products as well as fruit 

beverages with a production capacity of approximately 50 000 litres of products per 

day. 

 

 

 

 

 

 

 

Figure 3.1: Geographical location of Vhembe district showing the area of the study 
(Vhembe District profile, 2017) 
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The Limpopo dairy‘s herd consist of more than 1000 dairy cattle which are milked 

daily divided in 3 shifts (morning shift, afternoon shift and evening shift). Two 

different breeds are milked, 3\4 Holstein and 1\4 Jersey breed. The study population 

is the lactating cows with or without observable signs and symptoms of mastitis.  

 

3.3 SURVEY DATA COLLECTION  

Data regarding different potential risk were obtained from the farm records and 

captured on to the questionnaires (Appendices B). The purpose of the 

questionnaire was to generate basic information on herd management system, 

nutrition, hygienic practices, disease detection, housing, and prevention, and control 

actions. 

 

3.4  PHYSICAL EXAMINATION    

For physical detection of mastitis, signs observed were clots and blood in milk, as 

well as the cow‘s temperature. The cow udder‘s were examined by visual 

examination and palpation to detect possible fibrosis, cardinal signs of inflammation, 

visible injury, tick infestation and swelling of the supramammary lymph nodes. During 

examination, attention was given to inflammatory signs, the size and consistency of 

the udder quarters as described by Radostits et al. (1994). Examination of milk for 

somatic cells was done as described by Philpot and Nickerson (1999). The cows 

that were diagnosed with mastitis were given antibiotic treatment if were on state 

severe state. 

 

3.5  SAMPLE COLLECTION 

Sample collection was done on lactating cows, except those having received 

antibiotics in the 3 days before sampling. The sample collection was done as per 

National Mastitis Council (NMC) instructions (2006) prior to routine milking. To 

reduce contamination of the teat ends during sample collection, the teats close to the 

personnel were sampled. Approximately 10 ml of milk was collected into a sterile 

screw capped tubes after udder preparation by farm personnel. 
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The samples were then transported in an iced cooler to the microbiology laboratory 

at University of Venda where they were stored at 4° C for a maximum of 24 hours 

until inoculation on a standard bacteriological media. 

 

3.6 SAMPLE SCREENING BY CARLIFONIA MASTITIS TEST 

Screening for clinical and sub-clinical mastitis was done using California mastitis test 

(CMT) as described by NMC (1990), Quinn et al. (2002) and Zeryehun and Abera 

(2017). Briefly, the udder was washed with water and antiseptics and dried with 

clean paper towel. Two millilitre (2 ml) of milk was drawn into the beaker and an 

estimated equal volume of California mastitis test reagent (4% Sodium hydroxide 

(NaOH) in distilled water and 1% bromothymol blue) was put in the 4 cups of the 

CMT paddle. Equal amount of milk from the respective teats of the cow was added 

and gently mixed by rotating the paddle in a horizontal plane for 10 seconds. The 

reaction developed almost immediately with milk containing a high concentration of 

somatic cells. The peak of reaction was obtained within 10 seconds and test results 

were scored. The results were read as per manufactures recommendation and were 

scored based on the amount of thickness of gel formed as described by Hoque et al. 

(2015). The CMT results were scored as 0 (negative), 1 trace, 2 (weak positive) and 

3 (strong positive) based on gel formation. The score of 1 and 2 were considered 

indicators of subclinical mastitis and 3 for clinical mastitis. Cows were considered 

positive for CMT, when at least one-quarter turned out positive. A herd was 

considered positive for CMT, when at least one cow in a herd is tested positive with 

CMT. The total number of blind teats as well as those with clinical infection was 

subtracted from the total number of teats and the difference was used to calculate 

the prevalence of subclinical mastitis 

 

3.7 MICROBIAL ANALYSIS 

3.7.1  BACTERIAL ISOLATION  

The collected milk samples, upon arrival in the laboratory were shaken and 

inoculated directly onto the different media without enrichment. Bacterial isolation 

was done as described by Zeryehun and Abera (2017). About 200 µl of milk sample 
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was plated on Mannitol salt agar (MSA) and MacConkey agar (MAC) (Davies 

Diagnostics (Pty) Ltd, United Kingdom) and incubated at 37ºC. The plates were 

checked for growth after 24 hours, 48 hours, and 72 hours to monitor the slow 

growing bacteria. The plates were examined for growth, morphological features, 

such as colony size, shape, and colour. Bacterial identification of bacteria on primary 

culture was made based on growth characteristics. Colonies that appeared yellow 

with zones on the media were presumed as S. aureus (mannitol fermenters) and 

coagulase negative Staphylococcus spp. produce small pink or red colonies with no 

colour change to the MSA medium. Isolates that appeared pink on MAC and 

colourless with halo were considered as E. coli.  E. coli isolates were further 

confirmed by API biochemical tests and catalase and coagulase biochemical tests 

were used to confirm S. aureus isolates. Pure cultures were prepared through sub 

culturing and incubation on nutrient agar base (Davies Diagnostics (Pty) Ltd, United 

Kingdom) for further identification. 

 

3.7.2 IDENTIFICATION OF STAPHYLOCOCCUS SPP. ISOLATES BY 
VITEK®   2 SYSTEM  

For secondary identification of Staphylococcus spp. isolates, purified presumptive 

isolates were confirmed using VITEK® 2 Systems, software version 08.01 

(BioMérieux, Marcy-l' Étoile, France) as described by Layer et al. (2006) with slight 

modification. The modification was that all strains stored at −80°C were subcultured 

overnight on Mueller hinton agar before blind testing. The procedures recommended 

by the manufacturer were strictly followed. Strains were taken out of the freezer, 

grown on Colombia agar with 5% sheep red blood cells for 16 to 24 h at 37°C, re-

plated, and grown again for 16 to 24 hours at 37 37°C just before testing. Bacterial 

suspensions were prepared for both indentification cards by emulsifying bacterial 

isolates in 0.45% saline equal to a 0.5 McFarland turbidity standard with a VITEK® 2 

instrument (DensiChek; BioMérieux, Marcy-I‘Etoile, France) ( software version 4.01). 

Seven different categories of results express specificity in the VITEK® 2 system: 

excellent identification, very good identification, good identification, appropriate 

identification. Each of these four groups only shows one identifying result) low 

discrimination (More than one identification results is obtained, whereupon the 

program suggest carrying out additional tests such as oxidase, hemolysis, 
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pigmentation indole and motility tests to obtain the correct identification), 

inconclusive identification and unidentified identification. 

3.8 MOLECULAR CHARACTERIZATION OF THE ISOLATES 

3.8.1  CHARACTERIZATION OF STAPHYLOCCUS SPP. 

I. DNA extraction of Staphylococcus spp.  

DNA samples were extracted from Staphylococcus isolates using boiling method as 

reported by Englen and Kelley (2000) with some modifications. About 6 colonies 

were picked from plates and emulsified into 2 ml brain heart infusion and left for 

incubation overnight at 37°C. About 500 μl of overnight culture was transferred to a 

new 2 ml tube and centrifuge at 13 000 rpm for 5 minutes. The supernatant was 

decanted from the tubes and the pellets re-suspended in 500 μl sterile distilled water, 

vortexed for 2 seconds and heated for 15 minutes at 100°C.  

Subsequent cooling followed at -20 °C for 10 minutes followed by centrifugation at 

13 0000 rpm for 5 minutes. The supernatant was transferred into a new micro 

centrifuge tube and stored at -20 ºC till further use.  

DNA Amplification  

Isolated DNA was checked for purity and quantified by Nano drop 1000 UV-Vis 

spectrophotometer (Thermo Fischer Scientific, Waltham, Massachussets, US). 

Polymerase chain reaction (PCR) was done as described by Asfour and Darwish 

(2011). Briefly, a quadruple PCR assay targeting pairs of specific oligonucleotide 

primers as shown in Table 3.1 was used in this study. The PCR reaction mixture (25 

µl) comprised of 1 µl of F and R primers, 1 µl DNA sample, 12.5 µl (1x) of PCR 

master mix and 4.5 µl of nuclease-free water (Qiagen, Hilden, Germany) in a PCR 

tube. The amplification was carried out in a PT-100 Thermocycler. Reactin 

conditions. The reaction conditions were optimized at 94˚C for 4 minutes as initial 

denaturation, followed by 40 cycles (denaturation 94˚C for 60 seconds, annealing at 

56˚C for 60 seconds and elongation at 72˚C for 60 seconds). Final extension step 

was set at 72˚C for 10 minutes. DNA isolated from S. epidermidis was used as 

positive control while nuclease free water was used as negative control. The 

amplicons were separated on a 1.5% agarose gel for 45 minutes at 80 V. The gel 

was then visualized under Floro transimullinator (UVITEC Limited, Cambridge, 
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United Kingdom). The sizes of amplicons were determined by comparison to a 100 

bp molecular weight marker (Fermentas, Waltham, Massachusetts, United States).  

Table 3.1: Primers that were used for amplification of genes encoding Staphylococcus spp. 

virulence factors. 

