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ABSTRACT 
Demand for water resources has been on the increase and is compounded by population growth 

and related development demands. Thus, numerous sectors are affected by water scarcity and 

therefore effective management of drought-induced water deficit is of importance. Luvuvhu River 

Catchment (LRC), a tributary of the Limpopo River Basin in South Africa has witnessed an 

increasing frequency of drought events over the recent decades. Drought impacts negatively on 

communities’ livelihoods, development, economy, water resources, and agricultural yields. 

Drought assessment in terms of frequency and severity using Drought Indices (DI) in different parts 

of the world has been reported. However, the forecasting and prediction component which is 

significant in drought preparedness and setting up early warning systems is still inadequate in 

several regions of the world. This study aimed at characterising, assessing, and predicting drought 

conditions using DI as a drought quantifying parameter in the LRC. This was achieved through the 

application of hybrid statistical and machine learning models including predictions via a 

combination of hybrid models.  

 

Rainfall and temperature data were obtained from South African Weather Service, 

evapotranspiration, streamflow, and reservoir storage data were obtained from the Department of 

Water and Sanitation while root zone soil moisture data was derived from the NASA earth data 

Giovanni repository. The Standardised Precipitation Index (SPI), Standardised Precipitation 

Evapotranspiration Index (SPEI), Standardised Streamflow Index (SSI), and Nonlinear Aggregated 

Drought Index (NADI) were selected to assess and characterise drought conditions in the LRC. SPI 

is precipitation based, SPEI is precipitation and evapotranspiration based, SSI is based on 

streamflow while NADI is a multivariate index based on rainfall, potential evapotranspiration, 

streamflow, and storage reservoir volume. All indices detected major historical drought events that 

have occurred and reported over the study area, although the precipitation based indices were the 

only indices that categorised the 1991/1992 drought as extreme at 6- and 12- month timescales 

while the streamflow index and multivariate NADI underestimated the event. The most recent 

2014/16 drought was also categorised to be extreme by the standardised indices. The study found 

that the multivariate index underestimates most historical drought events in the catchment. The 

indices further showed that the most prevalent drought events in the LRC were mild drought. 

Extreme drought events were the least found at 6.42%, 1.08%, 1.56%, and 4.4% for SPI, SPEI, 

SSI, and NADI, respectively. Standardised indices and NADI showed negative trends and positive 

upward trends, respectively. The positive trend showed by NADI depicts a decreased drought 

severity over the study period. 

 

Drought events were characterised based on duration, intensity, severity, and frequency of drought 

events for each decade of the 30 years considered in this study i.e. between 1986 – 1996, 1996 – 

2006, 2006 – 2016. This was done to get finer details of how drought characteristics behaved at a 

10-year interval over the study period. An increased drought duration was observed between 1986 

- 1996 while the shortest duration was observed between 1996 - 2006 followed by 2006 - 2016. 

NADI showed an overall lowest catchment duration at 1- month timescale compared to the 

standardised indices. The relationship between drought severity and duration revealed a strong 
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linear relationship across all indices at all timescales (i.e. an R2 of between 0.6353 and 0.9714, 

0.6353 and 0.973, 0.2725 and 0.976 at 1-, 6- and 12- month timescales, respectively). In assessing 

the overall utilisation of an index, the five decision criteria (robustness, tractability, transparency, 

sophistication, and extendibility) were assigned a raw score of between one and five. The sum of 

the weighted scores (i.e. raw scores multiplied by the relative importance factor) was the total for 

each index. SPEI ranked the highest with a total weight score of 129 followed by the SSI with a 

score of 125 and then the SPI with a score of 106 while NADI scored the lowest with a weight of 

84. Since SPEI ranked the highest of all the four indices evaluated, it is regarded as an index that 

best describes drought conditions in the LRC and was therefore used in drought prediction.   

 

Statistical (GAM-Generalised Additive Models) and machine learning (LSTM-Long Short Term 

Memory) based techniques were used for drought prediction. The dependent variables were 

decomposed using Ensemble Empirical Mode Decomposition (EEMD). Model inputs were 

determined using the gradient boosting, and all variables showing some relative off importance 

were considered to influence the target values. Rain, temperature, non-linear trend, SPEI at lag1, 

and 2 were found to be important in predicting SPEI and the IMFs (Intrinsic Mode Functions) at 1-

, 6- and 12- month timescales. Seven models were applied based on the different learning 

techniques using the SPEI time series at all timescales. Prediction combinations of GAM performed 

better at 1- and 6- month timescales while at 12- month, an undecomposed GAM outperformed the 

decomposition and the combination of predictions with a correlation coefficient of 0.9591. The 

study also found that the correlation between target values, LSTM, and LSTM-fQRA was the same 

at 0.9997 at 1- month and 0.9996 at 6- and 12- month timescales. Further statistical evaluations 

showed that LSTM-fQRA was the better model compared to an undecomposed LSTM (i.e. RMSE 

of 0.0199 for LSTM-fQRA over 0.0241 for LSTM). The best performing GAM and LSTM based 

models were used to conduct uncertainty analysis, which was based on the prediction interval. The 

PICP and PINAW results indicated that LSTM-fQRA was the best model to predict SPEI time-

series at all timescales. The conclusions drawn from drought predictions conducted in this study 

are that machine learning neural networks are better suited to predict drought conditions in the 

LRC, while for improved model accuracy, time series decomposition and prediction combinations 

are also implementable. The applied hybrid machine learning models can be used for operational 

drought forecasting and further be incorporated into existing early warning systems for drought 

risk assessment and management in the LRC for better water resources management. 

 

Keywords: Decomposition, drought, drought indices, early warning system, frequency, machine 

learning, prediction intervals, severity, water resources. 
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1 INTRODUCTION 

Background, Motivation for the study, Research objectives, Research contribution to 

knowledge, Thesis outline 

 

1.1 Background  

Drought is a critical natural hazard, adversely impacting on communities’ livelihood, 

ecosystems, river basins, the environment, and water resource systems (Jahangir et al., 2013). 

It is multi-dimensional and characterised by stochastic processes that are usually related to each 

other (Shiau et al., 2012). For improved planning and management of water supplies, irrigation 

systems, crop and food security programmes, hydropower generation, and water quality 

management, drought assessment becomes critical (Abad et al., 2013). On a global scale, 

demand for water resources has been on an increase and this is compounded by population 

pressures and related developments. Drought-induced water scarcity has affected numerous 

sectors of the economy; thus, effective management of drought-induced water deficit is of 

significance.  The resulting drought impacts are severe on arid and semi-arid areas than in 

humid environments (UNDP, 2012). Management of droughts has become an important matter 

in the world. Its assessment in terms of frequency, duration, and severity using Drought Indices 

(DI) in different parts of the world has been reported (e.g. Mishra and Singh 2010; Barua, 2010; 

Belayneh and Adomowski, 2013; FAO, 2004). However, the forecasting and prediction 

components which are an important aspect of drought preparedness, drought risk assessment, 

and setting up early warning systems is still inadequate in many regions of the world, including 

the Limpopo River Basin (LRB) in southern Africa.  

 

On a global scale, drought events have become more frequent and severe due to climate 

variability and change, with different regions experiencing droughts at varying scales and times 

(Naumann et al., 2018). Therefore, the global impacts of drought on the environment, 

agriculture, and socio-economic aspects require attention. Meteorological, agricultural, 

hydrological and socio-economic droughts are recognised drought types. Drought have either 

direct or indirect impacts on river basins, including degradation of water resources (Van Vlient, 

2015; Safavi and Malek Ahmadi, 2015), reduced crop productivity (Karl et al., 2009; Olesen 

et al., 2011), increased livestock and wildlife mortality rates, increased land degradation (Inbar, 
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2017) and increased plant diseases (UN, 2008; Scheffran et al., 2012). The indirect impacts 

include reduced income, reduced tax revenues, increased food prices, unemployment, and 

increased migration of people and animals. More than 11 million people have died worldwide 

since 1900, resulting from negative drought impacts (Emergency Event Database; EM-DAT, 

2010). This is in addition to a population of two billion that has been adversely affected by the 

impacts of drought since 1900 (FAO, 2013). Shortages of water resources during drought 

periods result in ill health, famine & malnutrition, and this remains one of the critical drought 

challenges (UN, 2008).   

 

African countries are among the most vulnerable to impacts of drought consequences, changing 

climate, and its variability. Estimates show that about 30% of Burundi, Rwanda, Burkina Faso, 

Lesotho, and South Africa land areas are severely affected by drought (UNESCO, 2007). The 

impacts are often adversely affected by social factors such as poverty and diseases. The demand 

for water, food, and livestock forage on the African continent over time is expected to increase 

(UNDP, 2012). Drought assessment studies provide an understanding of trends in drought 

frequency, severity, magnitude, and their associated impacts. Such studies yield information 

for informed decision making by authorities on support programmes for communities affected 

by drought. Damages caused by drought because of inadequate water resources may lead to 

famine due to lower agricultural yields, humanitarian crises, and rationing of water supply.  

 

To cope with the challenges of drought occurrence, its evaluation, prediction, and forecasting 

are crucial, to formulate effective mitigation measures (Sharda et al., 2012). Preparedness of 

drought is of fundamental importance to effectively mitigate impacts, especially through water 

resources management under different climate change scenarios. Different techniques are used 

to assess (i.e. standardised indices, threshold level method, rainfall anomaly index, and deciles 

index) and predict (regression analysis, stochastic, probabilistic, artificial intelligence-based, 

hybrids, and dynamic modeling) drought conditions with regards to their spatial and temporal 

domains. Evaluation and prediction of drought conditions are important to formulate effective 

drought risk measures in the Luvuvhu River Catchment (LRC). 

 

1.2 Motivation for the study  

Drought is a normal feature of the climate and is quite common in southern Africa. The 

frequency of weather and climate-related disasters have increased in Africa since the 1970s, 
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with southern Africa reported having become drier between 1974 and 2003 (e.g. Engelbrecht 

et al., 2009; Lukamba, 2010; Malherbe et al., 2013). Unganai (1994) found that drought is a 

prevalent natural disaster in southern Africa due to the climatic nature of the region, while 

according to Ngaka (2012), drought is the most common type of disaster experienced in South 

Africa. About 65% of South Africa receives rainfall of less than 500 mm/annum (DWAF, 1994; 

Nyakudya and Stroosnijder, 2011; Dallas and Rivers-Moore, 2013) indicating that agriculture 

in the country is practiced under arid and semi-arid conditions (Wilhite 1993; Mavhura et al., 

2015). Levubu Valley in the LRC is one of the largest agricultural producers in Limpopo 

Province, thus drought-induced water deficit in the LRC poses a major challenge in the 

agricultural sector. The LRC is found in a summer rainfall region where agricultural production 

will be affected by the projected 5% to 10% reduction in annual rainfall (DEAT, 2004; 

Nyakudya and Stroosnijder, 2011). During drought periods dam water levels drop, i.e. during 

the 2014/2015 drought (Hawker, 2015). Studies have shown that up to 30% drop in dam levels 

across South Africa can be realised if a drought event is followed or preceded by a dry year 

(Vogel, 1994). This severely stresses the water supply systems and communities that depend 

on such surface water resources for domestic use and subsistence farming as is the case in the 

LRC. 

  

There exist serious ecological and economic consequences due to drought in the study area 

which exacerbates existing challenges of communities with global climate change (Maponya 

and Mpandeli, 2012). The increase in the frequency and intensity of drought in the Limpopo 

River Basin region have been reported (Biggs et al., 2004; Engelbrecht et al., 2015; Gebre and 

Getahun, 2016; Mosase and Ahaiblame, 2018), which is due to the wide projection of a warm 

planet, climate and weather variability (Thornton et al., 2014). Kiem and Austin (2013) 

attributed this to the increased frequency, intensity, and duration of droughts to anthropogenic 

climate change and further stressed the importance of robust drought adaptation strategies. 

Climate change emanating from reduced precipitation negatively affects the hydrology and 

water resources of an area (Singh, 2006). This subsequently reduces runoff and water resource 

availability. Global trends in precipitation, humidity, drought, and runoff are indicated to be on 

a negative trajectory in southern Africa (Kundzewicz et al., 2007). 

 

 North-eastern South Africa, within which the catchment under study is found in a drought 

corridor (an area prone to dry spells) which lies between 20° to 25°S in southern Africa (Usman 

and Reason, 2004). Predictions provide information for better preparedness and developing 
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better early warning systems for adoption purposes (Panu and Sharma, 2002). Few early-

warning systems are implemented since municipalities' disaster management programmes are 

limited to reacting after disasters (Musyoki et al., 2016). There has been a culture of crisis 

management in many areas around the world, with communities experiencing one disaster after 

another without or with little risk reduction. Reactive measures do not deal with the root cause 

of the vulnerability and therefore cannot contribute to drought risk reduction of future drought 

events (Sifundza et al., 2019; Baudoin et al., 2017; De Stefano et al., 2015). If drought 

conditions are detected early on, this has the potential to reduce impacts and the need for the 

government to intervene (Panu and Sharma 2002; Wilhite, 2005). Therefore, there is a need to 

apply and develop forecasting and prediction methods and techniques that have the potential 

to determine onset and recovery points of drought, (Mishra and Desai, 2005) especially at 

catchment level where water resources are managed. Although major drought drivers act over 

relatively large geographic distances through large-scale atmospheric motions, which are 

generally forced by SST (Sea Surface Temperature) anomaly, land surface interactions, as well 

as other external factors superimposed on natural climate variability (Schubert et al., 2016), 

drought studies at catchment level where water is managed, is also of significance. 

 

To effectively mitigate adverse drought impacts, timely detection, quantification, evaluation, 

and prediction is critical. There are currently drought forecasting and prediction techniques 

used in South Africa. The South African Weather Service (SAWS) maintains two separate 

seasonal forecasting systems, one is dynamic and the other a statistical approach. These are 

dynamical global Ensemble Prediction System (EPS) using the ECHAM4.5 Atmospheric 

General Circulation Model (AGCM), and a statistical prediction system based on a Model 

Output Statistics (MOS) approach (Landman et al., 2012). Department of Water and Sanitation 

(DWS) determines long-term assurance of supply through a stochastic approach based on 

historical flow data using marginal distribution, cross-correlation, and serial correlation in the 

Stochastic Streamflow Model (STOMSA) (DWS, 2013) which is integrated into the Water 

Resources Yield Model. These models are applied at a regional and national level and therefore 

cannot account for finer catchment characteristics and the resulting community-level impacts. 

 

Several drought studies have been conducted in the catchment, such as Usman and Reason 

(2004); Kabanda (2004); Kagoda et al. (2010); Maponya and Mpandeli (2012), and Mpandeli 

and Maponya (2013). Most of these studies focused on drought characterisation, assessment of 

drought conditions, and impacts of drought. However, Kagoda et al. (2010) successfully 
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performed a one-day forecast of streamflow using Radial Basis Function Neural Network 

(RBFNN). Although the study was not on hydrological drought forecasting, streamflow can 

also act as an indicator of hydrological drought, and therefore successful streamflow 

forecasting can assist in drought planning management.  Trambauer et al. (2015) conducted a 

study in the LRB that aimed at seasonal forecasting of hydrological drought at 3, 4, and 5 

months’ lead times. This study found that the Seasonal Forecasting System (FS_S4) and 

Forecasting System Conditional Streamflow Prediction Approach (FS_ESPcond) have the 

potential to forecast seasonal hydrological drought in the LRB.  

 

The current study differs from Kagoda et al.  (2010), Trambauer et al. (2015), and the 

forecasting system currently in use by SAWS and DWS in that it proposes to predict drought 

using a multiscalar drought index (drought quantifying parameter) in statistical and deep 

learning Artificial Neural Network (ANN) models coupled with Empirical Mode 

Decomposition (EMD) technique. Given that the study area is located in a drought corridor, it 

is important to carry out drought prediction studies in such areas to ensure proper mitigation 

measures for water resources management. This will ensure that communities and industries 

are provided with water during drought events. Although currently, drought prediction exists 

in South Africa, Mishra and Singh (2010) indicated that it is important to test different 

forecasting and prediction approaches to have area-specific drought prediction models. The 

latter is further motivated by the fact that drought in itself is relative; therefore, a drought 

prediction model for tropical catchment might not be the same for arid catchments. 

 

1.3 Objectives   

The main objective of the study is to predict drought by coupling Ensemble Empirical Mode 

Decomposition with deep learning Artificial Neural Network and statistical models in north-

eastern South Africa.  

 

The specific research objectives are to: 

i) detect and assess historical drought using drought indices (i.e. SPI, SPEI, SSI, and 

NADI) over the study area,  

ii) characterise drought in the LRC based on duration, intensity, severity & frequency and 

evaluate the performance of drought indices, 

iii) apply hybrid drought prediction models based on deep learning neural networks and 

statistical learning for the study area. 
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1.4 Research Hypothesis 

i) A multivariate drought index best describes drought conditions in the LRC. 

ii) Drought severity increases with timescales. 

iii)  Hybrid models effectively predict drought conditions in the LRC.   

 

1.5 Research contribution to knowledge 

There have been drought studies conducted in the catchment (e.g. Mpandeli and Maponya, 

2013; Maponya and Mpandeli, 2012; FAO, 2004, Kagoda et al., 2010). Most of these studies 

only assessed the impacts of drought. It was the study by Kagoda and Ndiritu (2011) that 

successfully forecasted streamflow time series using ANN at the catchment level. The focus of 

Kagoda and Ndiritu (2011) was to use the Radial Basis Function Neural Network (RBFNN), 

which is a type of ANN to account for the uncertainty inherent in hydrological modeling and 

not to predict drought. The current study aims at applying hybrid models to predict drought 

making use of a suitable drought index. Although there have been previous studies (e.g. Mishra 

et al., 2007) that have developed hybrid drought prediction models, the approach used in this 

study start by determining a suitable index to assess drought in the study area as well as the 

type of hybrid model’s applied. The thesis contributions to knowledge are the following: 

 The determination of a suitable drought index to detect and assess drought historical 

conditions in the LRC. This is because the indices currently used in the catchment have 

not been tested for their suitability. 

 The evaluation of ANN (LSTM) and GAM models to predict drought in the catchment. 

This has never been attempted in the selected study area in the past making use of a 

drought index. 

 The application of hybrid models to predict drought conditions in the catchment, these 

types of hybrid models have not been well documented in drought forecasting and 

prediction literature. 

 

1.6 Thesis outline 

The thesis structure is presented in Figure 1.1, clearly showing the seven chapters contained 

herein. The first chapter looks at the background of the subject matter tackled in this thesis, the 

motivation behind the study as well as the significance and the contribution to knowledge. A 

detailed review of literature on drought as a natural hazard with emphasis on hydrological 
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drought, drought characterisation, assessment, and prediction methodologies is carried out in 

the second chapter. Chapter 3 details the study area characteristics, its importance, and the 

datasets used in the study including the sources of the data. The formulation of four selected 

drought indices is carried out in the fourth chapter. The fifth chapter characterises drought (in 

terms of frequency, magnitude, and severity) and an evaluation of the selected drought indices 

based on Keyentash and Dracup (2004) is also done. The sixth chapter details the hybrid 

drought model applications for the LRC together with their performance evaluation and the 

best model(s) for this study. A synthesised summary of the thesis findings, the main 

conclusions are drawn and the recommendations emanating from the study are presented in the 

seventh chapter. 
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Figure 1.1: Thesis outline 
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2 LITERATURE REVIEW 

Chapter overview, Drought as a natural hazard, Hydrological drought, Drought 

assessment, Drought prediction, Uncertainty analysis of hydrological models, 

Summary 

 

2.1 Chapter overview 

The chapter reviewed literature associated with drought as a hydrological extreme and the 

review further informed the types of methodologies and techniques employed in drought 

science. This chapter reviews the literature on the nature of the South African climate and its 

variability. The concept of drought as a hazard and how it impacts communities’ livelihoods 

with more emphasis on the Limpopo River Basin are discussed. Drought assessment techniques 

in the form of drought indices (meteorological, hydrological, and agricultural) are also 

reviewed. The concepts of drought prediction and forecasting and different techniques used to 

achieve this, which are the focus of this study are also reviewed in detail. The prediction aspect 

is reviewed as a scientific technique, its importance in hydrological extremes, and the different 

methodologies used. 

 

2.2 Climate variability and Climate change 

There has been a chain of evidence that support the increased global mean surface temperature 

and rainfall over the past half-century, with anthropogenic drivers being largely responsible for 

the warming of the planet (e.g. Alexander et al., 2006; Trenberth et al., 2007; Sánchez-Lugo et 

al., 2018). Climate change from increased greenhouse gas emissions threatens global services 

that are closely related to the climate by increasing temperature, changes in the amount and 

intensity of precipitation, and therefore affecting the variability of climate variables (i.e. 

temperature, precipitation) (IPCC 2007, 2013). Since internal climate variability is manifested 

through preferred modes of atmospheric circulation and decadal sea surface temperature 

variability modulating temperature trends globally (Thompson et al., 2009; Foster and 

Rahmstorf 2011), regional climate change pace will be modified, which in the coming several 

decades will potentially obscure anthropogenic-forced regional change (e.g. Deser et al. 2012) 

and is, therefore, a source significant of near-term regional climate projections uncertainty 

(Hawkins and Sutton 2011). 
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A reliable and adequate supply of potable freshwater is necessary for the survival of living 

organisms on earth and the maintenance and sustainability of terrestrial biotic systems 

throughout the world (Cook, 2007). However, population increase stresses available water 

supplies even without the anticipated impacts of climatic variability and climate change. 

Although there have been improvements in understanding the dynamics of climate variability 

on a large-scale, much needs to be done on its cascading effects to hydrology, quantity, and 

quality on catchment for water resources and sustainability (Peng et al., 2013). The 

hydrological cycle and associated extremes (i.e. drought) have been strongly associated with 

climate variability and change (Mishra et al., 2009).  Drought directly reduces crop production 

since it threatens the water supplies for irrigation (Rana et al., 2016). 

  

The variability and change in climate regimes result in hydrological variability that tends to 

affect water supply for domestic, industrial, agricultural purposes. For instance, before 2016, 

2005 was found to have recorded the warmest global mean annual temperature departure 

(0.84°C), with 1.08°C the warmest annual temperature departure in the Northern Hemisphere 

which is comparable to the 1998 annual departure in the Southern Hemisphere annual 

temperature departure (0.57°C) (Lugina et al., 2006). Global mean temperatures over 2015 and 

2016 showing to be the highest compared to all instrumental records (Berger et al., 2017). 

Consequently, such changes directly or indirectly alter the hydrological response of a 

catchment. Climatic variability plays a key role in the modification of spatial-temporal patterns 

of precipitation. For instance, Ma et al. (2009) indicated that climate variability has altered the 

hydrological processes, reduced glaciers, and water supply downstream of the Himalaya’s 

catchment.  

 

Various approaches have been used to study changes within different basins. Hydro-

meteorological variables and the application of Remote Sensing (RS) and Geographical 

Information Systems (GIS) techniques have been widely used to detect the effects of climate 

variability at the catchment level. With population increase throughout the world, food security 

has also become a major challenge of the 21st century. Historically, when irrigated agriculture 

was established, competing water users such as domestic and industrial supply were often 

virtually non-existent (Solomon, 2010; Reisner 1986). In addition, environmental water 

requirements were given little attention. It becomes important to evaluate how hydrological 

variability impacts on agricultural yields at the catchment scale for food security given the 

increasing population. 
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2.3 Drought occurrence 

Drought phenomena are characterised by water scarcity that falls below normal or defined 

threshold levels. The different application defines the term drought differently (UNDP, 2012), 

and a universal definition does not exist. However, drought is expressed in terms of 

precipitation deviation from the normal, soil-water deficit, low flows, reservoir levels, and 

groundwater level. For example, a hydrological-drought occurs when the river and/or 

groundwater levels are relatively low (Van Loon, 2013). In addition, water-resources drought 

occurs when a river basin experience low flow, reduced reservoir volume, and groundwater 

levels which affects water intense activities.   

 

Water-resources drought is influenced by climatic and hydrological variables, water resource 

system characteristics, and the basin drought management practices (Van Loon, 2013). 

Hydrological-drought mainly deals with low streamflow which adversely affects various 

aspects of communities’ livelihood such as food security, water supply, and hydropower 

generation (Karamouz et al., 2009; Belayneh and Adamowski, 2013). The recurrence of 

droughts may result in the desertification of vulnerable semi-arid and sub-humid environments. 

Drought occurrence further compromises these fragile ecosystems, resulting in critically 

degraded water resources, soil structure including soil fertility (El-Jabi et al., 2013).  

  

There four main categories of droughts as described by Wilhite and Glantz 1(985); Tallaksen 

and Van Lanen (2004); Mishra and Singh (2010); Sheffield and Wood (2011); Zoljoodi and 

Didevarasl (2013), i.e. Meteorological, Hydrological, Agricultural and Socio-economic 

droughts as depicted in Figure 2.1. The propagation of hydrological and agricultural drought 

originates from meteorological droughts which emanate from the changes within the 

hydrological cycle. 

● Meteorological drought refers to a precipitation deficiency, possibly combined with 

increased potential evapotranspiration, extending over a large area and spanning an 

extensive period. 

● Agricultural drought, also referred to as the soil moisture drought occurs when there is 

deficit soil moisture which reduces the moisture for crop growth and is strongly linked 

to crop failure (Van Loon, 2013). 

● Hydrological drought is associated with the effects of below-normal precipitation on 

the surface and sub-surface water resources. Its characteristics which are defined by 
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magnitude, severity, duration, and frequency can be studied at a basin scale. 

Hydrological drought may be divided into surface and groundwater droughts which are 

defined separately. Groundwater drought can be defined as below-normal groundwater 

levels (Peters, 2003; Hisdal et al., 2004; Peters et al., 2006; Mishra and Singh, 2010) 

while surface water drought is below-normal river discharge (Stahl and Demuth, 1999; 

Smakhtin, 2001; Fleig et al., 2006; Feyen and Dankers, 2009). The Surface Water 

Drought (SWD) is as a result of direct reduction in precipitation that subsequently leads 

to low surface runoff and consequently results in below-normal river discharge and 

reduced water levels in reservoirs and lakes.  

● Socio-economic drought emanates from the impacts of the three-above-mentioned 

drought (i.e. hydrological, agricultural, and meteorological). This may result from the 

failure of water resources systems to meet the demands and ecological or health-related 

impacts of drought (Van Loon, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Categories of drought and their development (Peters, 2003; Van Loon, 2013). 

 

 

 

Natural 

Climate 

Variability 

Meteorological drought Reduced 

precipitation 

Increased Potential 

Evapotranspiration 

Agricultural drought 

Hydrological drought 

Low soil 

moisture 

Below-normal 

river discharge 

Below-normal 

groundwater 

Socio-economic drought Impacts 



 

13 
 

2.3.1 Hydrological drought processes 

Reduced runoff and shortage of streamflow and groundwater resources are a result of 

hydrological drought (Tallaksen and van Lanen 2004) and may result in dry river beds (Shaw 

1994; Hisdal et al., 2004). Drought in the hydrological cycle is dependent on natural climate 

variability (Sheffield and Wood, 2011). Generally, hydrological drought develops differently 

in relative constant climate as compared to climates with strong seasonality (Van Loon, 2013). 

The main factor for drought development in constant climates is below-normal precipitation 

while in warm seasonal climates, most of the recharge is received over the wet season.  

 

Hydrological drought is not solely dependent on atmospheric circulation, but also hydrological 

processes that add moisture to the atmosphere providing water and runoff to streams play a 

significant role (Mishra and Singh, 2010). Catchment characteristics i.e. climate, topography, 

geological condition, and land use/land cover, etc., also play a role in the occurrence of 

hydrological drought. Vegetation cover reduces streamflow and promotes infiltration whilst 

human activities i.e. stream diversions and abstractions of surface water and irrigation has the 

potential to influence the quantity of water in streams (Tallaksen and van Lanen, 2004). 

Hydrological drought is not solely dependent on the onset and cessation of meteorological 

drought such that it may persist even after a meteorological drought ends (Heim, 2002). 

  

The rate of climate water deficit giving rise to hydrological drought is dependent on the 

catchment response. Water may feed the streams quickly as a response to rainfall or melting 

snow or it may recharge an extended groundwater system leading to a slow response to 

precipitation (Van Lanen et al., 2004).  The water pathway in the catchment should be known. 

This is because not only water deficits have to be considered, but also water surpluses to fully 

understand drought development (Van Lanen et al., 2004). 

 

2.4 Drought in South Africa 

Rainfall variation at both temporal and spatial scales is of significance in southern Africa 

(Tyson, 1986; Nicholson and Entekhabi, 1987; Lindesay, 1988). Increasing trends of rainfall 

have been reported for some locations over South Africa (Mason et al., 1999; Easterling et al., 

2000; New et al., 2006; Kruger, 2006). However, Mosase and Ahiablame (2018) cautioned that 

although this may suggest an increase in water resources availability, the increasing population, 

land use changes coupled with the intensification of agricultural activities exert pressure on 
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water resources. The variability of rainfall coupled with the nature of the South African climate 

(arid to semi-arid climate), makes the country prone to natural hazards such as droughts and 

floods. Droughts events occur frequently in South Africa’s arid and semi-arid rangelands and 

with severe ecological and economic consequences (Vetter, 2009). The chronic nature of 

drought disasters in the region further affects negatively on social, economic, and 

environmental aspects (Gommes, 2006).  Mosase and Ahiablame (2018) found an increasing 

trend of annual maximum temperatures in the Limpopo River Basin. Increased temperatures 

exacerbate drought characteristics (i.e. frequency, duration, and severity) (Vicente-Serrano et 

al., 2014) since there exists a positive linear relationship between temperature and 

evapotranspiration. 

 

Southern Africa's summer climate is characterised by recurrent and features of prolonged 

droughts (Lindesay 1998; Rouault and Richard, 2005) and threaten vulnerable communities 

(most of which are rural) of the region. Droughts have occurred over South Africa regularly 

throughout the twentieth century (Vogel, 1994). About 60% of Sub-Saharan Africa is vulnerable 

to drought, with 30% being highly vulnerable (Benson and Clay, 1998). Southern Africa 

Development Community (SADC) region has been a victim of several major droughts, notably 

in the years 1982/83, 1987/88, 1991/92, and 1994/95 (FAO, 2004) and 2005/06 (Mosase and 

Ahiablame, 2018). It was estimated that the 1991/92 drought resulted in 50 000 job losses in 

the agricultural sector in South Africa, which affected over 250 000 citizens (Association for 

Rural Advancement; AFRA, 1993). More recently, the country experienced two consecutive 

droughts, the 2014/2015 and 2015/2016 which resulted in severe water shortages in the 

Western Cape Province (DEA, 2017).  

  

Extreme drought has been recorded for more than a century at intervals of 10–20 years and has 

been reported to be a regular phenomenon in the Limpopo River Basin (FAO, 2004). Limpopo 

region, located in northern South Africa, is prone to extreme events (i.e. drought and flood 

events) as a result of significant intra-seasonal variability during the core rainy season 

(December–February) (Levey and Jury, 1996; Tennant and Hewitson, 2002; Cook et al., 2004). 

Although the LRC has a substantial flow of water derived from the mountainous area at its 

source, during drought season water resources become inadequate to meet the ecological 

reserve and domestic water supply (DWA, 2004). According to the State of the River Report 

(2001), the 1993 drought-affected upstream activities due to low flows and resulted in the death 
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of much riparian vegetation. Masupha et al. (2016) found severe drought occurrences at various 

rainfall regions over the LRC between 1975 and 2014. 

