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Abstract

Renewable energy forecasts are critical to renewable energy grids and backup
plans, operational plans and short-term power purchases. This dissertation
focused on forecasting solar irradiance at one radiometric station in South
Africa using high-frequency data obtained from the Vuwani radiometric sta-
tion (USAid Venda). The aim of this dissertation was to compare the predic-
tive performance of the Genetic Algorithm (GA), recurrent neural networks
(RNN) and k-nearest neighbour (KNN) models in forecasting short-term so-
lar irradiance where KNN is used as a benchmark model. From the results
it is discovered that the RNN is the best forecasting model in terms of the
relative mean absolute error (rMAE). The forecasts of the machine learn-
ing algorithms combined using convex combination technique and quantile
regression averaging (QRA) found that QRA is the best model. Predictive
interval widths analysis with 95% level of confidence was performed and the
results showed that QRA over RNN is the best model for forecasting solar
irradiance when looking at the PICP and PANAW. The Diebold-Mariano
test discovered that the tests fall between the -1.96 and 1.96 range, which
tells us that it accepts the null hypothesis. The Murphy diagram presented
and showed the 95% pointwise confidence intervals. The study will have an
impact on the South African power utility decision-makers to align electricity
demand and its supply in an efficient way that promotes potential economic
growth and environmental sustainability.
Keywords: Genetic algorithms, Global horizontal irradiance, K-nearest neigh-
bour, Quantile regression averaging, Murphy diagram, Recurrent neural net-
works.
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Chapter 1

Introduction

Renewable energy sources (RES) are rising rapidly in different countries,

powered by the cost reduction of wind turbines and photovoltaic (PV) pan-

els (Andrade and Bessa, 2017). They are increasingly becoming the future’s

dominant energy source, but harvesting them requires an understanding of

the mechanisms of their volatility and the ability to predict various envi-

ronmental processes over a scale ranger (Kariniotakis, 2017). Such under-

standing of the environment is the key to renewable energy processing, in

particular solar and wind power.

When the global population and industrialisation continue to rise exponen-

tially, the fossil fuels used to generate electricity are also rapidly depleting

(Zendehboudi et al., 2018). The ongoing overuse of fossil fuels in the produc-

tion of electricity continues to inflict environmental problems such as global

warming. RESs are environmentally friendly and inexpensive (Mohammadi

et al., 2016).
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Onshore wind energy offers electricity competitively particularly in compar-

ison to fossil-fuel. Solar PV levelised energy costs (LCOE) significantly re-

duced by 58 percent around 2010-15. Localised solar power and offshore wind

energy demonstrate a 43 percent and 35 percent reduction in the last five

years, respectively (Taylor et al., 2016). Variability and uncertainty of RES

pose difficulties in the maintenance of power systems that offer high-quality

probabilistic forecasts.

Solar energy is among the ultimate valuable sources of renewable energy that

can add to addressing current environmental and energy issues in the electri-

cal grid (Zhandire, 2017). It is widely regarded to be the world’s best-growing

energy industry (Kleissl, 2013). Nonetheless, for proper and effective man-

agement of the electrical grid, the integration of solar energy into the elec-

trical grid requires detailed forecasting (Cristaldi et al., 2017). Policymakers

for power utilities face the problem of coordinating demand and electricity

supply in a cost-effective way which also greatly benefit upcoming economic

growth and environmental sustainability.

Solar irradiance forecasting is critical for backup programming, decision mak-

ing, short-term power production, relocating certain energy sources, backup

utilisation scheduling and peak load demand (Kostylev et al., 2011). It is rel-

evant for various other activities along with PV, agriculture, medical studies

applications and desalination by seawater (Rezrazi et al., 2016). The steadily

increasing integration of solar systems around the world is an indication of

the need for accurate knowledge and understanding of solar resources in
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the design of solar electric grids. Solar irradiance studies are therefore of

great importance for the optimal project and power forecasting of PV grid-

connected plants.

Wind energy is the use of wind to provide mechanical energy by wind tur-

bines to transform electrical generators and to do certain types of work, such

as grinding or pumping (Pierre et al., 2018). It is also clean, renewable en-

ergy and has much less environmental consequences as opposed to fossil fuel

burning. It is perhaps the source of renewable energy attracting the most

publicity from researchers and professionals (Raftery et al., 2013). Nonethe-

less, other forms of renewable energy must face a range of operational and

economic issues. These problems include modeling and forecasting of the

cycle of wind power generation at different temporal and spatial rates, to

eventually be used as feedback for decision-making.

When solar and wind power are becoming more popular, forecasts that are

embedded in energy management systems are becoming increasingly valuable

for operators of electric power systems.

Renewable energy forecasting is a rapidly developing field and continuous

attempts are underway to tailor products to the needs of forecast users (An-

drade and Bessa, 2017).

1.1 Background

Liu and Jordan (1960) conducted initial studies of solar energy. Their re-
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search concentrated on the association of clear days on a horizontal surface

among normal diffuse and global irradiance elements, with measurements

from 98 sites in Canada and the United States (US). Research teams have in-

deed been paying much attention to solar irradiance ever since, using several

methods of modeling. Solar irradiance forecasts consist mainly of physical

methods and content statistical models (Yang et al., 2013). Physical meth-

ods for solar irradiance forecasts are built on numerical weather predictions

(NWP).

The solar irradiance forecasting techniques are divided into three groups

which are machine learning, sophisticated mathematical statistics and nu-

merical weather forecasting (Sun et al., 2018). Researchers were not previ-

ously paying attention to machine learning techniques but currently, they

are paying attention to machine learning techniques such as artificial neural

networks (ANN) and support vector machines (SVM) in forecasting solar

irradiance (Fan et al., 2018).

Wind power was used the same way that humans placed sails in the wind

(Al-Hassan et al., 1986). In what became Iran, Afghanistan and Pakistan

by the 9th century, wind driven machines used to cultivate crops and pump

water, the windmill and the windpump, were founded. Wind power was gen-

erally available and not limited to or later requiring fuel sources at the banks

of fast-flowing streams (Lucas, 2006).

In July 1887 Prof James Blyth of Anderson’s College, Glasgow (the prede-
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cessor of Strathclyde University) designed the first windmill used to generate

electricity in Scotland (Price, 2005). The first world’s house to have its elec-

tricity supplied by wind power installed in the garden his holiday cottage.

Different forecast perspectives have been addressed as per the massive vol-

ume of studies in solar irradiance forecasting, including long-term (dura-

tion of three or more years), short-term (commonly less than 3 months but

also with a period of up to 1 year) and medium-term horizons (typically 3

months to 1 year but has a period from one to three years). Meteorological

variables like temperature, humidity, precipitation, cloud cover, wind speed,

geographic variables such as latitude, longitude, altitude, etc. are also in-

cluded in the function variables used during earlier studies and astronomical

quantities such as declination, hour, angle and zenith angle as response vari-

able (Khatib and Elmenreich, 2015).

This study focuses on forecasting solar energy using genetic algorithm (GA),

recurrent neural networks (RNN) and the k-nearest neighbours (KNN) mod-

els where the KNN is being used as a benchmark model that has not yet been

implemented to South African solar energy, to the best of our knowledge.

South Africa receives sunlight throughout the year so the natural advantage

of South Africa is that it is included in the world’s highest in renewable en-

ergy.

The global average annual 24-hour solar radiation for South Africa has been

about 220 W/m2, 150 W/m2 for parts of the US and about 100W/m2
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towards Europe and the United Kingdom (Al-Karaghouli and Kazmerski,

2013). South Africa’s local assets are, therefore, one of the world’s best.

Little work on solar irradiance and wind forecasting has been conducted in

South Africa and this dissertation aims to make a contribution in this crucial

field.

1.2 Problem statement

South Africa (SA) is one of the most developed countries on the African

continent. SA still has a surplus of fossil fuel in the form of coal, hence many

coals powered power stations exist and are newly built (Al-Karaghouli and

Kazmerski, 2013). At the very same time, SA has a surplus of sunlight which

is very well suited for solar water heating and generating electricity. Solar-

powered heating and cooling become more appealing with the rising prices

of coal-powered energy. The legislation is yet one major hurdle. Actually

in SA domestic grid linked solar systems are not allowed to feedback into

the grid and though the concept is available to few municipalities. So there

should be a good mix of sustainable energy and conventional energy sources

in SA in the future. The SA government relates the extraordinary fall in

the balance of the energy reserve over recent years to rapid economic growth

and the resulting rise in electricity demand (Odhiambo, 2010). Odhiambo

(2009) observed that the correlation between electricity consumption and

economic growth in SA is directly proportional. The forecasts which will be

obtained in this dissertation will help decision-makers in Eskom in short-term

load forecasting (STLF) planning of the operations of the renewable energy

companies.
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1.3 Purpose of the study

Aim

This study aims to compare the predictive performance of GA, RNN and

KNN techniques on forecasting solar irradiance at one radiometric station in

South Africa.

