UnivenIR Repository

Estimation of the emissions of gases from a two landfill sites using the LandGEM and Afvalzorg models: Case study of the Weltervenden (Polokwane) and Thohoyandou landfills

Show simple item record

dc.contributor.advisor Odiyo, J. O.
dc.contributor.advisor Edokpayi, J. N.
dc.contributor.author Njoku, Prince Obinna
dc.date 2018
dc.date.accessioned 2018-10-11T09:36:07Z
dc.date.available 2018-10-11T09:36:07Z
dc.date.issued 2018-09-21
dc.identifier.citation Njoku, Prince Obinna (2018) Estimation of the emissions of gases from a two landfill sites using the LandGEM and Afvalzorg models: Case study of the Weltervenden (Polokwane) and Thohoyandou landfills, University of Venda, Thohoyandou, <http://hdl.handle.net/11602/1249>
dc.identifier.uri http://hdl.handle.net/11602/1249
dc.description MENVSC
dc.description Department of Ecology and Resource Management
dc.description.abstract Over the years it has been observed that the solid waste sector has been an increasingly major contributor to the amount of Greenhouse gases (GHGs) in the atmosphere. To some extent a great chunk of these GHGs in the atmosphere is from Landfill gas (LFG). This study employs two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of LFG emitted from Weltervenden and Thohoyandou landfill sites located in Limpopo province of South Africa. Furthermore, the study investigated the appropriate technique of the LFG utilisation as a source of electricity and the number of households using electricity. LFGcost model was used to estimate the cost and benefits related to the implementation of a LFG utilisation technology. Also, the possible health and environmental impacts of the landfill emissions on the people living closer to the landfill site were determined. The LandGEM model’s simulation concludes that CH4 and CO2 peaked in the year 2020 with values of 3.323 × 103 Mg/year and 9.118 × 103 Mg/year, respectively, for the Thohoyandou landfill. Results from the Afvalzorg model indicate that the CH4 peaked in the year 2020 with value of 3.501 × 103 Mg/year. Meanwhile the total emission of CH4 from 2005-2040 by the LandGEM and Afvalzorg models are 66200 Mg/year and 69768 Mg/year, respectively. However, for the Weltervenden landfill, the total LFG peaked in the year 2023 while the CH4 peak at 4061 Mg/year and 3128 Mg/year for LandGEM and Afvalzorg models, respectively. Furthermore, results from the cost analysis and benefits for the implementation of a LFG utilisation technology in both landfills show that the implementation of such a utilisation technology will be economically feasible considering the sale of t CO2 equivalent in the carbon market. However, without considering the sales of t CO2 equivalent, not all the LFG engines are economically feasible for both landfills. This study also shows that the residents living closer to the Thohoyandou landfill are at a higher risk of environmental pollution and could suffer negative impacts from the landfill than residents living far from the landfill site. However, the Weltervenden landfill did not have lots of communities living closer to the landfill and therefore it was not included in this study. en_US
dc.description.sponsorship NRF en_US
dc.format.extent 1 online resource (xii, 187 leaves : color illustrations, color maps)
dc.language.iso en en_US
dc.rights University of Venda
dc.subject Estimation en_US
dc.subject Emissions en_US
dc.subject Gases en_US
dc.subject Landfill site en_US
dc.subject LandGEM en_US
dc.subject Afvalzorg en_US
dc.title Estimation of the emissions of gases from a two landfill sites using the LandGEM and Afvalzorg models: Case study of the Weltervenden (Polokwane) and Thohoyandou landfills en_US
dc.type Dissertation en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnivenIR


Browse

My Account