 

 2.5 Drought characterisation 

The diverse definitions of drought are one of the principal obstacles to investigating drought 

(Yevjevich, 1967). Wilhite and Glantz (1987) distinguished between conceptual and 

operational droughts. The conceptual drought definition relates to those stated in relative terms 

while operational drought definition seeks to identify the onset, severity, and termination of a 

drought period (Wilhite and Glantz, 1987). Therefore, the understanding of drought duration, 

frequency, and severity to characterise the probability of occurrence at various magnitudes is 

of significance. The occurrence of any drought in terms of magnitude, duration, and severity 

may be determined by defining its threshold or truncation level. Panu and Sharma (2002) 

showed that for hydrological drought, the threshold can be defined based on flow 

characteristics or the water demand scenario of a catchment under consideration. The threshold 

level of any drought is based on the theory of crossing method where the properties of runs 

above and below a truncation level are determined (Tallaksen, 2000). A run is defined as a 

portion of a time series of drought variable 𝑋𝑡, in which all values are either below or above 

the selected threshold level of 𝑋0; accordingly, it is called either a positive run or a negative 

run (Figure 2.2) (Mishra and Nagarajan, 2011). When drought data is plotted and falls below 

the threshold value, a drought event starts, and when it rises above the threshold, the drought 

event ends. Therefore, the onset and termination point of drought is defined. 

 

Apart from the run theory-based methodology (Yevjevich, 1972; Chung and Salas, 2000), Panu 

and Sharma (2002) listed drought identification and prediction methods as; frequency 

(probability) based methods (Tate and Freeman, 2000; Kjeldsen et al., 2000; Dalezios et al., 

2000), regression-based methods (Kumar and Panu, 1997), group-based methods (Kumar and 

Panu, 1994; Shin and Salas, 2000), PDSI based methods (Lohani and Lognathan, 1997) and 

the moisture adequacy index methods that measure the degree of soil moisture available for 

plant growth (Kumar and Panu, 1997). 



 

16 
 

 

Figure 2.2: Drought characteristics using the run theory for a given threshold level (Mishra 

and Nagarajan, 2011) 

  

2.6 Drought indices 

Drought indices assimilate data on rainfall, snowpack, streamflow, and other water supply 

indicators into a comprehensible picture (Monacelli, 2005). Although none of the major indices 

is inherently superior to the rest in all circumstances, some indices are better suited than others 

for specified uses. Two categories of drought indices, namely: satellite-based and data-driven 

drought indices. Examples of some satellite drought indices are the Vegetation Condition Index 

(VCI), Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index 

(NDWI) (Gao, 1996), Water Supply Vegetative Index (WSVI), and Normalised Difference 

Drought Index (NDDI). Examples of some data-driven drought indices are the Standardised 

Precipitation Index (SPI) (McKee et al., 1993), Standardised Precipitation Evaporation Index 

(SPEI), Standardised Runoff Index (SRI), Palmer Drought Severity Index (PDSI) (Palmer, 

1965), Surface Water Supply Index (SWSI) (Shafer and Dezman, 1982) and Aggregated 

Drought Index (ADI) (Keyantash and Dracup, 2004).  

 

2.6.1 Standardised Precipitation Index 

The Standardised Precipitation Index (SPI) was developed by Mckee et al. (1993). This index 

was developed to quantify the rainfall deficit and monitor drought conditions within Colorado, 

USA. To successful formulation of SPI, a long-term historical precipitation record of at least 

30 years is integrated into a probability distribution function which is then transformed into a 
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normal distribution. The index is characterised by fewer input data (precipitation data) 

compared to most drought indices and therefore makes it flexible for a wide range of 

applications (Edwards and Mckee, 1997; Bacanli et al., 2008). 

 

The SPI has several advantages, making it more applicable in many different river basins 

around the world. The index requires precipitation only as input data and thus makes it ideal 

for river basins that do not have extensive hydrological data records. It is a standardised index, 

and this makes it independent of geographical location as it is based on average precipitation 

values derived from the area of interest. Further to this, the SPI exhibits statistical consistency 

and can present both short-term and long-term droughts over time scales of precipitation 

variation (Belayneh and Adamowski, 2013). The SPI can be used to present significant drought 

conditions within a river basin. However, to identify key dry periods, it is important to analyse 

data for time scales greater than 6 months. This is because of the high frequency of SPI values 

at shorter time scales conceal the critical dry periods. For time-scales shorter than 6 months, 

there is insignificant autocorrelation while for time scales greater than 6 months, the 

autocorrelation increases significantly (Awass, 2009).  

 

The SPI has some disadvantages in its use as a drought assessment tool. First, it is not always 

easy to find a probability distribution function to fit and model the raw precipitation data. 

Secondly, most river basins do not have reliable time-series data to generate the best estimate 

of the distribution parameters. In addition, the application of SPI in arid and semi-arid lands of 

time-series of less than three months may give inaccurate values. To overcome the challenge 

of simulating and modeling the data for SPI outputs, the application of different probability 

distribution functions may be employed. These include gamma, Pearson type III, lognormal, 

extreme value, and exponential distribution functions (Cacciamani et al., 2007). 

 

2.6.2 Standardised Precipitation Evapotranspiration Index  

First introduced by Vicente-Serrano et al. (2010a), Standardised Precipitation Evaporation 

Index (SPEI) was developed to account for the effect of potential evapotranspiration (PET) that 

lacked in the SPI. Due to its multi-scalar nature, SPEI enables the identification of different 

drought types and the resulting impacts emanating from such droughts. SPEI has been widely 

applied in different drought studies (i.e. drought analysis, climate change, drought impacts, and 

drought monitoring amongst others) over the past years (Lorenzo-Lacruz et al., 2010; Vicente-
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Serrano et al., 2010b; Allen et al., 2011; Li et al., 2012; Sohn et al., 2013; Mosad and Alazba, 

2015 in Beguer´ıa et al., 2013). SPI has been widely used in South Africa and is considered as 

the basis for drought assessment, forecasting, and prediction for the entire country. Although 

the SPI is quite popular in South Africa, SPEI has just started gaining popularity, as it is 

relatively a new index with the incorporation of PET in its computations. Edosaa et al. (2016) 

made a comparison of SPEI and PDSI while testing the applicability of the self-calibrating 

Palmer Drought Severity Index (PDSI) in the Free State Province and found that the 

relationship between the two meteorological indices improves an increases SPEI timescale. 

Botai et al. (2016) explored and characterised historical drought evolution variation using SPI 

and SPEI in Free State and North West Provinces in South Africa and reported that SPEI 

suggested that the severity and frequency of drought were more pronounced in Free State 

Province while drought intensity in the Northwest Province was higher between 1985 and 

2015. Masih et al. (2014) reviewed drought in the African continent based on SPEI. This study 

found that between 1900 and 2013, drought events have intensified regarding their frequency, 

severity, and geospatial coverage. 

 

2.6.3 Palmer Drought Severity Index 

The Palmer Drought Severity Index (PDSI) was developed based on a criterion for determining 

the beginning and end of drought or wet period spell (Palmer, 1965). It is a simple monthly 

water balance model that requires rainfall, temperature, and catchment soil moisture content as 

input parameters. This tool applies a concept of supply and demand over a two-layer model. In 

this concept, the difference between the quantity of precipitation needed to maintain a natural 

water balance level and the actual precipitation is determined. The index does not consider 

streamflow, reservoir water balance, and other hydro-meteorological variables that influence 

drought (Karl and Knight, 1985; Yan et al., 2013). 

  

The original PDSI has been modified to yield Palmer Hydrological Drought Index (PHDI) and 

the Palmer Modified Drought Index (PMDI) (Palmer, 1965; Karl, 1986; Heddinghaus and 

Sabol, 1991). The original PDSI does not take into account the human-induced impacts on 

water balances such as irrigation. However, the new version is a model mainly for the 

evaluation and monitoring of water supply. PDSI and its variations have been applied at the 

catchment level for detecting and planning of drought relief programmes (Karl and Heim, 

1990; Dai et al., 2004; Loucks and Van Beek, 2005; D’Arrigo and Wilson, 2008). 
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The PDSI has some limitations or disadvantages as a drought index. In some regions, the PDSI 

assumes that all the precipitation is rain (Fuchs et al., 2012). This may result in misleading 

values in regions that experience winter season rainfall and in high elevation areas. In addition, 

it under-estimates runoff since it assumes that overland flow occurs after all soil layers have 

been saturated. The other disadvantage is that PDSI responds slowly to the development or 

cessation of a drought event (Mishra and Sigh, 2010). While the original model is more suitable 

for agricultural drought, the choice of the selected time series can also assess other types of 

droughts i.e. hydrological and meteorological drought. 

 

The major advantages of the original PDSI as indicated in Fuchs et al. (2012) are that the index 

provides decision-makers with measurement of abnormality of recent weather conditions for a 

basin or region. It provides an opportunity to place current drought conditions on a historical 

perspective and can express historical drought conditions on the spatial and temporal domain. 

PDSI is sensitive to potential evapotranspiration (PET) equations and calibration periods, as 

well as the lack of precise spatial comparability (Alley, 1984; Karl, 1983; Karl, 1986; Guttman, 

1991; Guttman et al., 1992). Potential evapotranspiration in PDSI is computed based on 

Thornthwaite method, which is a poor method of estimating the variable and the original tools 

considered coarse resolution of land use and land cover parameters of 700 to 100 000 km2 yet 

the land-use changes within such a large area may be significant. 

 

2.6.4 Surface Water Supply Index  

Surface Water Supply Index (SWSI) was developed for Colorado USA, as an indicator for 

surface water or moisture levels (Shafer and Dezman, 1982). The index requires input variables 

which include; snow water content, streamflow, rainfall, and storage reservoir volume. 

Normally the snow water content, rainfall, and storage reservoir volume are used for computing 

the SWSI values for the winter season. However, during the summer season, streamflow 

substitutes snow water content. Further, the study area is located in the tropics and therefore 

not affected by snowfall. At a basin scale, SWSI values are determined from monthly 

catchment average values of rainfall, reservoirs, snow water content and, stream flows 

measured at stations within the catchment. One of the advantages of the SWSI is that it gives 

a representative measurement of surface water supplies across the river basin. The SWSI is 

unique for specific basins or regions. It requires long-term record data for its calibration and 

thus may be limited in basins that lack sufficient data. Another limitation of the SWSI is that 
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any additional change in the water management within a basin calls for modification of its 

algorithm. The change may be due to the addition of new water reservoirs and flow diversions 

that based on their weights, require to be accommodated in the algorithm (Barua, 2010). Thus, 

it is difficult to have a homogeneous time series of the index for numerous basins.  

  

2.6.5 Aggregated Drought Index 

The Aggregated Drought Index (ADI) is used for the determination of three categories of 

drought; hydrological, agricultural, and meteorological droughts. The specific drought is 

determined by selectively inserting input variables required into the model. This index can use 

the following input variables; rainfall, streamflow, potential evapotranspiration, soil moisture 

content, snow water content, and reservoir storage volume (Keyantash and Dracup, 2004). 

Principal Component Analysis (PCA) is used as a numerical method for the construction of 

ADI using input data sets. The PCA is used to transform spatially correlated series data from a 

basin into two sets of orthogonal and uncorrelated functions. The principal components are 

used to express the original 𝑝-variable data set in terms of uncorrelated component 𝑍𝑗(1 < 𝑗 ≤

𝑝). The 𝑝-mode is used where the analysis explains temporal fluctuations of the input variables 

of a basin. The calculation of principal components involves the construction of a 𝑝×𝑝 

symmetric correlation matrix 𝐶𝑥. The matrix gives the correlation between the original data 

where 𝑝 is the number of variables. This matrix is expressed using the relation: 

 

𝐶𝑥 = 𝐸{(𝑥 − 𝑢𝑥)(𝑥 − 𝑢𝑥)
𝑇},                                     (2.1) 

where; 𝐶𝑥= covariance matrix, x = vector of observed data,  𝑢𝑥  = mean value of 𝑥 and T 

denotes the transpose. The covariance matrices developed undergo PCA via the application of 

eigenvectors. The eigenvectors are unit vectors that establish the relationship between the 

principal components and standardised data. A unit vector may be derived from the relation: 

  

𝑍 = 𝑋×𝐸,                                                             (2.2) 

where; 𝑍 =  𝑛×𝑝 matrix of principal components, 𝑋 = 𝑛×𝑝 matrix standardised observation 

data and 𝐸 = 𝑝×𝑝 matrix of eigenvectors. The first Principal Component (PC) to represent 

ADI is determined and normalised by use of its standard deviation function defined by: 

       

𝐴𝐷𝐼𝑖,𝑘 =
𝑍𝑖,𝑙,𝑘

𝜎𝑘
,                            (2.3) 
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where; 𝐴𝐷𝐼𝑖,𝑘 = 𝐴𝐷𝐼 value for month 𝑘 in year 𝑖, 𝑍𝑖,𝑙,𝑘= the first PC for month 𝑘 in year 𝑖 and 

𝜎𝑘= the sample standard deviation overall years for month k. To determine ADI thresholds, the 

empirical cumulative distribution of the above ADI values is constructed. The ADI thresholds 

are then calculated using empirical cumulative distribution function and used to classify 

drought conditions based on the thresholds.  

 

2.6.6 Normalised Difference Water Index  

Normalised Difference Water Index (NDWI) is determined based on leaf water content and 

vegetative type. Its value ranges from -1 to +1. The higher the NDWI value the higher the 

vegetative water content and the higher the proportion of vegetative cover.  The values of 

NDWI are computed by processing the satellite data in which green and near-infrared bands 

are used as per the relation:  

   

𝑁𝐷𝑊𝐼 =
𝐺−𝑁𝐼𝑅

𝐺+𝑁𝐼𝑅
,                  (2.4) 

where; NDWI=normalised difference water index, G=green band, and NIR=near infrared band. 

The NDWI is very sensitive to soil moisture content, vegetation covers, and leaf moisture 

content (Tychon et al., 2007). Although NDWI is used for drought detection, it is sometimes 

affected by land cover and pests and diseases on vegetation. However, it has the advantage of 

detecting drought more effectively as compared to the Normalised Difference Vegetation Index 

(NDVI) (Gu et al., 2007). 

 

2.7 Drought forecasting and prediction 

2.7.1 The different forecasting and prediction techniques 

Developments in forecasting and early warning of the drought phenomenon are increasingly 

being applied in many regions in the world. This is being done to help mitigate the 

consequences of drought in vulnerable river basins. Different drought modeling, forecasting, 

and prediction techniques are currently in use. Some of the common models include; 

Autoregressive integrated moving average (ARIMA) and its many variations, the Adaptive 

Neuro-fuzzy inference system, Markov chain model, Log-linear model, Ensemble Empirical 

Mode Decomposition (EMD), Empirical Wavelet Transform (EWT), and Artificial Neural 

Network (ANN) model among others. 
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2.7.1.1 Empirical Mode Decomposition (EMD) 

First introduced by Huang et al. (1998) EMD is a self-adaptive and empirical technique that 

can break down a time series and can be utilised to examine non-linear and non-stationary 

hydro-meteorological data (Tang et al., 2012). The technique has been proven to be quite 

effective in extracting signals from data generated in noisy non-linear and non-stationary 

processes and has been successfully applied in many areas, such as engineering (fault 

diagnosis, computer image processing) (Xu et al., 2010) solar cycle, seismic waves, crude oil 

price analysis, speaker identification system (Coughlin and Tung 2004; Huang and Wu, 2008; 

Wu and Tsai, 2011; Zhang et al., 2008). 

 

Time series decomposition utilising wavelet and wavelet packet transforms has been known to 

improve the prediction ability of conventional data-driven models (Amiri and Asadi, 2009; 

Adamowski and Sun, 2010; Gokhale and Khanduja, 2010; Kisi et al., 2011; Nourani et al., 

2012; Ravikumar and Tamilselvan, 2014; Seo, 2015; Seo et al., 2015). Since hydro-

meteorological time series are characterised by linearity and stationarity (Karthikeyan and 

Kumar, 2013), EMD can, therefore, be utilised in analysing the non-linear nature of such time 

series (Huang et al. 2009; Sang et al., 2012). The idea of EMD is to decompose a time series 

into a sum of oscillatory functions which is called intrinsic mode functions (IMFs) (Abadan 

and Shabri, 2014). Each IMF must satisfy two conditions which are: a) In the whole data set, 

the number of extrema (maximum and minimum) and the number of zero-crossings must either 

equal or differ at most by one and b) At any point, the mean value of the envelope defined by 

the local maxima and the envelope defined by the local minima is zero. For an original time 

series x(t) (t = 1, 2, …, m), the main steps of EMD are as follows; 

Step 1: Identify all local maxima and minima points for a given time series y(t); 

Step 2: Connect all local maxima points to form an upper envelope emax(t) and all 

minima point to form a lower envelope emin(t) with spline interpolation, respectively; 

Step 3: Calculate the mean a(t) between two envelopes;  

  

𝑎(𝑡) =
𝑒𝑚𝑎𝑥(𝑡)+𝑒𝑚𝑖𝑛(𝑡)

2
      (2.5) 

Step 4: Extract the mean from the time series and calculate the difference of y(t) and 

a(t) as h(t);  

    

ℎ(𝑡) = 𝑦(𝑡)/𝑎(𝑡),       (2.6) 
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Step 5: If h(t) meets the two conditions of IMFs according to stopping criterion, h(t) is 

denoted as the first IMF [written as c1(t) and 1 is its index]; If h(t) is not an IMFs, y(t) 

is replaced with h(t) and iterate steps 1–4 until h(t) meets the two conditions of IMFs. 

Step 6: The residue r1(t) = y(t)-c1(t) is then treated as new data subjected to the same 

shifting process as described above for the next IMFs from r1(t). Finally, the shifting 

procedure can be stopped, when the residue r(t) becomes a monotonic function or at 

most has one local extreme point from which no more IMF can be extracted (Huang et 

al., 2003). 

Then the original series y(t) can be expressed as the sum of these IMFs and a residue, 

   

𝑦(𝑡) = ∑ 𝑖𝑚𝑓𝑖(𝑡)
𝑁
𝑖=1 + 𝑟(𝑡),       (2.7) 

where; N is the number of IMFs, and r(t) is the final residue. Research has shown that EMD 

has a shortcoming from the mode mixing (MD) e.g. Wu and Huang (2009). Lei et al. (2009) 

defined MD as a single IMFs consisting of components of widely disparate scales, or a 

component of a similar scale residing in different IMFs. This shortcoming, however, can be 

accounted for by the Ensembles Empirical Mode Decomposition (EEMD) (Wu and Huang, 

2009). In the EEMD method, the added white noise would fill in the whole time-frequency 

space uniformly, which facilitates a natural separation of the frequency scales and reduce the 

occurrence of mode mixing. As per the properties of the previous EMD method, the procedure 

of EEMD can be described as follows (Wu and Huang 2009 in Huang et al., 1998):  

● Step 1: Add a white noise series to the targeted data; 

●  Step 2: Decompose the data with added white noise into IMFs;  

● Step 3: Repeat step (1) and step (2) again and again, but with different white noise 

series each time; and  

● Step 4: Obtain the (ensemble) means of corresponding IMFs of the decompositions as 

the result. 

 

2.7.1.2 Empirical Wavelet Transform (EWT) 

The main idea of building an adaptive wavelet is to extract the different modes of signals by 

designing an appropriate wavelet filter bank which leads to a new wavelet transform called the 

Empirical Wavelet Transform (EWT) (Gilles, 2013). EWT has strong mathematical support 

and is more robust compared to EMD (Liu et al., 2016). Literature has well documented the 
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efficiency of EWT to perform time series analysis as compared to EMD (Kedadouche et al., 

2016; Hu et al., 2017; Zheng et al., 2017; Liu et al., 2018). Kedadouche et al. (2016) compared 

the computing time between EMD, EEMD, and EWT and observed that EWT reduced 

computation time by 95.96% compared with EMD and 98.91% compared with EEMD. Since 

the advantage of EWT is based on computation time, EMD can therefore not be fully 

disregarded for performing decomposition of a time series. 

 

Wavelet analysis is suitable for investigations involving multi-time scales or variance trends 

(Torrence and Compo, 1998), it has been widely used in drought analysis as well as drought 

prediction. Morlet Wavelet function successfully characterised drought conditions in the Jilin 

Province of China (Chen et al., 2014) while Nury and Hasan (2016) used wavelet transforms 

to analyse drought using SPI as a drought indicator. Khan et al. (2018) developed a wavelet-

based ANN for predicting meteorological and hydrological drought. They found that the ap-

plication of wavelet for pre-processing the raw data in the developed W-ANN models achieved 

higher correlation coefficients. A wavelet fuzzy logic model proved superior compared to an 

uncoupled fuzzy logic and ANN in long lead-time forecasting (Ozger et al. 2011). Adamowski 

and sun (2010) coupled a continuous wavelet transform with neural networks for streamflow 

forecasting in a semi-arid watershed. The study determined that the developed model showed 

promise for short-term river forecasting. The application of the EWT has not been extensively 

reported in drought assessment, characterisation, and prediction and its application in this study 

adds to the body of knowledge. Detailed computational formulation of EWT can be obtained 

in Gilles (2013). The objective of EWT is to extract different modes by building adaptive wave-

lets using the following steps; 

 

Step 1: Apply Fast Fourier Transform (FFT) to the signal f(t), where f(t) is a discrete signal, 

𝑡={ti} i=1,2,…,M, where 𝑀 is the number of samples. To obtain the frequency spectrum X(w) and 

find the maxima, 𝑀={Mi}i=1,2,…,N in the Fourier spectrum and deduce their corresponding 

frequencies w={wi}i=1,2,…,N. Here, 𝑁 is the number of maxima and the number of filter banks is 

introduced hereinafter. 

 

Step 2: Obtain proper segmentation of the Fourier spectrum and the set of boundaries. Define 

the boundaries Ωi of each segment as the centre of two consecutive maxima: 
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Ω𝑖 =
𝑤𝑖+𝑤𝑖+1

2
,         (2.8) 

where wi and wi+1 are two frequencies and the set of boundaries is Ω={Ωi}i=1,2,…N-1. 

 

Step 3: Define a bank of 𝑁 wavelet filter composed of one low-pass filter and N-a bandpass 

filter based on the boundaries. The expressions for the Fourier transform of scaling 𝜙1(𝑤) and 

the empirical wavelets 𝜓𝑖(𝑤) are given by: 

 

𝜙1 = {

1                                                       |𝑤| ≤ (1 − 𝛾)Ω1 

cos(
𝜋

2
𝛼(𝛾, Ω1) ((1 − 𝛾)Ω1 < |𝑤| ≤ (1 − 𝛾)Ω1)

0                                                                                       

    ,    (2.9) 

Otherwise, 

𝜓𝑖 =

{
 
 

 
 

 

1                                                  ((1 + 𝛾)Ω𝑖 < |𝑤| < (1 − 𝛾)Ω𝑖+1)

cos(
𝜋

2
𝛼(𝛾, Ω𝑖+1)                   ((1 − 𝛾)Ω𝑖+1 ≤ |𝑤| ≤ (1 + 𝛾)Ω𝑖+1)

sin(
𝜋

2
𝛼(𝛾, Ω𝑖)                               ((1 − 𝛾)Ω𝑖 ≤ |𝑤| ≤ (1 − 𝛾)Ω𝑖) 

0                                                                                                                     

 ,  (2.10) 

Otherwise, 

where 𝛼(𝛾, Ω𝑖+1) = 𝛽 ((
1

2𝛾Ω𝑖
) (|𝑤| − (1 − 𝛾)Ω𝑖)), 𝛾 is the parameter that ensures no overlap 

between the two consecutive transitions and 𝛽(𝑥) is an arbitrary function defined as 

 

𝛽(𝑥) = {
0,                                       𝑥 ≤ 0       
1,                                       𝑥 ≥ 1     
𝛽(𝑥) + 𝛽(1 − 𝑥) = 1,   𝑥 ∈ (0,1)

,      (2.11) 

 

Step 4: Perform scaling and wavelet functions to extract the components of different modes. 

Therefore, the approximate coefficients can be expressed by the inner product of analysed 

signal f with the empirical scaling function 

 

𝑊𝑓(1, 𝑡) = (𝑓, 𝜙1) = ∫ 𝑓(𝜏)𝜙𝑖(𝜏 − 𝑡)𝑑𝜏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,      (2.12) 

Similarly, the detailed coefficients are obtained by the inner product of analysed signal f with 

empirical wavelets 

 

𝑊𝑓(𝑖, 𝑡) = (𝑓, 𝜓𝑖) = ∫ 𝑓(𝜏)𝜓𝑖(𝜏 − 𝑡)𝑑𝜏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ .      (2.13) 

Here, 𝑊𝑓(𝑖, 𝑡) denotes the detailed coefficients for the 𝑖𝑡ℎ filter bank at time 𝑡. 
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2.7.1.3 Seasonal Autoregressive Integrated Moving Average  

The seasonal autoregressive integrated moving average model (SARIMA) is a time series 

analysis tool. Time series events re-occur in every given number of observations (Chatfield, 

2003).  For monthly measurements, the recurrence of a year of twelve months, it is expected 

that the recurring value (xt) depends on values that are based on annual lags. These lags are 

defined by xt-12 or xt-24. It may be influenced by recent non-seasonal values. The ARIMA model 

has been generalised to deal with seasonality as defined by the relation given is below:  

 

𝑢𝑡 = 𝑥𝑡 − 𝑥𝑡−𝜔,                                     (2.14) 

where; ut= seasonal value representing seasonality, = the period for monthly series, typically 

of multiples of 12 and xt=recurring value. To achieve stationarity, the seasonal difference can 

be repeated D times. For instance, if D = 2 and D =12, then the following function which is 

called SARIMA model results: 

 

𝜔𝑡 = 𝑢𝑡 − 𝑢𝑡−12 = (𝑥𝑡 − 𝑥𝑡−12) − (𝑥𝑡−12 − 𝑥𝑡−24) = 𝑥𝑡 − 2𝑥𝑡−12 + 𝑥𝑡−24 ,                      (2.15) 

where; xt=recurring value, =annual lag and ut=seasonal value representing seasonality. 

 

SARIMA has been used to develop an SPI drought forecasting model (Mishra and Desai, 2005; 

Durdu, 2010). Both the latter studies found that it was possible to forecast 2-months lead time 

(short term) while making use of the SARIMA model.  

 

2.7.1.4 Markov chain model 

Markov chains have greatly been used in the stochastic characterisation of drought (Cancelliere 

and Salas, 2004). For instance, an early warning system using the Markov chain model in 

conjunction with PDSI based on probabilistic severity, duration, and return period of drought 

may be developed (Shatanawi et al., 2013). Drought has also been characterised in terms of 

probabilistic occurrence by combining the Markov chain model with SPI for short term drought 

prediction within a period of 1 to 3 months lead time (Paulo et al., 2005; Paulo and Pereira 

2007; 2008). The Markov chain model has two main applications; modeling stochastic 

characteristics of drought and forecasting future series of drought using historical data sets. 

Markov chain model exhibits a discrete stochastic process where drought state (𝑥) at a future 

time step (t+1) is dependent upon the present state 𝑥𝑡 and independent of previous states Xt-1, 

Xt-2,...,Xt-n. The Pij may be used to denote transitional probabilities from state 𝑖  to stage 𝑗. The 
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Pij can be represented in the form of 𝑛×n matrix. Entries of such a matrix defined as P may be 

computed from several transitions nij from state i to next state j using the relation: 

 

𝑃𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑘
𝑖=1

  ,                               (2.16) 

where; pij = the probability of moving from state 𝑖  to stage 𝑗, nij=the entries of the 𝑃 matrix. 

The following summation holds for the matrix, 

 

∑ 𝑃𝑖𝑗 = 1
𝑘
𝑖=1  ,                                                                  (2.17) 

The transitional matrix at any given time step is calculated using the function: 

 

𝑃𝑡+1 = 𝑃𝑡×𝑃𝑡+𝑛−1                                                       (2.18) 

where; Pt+1=transition matrix at any given time, Pt=transition matrix at initial time, Pt+n-

1=transition matrix of previous time step. The Markov chain attains a steady-state after several 

time steps. It is thus possible to define a stationary matrix 𝜋 as the eigenvector of 𝑃𝑡 using the 

relation: 

𝜋 = 𝑃×𝜋                                                                      (2.19) 

Since 𝜋𝑗 is a stationary probability for state j, thus, 

 

∑ 𝜋𝑗 = 1
𝑘
𝑗=1 .                                                                                                  (2.20) 

The persistence and recurrence time can be presented using two main terms of the Markov 

chain. The first is the probability that the system will retain the same state in a subsequent time 

step called persistence. The persistence probability Pr is defined using the relation: 

 

                                         𝑃𝑟 = ∑ 𝑃𝑖𝑗×𝜋𝑗
𝑘
𝑗=1 .                                           (2.21) 

On the other hand, the recurrent time is defined as the average time for a system to transit from 

a certain state j and then back to the same state j and is computed using the function: 

 

𝑡𝑖𝑗 =
1−𝜋𝑗

(1−𝑃̂)×𝜋𝑗
.                                            (2.22) 

The time required for a system to be transformed for the first time from state i to j is called first 

passage time (tij) and is computed using the relation: 

 

                         𝑡𝑖𝑗 = 1 + ∑ 𝑃𝑖𝑘×𝑡𝑘𝑗𝑘=𝑗 .                                  (2.23) 
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2.7.1.5 Artificial Neural Network (ANN)  

A neural network consists of computational units or nodes that are linked where the output of 

a neuron can be an input to the next neuron. The most commonly used neural network 

architecture is one with three layers, comprising an input layer, a hidden layer, and an output 

layer (Ripley, 1994). The number of units in the input layer and those in the output layer depend 

on the problem being analysed. The number of units or neurons within the hidden layer is 

selected by trial and error to best describe the input-output relationship. A general 

recommendation is that the number of hidden units should be half the sum of the number of 

units in the input and output layers (Ripley, 1994).  

 

Although parametric statistical protocols and deterministic models have been the traditional 

approaches to forecasting water quality variables in streams, many recent efforts have shown 

that when explicit information of hydrological sub-processes are not needed Artificial Neural 

Networks (ANN) can be more efficient and effective (Maier, et al., 2010). One of the 

advantages of the ANN modeling technique is that the definition of physical processes need 

not be done (Morid et al., 2007; Tran et al., 2009). This property makes it appropriate in 

processing large and complex data sets, including that of drought prediction. Numerous 

activation equations or functions can be used within the neurons. The most common functions 

used in the ANN models include; the step-function, non-linear sigmoidal, hyperbolic tangent, 

and linear activation functions (Maier and Dandy, 2000; Mishra and Dessai, 2006).  

 

ANN modeling approach has been used for drought prediction and forecasting in many regions 

of the world, e.g. (Ochoa-Rivera, 2008; Cutore et al., 2009; Barau, 2010; Le et al., 2016). For 

instance, it has successfully been used in India to forecast drought in Kansabati River Basin 

(Mishra et al., 2007) and Yara River Catchment in Victoria, Australia (Barau, 2010).  For the 

Kansabati basin, two ANN models were applied and included the Recursive Multi-Step Neural 

Network (RMSNN) and the Direct Multi-Step Neural Network (DMSNN).  These were used 

to forecast SPI values across the river basin. The results showed that the RMSNN performed 

best in 1-month lead time forecasting while the DMSNN was the best in 4-month lead time 

forecasting (Mishra and Desai, 2006). Barau (2010) successfully predicted a 6-month lead time 

NADI values for the Yara River Catchment making use of ANN (DMSNN and RMSNN). 
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Long Short-term Memory (LSTM) is a Recurrence Neural Network (RNN) first introduced by 

Hochreiter and Schmidhuber (1997) as an RNN architecture designed to model temporal 

sequences in a time series data. LTSM can sort error backflow problem so that this algorithm 

only uses the error feedback that can make a more accurate prediction, this makes it better than 

the conventional RNN. LSTM allows the network to capture information from inputs for a long 

time using a special hidden unit called an LSTM cell instead of an RNN unit in the hidden layer 

(Kong et al., 2018). 

 

2.7.1.6 Generalised Additive Models 

Generalised additive models (GAMs) proposed by Hastie and Tibshirani (1986; 1990) are used 

in modeling predictors in regression-based models as a sum of smooth functions. They use 

automatic smoothness selection methods to determine the complexity of fitted trends and 

further allows for potentially complex, non-linear trends, proper accounting of uncertainty 

models, and the identification of periods of significant temporal changes (Simpson, 2018). 

Figure 2.3 gives an insight into various regression-based models and highlights the model 

advantages over the others. This figure further illustrates that GAMs are a combination of 

Generalised Linear Models (GLM) and Additive Models (AM). 