Objectives

The objectives of this study are to:

� develop GA, RNN and KNN models for short-term solar power fore-

casting,

� evaluate the performance of the models,

� evaluate the accuracy of the forecasts,

� evaluate the forecast combination,

� suggest policy implications.

1.4 Dissertation scope

This study is motivated by the fact that SA is experiencing difficulties in pro-

ducing more electricity while there is a lot of renewable energy sources that

can be used to produce more electricity such us using solar and wind energy.

Hence, the purpose of this dissertation is to compare different models for fore-

casting renewable energy in SA and to predict the relationship between load



8

demand and exploratory variables such as humidity and barometric pressure.

The data which is going to be used in this dissertation is obtained from

the Vuwani radiometric power station. The minute’s historical load data is

collected from January 2020 till October 2020. GA, RNN and the benchmark

model which is the KNN will be used in predicting the relationship between

load and the exploratory variables named above. The dissertation analysis

will be performed using Python and R statistical packages.

1.5 Outline of the dissertation

The continuation of the dissertation is organised in the following way:

In Chapter 2, we discuss previous literature on concepts of machine learning

and also the summary of studies using strategies similar to those proposed.

A theoretical framework of the machine learning methods being used in this

mini-dissertation is given in Chapter 3. Chapter 4 presents the analysis of

the dissertation. The conclusion and recommendation of the dissertation are

given in Chapter 5.



Chapter 2

Literature review

2.1 Introduction

This chapter gives a summary of renewable energy in South Africa (SA),

along with summaries of certain studies that have used the proposed method-

ology to forecast renewable energy (solar) in various areas of the world.

2.2 Renewable energy components

Renewable energy can be categorised into three groups, Solar energy which

would be the energy we get from the sun, wind energy which is the energy

we get from the wind and hydroelectricity which make up 70% of all the

renewable electricity and generate around 16.6% of global energy resources

(Andrade and Bessa, 2017).

9
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2.3 Review of literature on forecasting using

machine learning techniques

Several alternative ways of forecasting renewable energy have been used. In

addition to the machine learning methods, this part describes several of these

alternative solution applicable to renewable energy forecasting.

Artificial neural networks (ANNs) are being used frequently in renewable en-

ergy forecasting. ANNs based methods actually implemented are feedforward

ANN, cascade-forward backpropagation ANN, generalised regression ANN,

neuro-fuzzy ANN and optimised ANN-genetic algorithm. ANNs can map

relationships between various variables given there is available information

to learn from (Haykin, 2009).

Abedinia et al. (2018) applied a hybrid neural network and metaheuristic

algorithm to their study which was about solar energy forecasting. Cadenas

and Rivera (2009) used ANN for short term wind forecasting in La Venta,

Oaxaca and Mexico. In their report, ANN model used to forecast the hourly

time series indicative of the site. A recurrent neural network (RNN) was

proposed which was based on the control strategy for storage of the battery

capacity in systems generation with renewable energy sources (Capizzi et al.,

2011). Tsai et al. (2017) applied a neural network to the short-term load and

wind power forecasting based on prediction interval.
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2.4 Review of literature on forecasting using

non-machine learning techniques

In addition to machine learning approaches, a variety of alternative methods

were applied to renewable energy forecasting. Peng et al. (2013) suggested a

combined autoregressive and dynamic system (CARDS) for solar irradiance

prediction. The suggested approach improves the global solar irradiance

forecast accuracy 1 hour ahead by 30% compared to ANNs models.

2.5 An overview of renewable energy fore-

casting in South Africa

A lot of research has been done in the past with interet interest in predicting

SA’s renewable energy using various methods and techniques. Andrade and

Bessa (2017) used a system of numerical weather predictions (NWP) to con-

duct their research on enhancing renewable energy forecasting. Throughout

their report, they suggested a feature engineering approach to obtain further

details for wind and solar energy forecasts from a NWPs grid. They consid-

ered that adequate processing of direct NWP data elements can boost the

forecasting capability and that the renewable energy forecaster could invest

time in this knowledge discovery process.

Tartibu and Kabengele (2018) suggested the use of ANN as a new strat-

egy for assessing future energy consumption levels in SA. In their study,

particle swarm optimisation (PSO) has been used to train ANNs. Estimates

of the annual electricity demand were determined per scenario and it was

noted that the proposed ANN approach attains a comparatively better en-
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ergy demand forecast within acceptable errors. Sigauke (2017) discussed the

implementation of generalised additive models (GAMs) to the prediction of

medium-term demand for electricity utilising data from SA. In his study vari-

able selection was carried out via hierarchical interactions with the use of the

least absolute shrinkage and selection operator (Lasso). Marwala and Twala

(2014) used autoregressive moving average (ARMA), Neural networks (NNs)

and Neuro-Fuzzy (NF) systems to model and forecast non-linear processes.

They found that NF has a better ability than ARMA and NNs to model the

system while NNs are better than ARMA.

Mbuvha et al. (2017) discussed the one-hour and regular wind power gen-

eration forecast for the bayesian neural networks. They found that the NNs

of bayesian neural networks exhibit comparable predictive performance to

maximum likelihood neural networks both one hour and a day ahead fore-

cast. Mpfumali et al. (2019) used Tellerie radiometric station’s data for

space between August 2009 to April 2010 for a probabilistic prediction of

24 hours ahead to the global horizontal irradiance (GHI). They used dif-

ferent techniques in forecasting including quantile regression average (QRA)

and machine learning techniques and it is discovered that QRA gives higher

accuracy than the machine learning techniques looking at the probabilistic

error measures. Zhandire (2017) in their study of the classification of solar

energy resources in SA using new index measured solar radiation resources in

eight stations, five distinct groups using k-means clustering. He found that

the solar utility index (SUI) has higher solar resources which discriminate

and groups compared to other indices such as the probability of persistence
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(POPD) and the fractal dimension.

King et al. (2007) proposed a GA framework using ‘negative load’ and

the ‘inclusive’ strategy. They emphasized that, as wind power cost for the

‘negative load’ approach is presumed to be zero, the results does not show

the actual cost. The actual cost of wind power should therefore be in the

used in the ‘zero-fee’ strategy. They also discovered that the use of wind

power in the economic load dispatch (ELD) computation affects cost, load

volatility pictured by some other plants and reserve necessity because of the

expected error.

Mellit and Shaari (2009) proposed an RNN based approach for forecasting

the regular production of electricity from a PV power system (PVPS). A

dataset has been used in their analysis for 4 years for RNN training and

data for 1 year has been included for RNN testing. They presented the

results based on the performance measure on which they used RNN, r, mean

absolute percentage error (MAPE) and cumulative function distribution. In

this study, three RNN models were compared where the proposed third RNN-

II provided more reliable daily forecasts for generating electricity compared

with the other proposed MLP and RNN-I models.

Grady et al. (2005) worked on GA approach where they used it to achieve

optimal wind turbine location for higher production capacity when limiting

the amount of turbines fixed and land used for every wind farm. In the study,

they considered three cases which are: non-uniform wind having variable

direction, uniform wind having direction and initials with six hundred (600)
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individuals spread over 20 subpopulations.

Cristaldi et al. (2017) introduced a combination approach technique for

short-term forecasting of solar irradiance and photovoltaic power (PV). The

solar irradiance prediction carried out with the help of physical techniques

named clear-sky techniques which forecast solar radiation in the exclusion of

clouds. Short-term PV forecasting is then carried out with the help of auto-

associative kernel regression (AAKR) strategy that is typically implemented

for the detection of faults. The findings of the proposed model show increased

efficacy in forecasting solar irradiance.

Apart from typical interplanetary radiation and hours of sunshine, Adeala

et al. (2015) presents a report on the prediction of global solar radiation

provided by the multiple linear regression. The study is undertaken in all

nine South African provinces. The study revealed that the use of weather

parameters for some locations increases the accuracy and efficiency of solar

radiation models. Khan and Byun (2020) presented work on applying GA

rooted optimised feature engineering and machine learning to the forecasting

of energy consumption. The work was focusing on comparing various fore-

casting methods including XGBoost, support vector regression and k-nearest

neighbor regressor algorithms. The work looked at various meteorological

features which are temperature, wind speed, rain, humidity and time lags.

In this work, it is discovered that combinations of prediction methods yield

good results.
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2.6 Genetic algorithm

John Holland adopted genetic algorithms (GAs) built on Darwin’s evolu-

tionary theory in 1960. In 1989, David E. Goldberg, his student, went on to

improve it (Sadeghi et al., 2014). GA is a metaheuristic technique influenced

by either a natural selection process that originally belonged to the larger

number of evolutionary algorithms (EA). A metaheuristic is a genius tech-

nique that helps guide the study of other heuristics in the search for solutions

to a particular problem (Adewumi and Ali, 2010). GAs are commonly used

by biologically motivated operators to create high-quality optimisation solu-

tions and search problems, such as mutation, crossover and selection (Morales

and Quezada, 1998). GA’s computer simulation helps populations of theo-

retical representations (chromosomes) of candidate solutions (individuals) to

develop toward better solutions of an optimisation problem (Adewumi and

Ali, 2010). Evolution starts with an initial population of all the random in-

dividuals and passes over different generations in search of optimal solutions.