 
 

 
Primer sequence 

Amplic
on Size 
(bp) 

 
References 

Nuc 
nuc-1:   5'-GCGATTGATGGTGATACGGTT-3' 

nuc-2   5'-AGCCAAGCCTTGACGAACTAAAGC-3' 
280 

Johnson et al. 
(1991) 

Mec A 
MecA1 5′-GTAGAAATGACTGAACGTCCGATAA-3′  
MecA2   5′-CCAATTCCACATTGTTTCGGTCTAA-3′ 

310  McClure et al. (2006) 

Pvl 
pvl-1 5′-ATGTCTGGACATGATCCAA-3′  

pvl-2 5′-AACTATCTCTGCCATATGGT-3′ 
970 Ma et al. (2008) 

Eta 
ETA-1   5′- CTA GTG CAT TTG TTA TTC AA-3′ 

ETA-2   5′-TGC ATT GAC ACC ATA GTA CT-3′ 
119 Kalorey (2007) 

 

3.8.2  CHARACTERIZATION OF E. COLI STRAINS  

DNA extraction of E. coli isolates 

An in-house silica/guanidium thiocyanate method originally described by Boom et al 

(2010) and optimized by Delair et al. (2017) was used for DNA extraction. The 

reagents were purchased from Qiagen (Hilden, Germany). The modifications were 

(1) addition of 250 ml 100% ethanol to the lysis buffer to enhance binding of the DNA 

to the extraction matrix (celite), (2) addition of celite to the mixture and shaking in the 

rocking platform before washing steps for complete mixing and binding of DNA to the 

celite, (3) elution of DNA from the extraction matrix with 150 µl Qiagen water. The 

sample were stored at 4˚Cfor further analysis. 

About 29 E. coli positive isolates were selected and inoculated into nutrient broth in 

eppendorf tubes and incubated overnight. From the overnight culture, 2 ml was 

aliquoted into 2 ml sterile Eppendorf tubes and centrifuged for 2 minutes at 13,000 

rpm to pellet the cells and decant the supernatant. DNA was extracted following 

summarized steps in Figure 3.2A and 3.2B. The spin columns that were used were 

also prepared in-house following method done by (Borodina et al., 2003; Delair et 

al., 2017).  
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Figure 3.2A: Summary of DNA extraction (Taken online). 
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Figure 3.2A: The 96 well plate modified Boom extraction protocol (Delair, 2017) 

Multiplex PCR 

The single step 11 gene multiplex polymerase chain reaction (m-PCR) was used as 

described by Omar and Barnard 2014 (2010). The amplification targeted the 6  

pathotypes of E. coli (Table 3.2). The house keeping mdh gene was used as an 

internal control for identification of the E. coli strains and an external control DNA 

derived from human glyceraldehyde 3-phosphate dehydrogenase (gapdh) gene was 

also used as external control  to determine if the PCR worked with no false positives. 

housekeeping gene as some environmental E. coli do not express the mdh gene. 

Each reaction consisted of 1x Qiagen PCR multiplex mix (containing HotstartTaq, 
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DNA polymerase, multiplex PCR buffer and dNTP mix), 2 µl primer mix for different 

E. coli pathotypes (Table 3.2), 2 µl sample DNA, 5 µl PCR grade water. Steps for 

different conditions were followed as described by Omar and Barnard (2014).   The 

amplicons was analysed on a horizontal agarose slab gel [2.5 % (w/v)] with ethidium 

bromide (0.5 mg/mℓ) in Tris-acetate- Ethylene-diamine-tetraacetic acid (TAE) buffer 

(40 mM Tris acetate; 2 mM Ethylene-diamine-tetraacetic acid (EDTA), pH 8.3). 

Electrophoresis was performed for 1 to 2 h in electric field strength of 80 V; PCR 

products were visualised with UV light (UVITEC Limited, Cambridge, United 

Kingdom). This procedure was followed for all the experiments and the relative sizes 

of the DNA fragments were estimated by comparing their electrophoretic mobility 

with that of the standards run with the samples on each gel using 100 bp markers 

(Fermentas, Waltham, Massachusetts, United States).  

Table 3.2: Primers used in the m-PCR reaction to determine E. coli pathotypes (Omar and 

Barnard, 2014). 

Pathogen Primer Sequence (5´-3´) 
Size 
(bp) 

Conc  
(1 M) 

Reference 

E. coli Mdh (F) 

Mdh (R) 

GGTATGGATCGTTCCGACCT 
GGCAGAATGGTAACACCAGAGT 

304 0.1 Tarr et al. 
(2002) 

EIEC Ial (F) 

Ial (R) 

GGTATGATGATGATGAGTCCA 
GGAGGCCAACAATTATTTCC 

650 0,2 Lopez-
Saucedo 
et al. 
(2003) 

EHEC/ 
Atypical 
EPEC 

EaeA 

(F) 

eaeA 

(R) 

 
CTGAACGGCGATTACGCGA 
 
CCAGACGATACGACGCAG 

917 0.3 Aranda et 
al. (2004) 

EHEC Stxl1 (F) 

 (R) 

Stxl2 (F) 

(R) 

 
ACACTGGATCTCAGTGG 
CTGAATCCCCCTCCATTATG 
 
CCATGACAACGGACAGCAGTT 
CCTGTCAACTGAGCACTTTG 

779 0.5 
0.3 

Moses et 
al. (2006) 

EPEC Bfp (F) 

       (R) 

AATGGTGCTTGCGCTTGCTGC 
TATTAACACCGTAGCCTTTCGCTGAAGTACCT 

410 0.3 Aranda et 
al. (2004) 

EAEC Eagg(F) 

(R) 

AGACTCTGGCGAAAGACTGTATC 
ATGGCTGTCTGTAATAGATGAGAAC 

194 0.2 Pass et al. 
(2000) 
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ETEC Lt1 (F) 

    (R) 

Sta (F) 

    (R) 

GGCGACAGATTATACCGTGC 
CGGTCTCTATATTCCCTGTT 
TTTCCCCTCTTTTAGTCAGTCAACTG 
GCCAGGATTACAACAAAGTTCACA 

360 0.1 
0.5 

Pass et al. 
(2000) 

E. coli 
toxin 

AstA (F) 

(R)  

 
GCCATCAACACAGTATATCC 
GAGTGACGGCTTTGTAGTC 

106 0.3 Kimata et 
al. (2005) 

External 
control 

Gapdh 

(F) 

R) 

 
GAGTCAACGGATTTGGTCGT 
TTGATTTTGGAGGGATCTCG 

238 0.3 Mbene et 
al. (2006) 

Note: mdh-Malate dehydrogenase, ial-invasion associated protein, astA-Arginine N-succinyltransferase, Bfp-

bundle forming pili, gapdh-glyceraldehyde 3-phophate dehydrogenase 

 

3.9 ANTIBIOTIC SUSCEPTIBILITY TESTING  

3.9.1 ANTIBIOTIC SUSCEPTIBILITY TESTING FOR IDENTIFIED AND  

CONFIRMED E. COLI ISOLATES  

 Antibiotic susceptibility profile of the isolated bacteria was tested against 6 selected 

antibiotics (Table 3.3). The antimicrobial agents tested were selected based on two 

factors: 1) the recommendation of NCLS and 2) the actual veterinary practice. The 

testing was done using the Kirby Bauer disk diffusion method as described by Carey 

et al. (2010) with some modification. Briefly, Fresh 18-24 hours old cultures was 

suspended into 5 ml of distilled water in a test tube and adjusted to meet 0.5 

McFarland turbidity standards. Thereafter, bacterial suspension was evenly swabbed 

onto Mueller-Hinton agar plate (Merck, Kenilworth, New Jersey, United States) using 

a sterile swab. The plates were allowed to dry before placing the antibiotic discs. The 

discs were placed on the plates with the aid of sterile forceps leaving some space in 

between for zone of inhibition interpretation. The plates were then incubated at 37˚C 

for 18-24 hour. The plates were removed from the incubator and a ruler was used to 

measure the diameter of the zone of inhibition around the disks rounded to the 

nearest millimetre. Then results were classified as susceptible or resistant and 

intermediate results interpretation were taken as resistant.  

Table 3.3 Antibiotic selected for E. coli antibiotic susceptibility testing 
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Antimicrobial class Antimicrobial agent 
 

 

S  
Diameter 
Zone 

I 
Diameter 
Zone 

R 
Diameter  
Zone 

Penicillins Ampicillin (10µg) ≥14  

 

12-13  

 

≤11  

 

Nitrobenzenes Chloramphenicol 
(10µg) 

≥16 13-15 ≤12 

 

Macrolides Erythromycin (10µg) ≥21 15-20 ≤14 

Sulphonamides Trimethoprim-
sulfamethoxazole 
(10µg) 

≥16 11-15 

 

≤10  

 

Fluoroquinolones Ciproflaxin (5 µg) ≤21 16-20 ≥15 

Synthetic quinolone  Nalixidic acid (30µg) ≥19 14-18 ≥13 

S-Suscdeptible I-intermediate,  R-Resistant 

 

3.9.2 ANTIBIOTIC SUSCEPTIBILITY TESTING OF STAPHYLOCOCCUS  

SPP.  