 

Figure 2.3: Overview and linkages between regression-based models (Ravindra et al., 2019) 
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The GAM family models have been extensively applied with different loss and smoothing 

functions in time series prediction studies. Studies such as Chikobvu and Sigauke (2012); 

Sigauke and Chikobvu (2012); Wood et al. (2015) and Sigauke et al. (2018) amongst other 

have used GAMs in electricity load forecasting in South Africa and the United Kingdom while 

Ma et al. (2013) and Ravindra et al. (2019) applied these models to environmental time series.  

Ma et al. (2019) found that a mixed GAM gave good prediction, which reported an R2 of 0.875 

and 0.859 in the training and testing data respectively and Ravindra et al. (2019) found that 

GAM with reasonable spline and valid degrees of freedom has proved a robust method for the 

environmental datasets. 

 

2.7.1.7 Hybrid models 

The development of hybrid models combining various statistical approaches and data-driven 

models has been increased for improving the efficiency of conventional prediction models (Seo 

and Kim, 2016). Mishra et al. (2007) further indicated that the basic idea for combining models 

for drought forecasting and prediction is that the unique strength of each model can be 

employed to capture a different pattern in the data. Therefore, this makes hybrid models more 

efficient as compared to using stochastic or deterministic models alone. Experimental results 

with real data sets indicate that the hybrid models can be an effective way to improve prediction 

accuracy achieved by either of the models used separately (Xu et al., 2010). Despite many 

attractive features of prediction models (i.e. single/stand-alone and hybrid models), some 

drawbacks can lead to an over-parameterized model and thus, poor generalization ability (Falla 

et al., 2018). For the case of hybrid models, the latter authors further outline the limitation of 

some development hybrid models as shown in Table 2.1. 

 

Table 2.1: Limitations of some hybrid models (Falla et al., 2018) 

Hybrid model type Limitation 

ANN-k-shape clustering The unknown optimal number of clusters 

ANN-WT Only frequency resolution 

NF The unknown optimal number of clusters 

SVM-FOA Complicated architecture 

SVM-HS Complicated architecture 
*ANN- k – Artificial Neural Network with a clustering algorithm, ANN-WT – Artificial Neural Network-Wavelet transform, SVM-FOA – 

Support Vector Machine with Fruit Fly Optimisation Algorithm and SVM-HS – Support Vector Machine – Harmony Search Algorithm.  

 

Forecasting future conditions using hybrid models have been extensively applied in the field 

of econometrics and have been gaining popularity in the field of engineering including 
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hydrology. Hydrological studies that developed hybrid models include but are not limited to; 

i.e., Zhang (2003); Mishra et al. (2007); Di et al. (2014); Seo and Kim (2016). These studies 

achieved time series forecasting using ARIMA and ANN, ARIMA/SARIMA and ANN, EMD-

EEMD-RBFNN-LNN, and EEMD-FANN respectively. Pan et al. (2013) developed a hybrid 

model by combining empirical mode decomposition (EMD) with a multi-layer perception 

MLP-NN (EMD-NN) and compared these models to the MLP model and a SARIMA model. 

The study found that EMD-NN was more stable than the other techniques and in volatile 

situations. 

 

2.8 Test for model performance 

The goodness of Fit (GoF) of a statistical model describes how well it fits into a set of 

observations (Maydeu-Olivares and Garcia-Forero, 2010). GoF tests can be reliably used in 

climate statistics to assist in finding the best distribution to use to fit the given data. These tests 

cannot be used to pick the best distribution, rather reject possible distributions. These tests 

calculate test-statistics, which are used to analyse how well the data fits the given distribution. 

They describe the differences between the observed data values and the expected values from 

the distribution being tested. The null hypothesis is that the empirical data is approximately 

normally distributed. The null hypothesis is rejected if the significance level is greater than the 

p-value. The Anderson-Darling (AD), Kolmogorov-Smirnov (KS), and Chi-Squared (𝑋2), 

Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) tests are used to test the 

goodness of fit. For a detailed discussion of these statistical tests, see Solaiman (2011) among 

others. 

 

2.8.1 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test statistic is based on the greatest vertical distance from the 

empirical and theoretical CDFs. Like the AD test statistic, a hypothesis is rejected if the test 

statistic is greater than the critical value at a chosen significance level. For the significance 

level of α=0.05, the critical value calculated is 0.12555. The samples are assumed to be from a 

CDF 𝐹(𝑥). The test statistic (D) is: 

 

𝐷 −max (𝐹(𝑥𝑖) −
𝑖−1

𝑛
,
𝑖

𝑛
− 𝐹(𝑥𝑖)).                    (2.24) 
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2.8.2 Anderson-Darling Test 

The Anderson-Darling (AD) test compares an observed Cumulative Density Function (CDF) 

to an expected CDF. This method gives more weight to the tail of the distribution than the KS 

test, which in turn leads to the AD test being stronger and having more weight than the KS test. 

The test rejects the hypothesis regarding the distribution level if the statistic obtained is greater 

than a critical value at a given significance level (α). The significance level most commonly 

used is α=0.05. This number is then compared with the test distributions statistic to determine 

if it can be rejected or not. The AD test statistic (A2) is: 

  

 A2 = −n −
1

n
∑ (2𝑖 − 1)×[𝑙𝑛𝐹(𝑥𝑖) + 𝑙𝑛(1 − 𝐹(𝑥𝑛−𝑖+1))]
𝑛
𝑖=1 .             (2.25) 

 

2.8.3 Chi-Squared Test 

The Chi-Squared test is used to determine if a sample comes from a given distribution. It should 

be noted that this is not considered a high-power statistical test and is not very useful (Cunnane, 

1989). The test is based on binned data, and the number of bins (k) is determined by: 

 

𝑘 = 1 + log (N).                              (2.26) 

where 𝑁 is the sample size and the test statistics is expressed as: 

 

    𝑋2 = ∑
(𝑂𝑖−𝐸1)

2

𝐸1

𝑘
𝑖=1               (2.27) 

where Oi is the observed frequency, E1 is the expected frequency, E1=𝐹 (𝑥2) − 𝐹 (𝑥1) and x1 and 

x2 are the limits of the ith bin. The significance level, α=0.05 gives a critical value of 12.592 

which is used in this report. Again, if the test statistic is greater than the critical value, the null 

hypothesis is rejected. 

 

2.8.4 Root Mean Square Error 

The Root Mean Square Error (RMSE) is the standard deviation of the residual (Barnston, 

1992). The residuals are a measure of how far from the regression line data points are located, 

thus, RMSE is a measure of how spread out these residuals are. It has been used as a standard 

statistical metric to measure model performance in meteorology, air quality, and climate 

research (Chai and Braxler, 2014). In the field of geosciences, many present the RMSE as a 

standard metric for model errors (e.g. McKeen et al., 2005; Savage et al., 2013; Chai et al., 
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2013). On the reliability of RMSE, Willmott and Matsuura (2005) have suggested that the 

RMSE is not a good indicator of average model performance and might result in a misleading 

indicator of average error and proposed that the MAE would be a better metric for that purpose. 

However, Chai and Draxler (2014) reported that the RMSE is more appropriate to represent 

model performance than the MAE when the error distribution is expected to be Gaussian. They 

also showed that the RMSE satisfies the triangle inequality requirement for a distance metric 

whereas Willmott et al. (2009) indicated that the sums-of-squares-based statistics do not satisfy 

this rule. RMSE can be computed from Equation 2.28 below: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑗 − 𝑦̂𝑗)

2𝑛
𝑗=1 .       (2.28) 

where RMSE is the Root Mean Square Error, 𝑛 is the sample size, 𝑦𝑗 and 𝑦̂𝑗 are the observed 

and forecasted values respectively. Smaller RMSE reflects greater accuracy; however, there is 

no absolute criterion for an ideal value for RMSE, because it depends on the scales of the 

measured variables and the size of the sample (Li, 2012). 

 

2.8.5 The correlation coefficient 

The correlation coefficient (R) is used to determine the statistical relationship between the 

observed and the predicted conditions in a given scenario. The fundamental function will be 

customised to the respective variable and will take the following general form: 

 

𝑅 =
∑ (𝑥𝑜𝑏𝑠−𝑥𝑓𝑜𝑟)(𝑥𝑓𝑜𝑟−𝑥𝑜𝑏𝑠)
𝑛
𝑖=1

∑ √(𝑥𝑜𝑏𝑠−𝑥𝑓𝑜𝑟)(𝑥𝑓𝑜𝑟−𝑥𝑜𝑏𝑠)
2𝑛

𝑖=1

                                    (2.29) 

where R is the correlation coefficient, XObs is the observed value of the drought index, XFor is 

the forecasted value of the drought index and n is the number of data points considered. The R 

is a measure of the strength of the linear relationship between observed and forecasted X values. 

It varies from -1 to 1. The values of -1 and 1 indicate a strong negative and positive forecasting 

capability of the model respectively. 

 

2.8.6 Nash–Sutcliffe efficiency 

The Nash–Sutcliffe Efficiency (NSE) statistical approach has been used effectively to evaluate 

measured and predicted hydrologic data including drought (Nash and Sutcliffe, 1970; Biamah 

et al., 2002). The NSE will be used to indicate how well the plot of observed versus simulated 

data fits the 1: 1 line: Its value ranges from  to 1.0. The NSE is given as: 
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𝑁𝑆𝐸 =
∑ (𝐷𝐼𝑖

𝑜𝑏𝑠−𝐷𝐼𝑖
𝑓𝑜𝑟

)2𝑛
𝑖=1

∑ (𝐷𝐼𝑖
𝑜𝑏𝑠−𝐷𝐼̅̅̅̅ )2𝑛

𝑖=1

.            (2.30) 

where NSE is the Nash–Sutcliffe Efficiency, DIi
obs is the observed value of the drought index, 

DIi
for is the forecasted value of the drought index, is the mean value of the drought index 

and n is the total number of observations. The resulting values of NSE will then be compared 

with those given as acceptable levels of efficiency (Nash and Sutcliffe, 1970). 

 

2.9 Uncertainty analysis 

Identification, quantification, and reporting of the different sources of errors in a modeling 

process constitute an uncertainty analysis (McIntyre et al., 2002; Refsgaard and Henriksen 

2004; Refsgaard et al., 2007). The efficient application of any model depends on the accuracy 

and reliability of its output. However, because all models are imperfect abstractions of reality 

and precise input data are rarely available, all output values are subject to imprecision 

(UNESCO, 2005). Input data errors and modeling uncertainties are not independent of each 

other but can interact in various ways. This gives rise to the significance of model uncertainty 

not only in hydrological systems but to a bulk of models that are developed and applied in other 

fields of study. In hydrology, uncertainties impact all facets of hydrologic data collection and 

modeling, i.e. (a) conceptual and numerical model development, (b) estimation of model 

parameters, and (c) quantification of historical and future model stresses (Mishra and Singh, 

2009). Uncertainties in hydrology arise due to the nature of hydrological models, which often 

contain many parameters that describe important characteristics of the catchment sub-surface 

and hydrological processes (Zhang et al., 2014).  

 

Mishra and Singh (2009) outlined the key elements of a systematic framework to consider 

while dealing with uncertainty in hydrological modeling, i.e. (a) uncertainty characterisation, 

(b) uncertainty propagation), and (c) uncertainty importance assessment. Bayesian and non-

Bayesian based techniques are used to determine the uncertainty of model outputs. Vallam et 

al. (2014) adopted a simplified Bayesian method, the Generalised Likelihood Uncertainty 

Estimation (GLUE) to determine the parametric uncertainty in hydrological modeling. Mishra 

and Singh (2009) presented two case studies of uncertainty and sensitivity analysis using MCS 

and other techniques that complement MCS. The MCS complementing techniques include 

first-order second-moment analysis, point estimate method, logic tree analysis, and first-order 
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reliability method. Although MCS can be data-intensive in its computation, the fact that it is 

more general and requires fewer assumptions makes it the strategy of choice compared to other 

Bayesian techniques in the literature. A detailed methodological approach of the MCS 

technique can be obtained in Mishra and Singh (2009).  

 

An example of non-Bayesian based techniques is the bootstrap method. Bootstrap is a statistical 

method that requires no assumptions concerning the distributions of the model parameters or 

their errors. Zhang et al. (2014) compared the model-based and block bootstrap methods while 

analysing the impact of parameter uncertainty on the overall uncertainty of model simulation 

in the case of the SWAT model applied to a hydrological simulation of the Dongliao River 

Watershed. The study found that the uncertainty ranges of parameters acquired by the block 

bootstrap were narrower as compared to those acquired by model-based bootstrap.  

 

Prediction Intervals (PI) is a statistical measure of confidence used to explore the behaviour of 

predictive models. A PI is concerned with the accuracy of prediction outputs by focusing on 

the distribution of the quantity (Mazloumi et al., 2011). Therefore, a PI value expresses the 

uncertainty of the prediction. Hyndman and Athanasopoulos (2018) indicated that point 

forecasts are of no value, however by producing PI, they account for uncertainty associated 

with each prediction. Prediction intervals increase in size as the forecast horizon increases 

therefore, more uncertainty is associated with the increased forecast length (Hyndman and 

Athanasopoulos, 2018). 

 

2.10 Chapter summary 

Drought as a hydrological extreme event has been of interest in many regions of the world due 

to its impact on several sectors of the economy and communities’ livelihoods. In southern 

Africa, drought is a frequent phenomenon with notable drought years being 1982/83, 1987/88, 

1991/92, 1994/96, 1997/98, 2001/02, 2005/06, 2014/15, and the 2015/16. Literature has shown 

that any major drought is a result of climate variability which may be exacerbated by climate 

change. For the case of hydrological drought (the focus of this study), the literature review 

showed that catchment characteristics (climate, topography, geological conditions, land use/ 

land cover) also play a major role in its development. Therefore, an index-based assessment of 

hydrological drought should consider catchment characteristics with more than one input 

variable i.e. a multivariate drought index. The increase in frequency and severity of drought 

around the world due to climate change impacts have seen frequent studies in forecasting and 
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prediction. The main objective is to aid the timely development of an early warning system and 

preparedness measures to be put in place. This further makes a community recover faster from 

a drought event before another one strikes. The following table show some of the most 

prominent drought forecasting and prediction studies: 

 

Literature has shown that hybrid models (that combines statistical and data-driven approaches) 

can increase the efficiency of conventional prediction models.  Many drought studies in South 

Africa have focused on the assessment of drought, their nature, and impacts at regional, 

national, provincial, and catchment scales. This study, therefore, applied hybrid drought 

prediction model(s) for the Luvuvhu River Catchment in north-eastern South Africa making 

use of a multivariate drought index. 

Author(s) Drought forecasting and prediction study 

Yan et al. (2017) Probabilistic drought forecasting framework (dynamic and statistical ensemble). 

Crochemore et al. (2017)  Forecasted seasonal streamflow using eight ensembled GCM’s. 

Hao et al. (2016) Toward a categorical drought prediction system based on U.S. Drought Monitor 

(USDM) and climate forecast. 

Hao et al. (2016) An integrated package for drought monitoring, prediction and analysis to aid 

drought modeling and assessment 

Hao et al. (2016) A general framework for the multivariate multi-index drought prediction based 

on multivariate ensemble streamflow predictions (ESP) 

Humprey et al. (2016)  

 

Made use of a hybrid approach (GR4J conceptual rainfall-runoff models and 

Bayesian ANN statistical forecasting model) to forecast streamflow. 

Huang et al. (2016) Research to advance national drought monitoring and prediction capabilities, 

NOAA Interagency Drought Task Force. 

Trambauer et al. (2015) Successfully conducted a seasonal forecast of hydrological drought at 3-, 4- and 

5- month lead time in the Limpopo River Basin making use of a Seasonal 

Forecasting System (FS_S4) and Forecasting System Conductions Streamflow 

Prediction Approach (FS_ESPcond). 

Hao et al. (2014) Global integrated drought monitoring and prediction system. 

Barua (2010) Forecasted a multivariate drought index (NADI) using the ANN technique over 

the short and medium-term. 

Cutore et al. (2009) Forecasting Palmer Index using neural networks and climatic indexes. 

Ochoa-Rivera (2008) Prospecting droughts with stochastic artificial neural networks. 

Mishra et al. (2007) Drought forecasting using hybrid stochastic and neural network models. 

Mishra and Desai (2006) Drought forecasting using stochastic models. 
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3 THE STUDY AREA AND DATASETS  
Chapter overview, Selection of the study area, Hydrometeorological data, 

Methodological framework, Summary. 

 

3.1 Chapter overview 

This chapter details the selection of the study area and characteristics of the Luvuvhu River 

Catchment (LRC) that relate to drought. The significance of the catchment under study is also 

discussed. Description of the datasets used in drought assessment, characterisation, and 

prediction are discussed. Sources of the data, collection process and the length of each hydro-

meteorological variable are discussed. GIS maps depicting the Luvuvhu River system and its 

tributaries, the elevation of the catchment, location of rain gauges, major reservoirs, weather 

stations, and streamflow stations are also presented in this chapter. In the case where hydro-

meteorological data for a certain variable was not available, methods are presented on how the 

estimation was carried out. The chapter concludes with a methodological framework depicting 

the sequence of drought assessment, characterisation and prediction followed in this study.  

 

3.2 Selection of the study area 

The LRC is located between latitudes 22°17'33.57'' S and 23°17'57.31'' S and longitudes 

29°49'46.16'' E and 31°23'32.02'' E in the Vhembe District of Limpopo Province in South 

Africa (Figure 3.1). The catchment covers an area of approximately 5 941 km2 and is situated 

between 202 to 1 506 meters above sea level. It consists of a relatively rolling landscape, which 

gives rise to shallow storage dams that have large water surfaces exposed to evaporation. The 

catchment lies at the periphery of the southernmost position of the Intertropical Convergence 

Zone (ITCZ) during the southern summer with an average January position at about 15°S. The 

river rises as a steep mountain stream in the southern slopes of the Soutpansberg Mountain 

complex range, which features the west-east direction, flows through Kruger National Park 

(KNP) (an important conservation and ecotourism area) and empties into the Limpopo River 

at the border with Mozambique and Zimbabwe. 
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Figure 3.1: The study area (Luvuvhu River Catchment) showing the main river system and 

elevation. 

 

The highest rainfall is received in the upper reaches (of high altitudes) while the lower reaches 

around the Kruger National Park receive the lowest rainfall during the rainfall season. The 

upper reaches Mean Annual Precipitation (MAP) is approximately 1800 mm/a while the low 

lying is characterised by low rainfall with a MAP of 400 mm/a (Ramulifho et al., 2019). The 

mean annual rainfall is 608 mm and the mean annual run-off is 520 x 106 m3 (Odiyo et al., 

2015). LRC falls within the eastern summer rainfall region of southern Africa and receives 

peak rainfall during the summer months of December to February. Distribution of rainfall 

through the year is highly seasonal with 95% of the rainfall occurring during the summer 

months (October and March) (M’Marete, 2003). The lower rainfall area in the catchment tends 

to experience greater variability than the higher rainfall areas. 

 

Local towns such as Thohoyandou experience daily maximum temperatures from about 25˚C 

to 40˚C in summer and between 22˚C and 26˚C in winter (Mzezewa et al., 2010). The high 

temperatures in the catchment create favourable conditions for increased evaporation. 

Evaporation increases gradually from 1 400 mm to 1 900 mm per annum (State of Rivers 
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Report, 2001) with 1 678 mm Mean Annual Evaporation (MAE) showing a high spatial and 

temporal variation with the highest rainfall and lowest evaporation over the Soutpansberg 

mountain range and lowest rainfall with the highest evaporation to the Kruger National Park 

(DWAF, 2004).  

 

LRC consists of a fragile ecosystem threatened by drought, as the region is in an arid to semi-

arid climatic zone. LRC is predominantly rural, with a community that is highly dependent on 

commercial and subsistence agriculture. Because the Levubu valley (an agricultural economic 

backbone of the Vhembe District) is located in this catchment, a timely early warning system 

would aid in better preparedness and reduction of drought risk to the fragile industry that is 

heavily dependent on water availability. There have been 8 notable historical droughts that 

have affected the catchment which results in far-reaching impacts on all sectors of society.  

 

3.3 Regional climate and hydrology  

The regional climate within which the LRC is found ranges from tropical rain in the coastal 

plains of Mozambique to tropical dry savannah and tropical desert further inland, south of 

Zimbabwe (Zhu and Ringler, 2012). The mean spatial pattern of summer rainfall over southern 

Africa depicts a strong gradient that increases from west to east (Chikoore, 2016). Limpopo 

River Basin annual precipitation varies between 250 mm to 1 050 mm in the hot, dry western 

and central areas in the high-rainfall eastern escarpment areas respectively (Zhu and Ringler, 

2012).  

  

The region experiences high variability between extreme wet and dry seasons, which Mulenga 

et al. (2003) suggest makes the region vulnerable to extreme events such as droughts and 

floods. The nature and pattern of inter-annual variability of precipitation are crucial as the 

variation exerts long-term control on water resources, affects plant growth, and the 

biogeochemical cycle while moderating extreme events such as droughts and floods (Fatichi et 

al., 2012). Limpopo Valley (20 – 250S) possess the highest variability in southern Africa 

(Chikoore, 2016) which agrees with reports by Usman and Reason (2004) and Kabanda (2004).  

Figures 3.2 and 3.3 show the inter-annual variability of rainfall and streamflow in the LRC for 

over 57 and 53 years respectively.  The inter-annual variability plots depict a strong seasonal 

variation in the study area. Makarau (1995) determined that the rainy season of the region is 

characterised by alternating wet and dry spells. Both variables showed a positive trend over the 
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sampling period considered, although streamflow (with an R2 of 0.0661) was more significant 

compared to rainfall (with an R2 of 0.0064). The significance of streamflow may be influenced 

by recharge from groundwater, since streamflow are controlled by the variability of antecedent 

groundwater recharge (Stahl et al.,2012; van Lanen et al., 2013) and not only reliant of rainfall 

for replenishment. The wet and dry alternating results obtained in this study are comparable 

with those obtained by Chikoore (2016) over southern Africa. This notable rainfall and 

streamflow positive trends may be due to the catchment recovery after each dry period such as 

the extreme event of February 2000. 

 

 

Figure 3.2: Interannual variability of mean rainfall over the study area. 

 

The two figures depict the negative departure from the mean between the 1980s and 1990s, 

Kabanda (2004) reported a declining trend over the study area during the decade while 

Chikoore (2016) reported a high interannual variability of mean rainfall with drier years 

(negative departures) during the same period. Rainfall increased in 1995/96, which resulted in 

increased streamflow in 1996/97. This event was followed by above-normal rainfall received 

over southern Africa in 2000 as a result of tropical cyclone Eline which produced 25% of mean 

rainfall over a few days in the year 2000 (Reason and Keibel, 2004). The latter two periods 

indicate that the system was on partial recovery. These findings are comparable with Chikoore 

(2016) although studies such as New et al. (2015) reported a continued drying trend. 
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Figure 3.3: Interannual variability of mean streamflow over the study area. 

 

3.4 Hydro-meteorological data requirements, collection and quality control 

Data requirements to compute drought indices and predict drought for the LRC include; 

rainfall, evapotranspiration, temperature, streamflow, reservoir storage volume, soil moisture 

data. Data for 30 hydrological years spanning from September 1986 to August 2016 were 

considered for the study. Although studies such as Tadross et al. (2007) and Tshililo (2017) 

defined onset as the first day after the 1st October over summer rainfall season such as in the 

study area, this study further accounted for false onset and therefore included the month of 

September. Figures 3.4 and 3.7 show the location of rain gauges, reservoirs, weather stations, 

and streamflow gauges within the catchment, respectively. Data sets are available in different 

time scales. However, for operational purposes, Barua (2010) showed that a monthly time scale 

is preferred as its sensitivity is lower or has low observational errors. Drought studies often use 

monthly datasets as the shorter periods (i.e. hour or day) fail to reflect drought. Sherval et al. 

(2014) indicated that drought occurs over some time, such as months or years. This study, 

therefore, considered monthly timescale for the computation of drought indices and prediction 

of drought.  

 

Missing data are often identified as a major problem in many hydrological studies. Kang and 

Yusof (2012) attributed missing data in hydrology to erroneous sampling, insufficient samples 

obtained, or problems in recording. Missing hydro-meteorological data in this study was 

imputed through Self Organising Maps (SOM) CRAN Package “class” in R. SOMs are neural 

networks are multivariate methods capable of modeling multivariate non-linear systems, 
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therefore, providing possibilities to estimate missing environmental data, considering 

interactions between variables in the vector-profile of the datasets (Folguare et al., 2014). These 

neural networks have seen many diverse applications in a broad range of fields, however, for 

imputation Fessant and Midenet (2002) described the process as follows:  

1. Presentation of an incomplete observation on the input layer;  

2. Selection of the image-node by minimising the distance between observation and 

prototypes in the available dimensions only: ∑ (𝑋𝑖 −𝑊𝑗
𝑖)2𝑖𝑙𝑋𝑒𝑥𝑖𝑠𝑡𝑠

𝑖 . The other 

dimensions corresponding to missing values are simply ignored during the image-node 

determination;  

3. Selection of the activation group composed of image nodes neighbours in the map;  

4. Determination of the value given to the missing item based on the weights of the 

activation group’s nodes in the missing dimensions. 

While making use of the SOMs, Folguare et al. (2014) found that there were no statistically 

significant differences from estimates results from professional criteria and SOM, thus proving 

to be a suitable time-saving imputation method. For a detailed description of the SOM 

properties and applications, see Kohonen (2001). 

 

Due to the nature of indices to be computed, data averaging was conducted. Individual station 

data were used in the formulation of the SPI, SSI, and SPEI for the LRC. For the case of NADI, 

data from the selected stations of rainfall, streamflow, and temperature were averaged using 

the arithmetic mean method. One advantage of this method is that it makes use of every value 

in the data and therefore making it a good representative of the data (Manikandan, 2011). Barua 

(2010) compared arithmetic mean and Theissen Polygon and reported that both averaging 

methods gave similar results. Glaser (2000) further indicated that mean is the measure of 

central tendency that best resists the fluctuation between different samples. 

 

Datasets selected (i.e. rainfall, temperature, and rainfall) for use in the study area were checked 

for consistency using the double mass curve analysis and the results of this are shown in Figure 

3.4. The double-mass analysis assumes a linear relationship between hydrological tine series 

(Dahmen and Hall, 1990). The method has been extensively applied in testing the consistency 

of hydrological data and showed good results (e.g. Wijesekera et al., 2012; Peng et al., 2018; 

Pirnia et al., 2019).  Cumulative data (i.e. rainfall, temperature) for each station was plotted 

against the mean cumulative data of the rest of the stations. A 450 line was introduced to the 
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scatterplot, and if the point falls within this line then the data did any adjustment. For the case 

of rainfall, the point falling off the line might be an outlier in the data. 

 

 

Figure 3.4: Double mass curve analysis for rainfall and temperature for the selected stations 

in the study area. 

 

3.4.1 Rainfall 

Rainfall is one of the fundamental components of the hydrological cycle and acts as an 

important indicator of the development of drought conditions. Data on rainfall over South 
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Africa is measured at a daily time scale, however, monthly means and totals are also made 

available by South African Weather Services (SAWS). Monthly rainfall data from eight 

weather stations in the LRC were collected from the SAWS. Table 3.1 shows the station names 

and numbers and the data span in each respective station selected to be used in this study while 

Figure 3.5 shows their location in the study area. There is a paucity of weather observations in 

the drier lower catchment of the LRC. 

 

 

Figure 3.5: Location of weather stations in the LRC used in this study. 
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Table 3.1: Weather stations in the study area. 

 Station name Station number Data span Data length 

(years) 

1 Mukumbani  0766715 1956-2016 60 

2 Klein Autsralie 0723363 X 1959-2016 57 

3 Matiwa 0766509 9 1959-2016 57 

4 Nooitgedatch 0723334 X 1959-2016 57 

5 Levubu 0723485A0 1964-2016 54 

6 Vondo Bos 0766596 9 1963-2016 53 

7 Shefera 0723182 6 1948-2016 68 

8 Tshivhase 0766628 W 1986-2016 30 

 

3.4.2 Potential Evapotranspiration 

Potential Evapotranspiration is the idealized quantity of water evaporated per - unit area, per 

unit time from an idealized, extensive free water surface under existing atmospheric conditions 

(Shuttleworth, 1993). There is one evaporation station in the entire LRC (Albasini) and is 

located in the upper reaches of the catchment. Due to the lack of evaporation data in the LRC, 

potential evapotranspiration (PET) for the catchment was estimated from the temperature-

based method. Daily minimum and maximum temperatures from three weather stations 

(Levubu, Mukumbani, and Tshivhase stations) were collected from SAWS (Table 3.1). 

Hargreaves and Samani temperature-based method was used to estimate PET in the study area 

using Equation 3.1. 

 

𝑃𝐸𝑇 = 0.0023×𝑅𝑎×(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5×(𝑇 + 17.8),              (3.1) 

 

where, Ra is the solar radiation (MJ/m2/day), which was measured following the procedure 

outlined in Allen et al. (1998), Tmax and Tmin are the maximum and minimum temperatures (°C), 

respectively and T is the mean air temperature (°C). Figure 3.6 shows the correlation between 

the estimated PET and the measured evaporation in the upper reaches of the catchment and 

Figure 3.7 shows how the estimated PET compared with the catchment temperature. An R2 of 

greater than 0.5 shows that a positive linear relationship exists between two variables, therefore 

the R2 of 0.56 between the estimated PET and measured evaporation from the Albasini Dam 

depicts a good comparison. 
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Figure 3.6: Correlation of Hargreaves estimated PET and measured evaporation. 

 

 

Figure 3.7: Comparison of Hargreaves estimated PET and LRC temperature. 
 

3.4.3 Streamflow 

There are approximately 26 streamflow monitoring stations in the LRC, located in the main 

river system and the major tributaries (Figure 3.8). Most of these stations do not have 

continuous data with some having large amounts of missing data. Of the 23 streamflow 

stations, three stations (A9H006, A9H012, and A9H013) with sufficient data were considered 

in this study. Streamflow data from the selected stations had data between 40 to 54 hydrological 

years. Measured streamflow data for the entire South Africa is available from the Hydrological 
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Information Services (HIS) (DWAF, 2003) and therefore data used in this study was obtained 

from the DWS HIS repository. Table 3.2 and Figure 3.8 show the detailed information on the 

selected streamflow stations and their location within the study area, respectively.  

 

There are three types of flow gauging structures used in South Africa; namely, Crump weir, 

Sharp-crested weir, and the Sluicing flumes. The selected streamflow stations are gauged using 

the sharp-crested weir and the sluicing flume. A comprehensive overview and the calibration 

theories and techniques as applied in South African rivers are given in Wessels and Rooseboom 

(2009a); Wessels and Rooseboom (2009b). 

 

 

Figure 3.8: Location of streamflow gauging stations and the main reservoir in the LRC. 
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Table 3.2: Streamflow stations in the study area. 

 Station number  Station name Data span Data length 

1 A9H006 Livhungwa at Barotta 1961 – 2018 57 

2 A9H012  Luvuvhu River at Mhinga 1987 – 2018 31 

3 A9H013 Mutale River at KNP 1988 – 2018 30 

 

3.4.4 Reservoir storage 

There exist three major reservoirs in the LRC, namely; Albasini, Vondo and, Nandoni dams 

(Figure 3.8). Nandoni Dam only became operational in 2006 and the length of data available 

was considered not sufficient to meet the objective of the study. Albasini is the oldest of the 

three reservoirs with a record of 34 years while Vondo had 30 years’ record. Reservoir data 

from Vondo Dam was considered for this study as it had sufficient data of over 30 years and 

Albasini Dam, although located within the LRC, does not supply the catchment with water. 

The dam was constructed to supply water to the Makhado Municipality town of Louis 

Trichardt. The monthly storage time series for Vondo Dam data were obtained from DWS HIS 

repository. The storage-area relationship for Vondo Dam was used to determine the area 

inundated for each monthly water level, which was multiplied by the area inundated to obtain 

reservoir storage.  