From each successive generation, the quality of individuals in the population

is measured. Many individuals are stochastically collected, updated (mutated

or reprocessed) from the existing population to produce a new population,

which in the next phase of the algorithm becomes the growth population.

GAs provide a generational enhancement in the fitness of chromosomes that

generates certain chromosomes after several generations that are supposed

to contain optimised variable settings (Lucasius and Kateman, 1994).

GAs have already been successfully implemented to different problems,

(Sivanandam and Deepa, 2008), because of their simplicity, global perspective
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and underlying parallel processing. It has been said that an algorithm is a

successful tool in certain real-life COP situations for the startup analysis of

metaheuristic implementation. The following is a brief overview of the GA

image and HSAP operators.

Fitness assessment

The fitness for an individual’s value into a population is formulated as a

measure of the extent of fulfillment of the particular limitations that affect the

allocation. The amount of fulfillment is determined as a component of paired

space utilisation and weights that are assigned to contradictory constraints.

Such two are used to determine the single’s health value (current allocation).

At the allocation levels of the hall and the block/floor (room), fitness values

are taken in real numbers [0,1].

For the allocation of the space, an individual’s fitness within a population

is defined as:

f =
∑
q

wquq ∈ [0, 1], (2.6.1)

where u is the hall scale utilisation variable stated as:

uq =
aij
si

, (2.6.2)

where wq is the weight of restriction q, si is the sum of category i students

where i, j is fixed. In all individuals, throughout the population, the process

is repeated when the best condition for the population is considered.
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An individual’s fitness value is calculated as in equation 2.6.2, with u is

substituted by the usage variable at the level of the floor distribution offered

as:

uq =
Ti

sij
(2.6.3)

and

Ti =

ρ∑
k=1

aik, (2.6.4)

where aik is the amount of classification i allocations to floor k, p the integer

assigning the largest(or lowest) floor for the hostel under consideration and

sij is the sum of category i allocated to h all j students.

Operators of genetic algorithm

The distribution of the hall level is mutually exclusive from that of the distri-

bution of blocks and rooms, which is why genetic algorithm (GA) operations

are carried out at both levels. As both distributions align with various re-

quirements and constraints, GA operators are implemented in a single man-

ner. The initial population for hall distribution is randomly generated for

every student group.

2.7 Recurrent neural network

Recurrent neural network (RNN) are NNs that have one or more loops of feed-

back. They are a class of ANNs in which a directed graphs together with a

time series are generated by node-to-node connections. This allows tempo-

rary complex behavior to be seen. RNNs are extracted from feed-forward NNs
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and can use their internal state (memory) to process input patterns of vari-

able length (Prabhu and Garg, 1996). RNNs together with their variants have

been implemented in various contexts whereby temporal dependence in the

data is a vital implicit feature throughout the design of the model (Bianchi

et al., 2017). The RNNs notable applications include sequence transduc-

tion, language modeling, speech recognition, word embedding learning, au-

dio modeling, recognition of handwriting and image generation. In several

applications, a popular version of RNN, called long-term short-term memory

(LSTM), has been implemented (Hochreiter and Schmidhuber, 1997).

Hence RNN is also useful in time series prediction (Bianchi et al., 2016).

These applications include weather forecast, load forecast and financial time

series forecast. The structure presentation of the RNN is given in Figure

2.1 where it is having an input(x), output(y), internal state or memory of

the network (h), input weights (wh
i ), recurrent layer weights (wh

h), output

weights (w0
h), time delay unit (z−1) and neuron transfer function.

Using a recursive update, an RNN systematically summarises an input set

in a specified-size state vector (Tokui et al., 2015). The equations of the

RNN state and output difference discrete and time-independent are:

h[t+ 1] = f(wh
hh[t] + wh

i x[t+ 1] + bn), (2.7.1)

y[t+ 1] = g(w0
hh[t+ 1] + b0), (2.7.2)

where f() is the transfer function of each neuron (generally the same non-

linear function to all neurons). The RNN digital display is g(). Typically, the



19

Figure 2.1: Structure of the RNN (Bjerke, 2019).

identity function, the central processing units (neurons) give all non-linearity

of the softmax function.

2.8 Conclusions from literature

There are many studies where GA, RNN and KNN (benchmark model) are

used for different purposes. In this study, the use of GA, RNN and KNN

on renewable energy forecasting has been discussed under the literature re-

view. This dissertation seeks to investigate the application of GA, RNN and
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the benchmark model in renewable energy forecasting in South Africa. To

the author@ knowledge, this is the first dissertation to implement genetic

algorithms using South African data to forecast solar irradiance.



Chapter 3

Methodology

3.1 Introduction

This chapter describes the methodologies that this study will use to forecast

global solar irradiance (GHI) at the Vuwani radiometric station in Limpopo

province of South Africa (SA). Recurrent neural network (RNN), genetic al-

gorithm (GA) and benchmark model which is a k-nearest neighbour (KNN)

method will be discussed in this chapter. In the methodology, GHI is repre-

sented by yt, x1i represents air temperature, x2i barometric pressure, x3i total

rainfall, x4i relative humidity, x5i wind direction, x6i wind direction standard

deviation, x7i wind speed. We will also present techniques that will be used

in the selection of the methods and in checking the forecast accuracy.

3.2 Genetic algorithm

The GAs follows the theory of Darwin of the survival of the fittest and links

the natural selection and genetics experiment with random operators to form

searching mechanisms for improved results (Rajeev and Krishnamoorthy,

21
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1998). It is provided in the previous chapter that, in the late 1960s, Holland

proposed GAs and Goldberg (1989) implemented the algorithm for the first

time to address engineering optimisation problems. Goldberg (1989) later

illustrated the utility of GAs for structural optimisation by solving the clas-

sic ten-bar truss issue. A small group of researchers then implemented the

algorithm to explore its use in structural optimisation. In forecasting the

evolution of one and two-dimensional nonlinear systems over time, Darwin

(1960) showed magnificent results.

The genetic algorithm that is going to be used in this study pro-
ceeds as follows:

� Initially, the time sequence {x(ti), ti = 1, ..., N} with the sequence of

equations for candidate (population) for P (.) is given at random.

� Normally, such equations are of the form x(t) = (A
⊗

B)
⊗

(C
⊗

D),

with the parameter variables A, B, C and D are the earlier state vari-

ables (x(t− τ), x(t− 2τ), ..., x(t−mτ)), with τ being the discrete time

unit), or the actual values constant, so that the
⊗

symbol is one of

the known four basic arithmetic operators (+,−,×and ÷).

� Other mathematical operators may be achievable, but increasing the

number of accessible operators makes the functional optimisation method

difficult.

� A parameter that measures the results of equation strings in a training
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set is its fitness to the information described by:

R2 = 1− Θ

σ
, (3.2.1)

where σ is the variance and where Θ is implied by:

Θ2 =
N∑

t=m+1

(x(t)− p(x(t− τ), x(t− 2τ), ..., x(t−mτ)))2. (3.2.2)

� Values of R2 close to one are highly accurate forecasts, whereas low

positive or negative values indicate the algorithm’s weak forecast capa-

bility.

� The equation strings with a higher number of R2 would be taken to

exchange the character string parts among them (reproduction and

crossover) in other case discarding the few suitable individuals.

� The offspring is more difficult to produce than the parents.

� The total number of characters throughout the equation strings is up-

per bounded to avoid the generation of offspring with unreasonable

frequency.

� A small proportion of the strong fundamental components, individual

operators and variables, of the strings of the equation are progressively

mutated at random.

� The process is performed several times to enhance the fitness of the

developing population and the empirical method to estimate function

p(.) is obtained at the edge of the evolutionary process.
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3.3 Recurrent neural networks

Mathematically the RNNs are defined as:

yj(t+ 1) = φ(
m+n∑
i=1

wjizi(t)), (3.3.1)

zi(t) =

{
yi(t) (i ≤ n)

ui−n (i > n),
(3.3.2)

where m stand for the proportion of inputs, n for the proportion of hidden

and output neurons, φ is for the arbitrary differential component, generally

a sigmoid function, yj determines the output of the jth neuron and wji the

relationship between the ith and the jth neurons. For simplicity, the external

inputs ui and recurrent inputs yi are represented as zi (Garcia-Pedrero and

Gomez-Gil, 2010).

RNNs defined as the networks with loops in them that enable the continuity

of data (Ugurlu et al., 2018). They are used for modeling data reliant on

time. The information is supplied one after the other to a network and at a

single point, the network nodes save their state and then use it to alert the

following step. Not the same way as multilayer perceptron (MLP), RNNs

use input data temporally, making them more suitable for time series data.