Antibiotic susceptibility test for Staphylococcus spp. were done using the VITEK® 2 

(BioMérieux, Marcy-l'Étoile, France) using software version 08.01 and AST-GP71 

(Staphylococci) cards. Cefoxitin screening for Oxacillin resistance and susceptibility 

of the coagulase negative Staphylococci isolates were determined using the VITEK® 

GP67 card. The AST-GP71 cards contained two wells for Inducible Clindamycin 

resistance (ICR), one with 0.5 g/ml of Clindamycin and the other with a combination 

of 0.25 g/ml of Clindamycin and 0.5 g/ml of Erythromycin. The VITEK® 2 system was 

used as described according the manufacturer‘s instructions. Briefly, Identification 

cards were inoculated with microorganism suspensions prepared in a test tube and 

transfer into a special rack (cassette). The identification card was placed in the 

neighbouring slot. The filled cassette was placed into a vacuum chamber station 

and, the organism suspension forced through the transfer tube into micro-channels 

that fill all the test wells. Prior to loading into the machine for incubation at 36.5ºC, 

the inoculated cards are passed by a mechanism, which cuts off the transfer tube 

and seals the card. Data (not provided) for each incubated card were collected at 15-

minute intervals during the entire incubation period and recorded on Microsoft Excel 

for Windows 2010.  

 

http://classyfire.wishartlab.com/tax_nodes/C0000036
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3.10 STATISTICAL ANALYSIS 

Survey data were organized summarized and analysed using simple descriptive 

analysis from where Microsoft Excel for Windows 2010 were used and results were 

expressed as mean ± Standard error (SE). The mean between experimental 

conditions was compared by One-Way Analysis of Variance (ANOVA) while Pearson 

correlation was used for correlation analysis. All data analyses were performed using 

SPSS version 23.0. 
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CHAPTER 4 

 RESULTS AND DISCUSSION 

 

Mastitis being a constant global challenge affecting dairy industry (Reshi et al., 

2015), is usually found to be caused by contagious Staphylococcus spp. and 

environmental E. coli strains (Suojala et al., 2010; Ali et al., 2017). Given the rising 

incidence and public concerns about the infections caused by these etiological 

agents, especially those that harbour resistance genes, it is empirical to understand 

their prevalence, virulence and antibiotic resistance in order to provide viable control 

of their breakout.  The main aim of this study was to characterize Staphylococcus 

spp. and E. coli from cases of bovine clinical and subclinical mastitis in a Limpopo 

dairy processing company (Limpopo province, South Africa). The results of the study 

showed that the farm practiced good farm management system with low mastitis 

burden. The microbiological results also showed that E. coli and Staphylococcus 

spp. were obtained from clinical and subclinical mastitis cases.  

 

4.1 SURVEY DATA 

Survey data was obtained through questionnaire generating basic information on 

herd management system, nutrition, hygienic practices, disease detection, housing, 

prevention and control measures.  

4.1.1 HOUSING AND FEEDING PRACTICE   

The results of the study showed that house design for cattle was concrete floor free 

stall and the passageway can be cleaned by flushing water after each milking 

session. It was observed that the bedding used for all the groups of cattle within the 

herd was sandy. All the cattle received their feeds of a total mixed ration produced 

within the site and monitored by an appointed veterinarian. The feeds contained 

balanced concentrations of raw materials, minerals and all required feed stuffs. The 

results of the survey showed that farm practice, feeding and management system 

were followed and contributed to low mastitis burden in the dairy farm. 
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Survey data relies mostly on the information provided by the respondents where the 

information provided may be limited or exaggerated. The respondent in this survey 

indicated that to ensure biosecurity, adult cows and heifers were not allowed to be 

bought from the outside source or breeders. They use pure exotic breeds (Holstein) 

and carefully select them in case of cross-breeding in the farm. This study reports on 

fair farm practices and management system with low disease burden. The low 

disease burden in our study could be supported by the fact that this particular farm in 

the study keeps Holstein exotic breed in a concrete free stall where the distribution of 

their total mixed ration (produced on site) is carried out. The livestock feeding system 

is a contributing factor of the herd health as well as the quality of the produce. 

Livestock in the study are fed local farm grown total mixed ration feed to ensure 

good and quality health that is monitored by an appointed veterinarian. 

Furthermore, several studies have reported on higher incidence of clinical mastitis in 

tiestall than in free stall housing (Kalmus et al., 2006, Gordon et al., 2013). In 

tiestall farms, the main risk factors for clinical mastitis are reported to be teat injuries, 

short stalls and shortage of bedding material (Kalmus et al., 2006). Also, an 

increased frequency of lying down and rising may lead to increased risk of teat 

tramping, leading to increased clinical mastitis incidence (Oltenacu et al., 1990).  

 

4.1.2 BIOSECURITY 

The study observed that procurement of adult cows and cow heifers‘ from outside 

sources were not permitted and pure exotic dairy breeds (Holstein) were. If by any 

chance, there was consideration of buying adult cows from outside sources; sellers 

were asked about their somatic cell count and all historical records. The animals 

were verified for their health status following the herd health plan that included 

mastitis and other diseases. The health plan was compiled with the input of 

veterinary officer. For management of mastitis cases that occur within the farm, dry 

farm management was practiced, and the cows were quarantined. All disease cases 

and vaccination programmes (Bovine somatotropin (RBSI), Scougard and E. coli) 

that happen within the farm were kept on records. This study reports on fair farm 

practices and management system with low disease burden. The results of our study 

is contrary to a survey conducted by Welay et al. (2018) in Ethiopia with remarkably 
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poor livestock management and high burden of disease. A survey done by 

Katsande et al. (2013) in Zimbabwe reported that farmers predominantly use cross 

breed in dairy farming which are most likely to be positive for mastitis compared to 

the local indigenous breeds. 

 

4.2 PREVALENCE OF MASTITIS USING CARLIFONIA MASTITIS TEST 

A total of 253 clinical and subclinical samples were collected from March to October 

2019 and the prevalence of mastitis was determined using California mastitis test. 

The results are presented in Table 4.1. The overall prevalence of mastitis was found 

to be 94/253 (37.6%) and it was higher during winter 58/100 (58%) compared to 

summer 24/153 (24%).  

 

Table 4.1: Table showing prevalence of overall mastitis using California mastitis test (n-253) 

Samples    Overall mastitis 

Summer seasons (n=153) n=36 (24%) 

Winter seasons (n=100) n=58 (58%) 

Total (n=253) n=94 (37%) 

Note: n=number of samples 

The results of the prevalence of mastitis were found to be 37% and these results are 

in agreement with a study done by Koivula et al. (2007).  The results of this study 

were higher to the 7.4% recorded in 2018 (Limpopo Dairy farm records). These 

results are high because the study analysed both subclinical and clinical mastitic milk 

samples whereas farm records showed only clinical mastitis cases. The possibility of 

high prevalence has been attributed to the inadequate post-milking teat dipping with 

disinfectant, antibiotic treatment or dry cow therapy (Iraguha et al., 2015). The high 

mastitis prevalence was observed from both clinical and subclinical mastitis in cold 

season than hot season. This is in agreement with another study conducted by 

Iraguha et al. (2015) where high prevalence was also observed in dry season (cold 

season).  
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The prevalence of cow-level mastitis reported in many studies across the African 

continent ranges from 8 to 64% (Abebe et al., 2016). The results of our study are 

contrary to reported data from a study conducted by Mdegela et al. (2009) showing 

a 51.6% prevalence in Tanzania and a study conducted by Abebe et al. (2016) in 

Ethiopia which recorded 62.6% in prevalence. However, the results of our study 

were different to results reported by Plozza et al. (2011); Tripura et al. (2014) and 

Gianneechini et al. (2002) who respectively reported on prevalence of 49.5% in 

South Wales, 51.8% in Bangladesh and 52.4% in Uruguay. In addition, a higher 

pooled prevalence rate of 68% (sub-clinical and clinical mastitis) was recorded in 

India (Krishnamoorthy et al., 2017). The low prevalence in our study could be 

accounted by the breed kept within the farm and the farm management practice. 

 

4.3 MICROBIAL ANALYSIS 

4.3.1  Prevalence of pathogens by culture methods  

Samples that tested positive for mastitis using California mastitis test were cultured 

on selective media (MacConkey and Mannitol salt agar) for isolation of E. coli and 

Staphylococcus spp. Out of 94 samples, 48 (51%) tested positive for  

Staphylococcus spp. and 32 (34%) were positive for E. coli. Results are shown in 

Table 4.2. 

Table 4.2: Prevalence of pathogens using culture method (n=94) 

Sample E. coli (%) Staphylococcus (%) 

Clinical (n=22) 13 (59) 9 (41) 

Subclinical (n=72) 19 (26) 39 (52) 

Total (n=94) 32 (34) 48 (51) 

Note: Co-infection not recorded 

The results of the study showed that E. coli or/and Staphylococcus spp. were 

detected and therefore may be responsible for mastitis. E. coli is the major pathogen 

causing environmental mastitis and it is one of the most important pathogens that 

has received more attention due to its high incidence relatively to other mastitis 

pathogens (Castañeda et al., 2013). E. coli has been regarded as an indicator of 

faecal contamination in environmental samples. However, in the milk industry; it is 
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regarded as poor hygiene indicator and shows insufficient sanitary practices during 

milking (Disassa et al., 2017). This study demonstrated the presence of E. coli in 

subclinical and clinical mastitic milk or cases. Our results were in agreement with a 

previous study conducted by Elmonir et al. (2018) in Egypt which reported 13.2%. 