 

3.4.5 Soil Moisture 

Root zone soil moisture was considered for this study because it plays a significant role in the 

regulation of water and energy fluxes at the soil–vegetation–atmosphere interface through 

evaporation processes of the uppermost surface soil layer and plant transpiration (Shukla and 

Mintz 1982). In situ soil moisture data over many regions of Africa are not available due to the 

cost of setting up, operating and maintaining dense soil moisture networks. Consequently, soil 

moisture is often estimated indirectly, using both remote sensing and hydrological models 

(Myeni et al., 2019). This study, therefore, made use of the Modern-Era Retrospective analysis 

for Research and Applications version 2 (MERRA-2) as a soil moisture proxy for the study 

area for the period considered. MERRA-2 is a NASA atmospheric reanalysis for the satellite 

era using the Goddard Earth Observing System Model, Version 5 (GEOS-5) with its 

Atmospheric Data Assimilation System (ADAS), version 5.12.4. The MERRA project focuses 

on historical climate analyses for a broad range of weather and climate time scales and places 

the NASA EOS suite of observations in a climate context. A detailed description of the 
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MERRA-2 observation system can be obtained in Reichle (2012). Monthly root zone soil 

moisture time series from September 1986 to August 2016 were downloaded from the Giovanni 

website (https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-

2%22&page=1&source=Models%2FAnalyses%20MERRA-2) from the bounding box (Figure 

3.9). The MERRA-2 uses the finite-volume dynamical core of Lin (2004) at a horizontal 

resolution of 0.5° × 0.625° in latitude and longitude, respectively, and 72 hybrid-eta levels from 

the surface to 0.01 hPa. Figure 3.10 shows the moderate correlation relationship between 

rainfall in the catchment and the satellite-derived root zone soil moisture. An r2 of 0.475 at a 

90% confidence interval shows that there exists a positive linear relationship between the two 

variables. Ratner (n.d) showed that correlation coefficient values between 0.3 and 0.7 indicate 

a moderate positive linear relationship via a fuzzy-firm linear rule. MERRA derived surface 

soil moisture was reported to correspond positively with in situ observations (R = 0.53±0.01, 

p < 0.001) in the mid-latitudes, where its accuracy was directly proportional to the quality of 

precipitation (Yi et al., 2011).  

 

 

Figure 3.9: MERRA-2 root zone soil moisture bounding box. 
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Figure 3.10: Correlation of rainfall and satellite-derived root zone soil moisture. 

 

3.5 Methodological framework  

The methodological framework for drought prediction in the LRC is depicted in Figure 3.11. 

The framework was developed sequentially in-line with the objectives of the study. The study 

is structured to start with drought assessment where all the four drought indices were applied 

in this exercise to determine which index best detects historical drought conditions in the study 

area. The second step was to characterise drought conditions in the catchment. The selected 

indices were again used for this exercise to determine which index best characterises historical 

drought. The latter two steps were important as they yield important information in terms of 

index strength to detect and characterise drought conditions in a place. The following step in 

the methodological framework was to apply a hybrid drought prediction model that 

incorporates decomposition, statistical, and artificial neural network methodologies. Then 

following the application of the models, an uncertainty analysis was carried out to determine 

the level of reliability of the model. 
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*GAM – Generalised Additive Models, EEMD – Ensemble Empirical Mode Decomposition, NADI – Non-linear Aggregated Drought Index, 

LSTM – Long Short-term Memory, SPI – Standardised Precipitation Index, SPEI – Standardised Precipitation Evaporation Index, SSI – 

Standardised Streamflow Index. 

Figure 3.11: Methodological framework for drought prediction for LRC. 
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3.6 Chapter summary 

The LRC is an important catchment in the Limpopo Province as it is home to the Levubu valley 

(an agricultural economic backbone of the Vhembe District). Rainfall in this region of southern 

Africa is highly influenced by the ITCZ and tropical temperature troughs. The nature of the 

topography in the study area also influences rainfall distribution. Most of the rainfall is received 

on the western side of the catchment where the Luvuvhu River rises within the Soutpansberg 

Mountain range and decreases to the east towards the Kruger National Park. Temperature also 

increases from the mountainous areas to the lower reaches of the catchment. By its position, 

the LRC is prone to extreme hydrological events. The region has been found to have witnessed 

an increase in drought frequency over the past decade. Considering the position of the 

catchment and its economic importance, such a study is of significance.  

 

Hydro-meteorological variables (i.e. rainfall, evaporation, temperature, streamflow, reservoir 

storage, and soil moisture) from September 1986 to August 2016 (30 years) were obtained or 

estimated for the LRC. Hydro-meteorological data is no stranger to gaps, missing data in this 

study were imputed using Self Organising Maps. Evapotranspiration was estimated using a 

temperature-based method (Hargreaves) while root zone soil moisture was obtained from the 

NASA earth data repository. MERRA-2 data were selected since they had data for the required 

study period. All the datasets obtained or estimated were on a monthly timescale, since they 

have low observational errors. The datasets were collected or estimated and analysed for the 

specific purpose of this thesis for the use in the LRC to achieve the objectives of the study. A 

sequential methodological framework was further depicted in this chapter, this entailed the 

drought characterisation, assessment, application of drought prediction models, and the 

analysis of the uncertainty of the applied models.  
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4 DROUGHT CONDITIONS BASED ON SPI, SPEI, SSI, AND 

NADI 

Chapter overview, Formulation of drought indices, Results, and discussions, 

Summary 

 

4.1 Chapter overview 

Four drought Indices [Standardised Precipitation Index (SPI), Standardised Precipitation 

Evaporation Index (SPEI), Standardised Streamflow Index (SSI), and the Nonlinear 

Aggregated Drought Index (NADI)] that describe drought are formulated at different time 

scales for the LRC. The 1-, 6- and 12- month timescales were adopted in this case study as the 

formulation of SPI, SPEI, and SSI while 1- month time scale was only applied for NADI. A 

timescale is the time allowed for or taken by a process or a sequence of events. For example, 

SPI was designed to quantify the precipitation deficit over multiple timescales which reflect 

drought impacts on different water resources. The 3- month SPI reflects short- and medium-

term moisture conditions and provides a seasonal estimation of precipitation, while information 

from a 6- month SPI may also be associated with anomalous streamflow and reservoir levels, 

depending on the region and time of year [World Meteorological Organisation (WMO, 2012)]. 

The 12- month up to 24- month SPI reflects long-term precipitation patterns and usually 

associated with streamflow, reservoir levels, and even groundwater levels on longer timescales.  

 

The objective of this chapter is to detect and assess historical hydrological drought conditions 

in the LRC. The methodology followed in formulating each respective index together with the 

case study results and discussions is presented. The assessment of drought for this case study 

focused on each index capability to detecting notable historic drought as reported in literature 

within the catchment, how each index categorised historical drought events and which category 

was more prevalent was also discussed. Mann-Kendall trend test was also utilised to detect 

drought trends and their significance in the LRC. The catchment spatial variability maps were 

generated for the LRC to show the locations which are most affected by drought in the 

catchment. 

 

4.2 Formulation of drought indices methodology 

Four indices have been selected to assess and characterise drought conditions in the study area. 

Although (Hayes et a., 2010) indicated that there seems to be a scientific consensus that there 
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is no best hydrological drought index, this study selected for instance SPI based on a 

recommendation by the WMO (2009). Both SPI and SPEI have been widely used in drought 

assessment (Masih et al., 2014; Botai et al., 2016; Edossa et al., 2016; Masupa et al., 2016; 

Kolusu et al., 2019) and prediction (Mishra et al., 2006; Maca and Pech, 2016; Le et al., 2016; 

Mulualem and Liou, 2020) studies. NADI is a relatively new index based on the linear ADI 

and accounts for all components of the hydrological cycle. Therefore, indices were selected 

based on their different input variables and their application in different drought studies. 

 

4.2.1 Standardised Precipitation Index  

The SPI was utilised to quantify the rainfall deficit within the LRC. The procedure involved 

fitting the rainfall data into a Probability Density Function (PDF). A gamma distribution 

function was adopted as it fits well in rainfall time series data (Sometz et al., 2005). The gamma 

distribution is expressed in terms of its PDF as:  

    

𝑓(𝑥; 𝛼, 𝛽) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−𝑥
𝛽⁄    for , 𝛼, 𝛽 > 0,                          (4.1) 

where α is the shape parameter, β is the scale parameter, x is the rainfall amount (mm), Γ(α) is 

the value taken by the Gamma function and 𝑥̅ is the mean rainfall (mm). The Γ(α) is the value 

defined by a standard mathematical equation called the Gamma function. This is given by 

Cacciamani et al. (2007) as: 

                  

Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑦𝑑𝑥
𝛼

0
,                     (4.2) 

where Γ(α), x, and α are defined in Equation (4.1). The above Gamma function was then 

evaluated both by the numerical method and the use of tabulated values depending on the value 

taken by the shape parameter α. A maximum probability is used to estimate the optimal values 

of α and β using the function given in the Equations: (4.3) and (4.4) respectively: 

  

𝛼 =
1

4𝐴
(1 + √1 +

4𝐴

3
),                                 (4.3) 

 

𝛽 =
𝑥̅

𝛼
 ,                                                               (4.4) 

where α is the shape parameter, β is the scale parameters, 𝑥̅ is defined above and A is the sample 

statistic. The sample statistic is defined as: 
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𝐴 = ln(𝑥̅) −
ln 𝑥

𝑛
,                                                 (4.5) 

where n is the number of observations. The calculated values are then used to compute the 

cumulative probability for non-zero rainfall using Equations (4.6) and (4.7), respectively: 

 

 

𝑓(𝑥; 𝛼, 𝛽) = ∫ 𝑓(𝑥, 𝛼, 𝛽)𝑑𝑥
𝑥

0
=

1

𝛽𝛼Γ(𝛼)
∫ 𝑥𝛼−1𝑒

−𝑥
𝛽⁄𝑥

0
 𝑑𝑥                     (4.6) 

Equation 4.6 parameters are defined in Equation 4.4. 

 

𝑓(𝑥; 𝛼, 𝛽) =
1

Γ(𝛼)
∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
𝑥

0
 for 𝑡 =

𝑥

𝛽
,     (4.7) 

where Γ(α), x, and β are defined above in Equation 4.1 and 4.4 respectively while t is the time. 

The gamma function applies for values of rainfall x > 0 for the rainfall time series of the basin 

under study. In the case of non-zero values, there was a need to compute the cumulative 

probability of both zero and non-zero values. This probability is represented by a function H(x) 

defined as: 

 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝑓(𝑥; 𝛼, 𝛽),                         (4.8) 

where H(x) is the cumulative probability and q is the probability of zero rainfall. If 𝑚 is the 

number of zeroes and 𝑛 the number of observations in the rainfall time series, then q is 

estimated by the ratio 𝑛. The cumulative probability is transformed into a standard normal 

distribution in such a way that the mean and variance of the SPI are zero and one respectively. 

To carry out this step, an approximate transformation as per Mishra and Desai (2006) was 

adopted. This is achieved as follows:  

                                           

𝑆𝑃𝐼 = 𝑘 −
𝐶0+𝐶1𝑘+𝐶2𝑘

2

1+𝑑1𝑘+𝑑2𝑘
2+𝑑3𝑘

3        (4.9) 

The value of k in Equations (4.9) was determined from the functions given below: 

    

𝑘 = √𝑙𝑛 (
1

1−𝐻(𝑥)2
),                        (4.10) 

where C0 is 2.515517, C1 is 0.802853, C2 is 0.010328, d1 and is 1.432788, d2 is 0.189269 and 

d3 is 0.001308 (Bezdan et al., 2019) and these are constants values for computing the SPI. The 

SPI uses a classification system whereby wet conditions are indicated by positive values and 
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negative values represent dry conditions (Table 4.1). This study only makes use of negative 

values as they indicate drought. 

 

Table 4.1: SPI drought classification (McKee et al., 1993). 

SPI Values Drought category 

0 to -0.99 Mild/ Near normal 

-1.00 to -1.49 Moderate 

-1.50 to -1.99 Severe 

≤ -2.0 Extreme 

 

4.2.2 Standardised Precipitation Evaporation Index  

The SPEI is based on the computation procedure of the original SPI. The index makes use of 

either monthly or weekly difference between precipitation and Potential Evapotranspiration 

(PET) (Vicente-Serrano et al., 2010a). Due to the complex computation of the PET which 

involves numerous parameters, including surface temperature, air humidity, soil incoming 

radiation, water vapour pressure, and ground-atmosphere latent and sensible heat fluxes (Allen 

et al., 1998), this study made use of Hagreaves and Samani temperature-based method for PET 

estimation. The latter approach has the advantage of only requiring data on monthly-mean 

temperature. The SPI methodology was modified by replacing the two-parameter distribution 

with a three-parameter distribution (i.e. SPEI requirement) (Vicente-Serrano et al., 2010a). The 

latter suggested getting the best fit three-parameter distribution from L-moments and the 

detailed methodology for achieving this can be obtained in Hosking (1990). Following the 

classical approximation of Abramowitz and Stegun (1965), SPEI is given as: 

 

       𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶0+𝐶1𝑊+𝐶2𝑊

2

1+𝑑1𝑊+𝑑2𝑊
2+𝑑3𝑊

3,                                                             (4.11) 

where 𝑊 = √−2ln (𝑃)  for 𝑃 ≤ 0.5 and P is the probability of exceeding a threshold value 

denoted by 𝐷 value, 𝑃 = 1 − 𝐹(𝑥). If 𝑃 > 0.5, then P is replaced by 1 − 𝑃 and the sign of the 

resultant SPEI is reversed. The constants C0, C1, C2, d1, d2, and d3 are as defined in Equation 

(4.9). For this study, SPEI was computed using a CRAN Package “spei” in R. The SPEI drought 

classification is similar to that of SPI, therefore Table 4.1 was adopted to classify drought 

categories for the case of SPEI. 
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4.2.3 Standardised Streamflow Index  

For determining the SSI, this study followed the procedure as outlined in Faragman and 

Aghakouchak (2015), which derived marginal probability of (i.e. precipitation and streamflow) 

using the empirical Gringorten plotting position (Gringorten, 1963) as shown in Equation 

(4.12). 

𝑃(𝑥𝑖) =
𝑖−0.44

𝑛+0.12
,          (4.12) 

where; n is the sample size, i denotes the rank of non-zero streamflow data from the smallest, 

and 𝑃(𝑥𝑖) is the corresponding empirical probability. Making use of such an empirical 

approach, the original distribution (two-term gamma probability density function and the 

cumulative gamma distribution function) used in SPI for instance are not required to derive the 

parametric probabilities. Following the classical approximation as described by Abramowitz 

and Stegun (1965); Entekhabi et al. (1996); Edwards and McKee (1997), SSI is computed as 

follows:       

 

𝑆𝑆𝐼 = 𝑡 −
𝐶0+𝐶1𝑡+𝐶2𝑡

2

1+𝑑1𝑡+𝑑2𝑡
2+𝑑3𝑡

3,        (4.13) 

The constants C0, C1, C2, d1, d2, and d3 are as defined in Equation (4.9), while 𝑡 is given by 

Equation (4.14). 

 

𝑡 = √𝑙𝑛
1

𝑃2
,          (4.14) 

Since SSI is a standardised index, the SPI classification as described by McKee et al. (1993) is 

adopted to categorise the different drought events in the study area. 

 

4.2.4 Formulation of NADI for the LRC 

NADI for the LRC was formulated using five hydro-meteorological variables (i.e. 

precipitation, potential evapotranspiration, streamflow, storage reservoir volume, and soil 

moisture content). These variables have been discussed in detail in Chapter 3. The formulation 

of NADI steps followed in this study was adapted from Barua (2012) as shown in Figure 4.1. 

NADI represents an overall catchment water availability as opposed to the standardised indices 

considered which can be computed for the catchment and on a station to station basis. 
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Figure 4.1: Process for NADI formulation (Adopted from Barua, 2010). 

 

4.2.4.1 Computation of Principal Components using NLPCA 

Although NLPCA is widely used as a data redundant technique (Kramer, 1991; Monahan, 

2000, 2001; Linting et al., 2007), in this study, however, it was utilised to aggregate hydrologic 

information from the five hydro-meteorological variables (rainfall, evapotranspiration, 

streamflow, reservoir storage, and soil moisture) that resulted in the NADI time series. The 

NLPCA is like linear PCA, the difference is that in PCA, PCs are obtained through a linear 

combination of variables while in the NLPCA, PCs are obtained through a linear combination 

of transformed variables (Barua, 2010). Linting et al. (2007) reported that PCs obtained 

through NLPCA capture the nonlinear relationship between hydro-meteorological variables 

and account for more variance compared to the linear PCA. The variable transformation is 

achieved through NLPCA using an iterative process. A detailed discussion of the iterative 

process can be obtained in Barua (2010). 
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4.2.4.2 Computation of NADI time series 

To compute the NADI time series for the duration considered in this study, only PC1 was 

utilised. This is because PC1 explains the largest fraction of variance of a standardised sample 

data, like the case of ADI.  Since PCs are orthogonal vectors, it is not mathematically proper 

to combine them into a single expression. Keyantash and Dracup (2004) suggested that only 

the dominant mode be adopted to describe water anomalies. Hence the adoption of PC1 in the 

NADI computation. Considering 12 months, PC1 obtained through NLPCA described a data 

set variance of 70%. To represent a normalised expression of variability for the computed 

NADI, PC1 is standardised using Equation (4.18). Keyantash and Dracup (2004) indicated that 

in the absence of standardisation, months that routinely possess a higher degree of hydrologic 

variability result in a chronological plot of NADI values to predictably jump. 

 

𝑁𝐴𝐷𝐼𝑖,𝑥 =
𝑃𝑖,1,𝑥

𝜎𝑥
,          (4.18)  

where 𝑁𝐴𝐷𝐼𝑖,𝑥 is the NADI value for the xth month in ith year, 𝑃𝑖,1,𝑥 is the PC1 during the ith 

year for the xth month while 𝜎𝑥 is the standard deviation of 𝑃𝑖,1,𝑥 over all the years for xth month. 

Following the computation of NADI values for each month for all the year under consideration 

using Equation (4.18), the individual month NADI is reorganised chronologically in a single 

NADI time series. 

 

4.2.4.3 Example of NADI calculation at the beginning of the hydrological year 

The example discussed here considers the computation of NADI for September. The 30 years 

of observed monthly data for rainfall (R), evaporation (E), streamflow (S), reservoir storage 

volume (RS), and root-zone soil moisture (SM) are arranged into a [30 x 5] matrix. The monthly 

data of R, E, S, RS, and SM were used in their original units of millimetres, cubic meters per 

second, cubic meters per day, a cubic meter of water per cubic meter of soil respectively in 

OSeptember (Figure 4.2). The differing units of measurements do not have any impact on the 

results as the non-correlation-based NLPCA approach was used to standardise the data and its 

un-impacted by units of measurements. Matrix OSeptember was then used in CAPTCA module of 

SPSS to generate another [30 x 5] matrix TSeptember (Figure 4.3) which contain optimally 

transformed variables and [5 x 5] matrix eigenvectors. However, since PC1 describes the 

greatest variance, only [5 x 1] matrix containing eigenvectors related to PC1 PSeptember (Figure 

4.4) is utilised in NADI computation.  
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Figure 4.2: Observed data matrix for September. 
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Figure 4.3: Matrix T containing optimally transformed variables. 

 

 

Figure 4.4: Matrix P containing eigenvectors related to PC1. 
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The [30 x 1] matrix of PC1 (|XSeptember) is then computed for September using Equation 

(4.19). This equation relates the optimally transformed data to the respective PCs. Figure 4.5 

is the example computation for September. 

 

𝑋 = 𝑇𝑃,           (4.19) 

 

 

Figure 4.5: Matrix of the first Principal Components (PC1) for September. 

 

The NADI values for September for 30 years are computed using Equation 4.18. The 30 years’ 

standard deviation of the 1st PC for September is computed as 2.09. Figure 4.6 shows the NADI 

time series for September. The NADI time series for the remaining months are also computed 

similarly to the September example outlined in the section.  



 

63 
 

 

Figure 4.6: Computed NADI values for September between 1986 and 2016. 

 

4.2.4.4 Determination of NADI threshold 

As shown in Figure 4.1, the last step is to rearrange NADI into a single time series in 

chronological order. NADI threshold values are calculated probabilistically for a study area 

using an empirical CDF. The SPI threshold was used to generate the NADI threshold, SPI 

dryness thresholds are Gaussian variates -2, -1.5, -1, and 1 standard deviation which 

corresponds to 2.3rd, 6.7th, 16.0th and 84.0th percentiles in the SPI cumulative distribution. The 

NADI threshold corresponding to the latter percentiles for the LRC are; -2.05, -1.42, -1.09, and 

1.01 respectively (Figure 4.7). Table 4.2 relates the NADI threshold to the relevant drought 
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classification in the LRC, as shown in Figure 4.7, a threshold is considered zero. This is because 

NADI drought classes are obtained using the SPI dryness threshold and this considers a drought 

event to occur anytime when SPI values are continuously negative (McKee et al., 1993). 

Therefore, although the near normal or mild drought condition classification is between -1.09 

and 1.01, the study only considered drought when NADI values were continuously negative. 

  

 

Figure 4.7: Computed NADI threshold for the Luvuvhu River Catchment. 

 

Table 4.2: Drought classification based on the NADI threshold for the LRC. 

SPI NADI Drought category 

0 to -0.99 0 to -1.09 Mild/Near normal 

-1.00 to -1.49 -1.10 to -1.41 Moderate  

-1.50 to -1.99 -1.42 to -2.04 Severe  

≤ -2.0 ≤ -2.05 Extreme  

 

4.3 Determination of drought trends in the study area 

The Breaks for Additive Seasonal and Trend (BFAST) Equation (4.20) method is applied to 

decompose the drought index time series to obtain the trend variations in the study area.  

 

𝑦𝑡 = 𝑚 + 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 ,        (4.20) 

where, 𝑚 is the constant, T is the trend component value, S is the seasonal component, and R 

is the random component at time step 𝑡. Mann-Kendall (M-K) non-parametric trend test is 

Moderate drought 

Near normal condition 

Extreme drought 

Severe drought 
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utilised to detect hydrological drought trends for the four drought indices formulated for the 

LRC. M-K is recommended by WMO as an approach for calculating the trend of hydro-

meteorological time series (Mann, 1945; Kendall, 1976).  The MK test statistics S is expressed 

as; 

 

𝑆 = ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)𝑖<𝑗   ,                (4.21) 

where, n is the number of data points, 𝑥𝑖 and 𝑥𝑗 are the data values in time series i and j, 𝑖 < 𝑗, 

respectively and 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is the sign function given as: 

 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑥𝑗 > 𝑥𝑖
0 𝑥𝑗 = 𝑥𝑖
−1 𝑥𝑗 < 𝑥𝑖 .

                 (4.22) 

  The variance of S is computed as; 

 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
,        (4.23) 

 

where, 𝑛 is the length of the data points. In cases where the sample size 𝑛 > 10, the standard-

isation test statistic is computed by; 

 

𝑍 =

{
 

 
𝑆−1

𝑉𝑎𝑟(𝑆)
𝑆 > 0

0 𝑆 = 0
𝑆+1

𝑉𝑎𝑟(𝑆)
𝑆 < 0.

         (4.24) 

 

Positive values of Z indicate an increasing trend while a negative value of Z indicates a declin-

ing trend. When the null hypothesis is rejected a significant trend exists in the time series.  S is 

obtained from the standard normal distribution with an exceeding probability of 𝛼 2⁄ . This study 

set the significance levels α at 0.05 corresponding to a Z value 2.38. Assigning a small value 

of significance level gives a small chance of rejecting the null hypothesis if it is true (Ross, 

2017). Further, a 5% significance level has become common in practice. 
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4.4 Results and discussions 

4.4.1 Index based historical drought detection 

4.4.1.1 SPI 

SPI time series were analysed at three timescales (1-, 6- and 12- month) and further used to 

detect historical drought in the LRC for the duration of 30 hydrological years (September 1986 

to August 2016). As indicated in Chapter 3, notable historic droughts i.e. 1987/88 (SPI of -1.2), 

1991/92 (SPI of -1.46), 1994/96 (SPI of -1.14), 2001/02 (SPI of -1.54), and 2014/16 (SPI < -

2), were the focus regarding the historical assessment of drought in the catchment. Figure 4.8 

shows the SPI drought time series at 1-, 6- and 12- timescales for station KA. For SPI figures 

of all the other stations computed for the LRC, see Appendix A (Figures A1, A2, and A3). The 

analysis of all SPI time scales successfully detected all the notable drought years as reported in 

the literature (Glantz et al., 1997; Mason and Tyson, 2000; Vogel et al., 2000; FAO, 2004; 

Chikoore, 2016) and further detected more drought years as depicted in Figure 4.8. Although 

the drought was detected in all months of the year, the majority were between September and 

March and this may be due to the fact that; this is the period the study area received its rainfall. 

The LRC is one of the summer rainfall regions in South Africa. The mean rainfall in the study 

area onset is September and cessation is in March of the subsequent year.  

 

Although literature (e.g. Mason and Tyson, 2000; Vogel et al., 2000; Chikoore, 2016) reported 

the 1991/92 drought as the most extreme in the region, resulting in major economic losses, only 

two stations (KA and VB) could detect this extreme event at 6 and 12-time scales. The most 

extreme drought cases across all stations and time scales are between 2012 and 2015, with Lev 

station reporting 35 drought months at 12- month timescale. The 35 drought months correspond 

to 20.61% (see Table 4.3) in that station. Table 4.3 shows historical drought categories 

percentages of occurrence. Mild droughts are more dominant in the catchment with all stations 

reporting their occurrences at over 60% except for Mat station at 6- month timescale, which 

showed an occurrence of 55.43%. Moderate drought ranged between 7.88% and 27.05% while 

severe cases ranged between 0.36% and 16.77%. Extreme drought was the least found and 

ranged between 0% and 21.61%. This study found that increased SPI time scales increase with 

drought severity, this is because, and the majority of extreme droughts were shown at 6- and 

12- month timescales. 

 

 



 

67 
 

 

Figure 4.8: SPI time series for KA station at 1-, 6- and 12- timescales. 

 

Table 4.3: Analysis of SPI historical drought categories. 

Station Timescale Mild 

(%) 

Moderate 

(%) 

Severe 

(%) 

Extreme 

(%) 

KA 1 76.6 14.89 6.38 1.6 

6 68.78 19.88 7.83 3.61 

12 73.75 16.25 7.5 1.88 

Lev 1 71.08 18.63 9.8 0.49 

6 67.03 9.89 11.54 11.54 

12 68.49 7.88 3.03 20.61 
Mat 1 61.62 24.75 12.12 1.52 

6 55.43 21.2 11.41 11.96 

12 60.77 18.79 8.29 12.16 

Muk 1 82.26 10.75 6.45 0.54 

6 65.22 15.53 9.94 8.7 

12 61.49 13.51 14.87 10.14 
Nooit 1 82.81 10.94 5.21 1.04 

6 62.84 27.87 7.65 1.64 

12 65.56 26.67 7.78 0 

Shef 1 73.08 21.15 5.29 0.48 

6 69.56 27.05 2.9 0.48 

12 80.51 15.9 0.36 0 

Tshi 1 78.95 10.53 8.77 1.75 

6 73.41 14.45 5.78 6.36 

12 66.46 11.18 16.77 5.59 

VB 1 71.67 18.33 7.78 2.22 

6 73.14 14.29 6.86 5.71 

12 79.16 11.31 4.76 4.76 
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Figure 4.9 shows the spatial variability of SPI at the study timescales. This study made use of 

station data and thus, the stations with quality data were concentrated in the upstream of the 

catchment. Therefore, the variability in the lower reaches of the catchment is not discussed in 

this study.  SPI 6- (ranged from -0.7425 and -1.027) showed the greatest variability followed 

by 12- (ranged from -0.6996 and -0.9895) and the 1- (ranged from -0.6346 and -0.8248). This 

study found that the variability was greatly influenced by the average station data. Upper 

reaches showed the least drought severity at 1- and 12- month timescales while 6- month 

timescale showed greater severity. The upper reaches of the LRC receive higher amounts of 

precipitation compared to the middle and lower reaches and this is can be seen in the variability 

as shown in Figure 4.9.  

 

 

Figure 4.9: Spatial variability of SPI at 1-, 6- and 12- month timescales in the LRC. 

 

4.4.1.2 SPEI 

The SPEI time series which depicts drought at different timescales are shown in Figure 4.10 

for KA station [for all stations figures, see Appendix A (Figures A4, A5, and A6)]. Considering 

the notable historical drought reported in the literature, SPEI detected all the drought years as 

in all the stations at different SPEI time scales. SPEI results indicate that drought is prevalent 

over the same months (September of the former year to March of the subsequent year) which 

is consistent with SPI finding and the hydrological year of the catchment. Like SPI, SPEI 
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managed to detect the 1991/92 drought as the most extreme over the study period at 6- and 12- 

month timescales and this was showed by VB station only. The 2014/16 drought dominated 

the severe category in most stations at 6- timescale and showed to be more severe than the 

1991/92 in most the stations across all the timescales. The deviation from the literature may be 

since the studies that classify 1991/92 as extreme made use of different drought quantifying 

parameters as the one considered in this study. 

 

Figure 4.10: SPEI time series for KA station at 1-, 6- and 12- timescales. 

 

Table 4.4 shows the different drought categories percentages of occurrence of historical 

drought for all the stations at different timescales. Mild, moderate, severe and extreme droughts 

conditions ranged between 63.28% - 71.88%, 12.65% - 27.59%, 4.2% - 21.69% and 0% - 

6.65% respectively, in all stations and considering the respective timescales considered in the 

study. Station VB, Muk, and Mat showed the highest percentages of extreme droughts at 6.14% 

for both and 6.65% for VB at 12- month timescale.  This, however, is still lower than the 

percentage of extreme events shown by SPI at the same timescale. This may be attributed to 

the inclusion of evapotranspiration as an input in the formulation of SPEI. The relationship 

between increased drought category and timescale as shown by SPI is also seen in Table 4.4 

on SPEI. The spatial variability of SPEI at 1-, 6- and 12- month timescales is presented in 
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Figure 4.11. The variability shows that SPEI 12- was found to be of greater severity compared 

to 1- and 6- month timescales in the middle reaches while the upper reaches 12- showed the 

least drought severity compared to SPEI 1- and 6-. Higher temperatures are experienced in the 

middle and lower reaches of the LRC around the KNP, and since the increased temperature is 

associated with increases evapotranspiration, it, therefore, explains SPEI 12- showed the least 

drought severity in the upper reached of the catchment.   

 

Table 4.4: Analysis of SPEI historical drought categories. 

Station Timescale Mild 

(%) 

Moderate 

(%) 

Severe 

(%) 

Extreme 

(%) 

KA 1 68.28 23.66 5.91 0.02 

6 63.79 27.59 8.05 0.575 

12 65.68 17.16 15.98 1.18 

Lev 1 65.91 22.35 2.24 0.56 

6 66.67 16.67 16.67 0 

12 65.66 12.65 21.69 0 

Mat 1 67.9 26.84 5.26 0 

6 65.35 25.57 8.52 0.57 

12 69.14 14.2 10.49 6.14 
Muk 1 68.42 23.68 7.37 0.53 

6 65.36 25.7 6.7 2.23 

12 69.33 14.11 10.42 6.14 
Nooit 1 66.86 24 7.43 1.14 

6 63.28 25.42 10.72 0.57 

12 61.15 23.08 14.2 1.18 

Shef 1 68.51 21.55 7.74 2.21 

6 68.36 23.72 6.21 1.7 

12 70.88 21.43 6.05 1.65 

Tshi 1 70.97 23.12 4.2 1.61 

6 68.11 21.08 10.27 0.54 

12 65.06 19.88 15.06 0 

VB 1 71.73 19.9 6.81 1.57 

6 71.51 18.99 6.7 2.79 

12 71.88 15.63 6.65 6.65 
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Figure 4.11: Spatial variability of SPEI at 1-, 6- and 12- month timescales in the LRC. 