An RNN realises the ability through recurrent neuronal connections. A basic

equation which provided an input sequence x = (x1, x2, ..., xT ) for the RNN

hidden state ht is:

ht =

{
0, if (t = 0)

ϕ(ht−1, xt) otherwise,
(3.3.3)
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where the Φ function is non-linear. Recurrent hidden state update is realised

as follows:

ht = g(wxt + uht−1), (3.3.4)

where g is a function of the hyperbolic tangent. Generally, this generic

environment of RNN with no neurons often suffers from gradient issues that

are going away.

3.4 K-nearest neighbour

The KNN algorithm is a direct, simple, supervised machine learning algo-

rithm that is used to solve problems of both classification and regression

(Horton and Nakai, 1997). The supervised machine learning algorithm (op-

posed to an unsupervised machine learning algorithm) is an algorithm that

depends on the labeled input data when training the function that will be

used to produce acceptable results when the data that is not labeled is pro-

vided. Hence, supervised machine learning algorithms are also used to ad-

dress regression or classification problems.

The KNN algorithm will be performed as follows:

1. load the solar data from USAid Venda,

2. initialise K to the specified number of neighbours,

3. for every example in the data,
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� calculate the distance between a query example and the current

example,

� add the distance and an example index to an ordered set,

4. order the set of distances and indices by distances (in ascending order)

from the smallest to the largest,

5. choose the first K entries in the list which has been sorted,

6. get the labels for K entries which have been chosen,

7. returns the K label mean if a regression occurs,

8. returns the K label mode if it is classified.

3.5 Data and features

The GA, RNN and the benchmark model which is the k-nearest neighbour

(KNN) models will be implemented using global horizontal irradiance (GHI)

data from the Vuwani radiometric station in the Limpopo province of SA.

Data

The data used in this dissertation was obtained from the USAid Venda

radiometric station measured at one-minute intervals accessible at https:

//sauran.ac.za/. Figure 3.1 shows the pyranometer at the USAid Venda

radiometric station which is on an inside enclosure in Vuwani in the Limpopo

province.

https://sauran.ac.za/
https://sauran.ac.za/
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Figure 3.1: Picture showing the location of the Vuwani radiometric station
(USAid Venda). Source: https://sauran.ac.za/

Features

Models developed in this chapter will use GHI as the response variable and

the predictor variables are air temperature, barometric pressure, total rain-

fall, relative humidity, wind direction, wind direction standard deviation and

wind speed. The data will be normalised to [0,1] by using the min-max

function. Min-max normalisation has become one of the common methods

of optimising data. Where the minimum value of the function is converted

into 0 in every feature, the maximum value into 1 in every feature and the

remaining value is a decimal value between 0 and 1.

https://sauran.ac.za/
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3.6 Variable selection

In the variable selection, we involve the selection of function variables that

determines the target variables when limiting the number of variables from

the system. The variable selection framework plays an important role in

terms of avoiding overfitting, promoting analysis of the patterns and com-

putational time reduction. We have various variable selection methods but

in this mini-dissertation, we decided to use LASSO (least absolute shrinkage

and selection operator) (Bien et al., 2013). We assume a regression model

with the response variable Y and predictors X1,...,Xp with pairwise interac-

tions among these predictors.

3.7 Prediction intervals

A prediction interval (PI) by its nature is a useful tool for modeling un-

certainty. It is composed of lower and upper boundaries which cover the

unidentified target value of the future value with any probability (1 − a)%

called confidence level. They are more appropriate and more valuable in-

formation than point forecasts for decision-makers (Quan et al., 2014). The

width of the prediction interval (PIW) is given as:

PIWt = ULt − LLt, (3.7.1)

where ULt and LLt are the upper and lower bounds respectively. In this

study, probability density plots, box and whisker plots used to find the model

which yields narrower PIW.
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Evaluation of prediction intervals

For a prediction interval (PI) with nominal confidence (PINC) of (1−a)100%

it is formulated as the probability where ŷt,τ belonging to the predictive

interval (LLt, ULt). We provide PINC as follows:

PINC = P (ŷt,τ ∈ (ULt, LLt) = (1− a)100%). (3.7.2)

This study uses the prediction interval normalised average width (PINAW)

and the prediction interval coverage probability (PICP). The PICP is de-

scribed by (Quan et al., 2014):

PICP =
1

m

m∑
t=1

It, (3.7.3)

with m being the number of the forecasts and I being the binary variables

given by:

It =

{
1, if yt ∈ (ULt, LLt)

0, if otherwise.
(3.7.4)

PINAW is another measure used to assess the accuracy of forecast intervals

and is provided as (Quan et al., 2014):

PINAW =
1

m(max(yt)−min(yt))

m∑
t=1

(ULt − LLt). (3.7.5)

3.8 Performance measures

The use of performance measures plays an essential role in the evaluation of

forecasts. So in the performance measures, we will look at mean, variance,
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skewness and kurtosis which are also the underlying descriptive measures.

Skewness

The skewness measures a distribution’s degree of asymmetry around the

mean. In other words, skewness tells more about the variation path of the

information set: in positive skewness, it informs us that the distribution tail

is more stretched on the side above the mean; in skewness, it means that the

distribution tail extends to a side under the mean; skewness of the ordinary

distribution is zero. The conventional definition is:

Skew(x1, ..., xn) =
1

n

n∑
i=1

(
xi − x̄

σ

)3

, (3.8.1)

where σ = σ(x1, ..., xn) =
√

V ar(x1, ..., xn) is the standard deviation of the

distribution.

Kurtosis

Kurtosis measures the relative peakness or flatness of the distribution: posi-

tive kurtosis reveals a peak distribution (i.e. leptokurtic); negative kurtosis

implies a flat distribution (i.e. platykurtic); kurtosis of a confidence interval

(i.e. mesokurtic) is zero. We can define the kurtosis as follows:

kurt(x1, ..., xn) =
1

n

n∑
i=1

(
xi − x̄

σ

)4

, (3.8.2)

where the kurtosis of a normal distribution is 3.
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3.8.1 Mean absolute error, Mean square error, Root
mean square error, Relative MAE, Relative RMSE

This mini-dissertation used Mean absolute error (MAE), Mean square error

(MSE), Root mean square error (RMSE), Relative MAE (rMAE) and Rela-

tive RMSE (rRMSE) to evaluate the performance of the models. We defined

them as follows:

MAE =
1

n

n∑
t=1

|yt − ŷt|, (3.8.3)

rMAE =
1

n

n∑
t=1

[
ŷt − yt
yt

], (3.8.4)

MSE =
1

n

n∑
t=1

(yt − ŷt)
2, (3.8.5)

RMSE =

√∑n
t=1(yt − ŷt)

n
, (3.8.6)

rRMSE =

√√√√ 1

n

p∑
k=1

[
ŷk − yk

yk
]2, (3.8.7)

in which yt and ŷt are the actual and predicted values, ȳt is the mean value

of yt, t = 1, ..., n, k is the dummy variable time, n is the number of data

elements. The smaller value error is estimated closer to the true values.

3.8.2 Pinball loss function

The pinball loss function is a metric that is used to measure the precision of

the quantile forecast. Compared to the typical forecasts where the objective
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is to have a forecast that is similar as possible to the observed values, the

situation is biased whenever it gets to the quantile forecasts (Gergo et al.,

2016). Hence the naive contrast found against the forecasts is not sufficient.

The component of the pinball loss returns a value that can be defined as the

accuracy of the forecast of the quantile model.

Mathematically the pinball loss is defined as:

Lτ =

{
(y − z)τ if y ≤ z

(z − y)(1− τ) if z > y,

where τ is the target quantile, y the real value and z being the quantile

forecast, so Lτ is the pinball loss function. The most important findings

associated with the role of the pinball loss is that the lower the loss of the

pinball, the more accurate the quantile forecast.

3.8.3 Diebold-Mariano test

The Diebold-Mariano test assumes the test’s degree of significance is = 0.05.

Since this is a two-tailed test 0.05 so that it must be divided into upper tail

0.025 and lower tail 0.025. The z-value equivalent to -0.025 is -1.96, which is

a lower critical z-value. So that the upper value 1-0.025=0.095, which is the

z-value of 1.96. The DM test rejects the null hypothesis without a difference

if the measured DM statistic falls outside the -1.96 to 1.96 range.
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3.8.4 Murphy diagram

It is built on the concept that “if something wrong can happen, it’s going

wrong”. It is close to other methods of analysing such as fault trees, as they

evaluate errors based on the possible causes of such errors. The murphy

diagram works by comparing the mean forecasts. Hence, the mean of the

forecast distribution is acquired by minimising the squared error loss func-

tion, S(x, y) = (x − y)2 where x be the point forecast and y be the actual

observation (Werner et al., 2015). With the equation:

E(Y ) = argmin
x

S(x, y), (3.8.8)

it is given that any scoring function meeting the constraint can be defined

as:

S(x, y) =

∫ ∞

−∞
Sθ(x, y)dH(θ) (3.8.9)

with H be non-negative indicator and

Sθ(x, y) =

{
|y − θ| if min(x, y) ≤ θ < max(x, y)

0 otherwise.