Our results were also in agreement with studies done by El-Razik et al. (2011) and 

Enany et al. (2012) which reported the presence of E. coli in milk from mastitis 

cases. 

The prevalence of Staphylococcus spp. from subclinical and clinical mastitis cases 

was found to be 51%. Our findings are highly comparable with findings of a study 

done in Iran by Rahman et al. (2016) which reported the presence of 

Staphylococcus spp. isolated from mastitis cases in sheep. Our results are also in 

agreement with data recorded by Liu et al. (2018) in China. This difference in 

prevalence may be due to the differences in the geographical distribution of 

pathogens, environmental and management conditions (Schaumburg et al., 2014). 

4.3.2 IDENTIFICATION OF PRESUMPTIVE ISOLATES 

Identification of presumptive Staphylococcus spp.  

A total of 48 presumptive Staphylococcus isolates were randomly selected and 

subjected to automated VITEK® system for the identification of Staphylococcus spp. 

Results are presented in Table 4.3. Thirty isolates were confirmed to be 

Staphylococcus spp. [Staphylococcus sciuri (40%), Staphylococcus xylosus (21%)) 

and Staphylococcus caprae (2%)] and 18 isolates were identified as Enterococcus 

and Enterobacter spp.  

Table 4.3: Prevalence of Staphylococcus spp. isolated from milk (n=48) 

Pathogen Positive strains Percentage (%) 

Staphylococcus sciuri 19 40  

Staphylococcus caprae 1 2  

Staphylococcus xylosus 10 21  

Other (Enterococcus faecalis, 

Enterococcus gallinarium, Lactococcus 

garviae, Enterobacter cloacae) 

18 38  
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The results of this study supported the fact that coagulase negative Staphylococcus 

spp. play a prominent role in bovine mastitis and have recently been the global 

recognizable significant causative agent of bovine subclinical mastitis. Our results 

are in accordance with previous reports from Algeria where researchers found that 

Coagulase negative Staphylococcus spp. were the most common mastitis causing 

agents (Heleili et al. (2012); Awale et al. (2012); Mamache et al. (2014); Pekana 

et al. (2015) Zaatout et al. (2019)]. The distribution of coagulase negative species in 

mastitis cases is different among dairy farms or herds. This was supported by a 

recent study, in which Staphylococcus Warneri, Staphylococcus epidermidis and 

Staphylococcus hyicus (S. warneri, S. epidermidis and S. hyicus) were identified to 

be the dominant species among 18 coagulase negative species isolated from 

California mastitis positive cow milk (Xu et al., 2015). 

Although Staphylococcus. xylosus (S. xylosus) is not known to cause mastitis, it was 

detected in this study, supporting previous studies that showed that S. xylosus is an 

underestimated pathogenic Coagulase negative Staphylococcus spp. in bovine 

mastitis (Frey et al., 2013). Staphylococcus xylosus and Staphylococcus sciuri (S. 

sciuri) affects the composition of milk as suggested by Vasil et al. (2016). 

Staphylococcus sciuri is known as an ancestral species within the genus 

Staphylococcus and it has long being considered as a commensal species 

(Nemeghaire et al., 2014). 

Even though Staphylococcus caprae (S. caprae) has never been reported to be a 

cause of mastitis in cattle, this species has been reported in the current study in at 

least one sample. S. caprae is implicated in causing mastitis in goats (d'Ersu et al., 

2016). In this study, dairy herd is mixed with goats and sheep‘s, and might have 

transferred from goats to cattle (own observation).  

 

Our study also showed that various species of Lactococcus were associated with 

bovine mastitis (e.g., Lactococcus lactis and Lactococcus garvieae). It is speculated 

that the presence of Lactococcus garvieae in milk might have bactericidal effects 

against several bacteria including Staphylococcus aureus (S.aureus) hence S. 

aureus was not detected in our study. 
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Identification of E. coli strain using multiplex PCR (m-PCR) 

This study demonstrated the presence of E. coli in subclinical and clinical mastitiic 

milk or cases. The m-PCR assay that targeted 11 genes identifying 6 different E. coli 

virulent pathotypes was used for the detection and amplification of E. coli virulent 

genes. Results indicating the detected targeted genes are shown in Figure 4.1.  

 

 

Figure 4.1: Agarose gel picture showing the target bands of interest.  

 Lane1: DNA ladder Lane2: -ve control Lane3: +ve control Lane4-9:  Samples; Lane10: Ext -

ve  

 

Given the high diversity of E. coli species, E. coli isolates could include a large 

diversity of genetic backgrounds and various sets of virulence factors encoding for 

different traits determining pathogenicity (Kempf et al., 2016). Another objective of 

our study was to amplify and identify the specific virulence genes carried by E. coli 

isolates using conventional m-PCR. Virulence genes tested for in this study were 
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selected based on their association with E. coli strains causing diarrhoeagenic 

infections. 

Out of 32 isolates, 29 were identified and confirmed to be E. coli using multiplex 

PCR. About 27 (93%) and 19 (66%) were positive for astA 1 gene 

(enteroaggregative E. coli heat-stable enterotoxin) and sta (heat stable toxin) 

respectively. This oi98gene is embedded in a putative transposase (ORF1) and 

presents polymorphism in diarrheagenic strains. The Eae gene was detected in 35% 

of the isolates and stx1 and stx2, Ial genes were detected in low frequency.  Only 3 

(10%) E. coli isolates were positive for single pathotype (ETEC) and 31% of the 

isolates carried a combination of atypical EPEC/ enteropathogenic E. coli; 

enterotoxigenic E.coli/ enteroaggregative E. coli; and typical enteropathogeenic 

E.coli/ enterotoxigenic E. coli (aEPEC/ ETEC; ETEC/EAEC and tEPEC/ ETEC).  

About 10 (35%) were not identified as virulent pathogens. The results showing the 

prevalence of virulence genes and pathotypes are shown in Table 4.4 and 4.5. 

 

Table 4.4:  Prevalence of E. coli virulence genes from selected presumptive E. coli isolates 

(N=29 isolates). 

Target genes Number of occurrences (%) 

Mdh (internal control) 28 (97) 

Ial  3 (10) 

Stxl1 1 (3) 

Stxl2 3 (10) 

Bfp 6 (21) 

Eae 10 (35) 

Eagg 5 (17) 

Lt1  8 (28) 

Sta 19 (66) 

AstA 27 (93) 

Gapdh (external control) 7 (24) 
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Table 4.5: Prevalence of pathotypes detected from selected presumptive E. coli isolates  

(n=29) 

Pathotype  Number (%)  Infection Total (%) 

ETEC 3(10) Single infection 3(10) 

aEPEC/ ETEC 7(24) Co-infections (2 pathotypes) 9(31) 

ETEC/ EAEC 1 (4)   

tEPEC/ ETEC 1(4)   

aEPEC/ETEC/EAEC 2(7) Multiple infections (3 pathotypes) 5(17) 

tEPEC/ EIEC/ETEC 1(4)   

aEPEC/EHEC/ETEC 2(7)   

aEPEC/EHEC/ETEC/EAEC 1(4) Multiple infections (4 pathotypes) 2(7) 

aEPEC/EIEC/ETEC/EAEC 1(4)   

E. coli (undefined pathotype) 10(35)  10(35) 

 

Approximately all the isolates (90%) were confirmed to be E. coli by amplification of 

mdh-housekeeping gene and virulence genes such as Asta, st and eae, were 

detected together with other pathotypes . The presence/ detection of virulence genes 

is contradictory to a study that reported a lack of virulence genes in samples (Kempf 

et al., 2016). Another study reported that an approximate 30.3% of isolates did not 

show amplification of the examined genes which indicate that E. coli strains 

associated with mammary gland infections may use different mechanisms to cause 

diseases (Blum et al., 2008). 

The asta gene was highly detected or identified in this study (Table 4.4). The asta 

gene (E. coli toxin/ enteroaggregative E. coli heat-stable enterotoxin) is a toxin gene 

found in non pathogenic E. coli organism. As it is found in various pathotypes, it was 

also identified in EAEC as a structural gene that code for enterotoxin (Huang et al., 

2006). In addition, Soto et al (2009) reported asta as an aggregative heat stable 

toxin 1 which does not have a clear development of an infection. High prevalence 

of E. coli strains carrying the astA gene has also been reported previously from 

commensal E. coli isolates in fresh water (Masters et al., 2011). The presence 

of astA gene is in agreement with previous studies that reported wide distribution of 
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this gene among diarrheagenic E. coli isolates from humans and animals (Sidhu et 

al., 2013).  