 

4.4.1.3 SSI 

The SSI drought time series for all the streamflow stations (i.e. A9H006, A9H012, and 

A9H013) at 1-, 6- and 12- month timescales are shown in Figure 4.12.  A9H006 is located 

upstream while A9H012 is in the middle reaches and A9H013 is in the downstream of the 

LRC. Like the SPI and the SPEI, SSI has managed to detect the reported historical drought 

events. The index showed an average of 151, 150, and 182 drought months at 1-, 6- and 12- 

timescales, respectively throughout the study in the LRC. The SSI quite notably depicted the 

1991/92 drought in all stations; however, SSI categorised these drought events as extreme on 

record as opposed to severe categorisation by the precipitation based indices (SPI and SPEI). 

This may be attributed to the fact that SSI is based on streamflow, and as a surface water body 

is highly affected by evaporation. Both precipitation based indices showed that the 2014/16 

drought was the most extreme drought over the study period. The behaviour of SSI compared 

to the precipitation-based indices might be due to the fact that streamflow is dependent on 

precipitation, therefore there is a lag between precipitation deficiency and reduced streamflow. 

Streamflow and base flow drought occurs around 7 and 11 months respectively after the end 

of meteorological drought (Yang et al., 2017). The extreme case of 2014/16 can, therefore, be 

noticed in the 2016/17 in the LRC, however, the current study period does not include. 
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The index categorised between 54.76% to 93.758 as mild, 5.7% to 31.84% as moderate, 0.52% 

to 12.41% as severe, and 0% to 8.7% as extreme drought across the stations at different 

timescales over the period considered in this study (see Table 6.5). The middle reaches of the 

catchment showed the highest extreme compared to the further downstream station with 

extreme percentages below 4% for all time scales. The extreme classification may have been 

exacerbated by abstraction from the Mhinga weir for domestic and agricultural use to the 

villages around the middle reaches of the LRC. Comparing SSI to the other standardised indices 

that have been discussed in the earlier sections (4.3.2.1 and 4.3.2.2), the index ranked second 

highest extreme droughts after the SPI at 12- month timescale. The results of this index still do 

not indicate that the catchment experiences extreme drought as up to 93.78% of the drought 

events were categorised as mild.  The findings of SSI agree with SPI and SPEI in that the mild 

droughts are the most dominant in the catchment across all time scales over the study period. 

 

 

Figure 4.12: SSI time series for stations A9H006, A9H012 and A9H013. 
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Table 4.5: Analysis of SSI historical drought categories. 

Station Timescale Mild 

(%) 

Moderate 

(%) 

Severe 

(%) 

Extreme 

(%) 

A9H006 1 93.78 5.7 0.52 0 

6 68.02 24.27 7.61 0 

12 54.75 31.84 12.41 0 

A9H012 1 69.94 13.5 10.43 6.14 

6 73.91 14.29 3.11 8.7 

12 69.23 18.59 3.85 8.33 

A9H013 1 70.05 23.35 6.09 0.51 

6 68.06 25.66 3.14 3.14 

12 78.67 11.85 7.11 2.27 

 

The spatial variability of drought as shown by the SSI are presented in Figure 4.13 at 1-, 6- and 

12- month timescales. Like the SPI at 1- and 12- month showed a much lower variability of 

drought severity compared to SSI 6- month timescale. However, it should be taken into account 

that unlike precipitation based indices, streamflow stations considered in this study, covers the 

upper, middle, and lower reaches of the study area. At 12- month timescale, the upper reaches 

showed that the highest drought severity (-0.871), however, this was less than the severity 

experiences in the middle reaches as shown by an SSI at 6- month timescale of -1.66. 

Streamflow in the upper and middle reaches of the LRC at 1- and 6- month timescales depict 

low drought severity and this correlates with the low maximum temperatures experienced in 

these parts of the catchments compared to the lower reaches which are characterised by high 

temperatures which translated to increased evaporation from open water bodies. 

 

 

Figure 4.13: Spatial variability of SSI at 1-, 6- and 12- month timescales in the LRC. 
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4.4.1.4 NADI 

Figure 4.14 shows drought events as depicted by NADI. The index categorised 120, 30, 22, 

and 3 drought months as mild, moderate, severe, and extreme drought, respectively. The index 

managed to depict the major notable droughts events in the study area (i.e. 1991/92, 1994/96, 

2001/02, and 2014/16). NADI underestimated the severe drought reported in the literature 

(1991/92 and 2014/16 drought) and by the standardised indices. This may be due to the nature 

of the index since it considers all the components of the hydrological cycle which standardised 

techniques fall short of. Barua et al. (2012) reported that NADI considers a broad perspective 

of dryness within a catchment rather than just the traditional meteorological drought conditions. 

Three extreme droughts were found in December 1987, October 1988, and February 1996 with 

the NADI also value of -2.68, -2.22, and -2.09, respectively. The NADI found 1.71% drought 

events compared to the overall drought events in the study area. The most recent drought event 

(2014/16) was also classified as severe with the lowest NADI of -1.45 found for the multi-year 

drought.  These findings agree with those obtained by the standardised indices as they also 

detected and categorised the latter drought (2014/16) as severe to extreme. A total of 12.57%, 

17.14%, and 68.57% drought events were categorised as severe, moderate, and mild 

respectively. Like the standardised indices, NADI showed that the most prevalent historical 

drought events were in the mild category.  

 

 

Figure 4.14: NADI time series for the study area. 
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4.4.2 LRC drought trends and their significance 

MK non-parametric trend test was conducted to detect drought trends as shown in Tables 4.6., 

4.7, 4.8, and 4.9 for SPI, SSI, SPEI, and NADI respectively. These are conducted on all 

historical drought events detected by all the stations and across the different timescales (i.e. 1-

, 6- and 12- months) considered in the study area. The SPI, SPEI, and SSI rejected the null 

hypothesis that there was no monotonic trend drought in the LRC. All standardised indices 

rejected the null hypothesis that there was no monotonic drought trend in the time series data 

at 95% confidence level. SPI drought trends were found to be negative (decreasing) in all 

stations across all timescales with exception of Tshi and Shef at 12- and 6- months’ timescales, 

respectively. About 50% of the negative SPI drought trend was found to be both significant 

and insignificant and the positive (increasing) drought trends report the same.  

 

SPEI showed a significant negative trend in the time series in all the stations and time scales 

with exception of Lev station at 6- month time scale for the period considered in this study. For 

the case of SPEI, 13.64% of the negative drought trend was shown to be insignificant with 

86.36% significance. For the positive drought trends, SPEI showed that all were significant 

while SSI found a 55.56% positive trend for station A9H012 at all timescale and station 

A9H012 at 1- and 6- months timescale. About 75% of the negative drought trend was shown 

to be insignificant and 25% was significant while the positive drought trend dominated with 

60% insignificant and 40% significant drought trend. Of all the indices formulated for the LRC 

in this study, NADI is the only index that showed a positive drought trend in its time series. 

The index time series reported a significant positive drought trend at a 95% confidence interval. 

This may be attributed to the multivariate nature of the index, as it considers all components of 

the hydrological cycle.  
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Table 4.6: SPI MK statistics for all the stations considered in this study. 
Index Time 

scale 

S z P_value alpha Test 

Interpretation 

Trend Significant 

KA 1 -9.87e+2 -1.155 0.248 0.05 Ha -ve  No 

 6 -5.3e+2 -0.74 -0.46 0.05 Ha -ve No 

 12 -2.5e+3 -3.68 0.00023 0.05 Ha -ve Yes 

Lev 1 -4.54e+3 -4.91 9.01e-7 0.05 Ha -ve Yes 

 6 -4.82e+3 -5.86 4.59e-9 0.05 Ha -ve Yes 

 12 -6.24e+3 -8.79 <2.2e-16 0.05 Ha -ve Yes 

Mat 1 -5.75e+3 -6.17 6.81e-10 0.05 Ha -ve  Yes 

 6 -4.05e+3 -4.84 1.27e-6 0.05 Ha -ve Yes 

 12 -4.54e+3 -5.57 2.53e-8 0.05 Ha -ve Yes 

Muk 1 -2.51e+3 -2.95 0.003 0.05 Ha -ve Yes 

 6 -4.25e+3 -6.21 5.44e-10 0.05 Ha -ve Yes 

 12 -2.43e+3 -4.02 5.75e-5 0.05 Ha -ve No 

Nooit 1 -1.47e+3 -1.65 0.098 0.05 Ha -ve No 

 6 -4.58e+2 -0.55 0.58 0.05 Ha -ve No 

 12 -2.62e+3 -3.24 0.0012 0.05 Ha -ve Yes 

Shef 1 -1e+1 -0.009 0.99 0.05 Ha -ve No 

 6 1.1e+3 1.10 0.27 0.05 Ha +ve No 

 12 -1.52e+3 -1.67 0.096 0.05 Ha -ve No 

Tshi 1 -7 -0.015 0.99 0.05 Ha -ve No 

 6 -1.1e+3 -1.95 0.15 0.05 Ha -ve No 

 12 3245 4.74 2.11e-2 0.05 Ha +ve Yes 

VB 1 -9.02e+2 -1.12 0.27 0.05 Ha -ve  No 

 6 -1.5e+5 -1.95 0.052 0.05 Ha -ve No 

 12 -3.55e+3 -4.866 1.14e-6 0.05 Ha -ve Yes 

*-ve (negative) represents a decreasing trend while +ve (positive) represents an increasing trend. 

 

Table 4.7: SSI MK statistics for all the stations considered in this study. 

Station Time 

scale 

S z P_value alpha Test 

Interpretation 

Trend Significant 

A9H006 1 -1.05e+3 -1.167 0.24 0.05 Ha -ve No 

 6 -1.08e+3 -1.186 0.236 0.05 Ha -ve No 

 12 -1.91e+3 -2.384 0.017 0.05 Ha -ve Yes 

A9H012 1 2.59e+3 3.709 0.00021 0.05 Ha +ve  Yes 

 6 2.24e+3 -1.186 0.236 0.05 Ha +ve No 

 12 1.93e+3 -1.476 0.0033 0.05 Ha +ve Yes 

A9H013 1 1.08e+3 1.17 0.242 0.05 Ha +ve  No 

 6 1.47e+3 1.668 0.095 0.05 Ha +ve No 

 12 -1.5e+3 -1.476 0.14 0.05 Ha -ve No 

*-ve (negative) represents a decreasing trend while +ve (positive) represents an increasing trend. 
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Table 4.8: SPEI MK statistics for all the stations considered in this study. 

Index Time 

scale 

S z P_value alpha Test 

Interpretation 

Trend Significant 

KA 1 -2.78e+3 -3.277 0.0011 0.05 Ha -ve  Yes 

 6 -3.07e+3 -4 6.24e-5 0.05 Ha -ve Yes 

 12 -3.6e+3 -4.896 9.8e-7 0.05 Ha -ve Yes 

Lev 1 -4.67e+3 -5.82 5.77e-9 0.05 Ha -ve Yes 

 6 06.97e+3 -8.6 <2.2e-16 0.05 Ha +ve Yes 

 12 -7.491 -10.46 <2.2e-16 0.05 Ha -ve Yes 

Mat 1 -4.33e+3 -4.82 1.45e-6 0.05 Ha -ve Yes 

 6 -4020 -5.14 2.7e-7 0.05 Ha -ve Yes 

 12 -3.96e+3 -5.73 1.007e-8 0.05 Ha -ve Yes 

Muk 1 -2.09e+3 -2.385 -0.017 0.05 Ha -ve Yes 

 6 -3.04e+3 03.79 0.0002 0.05 Ha -ve Yes 

 12 -3.93e+3 -5.67 1.42e-8 0.05 Ha -ve Yes 

Nooit 1 -2.78e+3 -3.59 0.0003 0.05 Ha -ve Yes 

 6 -2.25e+3 -2.85 0.004 0.05 Ha -ve Yes 

 12 -4.24e+3 -5.77 8.12e-9 0.05 Ha -ve Yes 

Shef 1 -2.17e+3 -2.66 0.0078 0.05 Ha -ve Yes 

 6 -8.44e+2 -1.07 0.285 0.05 Ha -ve No 

 12 -4.9e+3 -4.98 6.38e-7 0.05 Ha -ve Yes 

Tshi 1 -1.87e+2 -0.22 0.827 0.05 Ha -ve No 

 6 -1.13e+3 -1.34 0.18 0.05 Ha -ve No 

 12 -3.75e+3 -5.23 1.69e-7 0.05 Ha -ve Yes 

VB 1 -2.07e+3 -2.34 0.019 0.05 Ha -ve Yes 

 6 1701 -2.12 0.034 0.05 Ha +ve Yes 

 12 -2.28e+3 -3.37 0.0008 0.05 Ha -ve Yes 

*-ve (negative) represents a decreasing trend while +ve (positive) represents an increasing trend. 

 

Table 4.9: NADI MK statistics. 

Time 

scale 

S z P_value alpha Test 

Interpretation 

Trend Significant 

1 2.34e+03 3.039 0.0011 0.05 Ha +ve Yes 

        
* +ve (positive) represents an increasing trend. 

 

Figures 4.15, 4.16, 4.17 and 4.18 depict the BFAST extracted drought non-linear trend from 

the SPI, SPEI, SSI, and NADI drought time series respectively at 1-, 6- and 12- month 

timescales. For the case of standardised indices, only station KA results are presented, all the 

stations considered in this study results are found in Appendix A (Figures A7, A8, A9, A10, 

A11, A12, and A13). In the case of drought as depicted by an index, a downward trend signifies 

an increase in the severity of the drought. From the BFAST extracted trends, the trend is 

observed to decrease with increasing timescale. The standardised indices showed an increasing 

drought trend across all time scales while NADI showed a decreasing drought trend. As 

depicted in Figure 4.15, there is a notable negative trend that may be attributed to the severe 
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drought that was categorised by the index in 1986/87. NADI time series trend depicted a 

decreasing drought trend from the year 2000. The increasing trend indicates that drought events 

over the study period as detected by the SPI, SPEI, and SSI are increasing which indicates that 

drought events are becoming more severe. This supports the argument that over the study 

period drought severity has increased in the study area. Further to the increase in drought 

severity, the findings of the standardised indices are consistent with rainfall and temperature 

trends as reported over north-eastern South Africa by e.g. McKellar et al. (2014); Kruger and 

Nxumalo (2017). 

 

 

Figure 4.15: SPI drought trend at all timescales. 

 

 

Figure 4.16: SPEI drought trend at all timescales. 

 

 

Figure 4.17: SSI drought trend at all timescales. 
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Figure 4.18: NADI drought smooth trend. 

 

4.5 Chapter summary 

 

The chapter aimed at assessing historical drought events in the LRC from 1986 to 2016 using 

three standardised indices and the non-linear aggregated drought index. All the indices 

managed to detect major historical drought events that have been found to have occurred in the 

study area, although the precipitation based indices were the only indices that categorised the 

1991/92 drought as extreme at 6- and 12- month timescales in two stations while the streamflow 

index and multivariate NADI underestimated the event. All the selected indices further showed 

that the most prevalent drought event in the LRC was mild drought. Extreme drought events 

were the least shown at 6.42%, 1.08%, 1.56%, and 4.4% for SPI, SPEI, SSI, and NADI 

respectively. Considering the MK trend test, the standardised indices detected a negative trend 

that showed that drought severity increased in the study area throughout the study period while 

NADI showed a positive upward trend which depicts a decreased drought severity throughout 

the study period. The MK trend result for standardised indices and NADI may be due to the 

fact that the latter present overall water resources in the catchment while the former are either 

rainfall or streamflow based. There is therefore a need to further characterise the drought events 

in terms of magnitude, duration, frequency, and severity as detected by these indices to get a 

better understating of their performance in detecting and assessing drought conditions in the 

study area. In Chapter 5, drought events are then characterised based on the aforementioned 

characteristics and then further evaluated for their suitability to assess drought in the catchment 

under consideration. 
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5 DROUGHT CHARACTERISATION AND COMPARATIVE 

INDEX EVALUATION 

Chapter overview, Drought characterisation, Drought indices evaluation, Summary 

 

5.1 Chapter overview 

This chapter presents drought characterisation and an analysis of the comparative evaluation 

of the drought indices. The characteristics of drought discussed include; drought duration (the 

total time is taken by a drought event), intensity (ratio of drought severity to duration), severity 

(the relationship between duration and Intensity), and drought frequency. An analysis of 

severity-duration-frequency and severity-area-frequency is also conducted. The latter is 

presented as part of the characterisation of drought based on the four drought indices 

considered. The evaluation of drought indices is done according to the evaluation criteria 

previously applied by Keyantash and Dracup (2002). The goal of index evaluation is to come 

out with an index that best describes drought in the LRC.  

 

5.2 Methodology 

5.2.1 Drought characterisation  

To characterise historical hydrological droughts in the study area, 1-, 6- and 12-months 

timescales for SPI, SPEI and SSI are utilised while NADI was characterised at 1-month 

timescale. Drought characteristics analysed include drought duration, severity, intensity, and 

frequency (see Figure 5.1). Drought duration (d) of drought events is the number of months 

between the start (included in the computation) and end month (not included) of a drought 

event (Tan et al., 2015). Drought severity (Se) is defined as the absolute value of the sum of 

index values during a drought event and is given by the following equation: 

  

𝑆𝑒 = |∑ 𝑖𝑛𝑑𝑒𝑥𝑗
𝑚
𝑗=1 |

𝑒
 ,                   (5.1) 

where e is the drought event, j is the month, indexj is the index value in month j. 
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Figure 5.1: Relationship between drought duration, intensity, and severity. 

 

Drought intensity (DIe) of any drought event is given by the drought severity divided by the 

drought duration. The larger the drought intensity value, the more severe the drought. Drought 

intensity is calculated using Equation (5.2). 

𝐷𝐼𝑒 =
𝑆𝑒

𝑑
,                 (5.2) 

where, m, Se and DIe are the drought duration, severity, and intensity of a drought event e 

respectively. Drought Frequency (Fs) was used to assess drought liability during the study 

period (Wang et al., 2014). The frequency over a long time series gives the frequency of 

drought occurrence over the study area and this is achieved by: 

𝐹𝑠 =
𝑛𝑠

𝑁𝑠
×100% ,                  (5.3) 

where, ns is the number of drought events, Ns is the total number of years for the study period 

and s is the station under study. 

 

 5.2.2 Drought indices evaluation 

Redmond (1991) proposed several desirable properties while judging the overall usefulness of 

DIs. Keyantash and Dracup (2002) made use of six decision criteria from these desirable 
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properties, namely robustness, tractability, sophistication, transparency, extendibility, and 

dimensionality, for evaluating some of the DIs used in the United States. To determine whether 

a DI satisfied desirable properties and is useful in drought detection in the catchment, a decision 

criterion by Keyantash and Dracup (2002) was utilised. This study employed only five decision 

criteria to determine the most suitable drought index for hydrological drought assessment in 

the study area. This was informed by Keyantash and Dracup (2002) as a recommendation since 

dimensionality is mostly covered by the transparency criteria while Barua (2010) also made 

use of the same decision criteria. Although the Simos Procedure for multi-criteria outranking 

suggested by Simons (1990) and revised by Figueira and Roy (2002) is more objective and has 

been applied in the field of water resources. Studies such as Kodikara et al. (2010) successfully 

determined the weights for a multi-objective urban water supply operation. The outranking 

procedure, however, has never been applied in this type of study. The latter therefore resulted 

in the choice of the decision criteria by Keyantash and Dracup (2002). 

 

In assessing the overall utilisation of an index, the five decision criteria were assigned a raw 

score of between one and five. As stated in Barua (2010), the individual raw scores are based 

on the qualitative and quantitative assessment of each index. The quantitative assessment is 

based on how well the index modeled historical drought while qualitative assessment is based 

on findings of previous studies on evaluating indices and the computational aspects of the 

index. The sum of the weighted scores (i.e. raw scores multiplied by the relative importance 

factor) was the total for each index. The current study adopted the relative importance factor 

from Keyantash and Dracup (2002) which regard robustness as the most important factor with 

a relative importance of 28% and a weight of eight followed by tractability with 21% with a 

weight of six and transparency and sophistication equally at 17% with a weight of five. Since 

dimensionality is covered under extendibility, this study will, therefore, add the relative 

importance of dimensionality to extendibility bringing it 17% with a weight of five. Therefore, 

extendibility, transparency, and sophistication are of the same relative importance in this study.  

The relative importance scoring by Keyantash and Dracup (2002) was selected because the 

catchment is diverse (i.e. it is an economic hub with irrigated agricultural activities and densely 

populated in the middle reaches) and therefore an index with a wide range of application would 

be more useful, therefore the robustness criteria are ranked higher. The sum of the weighted 

scores is then used in the comparative evaluation for the respective indices in the LRC. The 

sensitivity analysis was not conducted for this study since the index raw scoring was compared 

to those assigned by Barua (2010).  
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5.3 Results and Discussions 

5.3.1 Drought duration, frequency, intensity, and severity 

Drought characteristics (duration, frequency, intensity, and severity) were analysed in this 

study for the four respective indices based on the run theory analysis (Yevjevich, 1967; Dracup 

et al., 1980; Mishra and Desai, 2005) at the standard truncation level of 0. The standard 

truncation level adopted for this study was also used by Al-Tamimi and Al-Jiboori (2014) in 

index-based drought assessment in Iraq. Since the SPEI and SSI are both standardised indices, 

the NADI threshold was obtained using the SPI dryness threshold, the standard truncation level 

of 0 was therefore used uniformly for all the four indices at 1-, 6-, and 12- month timescales 

for all the weather and streamflow stations considered in the study. 

 

Drought characteristics were analysed for the three decades considered in this study i.e. 

between 1986 – 1996, 1996 – 2006, 2006 – 2016 years. Table 5.1 shows the duration, intensity, 

and severity of drought for SPI, SPEI, SSI, and NADI at the standard truncation level in all the 

timescales considered. The results presented in Table 5.1 are for station KA for SPI and SPEI 

and A9H006 for SSI, for all other station results, see Appendix B (Table B1). For the case of 

standardised indices, the length of drought duration varied from station to station for all 

timescales. The SSI showed the longest average drought duration between 1986 – 1996, 1996 

– 2006, and 2006 – 2016 followed by SPI and then SPEI over the same periods. The period 

between 1986 – 1996 showed the longest duration followed by 2006 – 2016 while 1996 – 2006 

showed the shortest duration under the period considered in this study. Drought duration was 

generally seen to increase with an increasing timescale in the LRC. NADI showed an overall 

catchment lowest duration in all the decades at 1- month timescale compared to the 

standardised indices. Like the standardised indices, NADI also showed that the longest duration 

between 1986 – 1996.  

 

Drought severity for the LRC generally exhibited the same behaviour over the three decades. 

However, the highest severity was observed between 1986 – 1996 followed by 2006 – 2016 

with the least severity observed between 1996 – 2006. In a study of drought in southern Africa, 

Chikoore (2016) found severe and extreme droughts during 1991 and 1992, which falls within 

the 1986 – 1996 period. SPI showed the strongest severity in 2006 – 2016 and followed by the 

SSI between 1986 – 1996. Severity was found to increase with increasing timescale. A study 

conducted in Bali, Java, and Nusa Tenggara Islands, Adhyani et al. (2017) reported similar 
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findings in their study on the exposure of drought that longer timescale correlates positively 

with increased drought duration. This, therefore, indicates that should the LRC experience 

drought over a prolonged period, communities are likely to be affected by server water 

shortages which will also affect the agricultural sector. The NADI showed the strongest 

severity between 1986 – 1996, which was higher than the average shown by the standardised 

indices at the same timescale. This is consistent with NADI categorising the 1987/88 drought 

as severe over the study period in Chapter 4, section 4.5.1.4. Greater drought intensity was 

found between 2006 – 2016 while the lowest was between 1996 – 2006. For the case of the 

standardised indices, SPEI showed the highest intensity followed by SPI and then the SSI. 

NADI intensity ranged from -0.89 to -1.19. The intensity of drought was seen to generally 

increase with an increased timescale and this was evident between 2006 – 2016 (72.2%) with 

the other periods showing 50% and 44%. The severity of the drought is highly dependent on 

the relationship between drought duration and severity. Because high intensity corresponds to 

higher severity (Dayal et al., 2017), SPEI showed the highest severity followed by SPI, SSI, 

and NADI.  

 

Drought frequency was found to be higher between 2006 – 2016 followed by 1986 – 1996 and 

the lowest was showed between 1996 – 2006 with an average of 21.2%, 18.4%, and 12.0% 

respectively. For detailed drought frequency results, see Appendix B (Table B2). The 

frequency of drought increased with an increasing timescale, which varied between 3.7% at 1- 

month timescale and 75.9% at 12- month timescale across the stations. The SSI showed the 

highest frequency compared to the rest of the indices over all the periods, followed by SPEI 

and SPI. This, therefore, shows that; streamflow drought occurs more often in the LRC. The 

NADI at 1- month timescale showed the lowest frequency (7.5%, 4.1%, and 4.2% between 

1986 – 1996, 1996 – 2006, and 2006 – 2016, respectively) compared to the standardised indices 

at the same timescale.  



 

85 
 

Table 5.1:  Duration, severity, and intensity of drought events for SPI, SPEI, SSI, and NADI. 
  1986-1996 1996-2006 2006-2016 

Station Drought 

indicator 

Longest Strongest Highest Longest Strongest Highest Longest Strongest Highest 

  Year D Year S Year I Year D Year S Year I Year D Year S Year I 

KA SPI 1 1994 11 1991 - 1992 -6.37 2015 -1.26 2004 - 2005 6 2002 -4.35 2002 -1.088 2012 8 2012 -6.43 2008 -1.042 

6 1992 - 1995 13 1994 - 1995 -13.23 1994 - 1995 -1.-012 2004 - 2006 13 2004 - 2006 -11.61 2004 - 2006 -0.89 2011 - 2012 15 2011 - 2012 -14.7 2014 - 2015 -1.156 

12 1989 - 1990 19 1991 - 1993 -21.14 1991 - 1993 -1.409 2002 - 2004 24 2002 - 2004 -10.2 2002 - 2004 -0.427 2015- 2016 21 2015- 2016 -22.85 2005 -1.092 

SPEI 1 1994 13 1992 - 1992 -7.609 1991 -1.322 1998 + 2003 5 2002 -4.278 2005 -1.329 2012 8 2012 -9.233 2015 -1.858 

6 1991 - 1992 15 1991 - 1992 -17.846 1991 - 1992 -1.19 2004 - 2005 16 2004 - 2005 -13.693 2004 - 2005 -0.856 2014 - 2016 22 2014 - 2016 -28.476 2014 - 2016 -1.347 

12 1994 - 1995 23 1994 - 1995 -13.803 1994 - 1995 -0.6 2003 - 2004 16 2003 - 2004 -12.084 2006 -1.173 2015 - 2016 20 2015 - 2016 -31.49 2015 - 2016 -1.575 

A9H006 SSI 1 1991 - 1995 58 1991 - 1995 -25.98 1990 -0.634 2004 - 2005 15 2004 - 2005 -7.29 2000 -1.17 2011 - 2012 17 2011 - 2012 -10.44 2010 -0.87 

6 1990 - 1996 69 1990 - 1996 -64.33 1990 - 1996 -0.932 2004 - 2005 14 2004 - 2005 -14.27 2004 - 2005 -1.019 2014 - 2016 21 2014 - 2016 -13.7 2011 - 2012 -1.186 

12 1989 - 1995 82 1989 - 1995 -78.02 1989 - 1995 -0.952 1996 - 1998 22 2002 - 2004 -16.62 2005 -1.159 2015 - 2016 14 2011 - 2012 -20.67 2011 - 2012 -1.723 

 NADI 1 1987 - 1988 9 1987 - 1988 -9.734 1995 -1.16 2005 5 2005 -4.95 1999 -1.19 2008 5 2007 -3.4 2007 -0.89 

                     

*D-Duration, S-Severity, I-Intensity, KA-Klein Austraile, SPI-Standardised Precipitation Index, SPEI- Standardised Precipitation Evaporation Index, NADI-Non-linear Aggregated Drought Index 

 

Figure 5.2 depicts the relationship between drought duration, intensity, and severity. The results depicted in Figure 5.2 are for station KA for 

standardised rainfall based indices and streamflow station A9H006 for the SSI, at 1-, 6- and 12- month timescale. For all the station results, see 

Appendix B (Figures B1, B2, B3, and B4). At 1- month timescale, the standardised indices showed a strong correlation between drought severity 

and intensity. A similar relationship between drought duration, severity, and intensity in the standardised indices was shown in the NADI. It was 

found that, at greater duration (e.g. 10 years going forward), the severity tends to increase while the intensity decreases and this is seen for stations 

VB, Tshi and Mat at all timescales for SPI and SPEI while for the SSI, station A9H013 showed the same relationship between severity and 

intensity. Other stations' relationship of severity-intensity with duration fluctuated and did not follow a distinct pattern and this can be seen in 

station KA at 12- month timescale.  
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Figure 5.2: Drought duration-intensity-severity relationship. 
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Generally, it was found that drought intensity and severity both decreases with increased 

duration, and these were observed mainly at the 6- month timescale. This study observed that 

most low drought severity corresponded to a much-reduced drought intensity. Figure 5.3 shows 

some results of the relationship between drought duration and severity for SPI, SPEI, and SSI 

at all timescales. NADI at 1- month timescale results are also included in Figure 5.3. All other 

results are found in Appendix B (Figure B5, B6, B7, B8, B9, B10, and B11). An R2 of between 

0.6845 and 0.9714 was found at 1- month timescale for standardised indices and the NADI. At 

6- month timescale the standardised indices had a correlation coefficient between 0.6353 and 

0.973 while at 12- month, an R2 between 0.2725 and 0.9761 was found. All the indices depict 

a strong linear relationship between duration and severity at all timescales. However, some 

weak correlations of 0.3216 and 0.2725 are realised at 12-month timescale. These results, 

therefore, show that generally, the severity of drought increases with an increased duration as 

can be seen in Figure 5.3. However, Van Loon and Laaha (2015) indicated that although 

hydrological drought duration and deficit are related, their relationship is not linear since the 

deficit accumulates throughout a drought event. The results obtained from this study differ 

from Van Loon and Laaba (2015) at shorter timescales (i.e. 1- and 6- month) while at 12- month 

timescale, a weak linear relationship was found in some stations as already indicated above. 

One reason for the linear relationship between drought duration and severity may be due to the 

fact that the study by Van Loon and Laaha (2015) used streamflow as an indicator of 

hydrological drought whilst the current study uses standardised drought indices.
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     Figure 5.3: Duration-severity curves. 
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5.3.2 Evaluation of Indices 

The 1- month timescale was the only timescale used for index evaluation since NADI was only 

computed at that timescale. The total weighted scores for each respective index are tabulated 

in Table 5.2. The rationale for the raw scores of each decision criterion as reflected in Table 

5.2 are discussed in the sub-sections below. 

 

Table 5.2: Indices scores based on weighted evaluation criteria. 
Drought index Raw scores (1-5) Total weighted 

scores 
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SPI 2 5 2 5 5 106 

SPEI 5 4 5 4 4 129 

SSI 5 5 4 5 2 125 

NADI 4 2 3 3 2 84 

 

5.3.2.1 Robustness  

Robustness indicates the usefulness of a drought index over a wide range of physical 

conditions, taking into consideration some measure of variability. An ideally robust index must 

be responsive as opposed to being temperamental (i.e. liable to unreasonable changes) 

(Keyantash and Dracup, 2002). Raw scores of five, four, and two were assigned to SPEI & 

SSI, NADI, and SPI, respectively (Table 5.2). SPEI and SSI were not temperamental and their 

response was quite positive in detecting historical drought in the LRC. The SSI, NADI, and 

SPI agreed with the SPEI historical drought detection, however, NADI was ranked lower in 

detecting 1992 followed by SPI and subsequently by the SSI for the same drought year. The 

raw score assignment for NADI agrees with those suggested by Barua (2010) while making 

use of the linear ADI in that the index is not liable to unreasonable changes. Although NADI 

gives an overall catchment water availability, for this study, it undermined a major historical 

drought compared to the rest of the other indices. Studies such as Kim et al. (2009) have 

reported that SPI tends to overestimate small rainfall scarcity even if excessive rainfall occurs 

just before the period of interest. SPI was therefore assigned a raw score of two since it is 



 

90 
 

rainfall dependent and does not give an overall view of catchment water availability. Further 

to the latter coupled with its temperamental nature resulted in SPI low raw score assignment.  