Various H assessments offer different scoring functions, but for all such scor-

ing functions, Sθ(x, y) is the same.

If the point forecasts for n events is given, then we can be able to get the

average value of Sθ(x,y) for each θ:
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s(θ) =
1

n

n∑
i=1

Sθ(xi, yi), (3.8.10)

and plot this as a θ function. This is what (Werner et al., 2015) call the

“Murphy diagram”. The same approach can be applied for quantile and

expertise forecasts.

3.9 Forecast error distribution

For the characterisation of forecast dispersion, the measures of central (mean

and median) tendency along with the lower and upper quartiles of the resid-

uals are used. They keep providing appropriate distribution information. In

assessing distribution we also look at skewness and kurtosis which is defined

in section 3.8 above. The summary statistics for the remaining best mod-

els will be obtained to highlight the model with the best renewable energy

forecasting.

3.10 Percentage improvement

Percentage improvement defines the best model improvement relative to

other models (Ravele, 2018). Improvement of the proportion between the

best model and the other models is defined by:

Improvement(%) = (1− MAbestmodel

MAEothermodel

)× 100%, (3.10.1)

where MAEbestmodel is the mean absolute error and MAE is defined in the

previous section and MAEothermodel is the mean absolute error for other mod-

els.
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3.11 Conclusion

This section has represented the techniques, methods, and steps to be ap-

plied when forecasting renewable energy. The techniques used to analyse the

data include time-series data techniques, GA, RNN, KNN, and performance

measures.

3.12 Implementation

The software packages used for data analysis in this study are Python and

R. The GA and RNN algorithms are implemented in this study using the

Keras deep learning package (https://keras.io/). KNN was build using the

Scikit-learn python package.



Chapter 4

Data analysis and discussion

4.1 Introduction

This chapter presents the data analysis using the algorithms discussed in

Chapter 3. The software packages that are used for data analysis in this

study are Python (Faouzi and Janati, 2020) and R (Racine, 2012). Pre-

dictive performance of the algorithms (GA, RNN and KNN) are compared

in this chapter for forecasting minutes solar irradiance where the K-nearest

neighbour (KNN) algorithm is used as a benchmark algorithm.

4.2 The data

4.2.1 Exploratory data analysis

The frequency analysis of the day using the historic data of the period

04/01/2020 to 31/10/2020 are shown in the figures below.

From Figure 4.1 most of the long short term peak GHI occurs on the day

between January 2020 and May 2020. Happening among these days because

36
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Figure 4.1: Plot of the long short term global horizontal irradiance peak for
the period 04/01/2020 to 31/10/2020.

is where we experience low rainfall with a higher temperature and is where

we usually have a long day with a higher temperature than the other days

which are out of the higher GHI portion this usually happen in January and

middle of February to the beginning of March where we start approaching a

little of the winter season. We can also see from the graph that during winter

June and July GHI fall due to the short time of radiations as we are in the

middle of winter seasons.
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Figure 4.2: Histogram of global horizontal irradiance occurrences for the
period 04/01/2020 to 31/10/2020.

A histogram with a line of best fit showing the distribution of the global

horizontal irradiance is given in Figure 4.2. The histogram has a long tail

at the right-hand side when you are looking at it which shows that the

distribution of the global horizontal irradiance is positive and which again

tells us that it is positively skewed. Time series consists of four components

that consist significantly in the explanation of patterns of data. Figure 4.3

provides a pattern of the global horizontal irradiance and also shows that

the distribution of the GHI is positively skewed. The plots show that the

distribution of the GHI is skewed to the right.
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Figure 4.3: Time series plot of GHI, Density plot, Quantile-Quantile(qq) plot
and Box and whisker plot.
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Table 4.1: The descriptive statistics of the GHI measured in W/m2.

Min Max Median Mean st.Div Skewness Kurtosis
0.0032 1481.6300 307.6562 388.0439 324.1666 0.6130 -0.7568

Table 4.2: Weather variables and the ranges of their values.

Weather variables Ranges
Temperature (◦C) 0.00-40.38
Barometric pressure (mbar) 932.45-981.00
Total rainfall (mm) 0.00-2.54
Relative humidity (%) 0.00-100.00
Wind direction (WD) (◦) 0.00-360.00
WD standard deviation (◦) 0.00-78.29
Wind speed (m/s) 0.00-11.35

Descriptive statistics quantitatively compile features of the collected data.

Simple outlines about the sample are given by descriptive statistics. The

sample outlines are the minimum, maximum, mean, median, standard de-

viation, skewness and kurtosis. The summary of descriptive statistics of

minutes GHI for the sampling period 04/01/2020 to 31/10/2020 is given in

Table 4.1 for the Vuwani radiometric station (USAid Venda). Like in Figure

4.2 the GHI distribution shows no normal distribution because of the skew-

ness value of 0.6130 and kurtosis value of -0.7568 that is given in the Table

4.1, the skewness shows that it is skewed to the right-hand side and it is

platykurtic.
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In this dissertation, non-linear trend value extracted by fitting the cubic

smoothing spline function provided by the equation:

π(t) =
n∑

t=0

(yt − f(t))2 + λ

∫
{f ′′(t)}2dt, (4.2.1)

where λ is the parameter of the smoothing that is predicted using the gen-

eralised cross-validation (GCV) criterion. Figure 4.4 illustrates the cubic

smoothing spline and non-linear trend fitted with the projected lambda value.

The extraction of the non-linear trend used was to model solar irradiance.
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Figure 4.4: Plot of minutes global horizontal irradiance from 04/01/2020 to
31/10/2020 superimposed with a fitted cubic smoothing spline trend (non-
linear).
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4.3 Variable selection using LASSO

Weather variable is taken from USAid Venda. In the dissertation, variable

selection is done using the LASSO to remain with a useful variable in fore-

casting minutes of solar irradiance. LASSO is considered as a technique of

regression that is used in the selection of variables. LASSO uses the ℓ loss

function penalty:

β̂LASSO(λ) = argmin ||y⃗ −Xβ̂||22 + λ||β̂||1. (4.3.1)

Table 4.3 shows parametric coefficients and the importance of the variables

in forecasting minutes of solar radiation in USAid Venda assessed by LASSO.

So based on the LASSO, all variables have significance in forecasting solar

irradiance except total rainfall (Rain) which is having the least significance.

Table 4.3: Parametric coefficients.

Variables Coefficients
(Intercept) −2.158294× 104

Temp 3.815809× 101

RH −1.326136× 100

WD 1.645751× 10−1

Rain 0.000000
WS 1.866991× 100

WD StdDev 7.173793× 100

BP 2.215658× 101

4.4 Machine learning models

In this section machine learning techniques that will be presented are genetic

algorithm (GA), recurrent neural network (RNN) and the benchmark model
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which is K-nearest neighbour (KNN). Like in other dissertations done pre-

viously performance measures such as relative mean absolute error (rMAE)

and relative root mean square error (rRMSE) will be used to ease the process

of predicting the best forecasting technique. The rRMSE and rMAE for the

GA are found to be 5.96 and 5.17, for the RNN are found to be 7.54 and 4.49

and for the KNN are found to be 7.58 and 4.49. So, according to the results

of rMAE on Table 4.4 the RNN is found to be the best forecasting technique

of the global horizontal irradiance (GHI).

Table 4.4: Assessment of models.

GA RNN KNN
RMSE 35.50 56.89 57.48
rRMSE 5.96 7.54 7.58
MAE 26.74 20.18 20.94
rMAE 5.17 4.49 4.58

Figure 4.5 shows box-plots for actual GHI and the model’s forecasts which are

GA, RNN and KNN for the period 04/01/2020 to 31/10/2020. The test set

consists of 33716 observations. It shows how the models performed. Hence,

in box-plots, it is easy to compare the models much more efficiently. GA

has a much longer whisker than other models which can tell us that it varies

more widely than the others in forecasting the GHI while KNN has the least

whisker than the rest. Looking at the skew of the models we can realise that

GA is also having a pretty skew even on either side of the median/mean.

From the box of all models, we can clearly say they are positively skew as

the median is at the 25% lower quantile side. We can also look at the outliers

which represent the statistically different data points.
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Figure 4.5: Boxplots of the actual values and the model’s forecasts from
left ro right (a) First one: actual global horizontal irradiance (GHI) (b)
Second one: genetic algorithm (GA) forecasts (c) Third one: recurrent
neural network (RNN) forecasts and (d) Fourth one: k-nearest neighbour
(KNN) forecasts.
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The density plot of the actual GHI (solid lines) and model’s forecasts (dashed

lines) are shown in Figure 4.6. The forecasts from the models appear to be

different from the actual observations with RNN being the one that is closer

to the actual observations we can see this at actual observation 900 where

the GA and KNN showing a gap between the two lines. The gap between

the two lines is seen in Figure 4.6 (d) Bottom right panel where the green

dashed line is the one showing a great gap followed by the black dashed line.