The high prevalence of E. coli strains carrying astA toxin gene is a cause of concern 

since E. coli strains carrying astA toxin gene have been shown to cause diarrhoea in 

developed and developing countries and are carried by commensal E. coli strains 

(Badugela et al., 2017 (unpublished data); Yatsuyanagi et al., 2003; Savarino et 

al., 1996). The eae gene, which codes for intimin protein, was detected in 35% of the 

isolates. This gene is necessary for intimate attachment to host epithelial cells in 

both the EHEC and EPEC pathotypes which causes haemorrhagic colitis and 

haemolytic uremic syndrome in humans.   

Our results also showed the presence of Shigatoxin E. coli (STEC) pathotype.  

Shigatoxin E. coli (STEC) pathotype causes mastitis in bovine and reduce milk 

quality for human consumption and raw milk from mastitic animals, mostly subclinical 

mastitis is the main resource for STEC. Many studies showed that the STEC strains 

are the most prevalent causative agent of milk-poisoning (Argaw and Addis, 2015; 

Solomakos et al., 2009; Stephan et al., 2008).  

The detection of st and lt gene which encodes for heat-labile and heat stable toxin in 

our results are not in agreement with data reported by Caine et al. (2014), who 

reported only 13.5% in dairy farms in the Eastern Cape, (South Africa). The 

Enterotoxigenic E. coli (ETEC) pathotype causes infantile and travellers‘ diarrhoea in 

humans regardless of economic state of the countries since contaminated food such 

as milk and water are the main route of infections. The presence of ETEC in milk is 

not in compliance with the law in section 15(1), Act, No. 54 of 1972 in South Africa. 

The pathotype ETEC was the most prevalent pathotype than other pathotypes. In 

addition, this pathotype was found to be presented with other pathotypes creating 

multiple infections. Approximately 31% of the isolates carried a combination of 

atypical Enteropathogenic Escherichia coli/ Enteropathogenic E. coli; Enterotoxigenic 

E. coli/ Enteroaggregative E. coli and typical EPEC (aEPEC/ ETEC; ETEC/EAEC 

and tEPEC/ ETEC). These results are comparable with work done by Sidhu et al. 

(2013) who found approximately 9% of the isolates carried a combination of EPEC, 

EIEC, and EAEC virulence genes.  
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The presence of multiple virulence genes in E. coli strain is implicated in the 

pathogenicity of the organism (Sarowska et al., 2019). But the strain has to possess 

relevant combination of virulence genes that may cause infection by using complex 

multistep mechanism of pathogenesis involving a number of virulence factors 

depending upon the pathotype. Some of E. coli strains from our study had 3 and 4 

multiple genes that are capable of causing HUS and diarrhoea among children and 

other infections in animals but not showing symptoms in animals such as cattle 

(Huasai et al., 2012). This observation is of concern, as the presence of multiple 

genes in pathogens is known to cause more severe diarrhoea in humans. 

 

4.3.3 ANTIMICROBIAL SUSCEPTIBILITY PATTERNS 

Antimicrobial susceptibility patterns of E. coli Isolates  

Antimicrobial susceptibility testing was done on isolates that were identified and 

confirmed to be E. coli using disc diffusion method. Diameters of the zone of 

inhibition were used to interpret results as susceptible, or resistant based on 

Clinical Laboratory Standards Institute (CLSI) standards. The E. coli isolates were 

highly resistant to >55% of selected antibiotics [Erythromycin (93); Nalixidic acid 

(86%) and Trimethoprim-sulfamethoxazole (86 %)] and susceptible to 

Chloramphenicol (69%) as well as Ampicillin (66%). The results are shown in Table 

4.6.  

Table 4.6: Antimicrobial susceptibility of E. coli against 6 selected antibiotics (%) (n=29) 

Antimicrobial class Antimicrobial agent 

 

 

S  

Diameter 

N (%) 

R 

Diameter 

N (%) 

Penicillins Ampicillin (10µg) ≥14  

19 (66) 

≤11  

10 (35) 

Nitrobenzene Chloramphenicol (10µg) ≥16 

20 (69) 

≤12 

 9 (31) 

Macrolides Erythromycin (10µg) ≥21 

2 (7) 

≤14 

27 (93) 

Sulphonamides Trimethoprim-
sulfamethoxazole (10µg) 

≥16 

4 (14) 

≤10  

25 (86) 
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Fluoroquinolones Ciproflaxin (5 µg) ≤21 

15 (52) 

≥15
 

14 (48) 

Synthetic quinolones Nalixidic acid (30µg) ≥19 

4 (14) 

≥13 

25 (86) 

 

Antimicrobial agents greatly serve as curative measures against bacterial infections, 

however, cumbersome detriments arise to animal producers and veterinary when 

antibiotic resistant bacteria affect therapy (Bengtsson and Greko, 2014). 

Resistance of antimicrobial agents arises from indiscriminate use in animals and 

human as well as the subsequent transfer of bacteria and resistant genes among 

animals, humans, animal products, and the environment (WHO, 2018). This 

improper use has contributed to the emergence of resistance, in hospitals, 

community and livestock settings (Argudin et al., 2017). In our study, the highest 

resistance of E. coli to various antibiotics was observed against the first-line oral 

antimicrobial agents such as Eryththromycin (93%), Nalixidic acid (83%) and 

Trimethoprim-sulfamethoxazole (72%) and highly susceptible to Chloramphenicol 

(69%) and Ampicillin (66%). 

Antibiotics reported in this study have also been reported by other researchers and 

there is evidence of increase in resistance to wide range of antibiotics in E. coli 

isolated from animals (Jeykumar et al., 2013; Kalmus et al., 2011; Sumathi et al., 

2008 and Dhakal et al., 2007). Our results demonstrated high resistance to 

ampicillin and sensitivity to Chloramphenicol and this is in accordance with data 

reported by Ranjan et al. (2011); Charaya et al. (2014) and Preethirani et al. 

(2015) who also reported high susceptibility of E. coli isolates to Chloramphenicol, 

Gentamicin and Ciprofloxcin.  

Isolates resistant to more than three antibacterial agents were defined as multidrug 

resistant. The frequency of multidrug resistant isolates was 8 (28%), 6 (20%) and 5 

(17%) for more than 4, 6 and 5 antibiotics tested, respectively and results are shown 

in Table 4.7. 

Table 4.7: Percentage frequency of occurrence of multidrug resistant E. coli from mastitis 

raw milk (n=29) 

No. of Antibiotics No. of multidrug resistant strains (%) 
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The multidrug resistance trait of E. coli is a cause of concern worldwide (Kilani et 

al., 2017). Our results showed that isolates were resistant to more than one drug. 

These results are not in accordance with data reported by Kibret and Abera, (2011) 

and Ibrahim et al. (2012) who reported lower rate of multidrug resistance. The 

emergence of E. coli isolates with different MDR phenotypes has been previously 

reported and is considered a serious health concern (Sukumaran et al., 2012).  

Multidrug resistance is mainly linked to integrons, thus may have integrated multiple 

genes cassettes in their variable regions, and consequently provide a common 

promoter (Kilani et al., 2017). These findings represent alarming increased rates in 

resistant E. coli to also Fluoroquinolones, which triggers acquisition of resistance 

(Ibrahim et al., 2012; Namboodiri et al., 2011) and has emerged as a cumbersome 

problem in both developed and developing countries. 

 

 

Antibiotic resistance of Staphylococcus spp.  

To determine antibiotic susceptibility of Staphylococcus spp., Isolates were 

subjected to an automated VITEK® 2 System.  VITEK® 2 system is a widely used 

system for determining antimicrobial resistance patterns for clinical isolates such as 

methicillin resistant and methicillin susceptible Staphylococcus spp. (Bobenchick et 

al., 2014).The MIC of Staphylococcus spp. was determined using the automated 

VITEK® system to evaluate antibiotic resistance and the MIC values of all isolates 

were recorded and interpreted as resistant or susceptible in Table 4.8.   