 

 5.3.2.2 Tractability  

Tractability indicates the practical aspects of an index. Keyantash and Dracup (2002) indicated 

that a tractable index requires a low level of numerical computations and sparsely observed 

data. The raw scores of five, four, five, and two were assigned to SPI, SPEI, SSI, and NADI 

respectively (Table 5.2). Of the four indices, SPI and SSI are the more practical, computation 

is easier compared to SPEI and NADI and they also require fewer input variables (i.e. rainfall 

and streamflow) and hence the two were assigned the highest raw scores. The computation of 

NADI is quite rigorous and requires advanced statistical skills coupled with more hydro-

climatic variables while SPEI only requires rainfall and evapotranspiration and the computation 

is less complex. Therefore, making NADI was found to be less tractable with a raw score of 

two. 

 

5.3.2.3 Transparency  

Transparency considers the clarity of the objective behind a respective drought index 

(Keyantash and Dracup, 2002). This is an important decision criterion because a pragmatic 

index should not be only understood by the scientific community but by all stakeholders 

affected by drought events. The easier to understand indices are usually those that require less 

input data variables and for this study, including SPI and SSI, which were both assigned a raw 

score of five (see Table 5.2). Although SPEI had two input variables, challenges may arise if 

evaporation data is not available, the index is deemed easier to understand by different 

stakeholders compared to NADI with more input variables with quite involving computations. 

The SPEI and NADI were assigned raw scores of four and two respectively as indicated in 

Table 5.2. 

 

5.3.2.4 Sophistication  

The sophistication decision criteria consider the conceptual merits of drought characterisation 

(Keyantash and Dracup, 2002). The latter study further indicated that a drought measurement 

technique may be less understood but may be sophisticated from a proper perspective. 

Although linear ADI with similar characteristics to NADI was the least tractable and 

transparent, it was found useful in drought characterisation (i.e. defining drought duration, 
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intensity, and severity) by Barua (2010) while for this study it underestimated a major historical 

drought (1991/92) including the most recent 2014/16 and thus it was assigned a raw score of 

three. In characterising drought for this study, SPEI, SPI, and SSI showed the best strength as 

they were all able to detect the most severe drought in the catchment and were assigned raw 

scores of five and four respectively (see Table 5.2). For the case of SPI, it was the least 

sophisticated and was therefore assigned a raw score of two. 

 

5.3.2.5 Extendibility  

Extendibility describes the degree to which an index may be extended across time to alternate 

drought scenarios (Keyantash and Dracup, 2002). Historical data was used for all the indices 

considered in this study (i.e. rainfall, streamflow, soil moisture, and temperature). However, if 

modeled future long-term data is made available, the extension of an index is possible. Raw 

scores of five, four, two, and two were assigned to SPI, SPEI, SSI, and NADI respectively 

(Table 5.2). That is because the computation of SPI and SPEI is relatively less complex and 

some of their future data variables are already available in certain platforms. On the other hand, 

for the computation of SSI, streamflow should be forecasted first and this requires modeling 

skills and can be quite challenging. For the case of NADI, the index requires soil moisture data 

as one of its input variables, which may make forecasting future drought challenging.  

 

5.3.2.6 Overall comparative index evaluation 

As indicated in Table 5.2, the overall index evaluation of the drought indices is in terms of the 

total weighted score. The SPEI, SSI, SPI, and NADI showed an overall score of 129, 125, 106, 

and 84 respectively. This study, therefore, showed that the SPEI was the better index while 

comparing it to SPI, SSI, and NADI, making it more suitable for drought assessment and 

monitoring in the study area. For historical drought detection, SPEI modeled better the 

characteristics and showed the severity of the 1991/92 drought. Further to the 1991/92 drought, 

the index also demonstrated the severity of the prolonged 2014/16 drought and suggested that 

the severity and intensity superseded that of the 1991/92 drought. This was also shown by SSI 

at 1- month timescale.  The lowest ranking index was the NADI. Due to its complexity in index 

computation coupled with the data required to carry out the computations. Although Barua 

(2010) found that ADI (where NADI is derived) was the best performing index in his study, 

the author determined that in data-scarce catchments, other indices may perform better than 

ADI. Because of the many data variables required to compute NADI, it makes it difficult for 



 

92 
 

the different stakeholders to understand the index. The second-ranking was SSI. The index is 

easy to understand with minimal data requirements and the computation is not rigorous. Since 

the index is solely dependent on streamflow, it is disadvantaged in the scoring system. 

Although it did not rank the highest, SPEI was still considered to reflect water deficiency in 

the hydrological system at longer timescales. Based on Table 5.2 the SPEI was found to be 

superior compared to the other indices. 

 

5.4 Chapter summary 

Drought indices are often developed for specific regions and therefore it is important to assess 

index usefulness in a region it has not been developed to determine its suitability. This chapter 

was therefore dedicated to drought characterisation and index evaluation for their strength in 

detecting hydrological drought in the study area. Drought characterisation was conducted using 

the four indices (SPI, SPEI, SSI, and NADI) for the following periods; 1986 - 1996, 1996 – 

2006, and 2006 - 2016. The characterisation was based on drought duration, intensity, 

frequency, magnitude, and severity. An increased drought duration was observed between 1986 

- 1996 while the shortest duration was observed between 1996 - 2006. SPI showed the highest 

severity followed by SPEI, NADI, and then the SSI. The study found that lower drought 

severity corresponded to much-reduced drought intensity and this was realised in all timescales. 

Further, this study found that drought intensity increases with an increasing timescale (i.e. 1- 

month timescale indicated an average severity for SSI was -7.29 while the 12- month showed 

the same as -16.62). The relationship between drought severity and duration revealed a strong 

linear relationship across all the indices at all timescales. The same indices that were used for 

characterisation were evaluated for their suitability for drought assessment in the LRC. Making 

use of the decision criteria by Keyantash and Dracup (2002), the indices were evaluated. 

According to the raw scores of each of the five criteria SPEI ranked the highest with a total 

weight score of 129 followed by the SSI with a score of 122 and then the SPI with a score of 

106 and lastly the NADI with a score of 76. Because SPEI ranked the highest of all the four 

indices evaluated, it was regarded as the best index that better assessed historical drought 

conditions on the LRC. Although this is the case, this study is hydrological, and hydrological 

drought manifests through reduced streamflow which can be evident when the meteorological 

timescale is increased. The SPEI is therefore used in the prediction of drought for the LRC.  
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6 APPLICATION OF DROUGHT PREDICTION MODELS 

Chapter overview, Case study data used, Drought prediction, Results, and discussion, 

Summary 

 

6.1 Chapter overview 

The significance of drought prediction in water resources management in mitigating the 

negative impacts of drought has been well articulated in the previous chapters. Drought indices 

are believed to be more functional than raw data in decision making (Hayes, 2003) and thus, 

such indices have been widely used in drought prediction studies. From Chapter 5 (section 

5.3.2.6), SPEI was found to be the best overall index in drought assessment and characterisation 

in the LRC. Thus, SPEI at 1-, 6- and 12- month’s timescale was used in the application of 

drought models. To improve prediction accuracy, the SPEI time series was decomposed using 

the Ensemble Empirical Mode Decomposition (EEMD) and further prediction combinations 

were attempted. Two prediction approaches were used (i.e. statistical and machine learning). 

The statistical approach yielded four models while machine learning only resulted in three. 

Models applied in this chapter were based on Autoregressive Moving Average (ARIMA), 

Generalised Additive Models (GAM), and the deep learning Long Short-Term Memory neural 

network (LSTM). Hybrid models were also applied i.e. EEMD-GAM, EEMD-ARIMA-GAM, 

and EEMD-LSTM. Further, prediction combinations were conducted which summed up the 

means of all the models (note that statistical models were not combined with machine learning) 

for the case study.  

 

Test for model performance was achieved by employing the Mean Error (ME), Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), and Mean 

Absolute Percentage Error (MAPE) while the linear relationship between predicted values and 

target values was determined using the coefficient of determination (R2
adjusted). This chapter 

begins with a description of the case study data used in the modeling process, followed by a 

detailed methodology of model applications for both statistical and machine learning 

approaches. The findings of the study on the model application and uncertainty analysis based 

on prediction intervals are presented followed by a chapter summary. 
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6.2 Case study data used 

Rainfall and temperature were the two hydro-meteorological variables used in the formulation 

of SPEI for the LRC. The SPEI monthly time series at 1-, 6-, and 12- month’s timescales were 

used for models to be applied in this study. The time series contained data from 1986 to 2016.  

 

6.3 Application of drought prediction models  

Statistical and machine learning techniques were applied to predict drought in the LRC. A 

flowchart showing the sequential flow of application of these models is presented in Figure 

6.1. The figure shows all the steps followed in applying these models, which is divided, into 

four stages (i.e. Decomposition, Components prediction, ensemble prediction, and prediction 

combinations). An overview of each stage is given below and the details are later discussed 

under several sub-sections.  

 

The first stage of the modeling process is the decomposition, which was achieved by the 

EEMD, which extracted seven IMF’s, and one residual from the SPEI time series. The IMF's 

were then predicted in stage two; statistical and machine learning models achieved the 

component prediction.  The choice of the appropriate model for both learning techniques were 

based on the modeler’s preference. The Generalised Additive Models was selected for 

statistical learning while LSTM was used for machine learning. These techniques have not 

been adequately documented in the literature regarding drought studies. Further, LSTM is a 

deep learning neural network that has shown to improve prediction accuracy. Maier et al. 

(2010) indicated that model input variables are generally determined using an iterative process, 

while Barua (2010) added that they could also be based on prior knowledge and the availability 

of data within the area of study. Potential input variables are selected from probable input 

variables using correlation techniques amongst others and the same input is further pre-

processed before they can be utilised in the prediction process. Stage two is the component 

prediction stage, calibration, and model parameters are determined.  

 

Stage three presents the final predicted results output of each IMF. All the IMFs including the 

residuals were accumulated and resulted in a predicted single value for each month of SPEI 

time series. This process is termed an ensemble (of size 8) prediction since it represents the 

sum of all the predicted IMFs including the residuals. In the fourth stage, the prediction 

combination was done where all the model means were averaged using quantile regression 
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averaging.  The model application is completed by validating the calibrated models in the fifth 

stage. The model validation was done to investigate how the different models predicted the 

target values that were not used in the calibration stage.  

 

 

Figure 6.1 Drought prediction framework.  
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6.3.1 Time series decomposition  

The merits and basis of EEMD have thoroughly been discussed in Chapter 2. To successfully 

decompose the SPEI time series using EEMD, the following steps were followed:  

1. White noise 𝑤𝑖(𝑡)  was added to the original signal time series 𝑠𝑝𝑒𝑖(𝑡), the new 

time series was computed as: 

𝑆𝑃𝐸𝐼𝑖(𝑡) = 𝑠𝑝𝑒𝑖(𝑡) + 𝑤𝑖(𝑡),     (6.1) 

2. 𝑆𝑃𝐸𝐼𝑖(𝑡) was decomposed into seven IMFs with one residual using the EMD 

algorithm; 

3. Steps 1 and 2 were repeated with different white noise, adding to the signal time 

series each time; 

4. The mean of the ensemble corresponding IMFs of the decompositions was obtained 

as the results. 

In the first step of the EEMD, the determination of the ensemble times and the amplitude of 

the added noise is of importance. Wu and Haung (2009) suggested the amplitude of adding 

noise to 0.2 after comparing the results of the actual signal analysis and this was used in this 

study. Adding the white noise results in; 

 

𝜀𝑛 =
𝜀

√𝑁′
 ,          (6.2) 

where, 𝑁′ is the number of ensemble times, 𝜀 is the amplitude of the added noise while 𝜀𝑛 is 

the error of the final standard deviation, which is given by the difference between the original 

signal time series and the corresponding IMFs. 

 

6.3.2 Input variables selection and data pre-processing 

Statistical correlation tests and gradient boosting were used to determine input variables 

selection for this study. Studies such as Maity and Kumar (2008) and Tran et al. (2009) have 

successfully applied correlation test for variable selection.  Only variables that were highly 

correlated to the SPEI and each IMF were selected as potential input for drought prediction. 

Gradient boosting constructs additive regression models by sequentially fitting a simple 

parameterized function (base learner) to current “pseudo”-residuals by least-squares at each 

iteration (Friedman, 2002). Studies such as Sankaran et al. (2008) successfully used Stochastic 

Gradient Boosting to investigate the relationship between predictor variables in regulating the 

woody cover in African savannas. By denoting {𝑦𝑖 , 𝑋𝑖}1
𝑁 as the entire training set sample then 
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{𝜋(𝑖)}1
𝐿 is the random permutation of the targets {1, … , 𝑁}. A random sub-sample of size 𝑁̃ < 𝑁 

is given by {𝑦̃𝜋(𝑖)𝑚, 𝑋𝜋(𝑖)}1
𝑁̃

. Friedman (2002) gives the gradient boosting algorithm used in this 

study as shown in Figure 6.2. 

 

 

 

 

 

Figure 6.2: Gradient boosting algorithm. (Friedman, 2002) 

 

The smaller the fraction 𝑓, the more the random samples used in successive iterations will 

differ, thereby introducing more overall randomness into the procedure. Using the value is 

roughly equivalent to drawing bootstrap samples at each iteration. Using 𝑁̃  = 𝑓 ·  𝑁 also 

reduces the computations by a factor of 𝑓. However, making the value of 𝑓 smaller reduces the 

amount of data available to train the base learner at each iteration. This then causes the variance 

associated with the individual base learner estimates to increase. Table 6.1 shows the potential 

input variables used in this study. It should be noted that SPEI was a potential input variable 

while considering the IMFs and the residual while it was a response variable in the un-

decomposed model application. 
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Table 6.1: Potential predictor variables for model application. 
Predictor variable Description 

SPEI 1  Computed SPEI time series at 1- month timescale. 

SPEI 6 Computed SPEI time series at 6- month timescale. 

SPEI 12 Computed SPEI time series at 12- month timescale. 

Rain Mean monthly station rainfall time series in the study area. 

Temperature Max, Min and Mean monthly station temperature in the study area.  

Lag1 A lagged time series data set produced by back shifting 1- month lags. 

Lag2 A lagged time series data set produced by back shifting 2- month lags. 

Non-linear trend An extracted trend from the actual SPEI time series. 

 

6.3.3. Statistical learning model application (Generalised Additive Models - GAMs) 

6.3.3.1 The generalised additive model without auto-correlated errors 

Let 𝑦𝑡 be SPEI on month 𝑡, where 𝑡 = 1,… , 𝑛  with the corresponding covariates 𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑝, 

where 𝑝 represents the number of variables. The generalised additive model is then written as 

follows: 

𝑦𝑡 = 𝛽0 + ∑ 𝑠𝑗(𝑋𝑡𝛽𝑗)
𝑝
𝑗=1 + 𝜀𝑡,        (6.3) 

where, 𝑦𝑡 is the response variable, 𝑋𝑡 is the dependent variable,  𝛽0 is the intercept,  𝛽𝑗 is a 

parameter, 𝑠𝑗 is an unknown parameter and 𝜀𝑡 is the error term. Equation (6.3) is estimated 

using penalised cubic splines (Wood, 2006; Goude et al., 2014), which is expressed in terms 

of Equation (6.4). 

 

min
𝑠𝑗
[∑ (𝑦𝑡 − 𝛽0 − ∑ 𝑠𝑗(𝑥𝑡𝑗)

𝑝
𝑗=1 )

2
+ ∑ 𝜆𝑗(∫ (𝑓

′′(𝑥))2𝑑𝑥)
𝑝
𝑗=1

𝑛
𝑡=1 ].    (6.4) 

The degree of smoothness is controlled by the penalty parameter Ʌ = (𝜆𝑗 , 𝑗 = 1,… , 𝑝), which 

determines the roughness of the function estimate to the data. It is optimised using the 

generalised cross-validation criterion (GCV) and easily implemented in the package ‘mgcv’ 

(Wood, 2006; 2017). For small values of 𝜆𝑗, the smoothness is rough. The smooth function, 𝑠𝑗 

is given by Equation (6.5), which can be explained as the sum of basis functions, 𝑏𝑖(𝑥) and 

their regression coefficients 𝛽𝑖. 

 

𝑠𝑗(𝑥) = ∑ 𝛽𝑖
𝑞
𝑖=1 𝑏𝑖(𝑥),                                                                                                            (6.5) 

where, 𝑞 denotes the basis dimension.  
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6.3.3.2 The generalised additive model with auto-correlated errors 

Let 𝑦𝑡 be SPEI as defined above, which gives the generalised additive model with 

autocorrelated errors are given in Equations (6.6) and (6.7), respectively. 

 

𝑦𝑡 = 𝛽0 + ∑ 𝑠𝑗(𝑋𝑡𝛽𝑗)
𝑝
𝑗=1 + 𝜀𝑡,        (6.6) 

where variables and parameters are as defined in section 6.3.3.1. Time-series observations are 

normally auto-correlated. To correct for autocorrelation, it is normally advised to use time 

series, regression models. This study, therefore, assumes that the error terms 𝜀𝑡 are auto-

correlated and follow a seasonal autoregressive moving average (SARMA) model given in 

Equation 6.7.   

 

∅(𝐵)Ф(𝐵)𝜀𝑡 = 𝜃(𝐵)𝛩(𝐵) 𝑣𝑡,                                          (6.7) 

where, ∅(𝐵) is the non-seasonal autoregressive operator, 𝜃(𝐵) is the nonseasonal moving 

average operator and the corresponding seasonal autoregressive and seasonal moving operators 

are  Ф(𝐵) and 𝛩(𝐵) respectively; 𝑣𝑡 denotes a white noise series.  By expressing Equation (6.6) 

in terms of 𝜀𝑡 and substituting in Equation (6.7), we get Equation (6.8). 

 

∅(𝐵)Ф(𝐵)[𝑦𝑡 − {𝛽0𝑡 + ∑ 𝑠𝑗(𝑋𝑡𝛽𝑗)
𝑝
𝑖=1 }] = 𝜃(𝐵)𝛩(𝐵)𝑣𝑡.                    (6.8) 

 

6.3.4 Machine learning model application (Long Short-Term Memory – LSTM) 

6.3.4.1 Selection of machine learning model structure 

Artificial Neural Network (ANN) machine learning technique was used in this study, due to its 

strength of analysing large data that do not exhibit a linear relationship. Studies such as Fausett 

(1994); Samaransinghe (2006); Mishra et al., (2007) developed ANN-based models for 

application in the fields of engineering and science. For drought prediction, the Recursive 

Multi-step and Direct Multi-step Neural Networks are commonly used (e.g. Mishra and Desia, 

2006; Kim and Valdes, 2003; Mishra et al., 2007; Ochoa-Rivera et al., 2007).  However, this 

study applied a deep learning approach of ANN prediction which is based on an improved 

multilayer perceptron, which is somewhat different from these traditional ANNs. Deep learning 

uses a cascade of multiple processing layers to learn features or representations of data with 

different levels of abstractions (Lecun et al., 2015). To predict SPEI at 1-, 6- and 12- month 

timescales, this study used the Long Short-Term Memory (LSTM) Recurrent Neural Network 
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(RNN). The LSTM was successfully used in modeling land and surface temperature and 

satellite imagery disturbances in Zhang et al. (2018) and Kong et al. (2018), respectively. 

 

6.3.4.1.1 Long Short-Term Memory Neural Network 

Donahue et al. (2017) describe the LSTM cell used in this study in detail. The LSTM structure 

is as shown in Figure 6.3 and contains the forget date (ft), input gate (it), input modulation gate 

(mt), output gate (ot), a memory cell (ct), and the hidden state (ht). Each of the gates acts on the 

received signal, and then block or pass on information based on its strength and import, which 

they filter with their own sets of weights. The weights modulate input and hidden states are 

then adjusted through recurrent networks learning processes. The cells learn when to allow data 

to enter, leave, or be deleted through the iterative process of making guesses, back-propagating 

error, and adjusting weights via gradient descent.  

 

Figure 6.3: The structure of the LSTM cell unit. 

 

The first step is to determine whether information from the cell state has been forgotten or 

remembered and this is determined by a sigmoid layer in the forget gate and is computed using 

Equation (6.9). 

     

𝑓𝑡 = 𝑆(𝑊𝑓. [𝑦̂𝑡−1, 𝑥𝑡] + 𝑏𝑓),        (6.9) 
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In the second step, a decision is made whether the new information needs to be stored in the 

cell state and this step consists of two parts. Firstly, a sigmoid layer (i.e. forget gate) determines 

which values are used for updating after which, a 𝑡𝑎𝑛ℎ layer is used to generate a new candidate 

value 𝐶̂𝑡 which is added to the cell state. Secondly, the two are combined to create an update to 

the state. The latter are computed using Equations (6.10) and (6.11). 

 

𝑖𝑡 = 𝑆(𝑊𝑖 . [𝑦̂𝑡−1, 𝑋𝑡] + 𝑏𝑖],        (6.10) 

𝐶̂𝑡 = tanh (𝑊𝐶 . [𝑦̂𝑡−1, 𝑋𝑡] + 𝑏𝐶).       (6.11) 

Step three involves the updating of the old cell state 𝐶𝑡−1. The old cell state  𝐶𝑡−1 is multiplied 

by 𝑓𝑡 to remove redundant information that is not of interest. It is added to 𝐶̂𝑡 to obtain a new 

candidate value, which is scaled by the number required to update each state value, which is 

computed using Equation (6.12): 

 

𝐶 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶̂𝑡,         (6.12)  

Step four is the final stage and the sigmoid layer is run to determine what part of the cell state 

is going to be an output. Then the cell state is put through 𝑡𝑎𝑛ℎ function, which is multiplied 

by the output of the sigmoid gate and is achieved by Equations (6.13) and (6.14).  

 

𝑜𝑡 = 𝑆(𝑊𝑜 . [𝑦̂𝑡−1, 𝑋𝑡] + 𝑏𝑜),        (6.13) 

𝑦̂𝑡 = 𝑜𝑡 . tanh (𝐶̂𝑡)         (6.14) 

where in Equations (6.9) to (6.13), 𝑋𝑡 is the input vector, 𝑦̂𝑡−1 is the previous hidden state, W 

and 𝑦̂ are the weight matrices and 𝑆 is the logistic sigmoid function, tanh is the hyperbolic 

tangent function and b is the bias vector.  

 

A sliding time window-based method described by Cheng et al. (2016) is used to obtain several 

samples for training LSTM from a single historical SPEI at 1-, 6- and 12- month timescales. 

For a time series (𝑥1, 𝑥2, . . . , 𝑥𝑛) with n time steps, assuming the size of the time window is l 

(l < n), the first sample is input subsequence (x1, x2, . . . , xl) for output 𝑥𝑡+1. The time window 

slides one time-step ahead at a time to generate one training sample. The subsequence (xt-l, . . . 

, xt-2, xt-1) in the time window corresponds to the output xt one time-step ahead. Thus, n - l + 1 

samples are obtained for training the LSTM network. For the LSTM hidden layers in this study, 
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a dropout layer with a dropout rate of 0.5 is added to prevent over-fitting (Srivastava et al., 

2014). In addition, the mean square error (MSE) loss function and the Adam optimiser (Kingma 

and Ba, 2014) are used for LSTM training. With an l-step sliding time window, the output yt+1 

is predicted using the input sequence (xt-l+1, . . . , xt-1, xt). A strategy to implement prediction of 

n steps is performed iteratively using the predictive outputs of the previous steps to compose 

the input sequence to the next step. Therefore, the output yt+n would be predicted using the 

input sequence (xt+n-l, . . . , xt, yt+1, . . . , yt+n-1).  

 

The LSTM model summary at 1-, 6- and 12- month timescales are presented in Appendix C 

(Figures C7, C8, and C9) and consists of one LSTM and one dense layer. The number of LSTM 

parameters varies from SPEI to the Residual at all timescales while the dense layer parameters 

remain at 33 in all timescales. The variables with the same numbers of trainable parameters 

indicate that they consist of the same number of input variables. This is determined by the 

number of input variables selected as identified by GBM to influence each target value. No 

non-trainable parameters are identified in the calibration stage. 

 

To determine whether there is underfitting or overfitting, training and testing loss are 

determined at each epoch. The LSTM learning curves for each timescale are shown in 

Appendix C (Figures C10, C11, and C112). The epochs (number of iteration) was set at 300. 

It was found that the number of training and testing losses decreases with an increased number 

of epochs at all timescales for all the models. Both training and testing losses stabilise around 

the same point, which according to Bouktif et al. (2018) indicated a good fit. 

 

6.3.5 Prediction combination 

The study employed Quantile Regression Averaging (QRA) prediction combination 

techniques, first introduced by (Nowotarski and Weron, 2015). The prediction combination 

was done for statistical learning models, machine learning models, and the best performing 

statistical and machine learning hybrid models. The QRA is based on predicting the response 

variable against the combined predictions, which are treated as independent variables. SPEI is 

denoted by 𝑦𝑡,𝜏 as indicated in the GAM sections above and the methods used to predict the 

next observation 𝑦𝑡,𝜏 which is dented by 𝑦𝑡+1, 𝑦𝑡+2, … , 𝑦𝑡+𝑚. Using 𝑗 = 1,… ,𝑀 methods, the 

combined prediction are given by the following. 

 

𝑦̂𝑡,𝜏
𝑄𝑅𝐴

= 𝛽0,𝜏 + ∑ 𝛽𝑗,𝜏
𝑘
𝑗=1 𝑦̂𝑡𝑗,𝜏 + 𝜀𝑡,𝜏, 𝜏 ∈ (0,1),      (6.15) 
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where, 𝑦̂𝑡𝑗 is the predictive from method 𝑗, 𝑦̂𝑡,𝜏
𝑄𝑅𝐴

 is the combined prediction at quantile 𝜏 and 

𝜀𝑡,𝜏 is the error term. Equation (6.16) gives the solution of the parameter estimates. 

 

argmin
𝛽
∑ 𝜌𝜏
𝑛
𝑡=1 (𝑦̂𝑡

𝑄𝑅𝐴
− 𝛽0 − ∑ 𝛽𝑗

𝑚
𝑗=1 𝑦̂𝑡𝑗),     (6.16) 

where, 𝜌𝜏 is the pinball loss function. The QRA prediction is then compared with prediction 

based on a weighted average of the prediction using Equation (6.17): 

𝑦̂𝑡,𝜏
𝑐 = ∑ 𝜔𝑗𝑡𝑦̂𝑗𝑡,𝜏

𝑀
𝑗=1 ,        (6.17) 

Where, 𝜔𝑗𝑡 is the weight assigned to the prediction at time t using method j. 

 

6.3.6 Test for model performance 

The performance of the applied models for this study was based on their Root Mean Square 

Error (RMSE), Mean Error (ME), Mean Absolute Error (MAE), Mean Percentage Error 

(MPE), and the Mean Absolute Percentage Error (MAPE). The detailed models underpinning 

these measures of performances are documented in Chapter 2, sub-section 2.8. 

 

6.3.7 Determination of prediction intervals 

The Prediction Intervals (PIs) are determined for the best performing statistical (GAM) and 

machine learning (LSTM) models. Various indices are used to evaluate the reliability of PIs, 

for this, study the Prediction Interval Coverage Probability (PICP) and the Prediction Interval 

Normalised Average Width (PINAW) are used and their details can be obtained in Sun et al. 

(2017). The PICP and PINAW are computed using Equations (6.18) and (6.19), respectively. 

𝑃𝐼𝐶𝑃 =
1

𝑚
∑ 𝐼𝑖𝑗
𝑚
𝑖=1 ,          (6.18) 

where, 𝑚 is the number of prediction and I is a binary variable defined as; 

𝐼𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖 ∈ (𝑈𝐿𝑖𝑗 , 𝐿𝐿𝑖𝑗),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          

The PICP is valid if it is greater than or equal to the predetermined level of confidence. The 

PINAW is used to check if the required value is covered by the PI and is computed using 

Equation (6.19). 

𝑃𝐼𝑁𝐴𝑊 =
1

𝑚(max(𝑦𝑖𝑗)−𝑚𝑖𝑛(𝑦𝑖𝑗))
∑ (𝑈𝐿𝑖𝑗 − 𝐿𝐿𝑖𝑗)
𝑚
𝑖=1 , 𝑗 = 1, … , 𝑛.     (6.19) 
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If the PICP is valid and accurate, then the PINAW is expected to be small (Sun et al., 2017). 

 

6.4 Results and discussions 

6.4.1 Exploratory data analysis 

 

Figure 6.4 shows the SPEI time series plot of density, normal quantile to quantile (Q – Q), and 

the box plots at 1-, 6- and 12- month timescales before decomposition. To determine the 

normality SPEI data, Anderson-Darling tests were carried out and the results are presented in 

Figure 6.5 for SPEI 1- month timescale while Table 6.2 shows the results statistics for all the 

timescales. For the case study results of SPEI 6- and 12- month timescales, see Appendix C 

(Figures C1 and C2). The initial visual interpretation of the Q-Q plot (Figure 6.4) suggested 

the departure of SPEI data from normality while the detailed statistical distribution fit test 

Probability-Probability Plot (P-P) showed that the data is normally distributed at all the 

timescales. Altman and Bland (1995); Oztuna et al. (2006) and Field (2009) reported that 

although visual inspection of normality is used, it is often unreliable with no guarantees of the 

results. Johnson SB, Error, and Dagun (4P) distributions were the best fit for SPEI 1-, 6- and 

12- month timescales respectively. 

 

From Figure 6.4, it can be concluded that the distribution of the SPEI data at 6- and 12- month 

timescales are bimodal while the 1- month timescale exhibited a unimodal distribution. The 

current study made use of EEMD to decompose the SPEI time series at different timescales. 

Time series decomposition was deemed necessary because environmental variables are non-

stationary and exhibit a certain complexity. These complexities, according to Labat (2010) and 

Montzka et al. (2009) are due to the interrelated physical factors and compounded by the effects 

of a changing climate. In a study by Di et al. (2014), hydrological time series complexity was 

measured using Lempel-Ziv Complexity theory and it was found that decomposition greatly 

reduced the complexity of the time series and improved the prediction accuracy (Nazir et al., 

2019). Seven independent IMFs and one residual were obtained for each SPEI timescale (see 

Figures 6.6 for SPEI 1- and Appendix C (Figures C3 and C4) for SPEI 6- and 12- respectively). 

The IMF's exhibit an oscillation characteristic from high to low frequencies while the residual 

maintains the trend of the time series.  

 

Table 6.3 shows the statistics of the original SPEI time series together with that of each IMFs 

and the residual component at all the timescales considered in this study. The variance of the 
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actual data ranged between 0.799 and 1.147 for both the training and testing data while the 

decomposed IMFs showed lower values compared to the actual data. The study found that IMF 

1 was characterised by a larger variance compared to the last IMF, while the residual was higher 

than that of the last IMF. The variance behaviour was also found for the standard deviation. 

The test of both the actual data the IMFs was much lower than the training set. The standard 

deviation and variance results obtained in this study are comparable to Zhang et al. (2018), 

which showed similar behaviour while comparing statistics of decomposed and actual data. 

The majority of the kurtosis values for both the actual and decomposed SPEI were found to be 

much smaller while the skewness ranged between -0.01417 and 1.1959.  

 

The 12- month timescale had the highest skewness with 66.67% of the data negatively skewed 

while 1- and 6- timescales had 38.89% and 50% negative skewness respectively. These 

findings according to Microsoft (1996) indicate that SPEI 12- distribution is characterised by 

an asymmetrical tail extending more towards the negative followed by SPEI 6- while SPEI 1- 

data showed to be positively skewed. Normally distributed data produces a skewness of zero 

with possibilities of small variations (Brown, 1997). The skewness results obtained in this study 

indicate that the data is approximately asymmetrical since 74.07% of the data are greater than 

0.1. Although Brown (1997) suggested that a skewness statistic of 0.01819 was acceptable for 

normally distributed data, this study adopted a skewness statistic of 0.1 since it is a variation 

from Brown (1997) suggestion is less than 10%. 
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 Figure 6.4: SPEI empirical results for SPEI 1, SPEI 6, and SPEI 12. 