This also validates the results we got from Table 4.4 that RNN is the best

forecasting technique.

Figure 4.7 is the graphical plot of the actual GHI values and their forecast

outcomes for the models GA, RNN and KNN, respectively. These plots show

the estimations of the forecasts between each of the models and the actual

GHI. Looking at the forecasts between the graphs they are having different

estimations with the actual GHI. The (a) Top left panel of the GA forecasts

overestimate the GHI with (b) Top right panel looks to be the one which

correctly estimates the GHI and (c) Bottom left panel underestimates the

forecasts of GHI. This tells us that the RNN model is the one that correctly

forecasts the GHI with GA overestimate the forecasts of GHI and KNN un-

derestimate the forecasts of GHI. Figure 4.7 (d) Bottom right panel shows

the estimations of the forecasts between the RNN, GA and actual GHI.
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Figure 4.6: Density plots of the actual GHI (solid lines) and model’s forecasts
(dashed lines) where (a) Top left panel: Actual GHI and forecasts of GA
(b) Top right panel: Actual GHI and forecasts of RNN (c) Botton left
panel: Actual GHI and forecasts of KNN and (d) Bottom right: Actual
GHI and forecasts of RNN, GA and KNN where the actual GHI and forecasts
of GA are shown by solid lines.
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Figure 4.7: Graphical plot of the actual GHI (solid line) and model’s fore-
casts (dashed line) (a) Top left panel: Actual GHI and GA forecasts (b)
Top right panel: Actual GHI and RNN forecasts (c) Bottom left panel:
Actual GHI and KNN forecasts and (d) Bottom right panel: Actual GHI
and RNN and GA forecasts.
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4.5 Combination of the forecasts

This section provides outcomes of the forecast blend of forecasts for ma-

chine learning techniques. Convex combination and QRA are the forecast

combination techniques used in this section.

4.5.1 Convex combination

Combining forecasts lead to improved accuracy. The R package which is

known as ‘opera’ is used to compile forecasts from various regression based

time series fitted in this dissertation (Timmermann, 2006). In this case,

models developed are known as experts. To merge the expert forecasts based

on their previous outcomes, the package proposes several flexible and robust

methods. In this dissertation, the opera package calculates the weights when

combining forecasts. The concept of convex combination involves measuring

the series of instant losses incurred by the expert prediction using the loss

function.

The loss function may be centered on pinball loss, square and absolute. Ta-

ble 4.5 summarises the weight allocation for the forecast combination models

with Square (Mix 1), Pinball (Mix 2) and Absolute (Mix 3) and the accuracy

measures RMSE and MAE. Looking at the accuracy measure we can see that

Mix 1 and Mix 3 have equal least RMSE (43.0439) and MAE (14.00380) val-

ues compared to Mix 2.

Figure 4.8 shows the average loss suffered by the models when the y-axis

is the pinball loss. From Figure 4.8 the convex combination model is the
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best forecasting model followed by the Uniform, RNN, KNN and GA as well

where RNN, KNN and GA are the forecasts.

Table 4.5: Evaluation of the forecasts models combination.

Models (experts)
GA KNN RNN

Square (Mix 1) 0.699 0.000 0.301
Pinball (Mix 2) 0.241 4.35e− 21 0.759
Absolute (Mix 3) 0.241 3.7e− 21 0.759

Accuracy measures
Mix 1 Mix 2 Mix 3

RMSE 43.04390 28.49575 43.04939
MAE 14.00380 19.57792 14.00380
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Figure 4.8: This plot shows the Average loss suffered by the models.
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4.5.2 Quantile regression averaging

QRA is a forecast combination techniques to the computation of PI. It in-

cludes the application of quantile regression to a limited number of individual

forecast models or expert point forecasts. From a functional point of view,

QRA is a promising alternative as it enables the current progress of point

prediction to be useful. In this case, GA, RNN and KNN models are joined

based on QRA. QRA is given by:

yt,τ (QRA) = β0 + β1fM1 + β2fM2 + β3fM3 + εt, (4.5.1)

where fM1, fM2 and fM3 are the forecasts from GA, RNN and KNN.

Table 4.6 offers a description of the accuracy measures for all the machine

learning methods together with the QRA method. Looking at the MAE,

QRA is the best forecasting model than GA, RNN and KNN. Again, MAE

shows an improvement after averaging the forecast. Going into the results

of absolute loss suffered by the models referring to the pinball losses it also

shows that the QRA is the best one as it shows the smallest pinball loss

average value.

Combining both the forecasts from the machine learning techniques improved

the GHI predictions. Figure 4.9 gives the plots of the QRA forecasts. By

looking at the graphs we can discover that they are close to each other in both

actual observations and the forecasts. Figure 4.10 displays forecast plots for

the last day of the GHI in SA. These forecasts are considered to be relatively

close to the actual observations, particularly on the QRA forecasts.
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Figure 4.9: Graphical plot of the actual GHI (solid line), QRA forecasts
(dashed line) and the density plot.
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Figure 4.10: Graphical plot of the actual GHI (solid line) and the model’s
forecasts for the last day of the GHI.
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Table 4.6: Machine learning and QRA model’s comparative analysis.

Accuracy measures GA RNN KNN QRA
RMSE 35.50 56.89 57.48 < 0.0001
MAE 26.74 20.18 20.94 < 0.0001
Avg pinball loss 13.37 10.09 10.47 < 0.0001

4.6 Models Comparative Analysis

In this section, the estimation of the fitted models based on the empirical

prediction intervals (PIs) with the forecast error distributions from each of

the models was discussed.

4.6.1 Evaluation of prediction intervals

Table 4.7 provides descriptive statistics of the PIWs for models GA, RNN,

KNN, Convex and QRA with such a confidence level of 95% for the PINC

value. The skewness of all the models is near zero that tells us the distribu-

tion of the models is normal. With the values of the Kurtosis less than 3, it

tells us that the distribution of the models is all platykurtic. The smallest

standard deviation is of the KNN model that tells us that it has smaller

PIWs compared to the other models. Figure 4.11 shows box plots of the pre-

diction interval widths for the fitted models GA, RNN, KNN, Convex and

QRA. KNN has a narrower PI compared to the GA, RNN, Convex and QRA.

A comparison of the best models using PICP, PINAW and PINAD is shown

in Table 4.8. The PICP taken to be 95 percent level of confidence where it

is valid for the entire models. QRA is having a higher PICP than all models

with a PICP of 99.68%, which is valid because is greater than 95%. This
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Table 4.7: PIWs for models comparison.

Mean Median min max st.Dev. Skewness Kurtosis
GA 388.129 271.512 -0.724 1390.929 347.462 0.595 -1.044
RNN 337.577 241.119 -0.196 1095.501 298.812 0.568 -1.088
KNN 336.131 241.459 -0.527 1048.681 295.169 0.541 -1.138
Convex 357.612 230.176 -0.395 1132.315 317.467 0.584 -1.121
QRA 390.768 272.624 0.006 1446.843 349.910 0.601 -1.033

shows that the predictive intervals developed by QRA are more informative

with valid PICP (≥ 95%). RNN has a lower PINAW than all model models.

This shows that a narrower PANAW is offered by RNN, so RNN is our best

model when compared to the entire models. RNN has a lower PINAD than

the other models, which also confirms that RNN is the best model. A model

with the narrowest PINAW and smaller PINAD is recognised to be the best

fitting model (Sun et al., 2017). So, RNN is the best fitting model.

Table 4.8: Comparative analysis of the best models with the confidence in-
terval (CI) ( PICP, PINAW and PINAD) at 95 percent.

Models PICP PINAW PINAD
GA 98.00% 11.81% 0.07%
RNN 98.60% 11.47% 0.05%
KNN 98.12% 15.09% 0.08%
Convex 96.27% 12.34% 0.08%
QRA 99.68% 18.12% 0.06%

Figure 4.12 provides the density plots of widths of the PIs for the forecasting

models GA, RNN, KNN, Convex and QRA. The density plots have a similar

shape with different dimensions where GA and QRA have the widest PI.



57

Figure 4.11: Box plots of the prediction interval widths (PIWs) for model
GA, RNN, KNN, Convex and QRA.
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Figure 4.12: Density plots of the prediction interval widths for modes GA,
RNN, KNN, Convex and QRA.
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4.6.2 Residual analysis

Table 4.9 provides descriptive statistics of the residuals for models GA, RNN,

KNN, Convex and QRA with such a confidence level of 95% for the PINC

value. From the table, we can see that GA is the one with the smallest stan-

dard deviation compared to other models that tell us that it has a smaller

error distribution and is the best model compared to others. For the GA,

RNN, KNN and Convex models, the error distributions are normal because

their skewness is close to zero, where the QRA is skewed to the right that

tells us that it is positively skewed. The values for kurtosis are greater than 3

for four models and less than 3 for the GA model, showing that the distribu-

tions for the four models are leptokurtic and for the GA model is platykurtic.