 

Two 3 (10) 

Three 6 (20) 

Four 8 (28) 

Five 5 (17) 

Six 2 (7) 

Total (29) 24 (83) 
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Table 4.8: Minimum inhibitory concentration (MIC) of the 15 selected antibiotics for isolated Staphylococcus spp. strains on VITEK® 2 system 

(n= 30) 

Isolat
es  
(no) 

CEF-S 
(R˃4;
S(-)) 

OX 
R˃2;S
≤4 

GM 
R˃16 
;S≤4 

CIP 
R˃1;S
≤1 

MOX 
R˃1;S≤
0.5 

ICM 
R≥16;S
≤10  

ERY 
R˃2;S
≤1 

TEL 
- 

CLI 
R˃0.5;S≤
0.25 

LIN 
R˃4;S
≤4 

DAP 
R˃1;S
≤1 

TEI 
R˃4;S
≤4 

VA 
R˃2;S
≤2 

TET 
R˃2;S
≤1 

NIT 
R˃64;S
≤64 

FUA 
R˃1;S
≤1 

RIF 
R˃0.5;S≤
0.06 

TM 
R˃1;S
≤1 

 MI
C 

I MI
C 

I MI
C 

I MI
C 

I MIC I MIC I MI
C 

I MI
C 

I MIC I MI
C 

I MI
C 

I MI
C 

I MI
C 

I MI
C 

I MIC I MI
C 

I MIC I MI
C 

 

MSA3
b 

NE
G 

- ˃=
4 

R ≤0
.5 

S 4 R ≥8 R NE
G 

- ≥8 R 2 I 0.5 S ≥8  ≥8  2 S 2 S 2 S 128 R 16 R 1 S 80 R 

MSA2
4b` 

NE
G 

- ≥8 R 2 S ≥8 R 2 R NE
G 

- ≤0.
25 

S ≤0.
25 

S ˃=4 
 

R 2 S ≥8  4 S 2 S ≥1
6 

R 32 S 1 S ≤0.5 S ≥32
0 

R 

MSA2
5a 

NE
G 

- ˃=
4 

R ≤0
.5 

S 2 I 2 R NE
G 

- 4 I 0.5 S ˃=4 R ˃=
8 

 ˃=
8 

 4 S 1 S ≤1 S 32 S 8 R ≤0.5 S 40 S 

MSA3
2b 

PO
S 

+ ˃=
4 

R ≤0
.5 

S 2 I 2 R NE
G 

- 4 I 0.5 S 0.5 S ˃=
8 

 ˃=
8 

 2 S 1 S ≤1 S 64 I 8 R ≤0.5 S 40  S 

MSA3
5a 

NE
G 

- ˃=
4 

R 1 S 4 R ˃=8 R NE
G 

- ˃=
8 

R ˃=
4 

R ˃=4 R ˃=
8 

 ˃=
8 

 2 S 2 S 2 S 128 R ˃=
32 

R 1 S ˃=3
20 

R 

MSA3
7 

NE
G 

- ˃=
4 

R ≤0
.5 

S 2 I 2 R NE
G 

- ˃=
8 

R 2 I 0.5 S 2 S ˃=
8 

 2 S 2 S 2 S 64 I 16 R ≤0.5 S 80 R 

MSA3
8a 

NE
G 

- 2 *
S 

≤0
.5 

S 2 I ≤8 R NE
G 

- 4 I 1 S 0.5 S 2 S 4  2 S 2 S 2 S 64 I 8 R 1 S 40 S 

MSA3
8b 

NE
G 

- ˃=
4 

R ≤0
.5 

S 1 S 2 R NE
G 

- ≤8 R 1 S 0.5 S ˃=
8 

 ˃=
8 

 2 S 2 S ˃=
1 

S 32 S 8 R ≤0.5 S 20 S 

MSA4
2b 

NE
G 

- ˃=
4 

R 1 S ˃=
8 

R ˃=8 R NE
G 

- ˃=
8 

R 1 S 0.5 S ˃=
8 

 1 S 1 S 1 S 2 S 64 I 8 R ≤0.5 S 160 R 

MSAB
TF 

NE
G 

- ˃=
4 

R ≤0
.5 

S 4 R ˃=8 R NE
G 

- ˃=
8 

R 2 I 0,5 S 2 S ˃=
8 

 2 S 2 S 2 S ˃=6
4 

I 16 R ≤0,5 S 40 S 

MSAB
4a 

PO
S 

+ ˃=
4 

R 2 S ˃=
8 

R ˃=8 R NE
G 

- ˃=
8 

R ˃=
4 

R ˃=4 R ˃=
8 

R ˃=
8 

R 16 R 8 R ˃=
16 

R 256 R ˃=
32 

R ≤0,5 S ˃=3
20 

R 

MSAB
4b 

TR
M 

 ˃=
4 

R 2 S ˃=
8 

R ˃=8 
 

R TR
M 

 ˃=
8 

R ˃=
4 

R TRM  ˃=
8 

 ˃=
8 

 TR
M 

 16  2  ˃=5
12 

R 16 R ≤0,5 
 

S 20 S 

MSA-
B5b 

PO
S 

+ ˃=
4 

R 1 S ˃=
8 

R ˃=8 R NE
G 

- ˃=
8 

R 0.5 S 0.5 S ˃=
8 

 ˃=
8 

 2 S 2 S ≤1 S 128 R 8 R ≤0,5 S 20 S 

MSA-
B6b 

TR
M 

 ˃=
4 

R 1 S ˃=
8 

R ˃=8 R TR
M 

 4 I TR
M 

 TRM  ˃=
8 

 ˃=
8 

 TR
M 

 16  ≤1 S 256 R 16 R ≤0,5 
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Key: CEF-S- Cefoxitin screen; OX- Oxacillin; GM- Gentamycin; CIP- Ciprofloxacin; MOX- Moxifloxacin; ICM- Inducible clindamycin resistance, ERY- Erythromycin; TEL- Telithromycin; CLI-

Clindamycin; LIN- Linezolid, DAP- Daptomycin; TEI- Teicoplanin;VA- Vancomycin ; TET- Tetracycline, NIT- Nitrofurantoin; FUA- Fusidic acid; MUP- Mupirocin; RIF- Rifampicin; TM- Trimethoprim; 

MIC- minimum inhibitory concentration, R-Resistant; S-Susceptible ; TRM-Reaction terminated 
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Out of 30 Staphylococcus isolates, a total of 9 (30%) were positive for Cefoxitin 

screen and none were positive for Clindamycin inducible resistance as reported in 

Table 4.9. 

 

Table 4.9: Methicillin and inducible clindamycin resistance by Cefoxitin screen and inducible 

clindamycin test (N=30) 

Antibiotic Positive (%) Negative (%) TRM% 

Cefoxitin screen 9 (30) 12 (40) 9 (30) 

Inducible clindamycin 0 (0) 25 (83) 5 (0) 

TRM-Reaction terminated 

 

Our study reported 30% resistance to Cefoxatin and this finding is not in accordance 

with a study conducted by Ansari et al. (2014) in Nepal who reported 43% 

resistance. Results of our study was not in alignment with findings reported by 

Kumari et al. (2008) who reported lower resistance of 26%. The MRSA prevalence 

in our study might have been due to the wide use of B-lactam antibiotics without 

specific laboratory tests. No Inducible clindamycin resistance was recorded in our 

study and our results are not contrary to that reported by Prabhu and Rao, (2011) 

and Ciraj et al. (2009) who reported prevalence of inducible clindamycin resistance 

of 13.1%. A total of 30 isolates were resistant to Moxifloxacin, Oxacillin, Ciproflacin, 

Erythrromycin and Fusidic acid. The isolated strains were also susceptible to 

Gentamycin, Tetracycline and Rifampicin as shown in Table 4.10.  
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Table 4.10: Percentages of resistance of isolates to tested antibiotics using automated 

VITEK®
 system (n= 30) 

Antimicrobial                            MIC breakpoint (mg/L) 

R *I S 
   Oxacillin ˃2 

N=29 (97%) 
- 
N= 0 

4 
N=1 (3%) 

   Gentamycin ˃16 
N=0 

- 
N= 0 

≤4 
N=30 (100%) 

   Ciprofloxacin ˃ 1 
N=25 (83%) 

          - 
N=1 (3%) 

≤1 
 N=4 (%) 

   Moxifloxacin ˃ 1 
N=30 (100%) 

1 
0 

≤0.5 
N=0 

 
    Erythromycin 

˃ 2 
N=25 (83%) 

2 
N=4 (13%) 

≤1 
N=1 (3%) 

   Telithromycin  
N=14 (47%) 

 
N= 5 (17 %) 

 
N=5 (17%) 

    Clindamycin ˃ 0.5 
N= 7 (23%) 

0.5 
0 

≤0.25 
N=15 (50%) 

    Teicoplanin ˃ 4 
N=1 (3%) 

- 
N= 5 (17%) 

≤4 
N=16 (53%) 

    Vancomycin ˃ 2 
N= 1 (3%) 

- 
N=13 (43%) 

≤2 
N=14 (47%) 

    Tetracycline ˃ 2 
N=8 (27%) 

2 
0 

≤1 
N=21 (70%) 

 Nitrofurantoin ˃ 64 
N=22 (73%) 

- 
N=5 (17%) 

≤64 
3 (10%) 

 Fusidic acid ˃ 1 
N=29 (97%) 

- 
0 

≤1 
N=1 (3%) 

 Rifampicin ˃ 0.5 
N=4 (13%) 

0.12 - 0.5 
- 

≤0.06 
N=26 (87%) 

Trimethoprim ˃ 1 
N=14 (47%) 

- 
0 

≤1 
N= 16 (53%) 

S-Susceptible,
 *
 I-Intermediate (regarded as Resistant), R-Resistant 

 

Although antibiotic resistance is commonly linked to clinical studies, recent studies 

from different ecological niches revealed multidrug resistant bacteria is widespread 

in the environment but not much is known about the antibiotic resistance of 

Staphylococci isolated from different ecological niches (Xu et al., 2018). In this 

study, the majority of Staphylococci spp. were highly resistant to Moxifloxacin, 

Oxacillin, Fusidic acid, Ciprofloxacin, Erythromycin and Nitrofurantoin. The current 

findings are contrary to findings reported by Aqib et al. (2017), who reported 100% 
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efficacy of Moxifloxacin, Ciprofloxicin and other antibiotic to Staphylococcus aureus 

recovered from buffaloes.  Ferreira et al. (2012) reported high resistance to 

Oxacillin. 