  

Table 6.2: Five best-fit distributions statistics results from Anderson-Darling test. 

 

 

SPEI 1 

Distribution Rank Statistic 

Johnson SB 1 0.36984 

Gen. Extreme 2 0.46404 

Burr (4P) 3 0.59691 

Weibull (3P) 4 0.60388 

Beta 5 0.68164 

    

 

 

SPEI 6 

 

Error 1 0.91662 

Johnson SB 2 1.1468 

Gen. Gamma (4P) 3 1.2168 

Kumaruswamy 4 1.2168 

Dagum (4P) 5 1.2455 

    

 

 

SPEI 12 

 

Dagum (4P) 1 0.75992 

Log-Logistic (3P) 2 1.2606 

Normal 3 1.3187 

Error 4 1.3207 

Error function 5 1.234 
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Figure 6.5: Statistical distribution fit test results for SPEI 1.
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Figure 6.6: Sample IMFs for SPEI 1. 

 

6.4.2 Variable selection 

Variable selection was achieved using gradient boosting.  The main objective of a variable selection procedure is to identify the correct predictor 

variables, which have an important influence on the response variable and could provide robust model prediction (Haque et al., 2018). Variable 

selection was conducted for each SPEI time series and IMFs including the residual at the different timescales. Figure 6.7 shows the relative 

importance of different predictor variables as selected by gradient boosting. Figure 6.7 shows results for SPEI 1- timescale, the IMFs, and the 

residual, while the results of SPEI 6- and 12- are presented in Appendix C (Figures C5 and C6, respectively). The relative importance values are 

the means of 50 model runs, each based on a randomly selected subset of 90% of the data (Sankaran et al., 2007).  
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Table 6.3: Summary statistics of the original and the decomposed time series. 
Time 

scale 

Time 

series 

Period Min. Max. Mean SD Variance Skew. Kurt. 

 

 

 

 

 

 

 

 

 

 

SPEI1 

Actual 

dataset 

Train -1.81278 2.19896 0.148561 0.910605 0.829202 0.221582 -0.64457 

Test -2.32907 2.199187 -0.82 1.070987 1.147013 0.277515 -0.67855 

IMF1 Train -1.36737 1.499639 -0.00234 0.616641 0.380246 0.060363 -0.72371 

Test -2.00883 1.954978 -0.00585 0.783791 0.614329 0.205315 0.006426 

IMF2 Train -0.82817 0.843964 -0.01036 0.315931 0.099812 -0.27299 0.05817 

Test -0.93602 1.020698 -0.0061 0.399217 0.159374 0.02349 -0.47482 

IMF3 Train -0.61475 0.57066 -0.01001 0.25657 0.065828 0.068829 -0.67494 

Test -0.56767 0.497348 0.001743 0.233017 0.054297 0.066488 -0.32031 

IMF4 Train -0.39727 0.349118 0.000626 0.203401 0.041372 0.023372 -1.20691 

Test -0.49732 0.518653 -0.00515 0.297948 0.088773 0.173266 -1.1085 

IMF5 Train -0.31629 0.271511 0.007903 0.151258 0.022879 -0.14936 -0.60484 

Test -0.1748 0.183806 -0.01343 0.090346 0.00816 -0.06964 -0.11953 

IMF6 Train -0.31537 0.282087 -0.02241 0.188362 0.03548 0.110488 -1.24838 

Test -0.10642 0.053169 -0.04002 0.047042 0.002213 -0.44244 -1.08256 

IMF7 Train -0.05362 0.065376 0.00398 0.043949 0.001931 0.129717 -1.55465 

Test 0.015715 0.064241 0.007856 0.015912 0.000253 -0.02776 -1.40831 

Residual Train 0.022217 0.246122 0.18953 0.060794 0.003696 -1.18926 0.337862 

Test -0.46694 0.019302 0.019302 0.142496 0.020305 -0.1954 -1.16856 

          

 

 

 

 

 

 

 

 

 

SPEI6 

Actual 

dataset 

Train -1.88287 2.502429 0.165879 0.953006 0.908221 0.143209 -0.59864 

Test -2.11441 1.696328 0.119342 0.953183 0.908556 0.149464 -1.12683 

IMF1 Train -0.86447 1.0222214 0.001508 0.26408 0.068858 0.193554 1.359236 

Test -1.00061 1.063124 -0.00257 0.35038 0.122766 0.098206 0.499751 

IMF2 Train -0.78712 0.643729 -0.00216 0.242107 0.058616 -0.05015 0.480301 

Test -0.77676 0.67489 0.001258 0.280518 0.07869 -0.20288 -0.27622 

IMF3 Train -0.69784 0.867707 -0.0066 0.411532 0.169359 0.0176451 -1.14614 

Test -0.71143 0.845515 -0.00268 0.4023 0.161846 0.324342 -0.89305 

IMF4 Train -0.73816 0.72446 0.014992 0.394933 0.155972 -0.03329 -1.20204 

Test -0.84534 0.745929 -0.00529 0.467398 0.218461 -0.03972 -1.14763 

IMF5 Train -0.67003 0.610197 -0.02455 0.337414 0.113848 -0.17639 -0.60507 

Test -1.159 0.276158 -0.08311 0.140341 0.019696 0.689158 -0.8109 

IMF6 Train -0.21202 0.336629 -0.00915 0.198007 0.39207 0.541607 -1.28458 

Test -0.16457 0.091232 0.01288 0.076898 0.005913 -0.63264 -0.80111 

IMF7 Train -0.01218 0.044395 0.019121 0.021761 0.000474 -0.21805 -1.65539 

Test 0.008134 0.034692 0.022095 0.008333 0.0000694 0.321258 -1.22907 

Residual Train 0.038626 0.245892 0.181124 0.058455 0.003417 -0.68193 -0.73303 

Test -0.57808 0.035206 0.189559 0.179909 0.032367 -0.22986 -1.15638 

          

 

 

 

 

 

 

 

 

 

SPEI12 

Actual 

dataset 

Train -1.99772 2.539835 0.170487 0.397574 0.952069 0.198231 0.04558 

Test -2.36548 1.046242 0.138832 0.893879 0.799019 -0.39594 -1.01876 

IMF1 Train -0.60582 0.491949 0.004402 0.178638 0.031911 -0.00541 0.49103 

Test -0.49141 0.667998 0.004939 0.185027 0.034235 1.195896 0.187336 

IMF2 Train -0.49038 0.528846 -0.00741 0.202928 0.04118 -0.3788 0.020563 

Test -0.51725 0.401521 -0.00058 0.194732 0.39624 -0.01417 -0.39624 

IMF3 Train -1.01647 0.817369 0.005364 0.365714 0.133747 -0.27986 0.423858 

Test -0.63599 0.576616 0.003628 0.256241 0.065659 -0.32191 -0.49566 

IMF4 Train -0.94251 1.038782 0.004179 0.47766 0.228159 0.120488 -0.68228 

Test -1.04925 0.92727 -0.0094 0.53429 0.285466 -0.9953 -0.05535 

IMF5 Train -0.73644 0.630692 -0.02485 0.390485 0.152479 -0.09351 -0.95628 

Test -0.19096 0.336679 -0.07899 0.15719 0.024709 0.679647 -0.61952 

IMF6 Train -0.32518 0.432001 0.003434 0.264392 0.069903 0.310529 -1.38921 

Test -0.19777 0.209411 0.028521 0.127616 0.016286 -0.38268 -1.24626 

IMF7 Train -0.05116 0.07139 -0.00397 0.040052 0.001604 0.470288 -1.18411 

Test 0.000959 0.078755 -0.00286 0.022377 0.000501 -1.14776 0.080774 

Residual Train -0.02681 0.286657 0.196453 0.083892 0.007038 -0.83412 -0.3017 

Test -0.92842 -0.03185 0.203329 0.262974 0.069155 -0.22625 -1.15771 
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The rain showed to be the most important variable for predicting SPEI 1. For the decomposed 

IMFs from SPEI 1, the non-linear trend showed to be the most important at IMF 2, 3, 4, 5, 6, 

and 7 while for IMF 1, SPEI 1 and Lag 1 were most important respectively. For the case of the 

residual components, non-linear trend and Lag 2 were the most important variables. The non-

linear trend is the most important predictor for predicting SPEI at 6-month timescale. Time 

series components (i.e. trend, seasonality, remainder, etc.) have been successfully used as 

model input in prediction exercises. For example, Benkachcha et al. (2015) used time series 

components in predicting airline passengers using ANN. Like the 1-month timescale, a non-

linear trend was important for most of the IMFs (i.e. 2, 3, 4, 5, 6, and 7) while Lag 1 and Lag 

2 respectively mostly influenced IMF 2 and the residual. Taşpınar (2015) reported a significant 

three consecutive lags (i.e. Lags 1, 2, and 3) as input while predicting daily PM10 data. The 

lagged variable of importance was successfully determined by PCA. The findings of this study 

regarding the importance of Lags 1 and 2 are therefore comparable with those reported by 

Taşpınar (2015). The relative importance for SPEI at 6-month timescale was similar to that of 

SPEI at 12-month timescale; however, Lag 1 mostly influenced both IMF 2 and the residual.  

 

Temperature, which has been reported to play a significant role in the development of drought 

through its inherent nature to highly influence evaporation was found to be important in the 

SPEI at 1- and 6- months timescales, IMF 1 and 2 time series at all timescales. Lenton et al. 

(2017) reported that sea surface temperature variability contributed to increased land 

temperature variability and autocorrelation, which ultimately contributed to persistent droughts 

in North America and the Mediterranean. Mean temperatures were found to be more dominant 

compared to the minimum and maximum temperature in predicting SPEI. All predictor 

variables are significantly different from one another in their relative importance (Sankaran et 

al., 2007). Therefore, thus, all features that appeared to have some relative importance (i.e. 

ranging from 0 to 100) were selected as input variables into both statistical and machine 

learning models. The ultimate features selected as input variables for this study are as outlined 

in Table 6.4.  
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*SPEI - Standardised Precipitation Evaporation Index, IMF - Intrinsic Mode Function, Res – Residual. 

Figure 6.7: Sample gradient boosting for the variable of importance (SPEI 1).
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Table 6.4: Features used as input variables for model application. 
 1-month timescale 6-month timescale 12-month timescale 

SPEI Rain, non-linear trend , SPEIt-1 & 

SPEIt-2, Tmax, Tmin, Tmean 

Rain, non-linear trend , SPEIt-1 & 

SPEIt-2, Tmax, Tmin, Tmean 

Non-linear trend , SPEIt-1   

IMF 1 SPEI, rain, non-linear trend , SPEIt-

1 & SPEIt-2, Tmax, Tmin, Tmean 

SPEI, rain, non-linear trend , SPEIt-1 

& SPEIt-2, Tmax, Tmin, Tmean 

SPEI, rain, non-linear trend , SPEIt-1 

& SPEIt-2, Tmax, Tmin, Tmean 

IMF 2 SPEI, rain, non-linear trend , SPEIt-

1 & SPEIt-2, Tmax, Tmin, Tmean 

SPEI, rain, non-linear trend , SPEIt-1 

& SPEIt-2, Tmax, Tmin, Tmean 

SPEI, rain, non-linear trend , SPEIt-1 

& SPEIt-2, Tmax, Tmin, Tmean 

IMF 3 Non-linear trend  Non-linear trend  Non-linear trend  

IMF 4 Non-linear trend Non-linear trend Non-linear trend 

IMF 5 Non-linear trend  Non-linear trend , SPEIt-1 Non-linear trend , SPEIt-1 

IMF 6 Non-linear trend , SPEIt-1  Non-linear trend , SPEIt-1 Non-linear trend , SPEIt-1 

IMF 7 Non-linear trend , SPEIt-1 & SPEIt-2 Non-linear trend , SPEIt-1 & SPEIt-2 Non-linear trend , SPEIt-1 

Residual Non-linear trend , SPEIt-1 & SPEIt-2 Non-linear trend , SPEIt-1 & SPEIt-2 Non-linear trend , SPEIt-1 & SPEIt-2, 

SPEI 

 

6.4.3 SPEI prediction 

The full range of data from 1986 to 2016 for all variables that appeared in the variable of 

importance (see Table 6.4) was divided into 2 parts for training and testing the prediction 

models. For SPEI 1, data from Sep. 1986 to Jul. 2006 was used for training while Aug. 2006 

to Sep. 2016 was used for the testing exercise. Data from Feb. 1987 to Jan. 2007 was used to 

train and Feb. 2007 to Sep. 2016, data was used to test SPEI 6 models. The highest timescale 

considered in this study (i.e. SPEI 12) training data period ranged from Aug. 1987 to May 2007 

and the testing data were between June 2007 and Sep. 2016. Seven potential statistical and 

machine learning-based models were applied for this study and are shown in Table 6.4. These 

were applied for SPEI at all time scales and each decomposed IMF was predicted separately. 

To improve the prediction ability of GAM models, auto-correlated SARIMA errors were used. 

Quantile regression averaging of the prediction results from GAM and LSTM is fQRA-GAM 

and fQRA-LSTM respectively as can be seen from Table 6.5. prediction combination, which 

is the mean of all the applied models, was conducted to improve prediction accuracy.  

Table 6.5: Potential drought prediction models. 
Model Description 

1 GAM 

2 EEMD-GAM 

3 EEMD-ARIMA-GAM 

4 fQRA-GAM 

5 LSTM 

6 EEMD-LSTM 

7 fQRA-LSTM 
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6.4.3.1 Results of statistical models  

To understand the prediction performance of statistical models, a comparative study was 

conducted between the four applied models. Figure 6.8 shows the results of models for all 

timescales considered in this study. The smoothing effect of the GAM models is evident in the 

predicted results. The GAM provides a flexible specification of response by defining the model 

in terms of smooth functions as a replacement for the detailed parametric relationships on the 

covariates (Ravindra et al., 2019). The decomposition of environmental time series is expected 

to improve the prediction accuracy of models, and this is evident at all timescales that the 

decomposed GAM performed better than an undecomposed GAM. Although EEMD-GAM 

predicted SPEI better than GAM, from Figure 6.8A EEMD-GAM is seen to overestimate 

drought events between 2011 and 2016, with GAM greatly underestimating the target values 

while EEMD-ARIMA-GAM (i.e. GAM after correcting residual autocorrelation) improved the 

prediction. Since prediction models are imperfect abstracts of reality (UNESCO, 2005), such 

behaviour in model outputs is therefore expected as often the models are not perfect. Sigauke 

et al. (2018) found that incorporating corrected residual autocorrelation increased model 

accuracy and improved the out of sample forecasts. At longer timescales, all GAM based 

models showed a great improvement in the prediction of SPEI in the LRC. 

 

Figure 6.9 is the scatterplot of the different models based on statistical learning at all the 

timescales considered in this study.  All the models’ results show that a positive correlation 

exists between the modeled output and the actual data. The GAM, EEMD-GAM, and EEMD-

ARIMA-GAM predicted results showed the lowest correlation at 1-, 6- and 12- month 

timescales respectively. The fQRA(GAM) showed the highest correlations at 1- and 6- month 

timescales while for the 12- month, GAM showed the highest correlation.  The high correlation 

showed by fQRA(GAM) is due to that fQRA is made up of a mean combination of all the 

models, therefore, all the models' strength results in fQRA being superior compared to the other 

models applied in this study.
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Figure 6.8: GAM prediction models results for SPEI 1-, 6- and 12- month timescales. 

 

A 

C 

B 
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Figure 6.9: Scatterplot of the GAM, EEMD-GAM, EEMD-ARIMA-GAM, and fQRA (GAM) models vs SPEI target values.
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6.4.3.2 SPEI prediction using machine learning  

Figure 6.10 shows drought prediction models’ results based on deep learning neural networks 

(LSTM) at all timescales of study. All models seemed to follow the actual test data, however, 

EEMD-LSTM is seen in certain cases to overestimate or underestimate the actual test data at 

all timescales. The decomposition of environmental time series and prediction combination is 

expected to improve the prediction accuracy of models, however, for deep learning neural 

networks that is not the case. An undecomposed LSTM mimicked the test data better than the 

decomposed LSTM while the prediction quantile regression averaging results performed better 

than the decomposed LSTM. This is because LSTM-fQRA combines the prediction strength 

of the deep learning LSTM and the reduced complexity of the time series through 

decomposition. The results obtained in this study differ from those obtained by Zhang et al. 

(2018) regarding the prediction ability of EEMD-LSTM and LSTM. The study by Zhang et al. 

(2018) found that the hybrid EEMD-LSTM outperformed the LSTM model while the current 

study found that for predicting SPEI at 1-, 6- and 12- month timescales, LSTM performed 

better than EEMD-LSTM. The type and number of input variables used during the calibration 

stage may influence the differing results.  

 

Figure 6.11 is the scatterplot of the different models based on machine learning at all 

timescales.  Like statistical learning, all the models’ results show that a positive correlation 

relationship exists between the modeled output and the actual data. The EEMD-LSTM showed 

the lowest correlation relationship with the actual data at 1-, 6- and 12- month timescales while 

the fQRA-LSTM and LSTM showed the highest correlation at the same timescales. Both the 

LSTM and fQRA-LSTM found an R2 of 0.9997 at 1- month timescale and 0.9996 for both 6- 

and 12- month timescales. The fitted line of the predicted results is close to the 45° line to the 

horizontal and this indicates a probable high performance of a model. A correlation cannot, 

however, be the single determinant of the prediction model accuracy. The use of R and R2 

should not be utilised alone to measure the accuracy of predictive models for numerical data 

as they can present biased, insufficient, or misleading results (Murphy and Epstien, 1989; 

Kessler and Neas, 1994; Legates and McCabe, 1999; Li and Heap, 2008). Therefore, further 

analysis of model performance was conducted using statistical evaluation metrics.
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Figure 6.10: LSTM drought prediction model results for SPEI 1-, 6- and 12- timescales.
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Figure 6.11: Scatterplot of the LSTM, EEMD-LSTM and fQRA (LSTM) models vs SPEI. 

 

6.4.4 Model performance comparative analysis 

As there is no consensus on the most appropriate metric for model error performance, Chai and 

Draxler (2014) recommended a combination of evaluation metrics. Therefore, the prediction 

performance of both statistical learning (GAM) and machine learning (LSTM) models in this 

study were further conducted using five statistical evaluations (i.e. ME, RMSE, MAE, MPE, 

and MAPE) to measure the models' performance. The evaluation of both statistical and 

machine learning SPEI time series outputs at 1-, 6- and 12- months timescales are shown in 

Table 6.6. At 1- month timescale, machine learning outperformed statistical learning 

techniques. From Table 6.6 the smallest RMSE for statistical learning was found to be fQRA-

GAM model as 0.0599 while machine learning was an fQRA-LSTM with an RMSE of 0.0199. 
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This, therefore, showed that at 1- month timescale, machine learning was the best performing 

learning technique. The ME, MAE, MAPE, MPE further support the RMSE findings between 

the applied models’ results. It is shown in Table 6.6 that the better performing model showed 

the least errors showed by all the performance measures. Every statistical measure condenses 

a large number of data into a single value; it only provides one projection of the model errors 

emphasizing a certain aspect of the error characteristics of the model performance (Chai and 

Draxler, 2014). Figure 6.11 shows the models that indicated the least errors in the model 

performance for both GAM and LSTM based models at SPEI 1-, 6- and 12- month timescales. 

At all timescales, LSTM based models outperformed GAM based models. It is evident from 

both Table 6.6 and Figure 6.12 that the prediction combinations (fQRA) improved model 

performance of both statistical and machine learning at all timescales while the decomposition 

was useful in improving GAM performance as this was not in the case for LSTM based models. 

 

Table 6.6: Performance evaluation of the applied models.  
Learning 

technique 

Timescale Model ME RMSE MAE MPE MAPE 

 

 

 

 

 

 

Statistical 

Learning 

 

 

1 

GAM 0.0177 0.7676 0.6127 -3.8647 231.728 

EEMD-GAM 0.6805 0.8829 0.7410 -47.4685 275.233 

EEMD-ARIMA-GAM 0.4718 0.481 0.4718 -135.946 280.609 

fQRA (GAM) -0.0116 0.0599 0.03369 11.971 17.099 

       

 

 

6 

GAM -0.0016 0.3644 0.2694 19.774 57.438 

EEMD-GAM -0.0563 0.3818 0.2833 13.330 57.293 

EEMD-ARIMA-GAM -0.0599 0.3449 0.2595 10.227 51.763 

fQRA (GAM) 0.0030 0.2609 0.2057 8.053 37.699 

       

 

 

12 

GAM 0.0021 0.1809 0.1199 -63.013 123.075 

EEMD-GAM 0.0067 0.1978 0.1373 -128.169 181.563 

EEMD-ARIMA-GAM 0.0851 0.2221 0.162 -77.719 183.636 

fQRA (GAM) 0.0032 0.1811 0.1194 -67.49 127.262 

        

 

 

 

 

 

 

Machine learning 

 

1 

LSTM -0.0135 0.0135 0.0165 1.1088 4.9365 

EEMD-LSTM -0.0540 0.2085 0.1627 14.0429 60.5617 

fQRA (LSTM) -0.0029 0.0199 0.0112 -2.2083 3.691 

       

 

6 

LSTM 0.0082 0.0203 0.0150 -0.2712 3.4515 

EEMD-LSTM -0.0465 0.2430 0.2037 6.7900 40.0487 

fQRA (LSTM) -8.79e-5 0.0190 0.0126 -0.0722 2.3933 

       

 

12 

 

LSTM 0.0049 0.0186 0.0127 -1.3798 20.8003 

EEMD-LSTM -0.0809 0.2235 0.1812 -81.3093 188.065 

fQRA (LSTM) -0.0026 0.0184 0.0105 -4.4569 12.3226 

        
*ARIMA-Auto Regressive Moving Average, EEMD-Ensemble Empirical Mode Decomposition, GAM-Generalised Additive Models, 

LSTM-Long Short Term Memory, fQRA-prediction Quantile Regression Averaging.
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Figure 6.12: Best performing GAM and LSTM models at SPEI 1-, 6- and 12- month timescales.

A B 

C 
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The density plots from the best performing statistical (GAM) and machine learning (LSTM) 

techniques models superimposed with actual SPEI data at all timescales are presented in Figure 

6.13. The LSTM models plot showed the best fit of the densities at all timescales while the 

GAM densities were fairly good at all timescales. Table 6.7 shows the pinball loss scores for 

the best GAM and LSTM for all timescales.  Since the pinball loss score for LSTM-fQRA is 

smaller than that of GAM-fQRA, LSTM-fQRA is a better model. This was realised in all the 

timescales, with SPEI 1- GAM showing to be the best compared to the other GAM timescales. 

For the case of LSTM, SPEI 12- showed the least pinball loss score followed by SPEI 1- and 

6- month timescales. Pinball loss provides a comprehensive score for probabilistic prediction 

performance and is consistent with the objective function of quantile regression instead of 

focusing on a single aspect (Wang et al., 2016). The same study further showed that pinball 

scores were reduced by an average of 4.39% through probabilistic prediction ensembles. 

 

 

 

Figure 6.13: Best performing GAM and LSTM models’ density at SPEI 1-, 6- and 12- month 

timescales. 
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Table 6.7: Best performing models pinball loss scores. 
Index 

timescale 

LSTM pinball 

loss 
GAM pinball 

loss 
SPEI 1 0.00561523 0.0161798 
SPEI 6 0.006276735 0.1028351 

SPEI 12 0.005472007 0.05992876 
   

 

6.4.5 Evaluation of model uncertainty 

Uncertainty analysis in this study was only carried out for the best performing statistical 

(GAM) and machine learning (LSTM) models. This was achieved by constructing an empirical 

prediction interval (PI) at all timescales. The prediction intervals were used to find the 

Prediction Interval Widths (PIWs), Prediction Interval Normalised Widths (PINAWs), 

Prediction Interval Coverage Probability (PICP) and determined the number of prediction 

below and above the PI for each best performing GAM and LSTM model. The lower and the 

upper intervals are shown in Figure 6.14 for the best performing GAM and LSTM based model 

at 1-, 6- and 12- month timescale. 

 

The summary statistics of PIWs for the best performing GAM, LSTM, and Mean* models for 

Prediction Interval Nominal Confident (PINC) values of 95% are shown in Table 6.8. The 

Mean* are the endpoints interval averages; these are simple and robust in combination point 

prediction (Gaba et al., 2017). The skewness at 1- and 6- month timescales are to the right in 

all the models (positive skewness) while the 12- month timescale is showing left skew with all 

models reporting a negative skewness. The LSTM at 12- month timescale showed the smallest 

standard deviation, which is indicative of a narrower model. Therefore, at both 1- and 6- month 

timescales, GAM model is narrower compared to the Mean* and LSTM. 
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Figure 6.14: SPEI 1-, 6- and 12- month timescales 95% prediction limits. 

 

Table 6.8: Models PIWs statistics. 
  Mean Median Min. Max. SD Skew. Kurt. 

 

SPEI 1 

GAM 2.254 2.237 1.868 2.662 0.196 0.123 -0.810 

LSTM 2.278 2.257 1.614 2.953 0.329 0.188 -0.762 

Mean*  2.266 2.247 1.741 2.808 0.263 0.120 -0.781 

         

 

SPEI 6 

GAM 1.260 1.219 0.890 1.721 0.224 0.179 -1.263 

LSTM 1.194 1.167 0.664 1.320 0.297 0.091 -1.208 

Mean* 1.227 1.196 0.795 1.734 0.259 0.122 -1.263 

         

 

SPEI 12 

GAM 0.851 0.875 0.675 0.986 0.088 -0.448 -1.047 

LSTM 0.692 0.715 0.530 0.814 0.079 -0.413 -1.011 

Mean* 0.771 0.795 0.603 0.900 0.083 -0.433 -0.104 

Mean* - Combination interval prediction, SD – Standard deviation 
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A comparative evaluation of all models (i.e. GAM, LSTM, and Mean* limits) using PI indices 

for PINC value of 95% is shown in Table 6.9. The LSTM-fQRA showed a valid PICP at 1- 

month timescale, GAM-fQRA showed a valid PICP at 6- month timescale while at 12- month 

timescale; no valid PICP was obtained since all the models had the same value. It should be 

noted that, although the PICP was not valid at a 90% confidence level, the difference was not 

greater than 1.8%. Khosravi et al. (2010) accepted metamodel PICP close to a 90% confidence 

level. At 1- and 12- month timescales, LSTM-fQRA has the smallest PINAW while Mean* 

showed the same at 6- month timescale. The performance of LSTM-fQRA seems to be best in 

conducting drought prediction compared to the other models. It is the only model that had a 

PICP of exactly 95% at 1- month timescale and a reasonable variation at 6- and 12- month 

timescales. The model further showed the lowest PINAW at two timescales (i.e. 6- and 12- 

month). The smaller the PINAW, the better the detecting ability it can reach, as a result, a 

smaller PINAW and a larger PICP are desirable in constructing a PI (Pang et al., 2018). 

 

Table 6.9: Comparative evaluation of models using prediction interval indices. 
Index timescale  LSTM-fQRA GAM- fQRA Mean*  

 

1 

PICP 0.950 0.942 0.942 

Mean* PIW 2.28 2.25 2.266 

PINAW 1.65 2.75 2.054 

     

 

6 

PICP 0.94 0.948 0.966 

Mean* PIW 1.19 1.26 1.227 

PINAW 1.82 1.52 1.307 

     

 

12 

PICP 0.936 0.936 0.936 

Mean* PIW 0.69 0.85 0.771 

PINAW 2.44 2.74 2.592 

 

6.5 Implications of the study findings 

Due to the impacts of a changing climate, extreme events have been shown to increase in both 

frequency and magnitude. Extremes have also been reported in the Limpopo River Basin of 

southern Africa within which the study area is located (Alemaw and Kileshye-Onema, 2014). 

Further, drought trends analysis in this study has shown that drought is increasing and 

becoming more intense in the LRC. When considering the difference between precipitation and 

evaporation as a function of global temperature changes, the subtropics generally display an 

overall trend towards drying (IPCC, 2018). Increased temperatures are likely to impact surface 

water resources negatively, such that reduction in the availability of water resources at 2°C of 

global warming is projected to be greater than 1.5°C (IPCC, 2018). Apart from the natural 
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factors, anthropogenic factors such as exponential population growth also play a significant 

role in pressure exerted on water resources at the catchment level. 

 

Hydrological extremes such as drought impact negatively on economies, the environment, 

biodiversity, water resources, and communities and their livelihoods. Droughts, more so when 

they occur in series, significantly erode poor people’s assets and further undermine their 

livelihoods in terms of labour productivity, housing, infrastructure, and social networks 

(Olsson et al., 2014). Although studies such as Stagge et al. (2015) have correlated drought 

events to drought impacts, Haro-Monteagudo et al. (2017) indicated that this only provides 

insight once a drought event has passed. Drought prediction is therefore a significant practice, 

as the correlation between the prediction and potential impacts can be drawn. This study 

applied seven specialised drought prediction models. These models demonstrated their 

potential to forecast future drought conditions in a semi-arid LRC. The prediction tools were 

formulated based on drought indices time series (i.e. SPEI), therefore, these tools have the 

potential not to only predict drought but also flood events. This is because the SPEI time series 

depicts both periods of water excess and deficit in the environment. This, therefore, makes 

these prediction tools versatile and increases their usefulness in hydrological extremes 

prediction as they have the capability of predicting intense drought and extreme floods.  

 

The two best performing models after uncertainty analysis can be incorporated into already 

existing Early Warning Systems (EWS) programmes from SAWS and DWS for drought risk 

reduction. Drought risk assesses the impacts on human activities, economy, and environmental 

systems intending to identify appropriate strategies to mitigate potential impacts (Jenkins, 

2013). The EWS anticipate the effects that drought may have on a system to trigger necessary 

mitigation measures (Rossi et al., 2008). Therefore, by incorporating LSTM-fQRA and GAM-

fQRA as prediction tools in drought EWS in the LRC and catchments with similar 

characteristics to those of the LRC, is likely to improve the reliability of these EWS since the 

prediction tools were subjected to uncertainty analysis. These improved EWS have the 

potential to aid in reducing the impact of climate extremes on communities and the catchments 

economy.  

 

The EWS plays a significant role in ensuring equitable water allocation during periods of 

drought induces water deficit. When water authorities (i.e. national, provincial, local water 

manager) are knowledgeable of a probable drought event in the coming rainfall season, they 
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are better placed at triggering management strategies that are in line with the available water 

resources. The abstractions of water from the Luvuvhu River for agricultural purposes, for 

instance, must be closely monitored during drought periods together with the management of 

the major reservoirs in the catchment (i.e. Albasini, Nandoni, and Vondo dams). Proper 

management of these important water resources is only possible if the authorities are aware of 

what is likely to come in the next season. Although applied for semi-arid environments, these 

tools are applicable in arid and humid environments. This, however, would require a 

determination of features of importance, since drought development is affected by different 

features in different areas. The prediction tools presented in this study are tailored for the LRC 

and will add into existing decision support tools such as GCM based models for operational 

seasonal forecasts generated by the South African Weather Service and other climate centres. 

 

6.6 Chapter summary 

This chapter presented drought prediction models as applied in this study. The two learning 

approaches used were statistical (GAM) and machine learning (LSTM). As indicated in 

Chapter 5, only the highest scoring index was considered in drought prediction. SPEI scored 

the highest and was found to be the best index to assess drought in the LRC. Seven models 

were applied based on SPEI time series at 1-, 6- and 12- month timescales. Due to the 

complexity of the environmental time series, this study conducted a time series decomposition 

to reduce the complexities and improve prediction accuracy. Variable selection was conducted 

to determine their important influence in the SPEI time series. It was found that rainfall, non-

linear trend, and lags 1 & 2 time-series were most important in predicting an SPEI time-series, 

and this was realised across all the timescales. The training and testing period varied between 

the timescales. All model predictions were combined to improve drought prediction accuracy. 