Table 4.9: Residual comparison of the models.

mean median min max StDev Skewness Kurtosis
GA -26.741 -19.250 -83.121 -0.103 23.355 -0.541 -1.138
RNN 3.779 -0.240 -688.628 764.295 56.762 0.479 41.139
KNN -5.435 -4.325 -747.010 796.949 57.220 0.077 43.475
Convex -3.576 -3.017 -539.927 568.753 42.899 0.145 43.148
QRA 2.639 1.531 -44.413 57.499 4.329 1.043 25.391

Figure 4.13 is the box plots of the forecast errors for the entire fitted mod-

els ResGA, ResRNN, ResKNN, ResConvex and ResQRA where ResGA,

ResRNN, ResKNN, ResConvex and ResQRA are the residuals from GA,

RNN, KNN, Convex and QRA. ResQRA has a narrower error distribution

compared to the other models, this tells us that ResQRA is considered to be

the best model compared to all the models presented. Figure 4.14 gives the

density plots of the forecast errors for both the ResGA, ResRNN, ResKNN,
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ResConvex and ResQRA forecasting models. The plots are similar except

for the forecast error of ResGA.
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Figure 4.13: Box plots of the residuals from ResGA, ResRNN, ResKNN,
ResConvex and ResQRA.
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Figure 4.14: The error distribution of the forecast techniques for ResGA,
ResRNN, ResKNN, ResConvex and ResQRA.
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4.6.3 Percentage improvement

Table 4.10 indicates a percentage improvement of the output parameter by

using the mean absolute error for the best model found in Table 4.6. The

best model is QRA from Table 4.6, so the percentage improvements for other

models are measured against the best QRA model and presented in Table

4.10. The highest percentage improvement is for QRA over GA that is 99.65%

and the smallest is for the QRA over RNN that is 99.65%. This tells us

that RNN is the second best model. The best model for forecasting solar

irradiance is QRA followed by RNN.

Table 4.10: Percentage improvement.

Models MAEbestmodel MAEothermodel Improvement (%)
QRA&GA 0.0924 26.74 99.65%
QRA&RNN 0.0924 20.18 99.54%
QRA&RNN 0.0924 20.94 99.56%
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4.6.4 Diebold-Mariano test

The Diebold-Mariano test assumes the test’s degree of significance is 0.05.

This is a two-tailed test of 0.05 so that it must be divided into upper tail

0.025 and lower tail 0.025. The z-value equivalent to -0.025 is -1.96, which

is a lower critical z-value. The upper value 1-0.025=0.095, which is the z-

value of 1.96. Diebold-Mariano rejects the null hypothesis if the measured

DM statistic falls outside the -1.96 to 1.96 range. The null hypothesis states

that the two forecasts have the same accuracy and the alternative hypothesis

states that the two forecasts have different level of accuracy. The DM tests

accept the null hypothesis because RNN and KNN have the same accuracy

and the statistics fall inside the -1.96 and 1.96 range. So that the RNN is

the best forecasting model.

Table 4.11: Diebold-Mariano test.

Statistic P-value
GA -37.795 < 0.0001
RNN -47.789 < 0.0001
KNN -47.312 < 0.0001

4.6.5 Murphy diagram

Murphy diagrams (MDs) are based on the notion that if “if there is anything

that can go wrong it might go wrong”. They are comparable to several other

methods of analysis including such as fault trees because they analyse errors

based on the possible causes of those errors. It is not essential to identify

a particular scoring function before forecast evaluation when using MDs to

compare forecast results (Ziegel et al., 2017). It is an advantage in the exis-
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Figure 4.15: Plots of the RNN and KNN forecasts showing the relationship
between the peaks of the model forecasts.

tence of potentially misspecified forecasts and non-nested datasets while the

choice of a specific consistent scoring method produces a preference order-

ing on all potential forecast sequences that are typically difficult to explain.

MDs on the other hand might lead to inconclusive cases wherein the other

is governed by neither of the two forecasting models.

Figure 4.15, 4.16 and 4.17 are the Murphy diagrams where for the differ-

ence between the models, the shaded area displays 95% pointwise confidence

intervals.
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Figure 4.16: Plots of the RNN and GA forecasts showing the relationship
between the peaks of the model forecasts.
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Figure 4.17: Plots of the GA and KNN forecasts showing the relationship
between the peaks of the model forecasts.
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4.7 Conclusion

This chapter presented the data analysis of solar irradiance using the algo-

rithms discussed in Chapter 3. The forecasting performance of the GA, RNN

and KNN algorithms was compared for forecasting minutes solar irradiance

where KNN algorithm was used as a benchmark algorithm. The RNN model

is found to be the best model for forecasting minutes of solar irradiance.



Chapter 5

Conclusion and future work

5.1 Introduction

This chapter presents the outcomes of the dissertation obtained in Chapter 4

and some ideas related to the dissertation, including fields for future research.

5.2 Findings of the dissertation

Renewable energy forecasts are critical to renewable energy grids and backup

plans, operational plans and short-term power purchases. This dissertation

focused on forecasting solar irradiance (global horizontal irradiance (GHI)) at

one radiometric station in South Africa using high-frequency data (measured

at one minute intervals) obtained from Vuwani radiometric station (USAid

Venda). The data is from January 2020 to October 2020.

Forecasting minutes solar irradiance using recurrent neural network (RNN),

genetic algorithm (GA) and k-nearest neighbour (KNN) where KNN was

used as a benchmark model together with variable selection using least abso-

69
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lute shrinkage and selection operator (LASSO) discussed in Chapter 4. The

LASSO showed that total rainfall is not important in forecasting solar irra-

diance and it is excluded in the forecasting stage.

The results we got in Chapter 4 Section 4.4 showed that RNN is the best

forecasting model in terms of the relative root mean square error (rRMSE)

and relative mean square error (rMAE). In Section 4.5 forecasts for the ma-

chine learning algorithms combined with the help of the convex combination

technique and QRA. Looking at the MAE and average pinball losses, QRA

was found to be the best forecasting combination technique.

The boxplots in Figure 4.5, depicted that the models are positively skewed

as the median was at the 25% lower quantile side. From the density plots

in Figure 4.6, it is depicted that the RNN is the best forecasting technique

based on the gap between the actual values and predicted values

Section 4.6 presented the predictive interval widths analysis with 95% level

of confidence. It is found that the RNN has a lower PICP than all the

models and a narrower PANAW than all the models. The results of the

predictive interval analysis found the RNN to be the best fitting model.

Subsection 4.6.3 presented the percentage improvement rates of the models.

The QRA over RNN was found to be the one with the highest percentage

improvement rate of 99.65%. This told us that RNN is the second-best model

and QRA is the best model for forecasting solar irradiance. The Diebold-

Mariano test presented in Section 4.6.4 and Murphy diagram in Section 4.6.5.
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The Diebold-Mariano tests accept the null hypothesis that the RNN is the

best forecasting model because the DM statistic falls between the -1.96 to

1.96 range. The Murphy diagrams displayed the 95% pointwise confidence

interval.

5.3 Future work

Future researchers should look at forecasting renewable energy focusing on

data from different radiometric stations in Africa, South Africa and across the

world. In models, future researchers should consider looking at other machine

learning techniques. Researchers in South Africa and Africa need to work on

what we have and improve them so that it will help to grow the economy of

our country. This study use long-short term minutes solar irradiance so that

other researchers should look at using seconds, hourly, daily, weekly, monthly

and yearly long and long-short term data from different radiometric stations.

5.4 Conclusion

This chapter presented a summary of the results and future research di-

rections. This study together with its findings will have an impact on the

South African power utility decision makes to align electricity demand and

its supply in an efficient way that promotes potential economic growth and

environmental sustainability.
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Appendix: Some selected code

#-----------------------------------------------------------------------

#packages---------------------------------------------------------------

#packages used for the following selected code:

# forecast , ggplot2, opera, data.table, qgam , mgcv , tseries , e1071

#mgcv, class, gmodel, keras, plyr, dplyr, glmnet.