Staphylococcus Sciuri  (S. sciuri)  were more resistant to antibiotics than other 

Staphylococcus spp. recovered in this study. High resistance of 63% was observed 

on S. sciuri to Oxacillin, and Fusidic acid followed by Ciprofloxacin [18 (60%)]. 

Resistance was also observed for S. xylosus to Ciproflaxin, Moxifloxacin and 

Erythromycin all with 10 (33%). Results are shown in Table 4.11. 

Table 4.11: Distribution frequency of resistance of isolates to tested antibiotics using 

automated VITEK®
 system (n= 30) 

Antimicrobial S. sciuri S. xylosus S. caprae TRM 

 R S R S R S 

Oxacillin 19 
(63%) 

- 9 (30%) 1(3%) 1(3%) - - 

Gentamycin - 19(63) - 9 (30%)  1(3%)  

Ciprofloxacin 18 
(60%) 

1(3%) 10 (33%) - 1(3%) - - 

Moxifloxacin 19 
(63%) 

- 10 (33%) 

 

- 1(3%) - - 

 

Erythromycin 

19 
(63%) 

- 10 (33%) - - 1(3%) - 

Telithromycin 10 
(33%) 

5 (17%) 9 (30%) 1(3%) - 1(3%) 4 (13%) 

Clindamycin 4 (13%) 8 (27%) 2 (7%) 8 (27%) 1(3%) - 7 (23%) 

Linezolid - 3 (10%) 1(3%) 1(3%) - - 25 (83%) 

Teicoplanin 1(3%) 10 
(33%) 

5 (17%) 5 (17%) - 1(3%) 8 (27%) 

Vancomycin 6 (20%) 11 
(37%) 

9 (30%) 1(3%) - 1(3%) 2 (7%) 

Tetracycline - 19 
(63%) 

8 (27%) 2 (7%) 1(3%) - - 

Nitrofurantoin 17 
(57%) 

2 (7%) 9 (30%) 1(3%) - 1(3%) - 

Fusidic acid 19 
(63%) 

- 9 (30%) 1(3%) - 1(3%) - 

Rifampicin 2 (6%) 17 
(57%) 

2 (6%) 8 (27%) - 1 (3%) - 

Trimethoprim 4 (13%) 15 
(50%) 

7 (23%) 3 (10%) - 1 (3%) - 

S-Susceptible,
*
 I-Intermediate (regarded as Resistant), R-Resistant , TRM-Reaction terminated 
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Multidrug resistant Coagulase negative species in non-healthcare associated 

environments is a disturbing finding. Our results showed that S. sciuri were prevalent 

and were resistant to Oxacillin and Cefoxatin and these may be due to over-

expression of MecA gene. Our results are in agreement with the study conducted by 

Frey et al. (2013) and Ferreira et al. (2003). A recent study by Rolo et al. (2017) 

has shown that S. sciuri has developed Oxacillin resistance using a variety of 

mechanisms from diversification of the non-binding domain of native PBPs, change 

in the mecA promoter, which led to acquiring the SCCmec element and adaptation of 

the bacterial genetic background. The resistance exhibited by a large percentage of 

coagulase negative species to these routinely used antibiotics in treatment of 

Staphylococcal infections necessitates the search for newer and more effective 

antibiotics against this group of organisms (Fowoyo and Ogunbanwo, 2017). 

A total number of 22 isolates (73%) were multi-drug resistant and most strains were 

resistant to six drugs (4; 18%) followed by five (3; 14%) and nine (3; 14%). Results 

are recorded in Table 4.12.  

Table 4.12: Frequency of Multidrug resistant coagulase negative species from mastitic raw 

milk (n=30) 

No. of antibiotics tested No. of multidrug resistant strains (%) 

Two 1 (3) 

Three 1 (3) 

Four 1 (3) 

 

Five 

3 (14) 

Six 4 (18) 

Seven 3 (14) 

Eight 2 (9) 

Nine 3 (14) 

Ten 2 (9) 

Eleven 1(3) 

Twelve  - 

Thirteen - 

Fourteen 1(3) 

Total=30 22(73) 
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High frequency of multidrug resistance can be accounted for by the fact that 

coagulase-negative Staphylococci are known to form biofilms, and this reduces the 

effect of antimicrobial agents against them (John and Harvin, 2007). The 

emergence of Teicoplanin resistance among coagulase negative might be the result 

of selective pressure from the frequent use of vancomycin, however it was 

interesting to find that vancomycin did not exhibit high resistance like other study 

reports. Vancomycin can still be the reasonable choice for the treatment of severe 

infections due to multiple-resistant coagulase negative species (Ma et al., 2011). 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 CONCLUSION  

The aim of this study was to characterise Staphylococcus spp. and E. coli isolated 

from milk obtained from subclinical and clinical mastitis cows. This was done through 

a combination of techniques including culture, isolation of strains, detection and 

characterization using a published Multiplex Polymerase Chain (m-PCR) reaction 

protocol and a semi-automated VITEK® 2 system.  

The first objective was to evaluate the farm‘s management strategies and determine 

mastitis prevalence in the dairy farm using a questionnaire tool. The results of the 

survey showed that good farm practices, feeding and management system were 

followed and contributed to low mastitis burden in the dairy farm. 

The second objective was to isolate and identify staphylococcus spp. and E. coli 

from clinical and subclinical cases of bovine mastitis using culture methods, 

biochemical and molecular biology tests. The results of the study showed that E. coli 

pathotypes and coagulase negative Staphylococcus spp. were detected and 

therefore may be responsible for mastitis.  

The third objective was to amplify and identify the specific virulence genes carried by 

E. coli isolates using m-PCR. Virulence genes such as astA, sta and eaeA, were 

detected and isolates carried a combination of aEPEC/ETEC; ETEC/EAEC and 

tEPEC/ETEC pathotypes. 

The last objective was to determine the antibiotic susceptibility patterns of the 

isolates using Kirby Bauer disk diffusion method and automated VITEK® 2 system. . 

The E. coli isolates were highly resistant to Erythromycin; Nalixidic acid and 

Trimethoprim-sulfamethoxazole and susceptible to Chloramphenicol as well as 

Ampicillin. Most Staphylococci were highly resistant to Moxifloxacin, Oxacillin, 

Fusidic acid, Ciprofloxacin, Erythromycin and Nitrofurantoin. This may have future 

implications on the effective treatments of various infections in dairy cattle.  
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5.2 LIMITATIONS OF THE STUDY 

Due to limited funds and lengthy administrative hurdles, this study was conducted in 

a single farm setting in the Makhado municipality of the Vhembe district. A multi-

setting study within the region and beyond could have strengthened the findings. 

Virulence and antibiotic resistance genes were not screened in Staphylococcus spp. 

due to financial constraints.  

 

5.3     RECOMMENDATIONS 

The study recommends the following to various stake holders (institutional, provincial 

and farmers‘ association): 

 The university should support such studies in  order to strengthen the farm 

productivity and also improve communities within the District 

 Encouraging farm workers to keep on practising good farm management in 

Limpopo dairy may keep mastitis rate at low and eventually have good control 

of the infection. 

 The small-scale farmers are also encouraged to get education or awareness 

of implications of hygiene in their daily routine in order to abstain the public 

from unnecessary foodborne outbreaks. 

 The presence of E. coli may indicate that hygienic practices are not up to 

standard, most especially during milking process and needs to be improved 

 Improving sanitary conditions may reduce the burden of mastitis caused by 

diarrhegenic E. coli and Staphylococcus spp. 

  The presence of pathogenic E. coli and Staphylococcus spp. in milk may 

pose health risks or problem. This report should be made available to 

municipality department dealing with public health to educate communities on 

the risk of consuming unprocessed contaminated milk 

 The study also recommends routine studies that analyse or reports on 

management practices and implication of sanitary condition in facilities that 

produce dairy products 

 For future studies, further analysis of both E. coli and Staphylococcus spp. to 

determine virulence and resistant genotyping in order to investigate possible 

mutations is recommended.    
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APPENDICES 

APPENDIX A 

INFORMED CONSENT FORM FOR DAIRY FARM MANAGERS 

This Informed Consent Form is for dairy farm managers and dairy farm personnel‘s 

who we are inviting to participate in research on Mastitis. The title of our research is 

CHARACTERIZATION OF STAPHYLOCOCCUS AUREUS ISOLATED FROM 

CLINICAL AND SUBCLINICAL CASES OF BOVINE MASTITIS IN THE LIMPOPO 

DAIRY FARM. Study is done by BADUGELA NDIVHUWO (11615918), for fulfilment 

of Master of Science degree to the Department of Microbiology.  