The R2 was used to determine a correlative relationship between the target and predicted values 

while five statistical measures were used to determine the model performance. At 1- and 6- 

month timescales, the prediction combination showed to be the best GAM model while for the 

case of LSTM the same was realised in all timescales. The study also found that the correlation 

between target values and LSTM and LSTM-fQRA was the same at 0.9997 at 1- month and 

0.9996 at 6- and 12- month timescales. Further statistical evaluations showed that LSTM-fQRA 

was the better model compared to an undecomposed LSTM (i.e. RMSE of 0.0199 for LSTM-

fQRA over 0.0241 for LSTM). The best performing GAM and LSTM based models were used 

to conduct uncertainty analysis, which was based on the prediction interval. The PICP and 
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PINAW results indicated that LSTM-fQRA was the best model to predict the SPEI time series 

at all timescales. 
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7 THESIS CONCLUSIONS AND RECOMMENDATIONS 

Conclusions, Limitations, and Recommendation of the study  

 

7.1 Conclusion  

This study aimed to apply drought prediction models based on statistical and machine learning 

techniques using a semi-arid catchment in north-eastern South Africa as a case study. The LRC 

was selected for its significant role as an economic hub of Limpopo Province since the Levubu 

valley is one of the largest agricultural producers in the country. To achieve the main objective, 

this study formulated three specific objectives that were based on drought assessment, 

characterisation of historical drought events & evaluation of drought indices, and then applied 

hybrid models based on statistical and machine learning techniques to predict drought. 

 

For the case of drought assessment, all the indices detected major historical drought events that 

have been reported in the study area, although the precipitation based indices were the only 

ones that categorised the 1991/92 drought as extreme at 6- and 12- month timescales in two 

stations while the streamflow index and NADI underestimated the event. The indices further 

showed that the most prevalent drought event in the LRC was mild drought. Extreme drought 

events were the least showed at 6.42%, 1.08%, 1.56%, and 4.4% for SPI, SPEI, SSI, and NADI 

respectively. Considering the MK trend test, the standardised indices detected a negative trend 

that showed that drought severity increased in the study area throughout the study period while 

NADI showed a positive upward trend which depicts a decreased drought severity throughout 

the study period. There was therefore a need to further characterise the drought events in terms 

of magnitude, duration, frequency, and severity as detected by these indices to get a better 

understating of their performance in detecting and assessing drought conditions in the study 

area. The study found that there was no distinct pattern of spatial variability of drought events 

in the study area, and this may have been influenced by the density of stations that were 

concentrated in the upper reaches of the catchment. 

 

Drought characterisation was based on drought duration, intensity, frequency, magnitude, and 

severity. An increased drought duration was observed between 1986 - 1996 while the shortest 

duration was observed between 1996 - 2006 followed by 2006 - 2016. SPI showed the highest 

severity followed by SPEI, NADI, and then the SSI. The study found that lower drought 

severity corresponded to much-reduced drought intensity and this was realised in all timescales. 
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Further, drought intensity was shown to increase with an increasing timescale (i.e. 1- month 

timescale showed an average severity for SSI at -7.29 while the 12- month showed the same as 

-16.62). The relationship between drought severity and duration revealed a strong linear 

relationship across all indices at all timescales. Drought indices were evaluated for their 

strength in detecting hydrological drought and suitability for drought assessment in the LRC. 

Making use of the decision criteria, indices were evaluated. According to the raw scores of 

each of the five criteria SPEI ranked the highest with a total weight score of 129, SSI scored 

122, and then the SPI with a score of 106, and lastly the NADI with a score of 76. Since SPEI 

ranked the highest of all the four indices evaluated, it was regarded as the best index to assess 

and characterise historical drought conditions on the LRC.  

 

A total of seven models were applied based on SPEI time-series at 1-, 6- and 12- month 

timescales. Because of the complexity of the environmental time series, this study conducted a 

time series decomposition to reduce the complexities and improve prediction accuracy. 

Variable selection was conducted to determine their important influence in the SPEI time 

series. It was found that rainfall, non-linear trend and lags one and two of the SPEI time series 

were more important in predicting an SPEI time-series and this was realised across all the 

timescales. The training and testing period varied between the timescales since the length 

differed respectively. Predictions from the different learning approaches were combined to 

further improve drought prediction accuracy. The R2 was used to determine a correlative 

relationship between the target and predicted values while five statistical measures were used 

to determine the model performance. At 1- and 6- month timescales, the prediction combination 

was shown to be the best GAM model while for the case of LSTM the former was found in all 

timescales. The study also found that the correlation between target values and LSTM and 

LSTM-fQRA predicted values were the same at 0.9997 at 1- month and 0.9996 at 6- and 12- 

month timescales. Further statistical evaluations showed that LSTM-fQRA was the better 

model compared to an undecomposed LSTM (i.e. RMSE of 0.0199 for LSTM-fQRA over 

0.0241 for LSTM). Only the best performing GAM and LSTM based models were used to 

conduct uncertainty analysis, which was based on the prediction intervals. The PICP and 

PINAW results indicated that LSTM-fQRA was the best model to predict SPEI time-series at 

all timescales. This, therefore, indicates that deep learning neural network models are better in 

predicting drought in environments characterised by semi-arid conditions. The models can be 

incorporated into early warning systems for drought risk reduction. 
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The study hypothesised that a multivariate index (NADI) was better in drought assessment and 

characterisation compared to univariate indices. Considering the evaluation criteria, NADI 

scored the lowest with a weight of 76 while SPEI scored 126. Therefore, the study rejected the 

null hypothesis thereby accepting the alternative hypothesis based on the index evaluation 

results. The second hypothesis was that drought severity increases with an increase in the 

timescale. The second hypothesis was found to be true and therefore the study rejected the 

alternative hypothesis. This was further found to correlate with what has been reported in the 

literature. This study further hypothesised that hybrid models are more effective in predicting 

drought conditions compared to individual models. This study found that hybrid models 

performed better at 1- and 6- month timescales for statistical learning while machine learning 

showed the same for all timescales. For the case of statistical learning, at 12- month timescale, 

the null hypothesis was rejected for GAM based models since hybrid models outperformed a 

single GAM. However, for machine learning, LSTM rejected the alternative hypothesis at all 

timescales. The overall conclusion is that hybrid models are better for drought prediction given 

that the majority of the timescales based on both statistical and machine learning rejected the 

alternative hypothesis. 

 

7.2 Limitations of the study and Recommendations  

Based on the findings of this study, some limitations were realised and recommendations for 

further studies and operations were suggested. The first major limitation of the study was in 

the formulation of NADI. Long-term soil moisture data is one of the input variables required 

for formulating the index and this is not readily available in South Africa. This study, therefore, 

used Giovanni satellite-based MERRA-2 model data as a soil moisture proxy to formulate 

NADI. Satellite-based data have their inherent limitations in capturing the accuracy of variables 

such as soil moisture in this case. This study, therefore, recommends that there be continuous 

monitoring of soil moisture in South Africa to enable an effective assessment of drought at all 

components of the hydrological cycle. This should be available in an open access repository to 

enable access by academics, researchers, students, and agricultural practitioners, and any other 

interested stakeholders. 

 

Weather stations with quality rainfall and temperature data are clustered in the upper reaches 

of the LRC, with the lower reaches having major inconsistent gaps while some stations were 

no longer operational. The quality of streamflow data for the majority of the catchment was 
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found to be also poor and inconsistent. Although there are not many economic activities in the 

lower reaches of the catchment, there is a need to monitor environmental changes as this gives 

an overall picture of the catchment health. This study, therefore, recommends the refurbishment 

of the non-operating stations and the establishment of new stations in the middle and lower 

reaches of the catchment. This will enable researchers and planners to get a better spatial and 

temporal variability of drought conditions in the catchment. Further to the latter, this will 

enable a better impact assessment study and for the planning of resource allocations during 

drought events. 

 

Studies of hydrological extremes characterisation (i.e. frequency, spatial extent, and severity) 

have been well documented in the literature, however, a detailed analysis of compound 

extremes (occurrence of multiple events with extreme impacts) of drought can yield useful data 

that can be used together in early warning systems of drought. This study, therefore, 

recommends such studies in semi-arid catchments of developing nations to manage drought 

risk. Although LSTM had been compared to RNN in other areas of studies including 

environmental time series, such has not been done for a drought time series specifically. This 

study recommends that this be done also for a drought time series in future studies. The 

predicted outputs of deep learning techniques should also be compared against the current 

systems used to predict drought at national and provincial levels in South Africa. Dynamic 

models should also be used in conjunction with machine learning techniques to predict drought 

conditions in future studies. The level of uncertainty for the best performing GAM and LSTM 

based models was achieved using prediction interval indices (i.e. PICP, PIW, and PINAW) in 

this study. A robust uncertainty analysis using a bootstrapping procedure is therefore 

recommended for further studies. This should be compared to the findings from prediction 

interval indices. Future research can further assess drought conditions making use of extreme 

value theory via the copula approach. While making use of downscaled hydro-meteorological 

variables, operational forecasts using LSTM-fQRA (the best performing model in non-

operational forecasting) can be achieved. This was not the scope of the current study; however, 

such a study has the potential to yield reliable results on future drought conditions based on 

deep learning neural networks. This can also translate into better future water management in 

the catchment during drought periods. 
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APPENDICES 
Appendix A: Chapter 4 

  

Figure A1: SPI 1 time series. 
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Figure A2: SPI 6 time series. 
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Figure A3: SPI 12 time series. 
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Figure A4: SPEI 1 time series. 
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Figure A5: SPEI 6 time series. 
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Figure A6: SPEI 12 time series. 
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Figure A7: SPI 1 non-liner trend. 
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Figure A8: SPI 6 non-linear trend. 
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Figure A9: SPI 12 non-linear trend. 
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Figure A10: SPEI 1 non-linear trend. 
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Figure A11: SPEI 6 non-linear trend. 
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Figure A12: SPEI 12 non-linear trend. 
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Figure A13: SSI 1 non-linear trend. 
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Figure A14: SSI 6 non-linear trend. 
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Figure A15: SSI 12 non-linear trend. 
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Appendix B: Chapter 5 

Table B1:  Duration, Severity and Intensity of drought events for different periods as per SPI, SPEI, SSI, and NADI. 
  1986-1996 1996-2006 2006-2016 

Station Drought 

indicator 

Longest Strongest Highest Longest Strongest Highest Longest Strongest Highest 

  Year D Year S Year I Year D Year S Year I Year D Year S Year I 

Lev SPI 1 1991 - 1992 15 1991 - 1992 -11.25 1989 -1.22 1998+ 2003 5 1998 -4.022 2001 -1.45 2012 - 2015 40 2012 - 2015 -50.77 2011 -1.435 

6 1991 - 1992 15 1991 - 1992 -12.94 1991 - 1992 -0.862 2004 - 2005 10 2004 - 2005 -3.94 1998 - 1999 -0.427 2011 - 2016 55 2011 - 2016 -91.34 2011 - 2016 -1.661 

12 1992 - 1993 13 1992 - 1993 -10.28 1992 - 1993 -0.791 2002 - 2003 15 2002 - 2003 -3.75 2002 - 2003 -0,25 2012 - 2016 57 2012 - 2016 -116.62 2012 - 2016 -2.046 

SPEI 1 1991 - 1992 12 1991 - 1992 -6.628 1991 - 1992 -1.411 1998+ 2002 

- 2004 

3 2005 -3.036 2001 -1.252 2012 - 2013 17 2012 - 2013 -19.125 2016 -1.639 

6 1991 - 1992 13 1991 - 1992 -11.025 1991 - 1992 -0.848 2004 - 2005 14 2004 - 2005 -6.504 2004 -0.511 2011 - 2016 57 2011 - 2016 -74.443 2011 - 2016 -1.306 

12 1994 - 1995 14 1992 - 1993 -10.669 1992 - 1993 -0.821 2002 - 2004 16 2002 - 2004 -6.187 2005 -0.434 2012 - 2016 57 2012 - 2016 -80.179 2012 - 2016 -1.407 

Mat SPI 1 1994 9 1994 -7.06 1995 -0.72 2005 6 1998 -4.32 1997 -1.47 2012 - 2016 8 2014 - 2015 -11.22 2013 - 2014 -1.186 

6 1993 - 1995 17 1991 - 1992 -16.54 1991 - 1992 -1.103 2004 - 2005 14 2004 - 2005 -11.34 2001 -0.83 2006 - 2007 13 2015 - 2016 -25.54 2015 - 2016 -2.322 

12 1990 - 1993 36 1990 - 1993 -22.67 1993 - 1995 -0.718 2002 - 2004 24 2002 - 2004 -16.11 2005 -0.951 2011 - 2016 54 2011 - 2016 -85.01 2011 - 2016 -1.574 

SPEI 1 1994 9 1994 -6.311 1995 -0.916 1999+ 2005 5 2005 -4.063 1997 -1.515 2015 - 2016 12 2015 - 2016 -12.560 2016 -1.661 

6 1993 - 1994 18 1991 - 1992 -15.656 1991 - 1992 -0.979 2004 - 2005 15 2004 - 2005 -10.089 2001 -0.702 2014 - 2016 21 2014 - 2016 -28.695 2014 - 2016 -1.366 

12 1993 - 1995 25 1991 - 1992 17.256 1991 - 1992 -1.233 2001 - 2003 22 2001 - 2003 -13.157 2005 -0.844 2012 - 2014 27 2014 - 2016 -32.116 2014 - 2016 -1.606 

Muk SPI 1 1991 - 1992 8 1991 - 1992 -5.2 1994 -1.47 2005 7 2005 -3.98 2003 -0.815 2010 - 2013 35 2010 - 2013 -35.72 2010 - 2013 -1.021 

6 1991 – 

1992+ 1995 

12 1991 - 1992 -7.9 1991 - 1992 -0.658 2003 6 2003 -1.76 2004 -0.43 2009 - 2014 62 2009 - 2014 -97.77 2009 - 2014 -1.578 

12 1994 - 1995 14 1992 -7.53 1992 -0.685 2002 - 2003 10 2002 - 2003 -2.29 2002 - 2003 -0.229 2009 - 2015 71 2009 - 2015 -103.17 2009 - 2015 -1.453 

SPEI 1 1991 - 1992 11 1991 - 1992 -9.468 1994 -1.391 2005 7 2005 -6.627 1997 -1.399 2013 - 2014 14 2013 - 2014 -13.685 2016 -1.346 

6 1991 - 1992 14 1991 - 1992 -13.489 1991 - 1992 -0.964 2004 - 2005 14 2004 - 2005 -11.790 2004 - 2005 -0.842 2011 - 2015 42 2011 - 2015 -50.521 2011 - 2015 -1.203 

12 1993 - 1995 25 1993 - 1995 -13.91 1993 - 1995 -0.556 2002 - 2003 16 2002 - 2003 -11.764 2005 - 2006 -0.843 2012 - 2014 27 2015 - 2016 -32.116 2015 - 2016 -1.606 

Nooit 

 

SPI 1 1991 7 1991 -4.92 1993 -0.99 2002 - 2003 6 2002 - 2003 -4.99 2001 -1.063 2011 - 2012 10 2011 - 2012 -5.78 2001 -1.46 

6 1991 - 1992 15 1991 - 1992 -19.91 1991 - 1992 -1.327 2004 - 2005 14 2004 - 2005 -14.22 2004 - 2005 -1.016 2011 - 2012 14 2014 - 2015 -15.97 2014 - 2015 -1.331 

12 1980 - 1991 24 1991 - 1993 -15.42 1987 -0.88 2002 - 2004 24 2002 - 2004 -20.07 2005 - 2006 -1.255 2010 - 2012 28 2014 - 2016 -26.93 2014 - 2016 -1.347 

SPEI 1 1991 7 1992 -5.103 1989 -1.178 2002 – 

2003+ 2005 

6 2002 - 2003 -4.667 2001 -1.355 2011 - 2012 10 2011 - 2012 08.929 2016 -3.061 

6 1991 - 1993 17 1991 - 1993 -17.789 1991 - 1993 -1.046 2004 - 2005 15 2004 - 2005 -13.71 2004 - 2005 -0.914 2014 - 2016 25 2014 - 2016 -33.703 2011 - 1012 -1.14 

12 1992 - 1993 21 1992 - 1993 -15.614 1992 - 1993 -0.744 2002 - 2004 23 2002 - 2004 -19.449 2002 - 2004 -0.846 2015 - 2016 20 2015 - 2016 -35.25 2015 - 2016 -1.768 

Shef SPI 1 1991 - 1992 15 1991 - 1992 -8.82 1987 - 1988 -1.08 2005 8 2005 -3.84 1997+ 2000 -1.16 2015 8 2015 - 2016 -8.04 2015 - 2016 -1.34 

 6 1989 - 1991 28 1989 - 1991 -21.25 1987 -1.134 2004 - 2005 15 2004 - 2005 -13.1 2004 - 2005 -0.873 2014 - 2016 24 2014 - 2016 -22.4 2014 - 2016 -0.933 

12 1990 -1993 56 1990 -1993 -40.25 1987 -0.762 2002 - 2006 36 2002 - 2006 -32.43 2002 - 2006 -0.901 2007 - 2009 26 2012 - 2016 -22.23 2012 - 2016 -1.112 

SPEI 1 1994 7 1994 -4.615 1991 -1.351 2001 - 2001 6 2005 -5.639 2003 -1.310 2015 8 2015 - 2016 -10.295 2011 -2.182 

6 1991 - 1992 17 1991 - 1992 -19.879 1991 - 1992 -1.169 2004 - 2005 16 2004 - 2005 -14.476 2004 - 2005 -0.905 2014 - 2016 25 2014 - 2016 -28.901 2014 - 2016 -1.156 
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12 1989 - 1993 50 1989 - 1993 -32.079 1987 1988 -0.8 2002 - 2004 25 2002 - 2004 -22.881 2002 - 2004 -0.915 2007 - 2009 24 2015 - 2016 -28.626 2015 - 2016 -1.507 

 

Tshi 

SPI 1 1991 - 1992 8 1991 - 1992 -7.68 1991 -1.75 1998 5 1998 -2.78 2004 -1.85 2015 4 2009 -3.99 2009 -1.995 

6 1991 - 1992 13 1991 - 1992 -15.58 1991 - 1992 -1.199 2004 - 2005 10 2004 - 2005 -5.89 2005 -5.43 2008 - 2010 24 2008 - 2010 -21.12 2010 - 2011 -1.585 

12 1990 - 1993 17 1990 - 1993 -18.31 1990 - 1993 -1.077 2002 - 2004 15 2002 - 2004 -5.38 2005 -0.693 2008 -2012 60 2008 -2012 -63.43 2015 - 2016 -1.288 

SPEI 1 1992 8 1991 -9.242 1991 -1.303 1998 5 1998 -3.453 1997 -1.445 2015 - 2016 12 2015 - 2016 -10.405 2013 -2.808 

6 1991 -1992 15 1991 -1992 -17.854 1991 -1992 -1.190 2004 - 2005 14 2004 - 2005 -10.490 2004 - 2005 -0.749 2008 - 

2010+ 2014 

- 2016  

25 2014 - 2016 -16.957 2010 - 2011 -1.302 

12 1994 - 1995 16 1992 - 1993 -18.502 1992 - 1993 -1.322 2003 - 2004 15 2005 - 2006 -8.644 2005 - 2006 -0.786 2009 - 2013 60 2009 - 2013 -59.997 2015 - 2016 -1.272 

 

VB 

SPI 1 1994 11 1991 - 1992 -10.66 1988 -2.08 1998 5 1998 -3.61 2002 -2.48 2014 8 2014 -7.02 2010 -1.173 

6 1994 - 1995 13 1991 - 1992 -19.81 1991 - 1992 -1.651 2004 - 2005 10 2004 - 2005 -6.95 2004 - 2005 -0.695 2014 - 2016 22 2014 - 2016 -25.24 2014 - 2016 -1.147 

12 1991 - 1992 14 1991 - 1992 -22.86 1994 - 1995 -0.782 2002 - 2004 21 2002 - 2004 -8.73 2005 -0.665 2006 - 2010 29 2014 - 2016 -26.05 2014 - 2016 -1.133 

SPEI 1 1995 11 1992 -11.708 1992 -1.464 2005 - 2006 11 2005 - 2006 -4.46 2003 -1.037 2012 - 2013 11 2012 - 2013 -9.114 2016 -1.162 

6 1992 - 1993 14 1992 - 1993 -21.654 1992 - 1993 -1.547 2005 - 2006 14 2005 - 2006 -9.763 2005 - 2006 -0.697 2015 - 2016 17 2015 - 2016 -20.782 2015 - 2016 -1.223 

12 1992 - 1993 14 1992 - 1993 -26.058 1992 - 1993 -1.861 2003 - 2004 16 2003 - 2004 -8.535 2003 - 2004 -0.534 2011 - 2013 24 2011 - 2013 -20.484 2015 - 2016 -1.187 

 

A9H012 

SSI 1 1992 15 1992 -32.7 1992 -2.18 2005 11 2005 -12.29 2005 -1.117 2015 - 2016 10 2015 - 2016 -5.72 2007 -1.375 

6 1992 - 1996 53 1992 - 1996 -73.1 1992 - 1996 -1.379 2003 - 2005 22 2003 - 2005 -15.52 2003 - 2005 -0.706 2006 - 2007 14 2006 - 2007 -8.62 2016 -0.716 

12 1992 - 1996 53 1992 - 1996 -81.06 1992 - 1996 -1.529 2003 -2004 13 2003 -2004 -5.46 2003 -2004 -0.42 2007 - 2008 13 2007 - 2008 -9.66 2007 - 2008 -0.743 

A9H013 SSI 1 1992 17 1992 -23.52 1992 -1.384 2005 35 2005 -32.7 2005 -0.934 2015 - 2016 12 2015 - 2016 -11.94 2015 - 2016 -0.995 

6 1988 16 1988 -14.78 1991 - 1992 -1.896 2004 - 2006 25 2004 - 2006 -28.65 2004 - 2006 -1.146 2012 - 2013 16 2012 - 2013 -8.76 2015 - 2016 -0.932 

12 1989 - 1993 40 1989 - 1993 -25.31 1989 - 1993 -0.633 2002 - 2006 52 2002 - 2006 -46.68 2002 - 2006 -0.894 2011 - 2016 58 2011 - 2016 -15.27 2011 - 2016 -0.527 
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Table B2:  Drought frequency for different periods as per SPI, SPEI, SSI, and NADI. 
  

  

  

1986-1996 1996-2006 2006-2016  

Station 
Drought 

indicator 
Timescale Year D Dtotal 

F 

(%) 
Year D Dtotal 

F 

(%) 
Year D Dtotal 

F 

(%) 

  

KA 

 SPI 
1 1994 11 120 9,2 2004 - 2005 6 122 4,9 2012 8 109 7,3 
6 1992 - 1995 13 115 11,3 2004 - 2006 13 120 10,8 2011 - 2012 15 121 12,4 

12 1989 - 1990 19 108 17,6 2002 - 2004 24 120 20,0 2015- 2016 21 121 17,4 

SPEI 

1 1994 13 120 10,8 1998 + 2003 5 122 4,1 2012 8 109 7,3 

6 1991 - 1992 15 115 13,0 2004 - 2005 16 120 13,3 2014 - 2016 22 121 18,2 

12 1994 - 1995 23 108 21,3 2003 - 2004 16 120 13,3 2015 - 2016 20 121 16,5 

A9H006 SSI 

1 1991 - 1995 58 120 48,3 2004 - 2005 15 122 12,3 2011 - 2012 17 109 15,6 

6 1990 - 1996 69 115 60,0 2004 - 2005 14 120 11,7 2014 - 2016 21 121 17,4 

12 1989 - 1995 82 108 75,9 1996 - 1998 22 120 18,3 2015 - 2016 14 121 11,6 

 NADI 1 1987 - 1988 9 120 7,5 2005 5 122 4,1 2008 5 119 4,2 

Lev 

SPI 

1 1991 - 1992 15 120 12,5 1998+ 2003 5 122 4,1 2012 - 2015 40 109 36,7 

6 1991 - 1992 15 115 13,0 2004 - 2005 10 120 8,3 2011 - 2016 55 121 45,5 

12 1992 - 1993 13 108 12,0 2002 - 2003 15 120 12,5 2012 - 2016 57 121 47,1 

SPEI 

1 1991 - 1992 12 120 10,0 

1998+ 2002 - 

2004 3 122 2,5 2012 - 2013 17 109 15,6 

6 1991 - 1992 13 115 11,3 2004 - 2005 14 120 11,7 2011 - 2016 57 121 47,1 

12 1994 - 1995 14 108 13,0 2002 - 2004 16 120 13,3 2012 - 2016 57 121 47,1 

Mat 

SPI 

1 1994 9 120 7,5 2005 6 122 4,9 2012 - 2016 8 109 7,3 

6 1993 - 1995 17 115 14,8 2004 - 2005 14 120 11,7 2006 - 2007 13 121 10,7 

12 1990 - 1993 36 108 33,3 2002 - 2004 24 120 20,0 2011 - 2016 54 121 44,6 

SPEI 

1 1994 9 120 7,5 1999+ 2005 5 122 4,1 2015 - 2016 12 109 11,0 

6 1993 - 1994 18 115 15,7 2004 - 2005 15 120 12,5 2014 - 2016 21 121 17,4 

12 1993 - 1995 25 108 23,1 2001 - 2003 22 120 18,3 2012 - 2014 27 121 22,3 

Muk SPI 

1 1991 - 1992 8 120 6,7 2005 7 122 5,7 2010 - 2013 35 109 32,1 

6 

1991 – 1992+ 

1995 12 115 10,4 2003 6 120 5,0 2009 - 2014 62 121 51,2 

12 1994 - 1995 14 108 13,0 2002 - 2003 10 120 8,3 2009 - 2015 71 121 58,7 

 

SPEI 1 1991 - 1992 11 120 9,2 2005 7 122 5,7 2013 - 2014 14 109 12,8 

 

6 1991 - 1992 14 115 12,2 2004 - 2005 14 120 11,7 2011 - 2015 42 121 34,7 

12 1993 - 1995 25 108 23,1 2002 - 2003 16 120 13,3 2012 - 2014 27 121 22,3 

Nooit SPI 

1 1991 7 120 5,8 2002 - 2003 6 122 4,9 2011 - 2012 10 109 9,2 

6 1991 - 1992 15 115 13,0 2004 - 2005 14 120 11,7 2011 - 2012 14 121 11,6 

12 1980 - 1991 24 108 22,2 2002 - 2004 24 120 20,0 2010 - 2012 28 121 23,1 
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SPEI 

1 1991 7 120 5,8 

2002 – 2003+ 

2005 6 122 4,9 2011 - 2012 10 109 9,2 

6 1991 - 1993 17 115 14,8 2004 - 2005 15 120 12,5 2014 - 2016 25 121 20,7 

12 1992 - 1993 21 108 19,4 2002 - 2004 23 120 19,2 2015 - 2016 20 121 16,5 

Shef 

SPI 

1 1991 - 1992 15 120 12,5 2005 8 122 6,6 2015 8 109 7,3 

6 1989 - 1991 28 115 24,3 2004 - 2005 15 120 12,5 2014 - 2016 24 121 19,8 

12 1990 -1993 56 108 51,9 2002 - 2006 36 120 30,0 2007 - 2009 26 121 21,5 

SPEI 

1 1994 7 120 5,8 2001 - 2001 6 122 4,9 2015 8 109 7,3 

6 1991 - 1992 17 115 14,8 2004 - 2005 16 120 13,3 2014 - 2016 25 121 20,7 

12 1989 - 1993 50 108 46,3 2002 - 2004 25 120 20,8 2007 - 2009 24 121 19,8 

Tshi 

SPI 

1 1991 - 1992 8 120 6,7 1998 5 122 4,1 2015 4 109 3,7 

6 1991 - 1992 13 115 11,3 2004 - 2005 10 120 8,3 2008 - 2010 24 121 19,8 

12 1990 - 1993 17 108 15,7 2002 - 2004 15 120 12,5 2008 -2012 60 121 49,6 

SPEI 

1 1992 8 120 6,7 1998 5 122 4,1 2015 - 2016 12 109 11,0 

6 1991 -1992 15 115 13,0 2004 - 2005 14 120 11,7 2008 - 2010+ 2014 - 2016 25 121 20,7 

12 1994 - 1995 16 108 14,8 2003 - 2004 15 120 12,5 2009 - 2013 60 121 49,6 

VB 

SPI 

1 1994 11 120 9,2 1998 5 122 4,1 2014 8 109 7,3 

6 1994 - 1995 13 115 11,3 2004 - 2005 10 120 8,3 2014 - 2016 22 121 18,2 

12 1991 - 1992 14 108 13,0 2002 - 2004 21 120 17,5 2006 - 2010 29 121 24,0 

SPEI 

1 1995 11 120 9,2 2005 - 2006 11 122 9,0 2012 - 2013 11 109 10,1 

6 1992 - 1993 14 115 12,2 2005 - 2006 14 120 11,7 2015 - 2016 17 121 14,0 

12 1992 - 1993 14 108 13,0 2003 - 2004 16 120 13,3 2011 - 2013 24 121 19,8 

A9H012 SSI 

1 1992 15 120 12,5 2005 11 122 9,0 2015 - 2016 10 109 9,2 

6 1992 - 1996 53 115 46,1 2003 - 2005 22 120 18,3 2006 - 2007 14 121 11,6 

12 1992 - 1996 53 108 49,1 2003 -2004 13 120 10,8 2007 - 2008 13 121 10,7 

A9H013 SSI 

1 1992 17 120 14,2 2005 35 122 28,7 2015 - 2016 12 109 11,0 

6 1988 16 115 13,9 2004 - 2006 25 120 20,8 2012 - 2013 16 121 13,2 

12 1989 - 1993 40 108 37,0 2002 - 2006 52 120 43,3 2011 - 2016 58 121 47,9 

*D – Duration, Dtotal – period total duration, F – Frequency 
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Figure B3: SPI 1 Drought-intensity-severity curves. 
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Figure B4: SPI 6 Drought-intensity-severity curves. 
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Figure B5: SPI 12 Drought-intensity-severity curves. 
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Figure B6: SPEI 1 Drought-intensity-severity curves. 
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Figure B7: SPEI 6 Drought-intensity-severity curves. 
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Figure B8: SPEI 12 Drought-intensity-severity curves. 
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Figure B9: SSI 1 Drought-intensity-severity curves. 

 
Figure B10: SSI 6 Drought-intensity-severity curves. 

 
Figure B11: SSI 12 Drought-intensity-severity curves. 
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Figure B12: SPI 1 duration-severity curves. 
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Figure B13: SPI 6 duration-severity curves. 
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Figure B14: SPI 12 duration-severity curves. 
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Figure B15: SPEI 1 duration-severity curves. 
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Figure B16: SPEI 6 duration-severity curves. 
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Figure B17: SPEI 12 duration-severity curves. 
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Figure B18: SSI 1 duration-severity curves. 

  
Figure B19: SSI 6 duration-severity curves. 

  
Figure B20: SSI 12 duration-severity curves. 
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Appendix C: Chapter 6 

 

Figure C1:  Anderson-Darling test results for SPEI 6. 
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Figure C2:  Anderson-Darling test results for SPEI 12. 
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Figure C3:  Sample IMFs for SPEI 6 

  
Figure C4:  Sample IMFs for SPEI 12. 
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Figure C5:  Sample gradient boosting for variable of importance (SPEI 6). 
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Figure C6:  Sample gradient boosting for variable of importance (SPEI 12). 
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Figure C7:  LSTM model summary for SPEI 1. 
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Figure C8:  LSTM learning curve at SPEI 1. 
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Figure C9:  LSTM model summary for SPEI 6. 
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Figure C10:  LSTM learning curve at SPEI 6. 
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Figure C11:  LSTM model summary for SPEI 12. 
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Figure C12:  LSTM learning curve at SPEI 12. 
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