#-----------------------------------------------------------------------

library(data.table)

library(tseries)

library(quantreg)

library(readxl)

library(readr)

library(opera)

library(forecast)

library(glmnet)

library(hierNet)

library(dplyr)

library(plyr)

library(mgcv)

#Load data---------------------------------------------------------------

attach(analyticdata)

dim(analyticdata)

df <- analyticdata[c(’GHI’,’Temp’,’RH’,’Rain’,’WS’,’WD’,’WD_StdDev’,’BP’)]

dim(df)

head(df)

tail(df)



82

#-------------------------------------------------------------------------

# Time Series Plot, Density Plot, QQ Plot

# and Box Plot for solar irradiance

win.graph()

par(mfrow=c(2,2)) # mfrom = (2,2)

# GHI-Global horizontal irradiance

# ts=time series

y=ts(df$GHI, frequency = 1440) # 60*24=1440

plot(y,main="Demand (2020)",xlab = "Year",ylab="GHI",col="blue")

DPED=density(df$GHI)

plot(DPED,main="Density plot (2020)",col="brown")

qqnorm(y , col = " blue " , main =" (c) Normal QQ plot " ) ## qq plot

qqline(y) # qq plot line

boxplot(y , main =" (d) Box plot " , varwidth = TRUE ,

xlab =" GHI (W/m ^2) " , col = " blue " , horizontal = TRUE ) ## Box plot

#------------------------------------------------------------------------

#----------------------------------------------------------------------

summary(y) # Summary statistics for GHI

sd(y)

skewness(y) # Skewness

kurtosis(y) # Kurtosis

#conduct Jarque-Bera test

jarque.bera.test(y)

#-------------------------------------------------------------------------
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# Extraction and fitting of the non-linear trend values

K<-ts(df$GHI) # ts=time series

win.graph()

plot(K, xlab="Time", ylim =c(0,1500),type ="l",

ylab ="GHI (W/m ^2) ", col = "green")

length(df$GHI)

R= smooth.spline(time(K), K)

R

lines(smooth.spline(time(K),K,spar = -0.2091344) , lwd =3 , col = " brown ")

dpdfits=fitted(( smooth.spline(time(K),K,spar = -0.2091344) ))

write.table(dpdfits,"~/ GHIfittedspline . txt " , sep ="\t ")

#--------------------------------------------------------------------------

dt = sort(sample(nrow(df), nrow(df)*.8))

train<-df[dt,]

test<-df[-dt,]

length(test)

length(dt)

length(train)

#--------------------------------------------------------------------------

#Variable selection Via LASSO for GHI

y<-train$GHI

x<-data.matrix(train[2:8])

print(x)

LAsso<-glmnet(y=y,x=x,family="gaussian")

plot(LAsso)
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coef(LAsso)

cv.lasso<-cv.glmnet(y=y,x=x,family="gaussian")

cv.lasso

plot(cv.lasso)

coef(cv.lasso)

predict.1<-predict(cv.lasso,newx=x)

predict.1

m.lasso<-mean((y-predict.1)^2)

m.lasso

#-------------------------------------------------------------------

win.graph()

par(mfrow=c(2,2))

y <- ts(GHI)

plot(y, ylim =c(0.0,1900) , main="GHI and GA forecasts",col="black",

ylab="solar irradiance",xlab="Time")

lines(fGA, col="green")

legend("topleft",col=c("black","green"),lty=1:2,lwd=2,

legend=c("GHI","GA"))

plot(y, ylim =c(0.0,1900) , main="GHI and RNN forecasts",col="black",

ylab="solar irradiance (w/m ^2)",xlab="Time")

lines(fRNN, col="green")

legend("topleft",col=c("black","green"),lty=1:2,lwd=2,

legend=c("GHI","RNN"))
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plot(y, ylim =c(0.0,1900) , main="GHI and RNN forecasts",col="black",

ylab="solar irradiance (w/m ^2)",xlab="Time")

lines(fKNN, col="green")

legend("topleft",col=c("black","green"),lty=1:2,lwd=2,

legend=c("GHI","KNN"))

#------------------------------------------------------

### GA , RNN , KNN density plots

## GHI , GA, RNN

win.graph()

par(mfrow=c(2,2))

x = density(GHI)

plot (x , ylim =c (0.0 ,0.0025) , xlim =c ( -100 ,1500) , col =" blue ",

main =" Density of

irradiance (GA) " ,

xlab ="number of observations")

#library (forecast) #---------------------------------------------------

head(forecasts)

win.graph()

accuracy(fGA,GHI)

#---------------------------------------------------------------------

Y <- GHI

X <- cbind (fGA,fRNN,fKNN)

matplot(cbind(Y,X),type="l" , col =1:4)
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GA<- fGA

RNN<- fRNN

KNN<- fKNN

X <- cbind ( fGA, fRNN, fKNN)

# How strong is a specialist? Just look at the oracles below

#-------------------------------------------------------------------

win.graph()

G=oracle.convex

G<- oracle(Y = Y, experts = X, loss.type = ’pinball’,

Model = "convex")

plot(G)

G

mix1 = 0.241* GA + 4.35e-21 * fKNN + 0.759 * fRNN # pinball

mix2 = 0.699 * fGA + 0.00 * fKNN +0.301 * fRNN # square

mix3 = 0.241 * fGA + 3.7e-21 * fKNN + 0.759 * fRNN # absolute

# measures of the accuracy

accuracy ( mix1 , GHI )

#------------------------------------------------------------------------------

# ###############################################

## QRA

# ###############################################

attach(forecasts) # Attach the forecasts

win.graph()
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#y<-ts(GHI)

plot(y,xlab="Observation number" , ylab="Minutes irradiance")

qr22.GHI=rq(GHI~fGA + fRNN + fKNN, data = forecasts, tau =0.5)

summary.rq(qr22.GHI,se="boot")

lines(qr22.GHI$fit,col="red")

fQRA=fitted(qr22.GHI)

accuracy(fQRA,GHI )

accuracy(mix1,GHI )

fconvex=mix1

#------------------------------------------------------------------------

# PIN BALL LOSSES

#-----------------------------------------------------------------------

install.packages("devtools")

library(devtools)

install_github("camroach87/gefcom2017")

library(gefcom2017)

## tau: integer 1, 2, ... 99. Quantile to calculate pinball loss score for.

## y: numeric. Observed value.

## q: numeric. Predicted value for quantile tau.

#’ Calculates the pinball loss score for a given quantile.

pinballloss <- function(tau, y, q) {

pldf <- data.frame(tau = tau,

y=y,
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q=q)

pldf <- pldf %>%

mutate(L = ifelse(y>=q,

tau/100 * (y-q),

(1-tau/100) * (q-y)))

return(pldf)

}

tau= 50

y= GHI

q=fGA # fKNN, fRNN, fGA

U = pinballloss(tau, y, q)

U

#write.table(U,"~/pinballfGA.txt",sep="\t")

qloss =U$L

a=ts(qloss)

plot(a)

mean(qloss)

#----------------------------------------------------------------------------

### PIW for the entire models

#--------------------------------------------------------------------------

## GA , RNN, KNN, Fconvex , Fqra

#-------------------------------------------------------

# ### Model PIWs comparisons at 95%

attach( PIs_UPRnew)
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head (PIs_UPRnew)

PIW =c("PIGA","PIRNN","PIKNN","PIConvex","PIQRA")

win.graph()

boxplot(PIGA95,PIRNN95,PIKNN95,PIconvex95,PIQRA95,names=PIW,

horizontal=FALSE,main="95% prediction intervals" ,

ylab ="Prediction interval width(w/m^2)", col="blue")

win.graph()

par(mfrow=c(3,2))

plot (density(PIGA95), xlab =" Prediction interval width(w/m^2)" , col

=" blue ", main ="PIGA")

#--------------------------------------------------------------------------

# Residual Error Analysis

#--------------------------------------------------------------------------

attach(forecasts)

head(forecasts)

ResGA = forecasts$GHI-forecasts$fGA

ResRNN = forecasts$GHI-forecasts$fRNN

ResKNN = forecasts$GHI-forecasts$fKNN

ResConvex = forecasts$GHI-fconvex

ResQRA = forecasts$GHI-fQRA

#--------------------------------------------

library(e1071)

#-----------------------------------------------

RESID = c(" ResGA " ," ResRNN " ," ResKNN " ," ResConvex " , " ResQRA ")
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win.graph()

boxplot ( ResGA , ResRNN , ResKNN , ResConvex , ResQRA , names = RESID

, horizontal = FALSE , main ="" ,

ylab =" Residuals (w/m ^2) " , col = " blue ")

win.graph()

par ( mfrow = c (3 ,2) )

plot ( density(ResGA), xlab =" Forecast error (w/ m ^2) " , col =" blue "

, main =" ResGA ")

#---------------------------------------------------------------------------

# Package ’murphydiagram’

#--------------------------------------------------------------------------

# Murphy diagrams to visualize forecast comparisons

#------------------------------------------------------------------------

# Visual comparisons of two forecasting methods, allowing to

# study whether the ranking is robust across the class of

# elementary or extremal scoring functions.

# murphydiagram plots the extremal scores of two

# forecasting methods.

#--------------------------------------------------

# Murphy Diagrams Rob Hyndman R codes

#-----------------------------------------------

source("https://robjhyndman.com/Rfiles/murphy.R")
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library(forecast)

library(murphydiagram)

win.graph(width=12, height=7, pointsize=12)

par(mfrow = c(1,2))

murphydiagram(GHI, fRNN, fGA, main="(a) Empirical Scores",

xlim=c(-50,1200))

legend("topright", lty=1, col=c("blue","red"),

legend=c("RNN","GA"))

murphydiagram(GHI, fRNN, fGA, type=’diff’, xlim=c(-50,1200),

main="(a) Difference in scores")

#----------------------------------------------------------------------------
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