SUPERVISOR: DR E MUSIE (University of Venda) 

CO-SUPERVISOR: DR MT SIGIDI (University of Venda) 

CO-SUPERVISOR: PROF AN TRAORE (University of Venda) 
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PART I: INFORMATION SHEET  

INTRODUCTION 

I am Badugela Ndivhuwo, a student in the University of Venda under the supervision 

of Dr E Musie, Dr M.T Sigidi and Prof A.N Traore. We are doing research on Mastitis 

disease, which is very common in dairy farms and mostly caused by bacteria known 

as Staphylococcus aureus and E. coli. I am going to give you information and invite 

you to be part of this research. You do not have to decide today whether or not you 

will participate in the research. Before you decide, you can talk to anyone you feel 

comfortable with about the research.  

PUPROSE OF THE RESEARCH  

Mastitis is a disease caused by invasion of the mammary gland tissues. In dairy 

cows the teats are infected. It has a bad impact in the economy for it reduce the 

production of dairy products and pose threat on public health globally because of 
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quality of milk produced. It is most commonly caused by two bacteria that are 

commonly found in the intestines and the skin of the cows as normal bacteria, but 

once they find opportunity to invade, they become contagious due to the virulence 

factors they have. Mastitis can show symptoms and can also not show symptoms in 

cows but changes the milk composition.  The reason we are doing this research is to 

search for the bacteria and their virulence factors from cows that shows symptoms 

as well as those that do not show symptoms, and also test the bacteria  found to the 

reaction of commonly used antibiotics in order to be able to know if the found 

bacteria can be destroyed or can resist the drugs which are currently being used.  

WHAT IS EXPECTED FROM YOU? 

This research will involve collection of milk from the cows (Showing signs and not 

showing signs of mastitis) within the farm and responding to a few questions from a 

questionnaire.  

WHY ARE YOU CHOSEN? 

You are in the area of interest. 

DURATION  

The research takes place over 2 seasons, dry and wet seasons. During that time, we 

will make visits into the farm to perform on farm screening and to collect the milk 

sample and health records of the cow‘s appointment prior visit until the research is 

finished.  

 

 

PART II: CERTIFICATE OF CONSENT  

I have read the foregoing information. I have had the opportunity to ask questions 

about it and any questions that I have asked to have been answered to my 

satisfaction.  I consent voluntarily to participate as a participant in this research. 

Name of Participant__________________  

  

  

Signature of Participant ___________________ 

Date ___________________________ 
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STATEMENT BY THE RESEARCHER/PARTICIPANT 

I have accurately read out the information sheet to the potential participant, and to 

the best of my ability made sure that the participant understands that the following 

will be done: 

1. On farm cows screening 

2. Cow‘s milk collection 

3. Responding to questionnaires 

I confirm that the participant was given an opportunity to ask questions about the 

study, and all the questions asked by the participant have been answered correctly 

and to the best of my ability. I confirm that the individual has not been coerced into 

giving consent, and the consent has been given freely and voluntarily.  
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A COPY OF THIS INFORMED CONSENT FORM HAS BEEN PROVIDED TO THE 

PARTICIPANT. 

 Name of Researcher ________________________  

Signature of Researcher__________________________ 

Date ___________________________   

 

 

 

 

  

 

 

 

 

 

 

 

 

 APPENDIX B 

 A questionnaire designed to measure management practice used on Limpopo 

dairy farm and individual cow general information and health record 

PART A: GENERAL INFORMATION 

1) HOUSING  

1.1 How many cows are housed in your farm? 

1.2 What is the type of housing for your milking cows? 

Tie stall       Free stall              Bedding  pack               

Other(specify)..……………………………          

…………………………………………………………………….. 

1.3 How are the passage way cleaned?  
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Scrapped  Flushed with water          Other, Please 

specify………………………………………………………………………. 

1.4 How many times are the passage way cleaned? 

...........................................................................................    

1.5 What type of material is the base of your milking cow made of? 

Concrete             Sand            Pasture mat             Other, please specify 

……………………………………………………………………………….. 

1.6 What type of bedding used 

Straw            Saw dust            Shavings                 Sand            No bedding             

Other, specify…………………………………………………………………………. 

1.7 Bedding management 

Less than 2cm deep             greater than 2cm deep 

2. BIOSECURITY 

2.1. Do you buy adult cows and first cows heifers?  

Yes                 No     Yes, if yes what do you do to moving the animals to your 

farm to make sure that their udder is healthy? 

 

Perform bacterial analysis for each quarter milk sample 

Perform bacterial analysis for pooled milk sample 

Ask sellers about the somatic cell count of the animals 

Perform Carlifornia Mastitis Test 

Ask sellers about the somatic cell count of the animals 

2.2 Do make any udder health verification prior moving the animals? 

Yes               No 

2.3 Do you have the herd health health plan? 

Yes               No 

2.4 Does the health plan include detailed plan for mastitis management and 

control? 

Yes               No 

2.5 Was the plan compiled with veterinary input? 

Yes               No 

       2.6 Do you use dry cow management for mastitis cases in your operation? 
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Yes, for some cows                        Yes, for some cows  No cows 

2.7 Are dry cows housed with milking cows? 

Always  Sometimes  Never    

        2.8 Which of the following best describe the milking parlour on this operation? 

Side opening            parallel           swing            Rotary           Flat barn           

Other, please 

specify……………………………………………………………………………………

…………………………… 

 

3. DISEASES 

3.1 Do you keep record of diseases occurring on your farm?  

Yes             No 

3.2 Do you have vaccination programme against mastitis?  

Yes              No 

Name the vaccines used 

 1…………………………………………………………… 

2………………………………………………………………. 

3…………………………………………………………….. 

4……………………………………………………………… 

5…………………………………………………………….. 

3.2 Do you have general vaccination programme for adult cows? 

Yes                No 

Name the vaccines used 

3.3 Are your cows udders dipped or flamed? 

Yes, dipped              Yes,  flamed                No 

4 MASTITIS RELATED RECORD 

4.1 Do you have Mastitic cows in your operation?  

Yes                No 

4.2 How many cows have been diagnosed with mastitis in your records? 

……………………………………………………  

4.3 Have you culled any cows because of mastitis? 

Yes             No 
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4.4 Have any cows died from high cell count?  

Yes                No 

4.5 Which signs do you use to diagnose mastitis 

Clots in milk           discoloured milk          blood in  milk             hot udder           

udder discolouration              change in cow milking order              cow 

temperature              other, please 

specify……………………………………………………………………………………

………………………………………………….. 

4.6 What method for detection of clots in milk is used?  

Strip cup              Carlifornia mastitis test              inline clot filter             other, 

please 

specify……………………………………………………………………………………

………………………………………………….. 

4.6 For cows showing clots in milk, what type of treatment is used?  

Herbal udder infusion                Antibiotics              other,  please 

specify……………………………………………………………………………………

……………………………………………………. 

If antibiotics are used, what type are used?  

B lactams: ………………………………, ………………………………….., 

……………………………………., ……………………. 

Macrolides: ……………………………, ……………………………………., 

……………………………………, ……………………. 

Phenolics: ………………………………., ……………………………………, 

……………………………………., ………………… 

4.7 What consideration do you make when deciding which cows will receive 

conventional treatment? 

………………………………………………………………………………………………

……………………………………………………… 

PART B: INDIVIDUAL COW RECORD AND OBSERVATION 

Cows name/ID: …………… 

Registration/ Ear tag number:…………… 

Date of birth/Age:……………… 

Breed: ……………. 

Lactation stage: …………………….. 

Vaccination status: …………………… 
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Parity level: ………………. 

Previous history of mastitis: …………… 

Accumulated cases in previous months of lactation: …….. 

Pathogens involved: ……………….. 

Cows physical observation 

Physical observation none Mild severe Comments 

Cleanliness Dirty hind 
limbs 

    

Dirty udder     

Coat 
condition 

Dull coat     

Thick hairy 
coat 

    

Hair loss     

Teat ends Sore 
inflamed 
teat ends 

    

Adverse 
reaction to 
drug 
administration 

     

 

PART C: PERSONAL (DAIRY FARM) 

4.1 How important is a persistent high somatic cell counting your culling 

decisions?     

(Rate from 1 -Not important to 5-Very Important) 

1 2 3 4 5 

 

  1 Not important       2 Partially important         3 Neutral          4 Important           

5 very important 

4.2 How important is an infection with Staphylococcus aureus in your culling 

decisions? 

          1 Not important 2 Partially important 3 Neutral 4  Important 5. Very 

important  

4.3 Do you agree with the statements? 

i. High somatic cell count (SCC) cows are easy to discover during milking 

 1 Strongly disagree  2 Agree  3 Neutral 4 Agree 

 5 strongly agree 
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ii. To prevent Staphylococcus aureus infection, it is important to look at stall 

cleanliness intead of milking procedures 

 1 Strongly disagree  2 Disagree 3 Neutral 4 Agree  5 

Strongly agree 

iii. Analysis of cows individual SCC is very important 

 1 Strongly disagree  2 Disagree 3 Neutral 4 Agree  5 

Strongly agree 

iv. Generally you can not influence causes of sub clinical mastitis 

 1 Strongly disagree  2 Disagree 3 Neutral 4 Agree  5 

strongly agree 

v. I know enough about mastitis to keep the herd out of trouble 

 1 Strongly disagree  2 Disagree 3 Neutral 4 Agree  5 

strongly agree 
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