IMMUNOMODULATION OF INFLAMMATION IN A MURINE PNEUMOCOCCAL SEPSIS MODEL

By

Mbulaiseni Edgar Musie (PhD Candidate)

Student number 9907161

Submitted in Fulfilment of the Requirements for the Award of the Degree of Doctor of Philosophy in the subject of Microbiology at the University of Venda

Promoter: Prof P.O. Bessong (University of Venda)

Co-Promoter: Prof M.W. Scheld (University of Virginia)

May 2013
SUMMARY OF THE STUDY

Mortality from pneumococcal infections remains high, despite the development of potent antibiotics. Antibiotic resistance among pathogens including *S. pneumoniae* calls for new therapeutics. Immunomodulation represents a novel approach to antimicrobial therapy that depends on bolstering host immunity, rather than direct antimicrobial activity. The use of innate immune stimulation to improve survival has previously been described for Gram negative pathogens.

The effect of TLR4 stimulation on survival in mice during lethal *S. pneumoniae*, serotype 2 infections was examined. C57BL/6, BALB/c, CBA/CaHN-Bkk1/J, A/J, Rag-1 KO, IL-10 KO, C3H/HeN and C3H/HeJ mice were inoculated intravenously with a lethal dose of 10^9 cfu of *S. pneumoniae* serotype 2 48 hours after treatment with five doses of 10ug highly purified LPS or vehicle (PBS) at 12 hours interval. Another group of LPS or PBS treated C57bl/6 received 25 mg/kg ceftriaxone at 6 hours post infection. Survival was monitored for 5 days. Blood samples were collected at different time points (6h, 12h and 24h) after bacterial challenge for bacteriological examinations, serum cytokine measurements, and biochemical assays for liver function. Spleens were harvested for flow cytometric analysis of splenic lymphocytes or NK activation.

Innate stimulation with LPS reduced systemic bacteremia by at least four logs in LPS- pretreated C57BL/6 (10^4 v.s 10^8 cfu/ml) mice compared with controls during the recorded course of infection. Death in experimental controls occurred within 48 hours. Reduced bacteremia corresponded with improved survival in all 3 strains. Survival for LPS-treated C57bl/6, Balb/c and C3H/HeN was 90% (N=29; p=0.001), 50% (N=14; p = 0.017) and 60% (N=8; p=0.009), respectively, and mortality for controls was 100% for all the strains. Mortality for ceftriaxone-treated C57bl/6 was
Systemic Streptococcus pneumoniae was investigated. Mice were inoculated with 10^6 colony forming units of the lung strain of S. pneumoniae. TLR4 agonist activity can be potentially exploited to develop short-term resistance to infections challenging such as might occur in the veterinary setting. This study demonstrates a survival benefit from TLR4 stimulation prior to infection despite reducing cytokine production, improves host defense against infection with S. pneumoniae. A low dose of LPS also provided evidence the induction of prolonged LPS tolerance.

Expression of TLR4 mRNA and LPS were attenuated in C57BL/6 LPS-exposed mice.

MCP-1 and IL-1β were also reduced in C57BL/6 LPS-exposed mice. 12 hours after

The level of TNF-α, IL-6, IL-12 (p40), IL-10, IL-6, IL-10, and TNF-α.

This study demonstrates a survival benefit from TLR4 stimulation prior to infection despite reducing cytokine production, improves host defense against infection with S. pneumoniae. A low dose of LPS also provided evidence the induction of prolonged LPS tolerance.
The treatment of pneumococcal infections, such as meningitis, pneumonia, and bacteraemia with β-lactam antibiotics can result in the paradoxical enhancement of inflammation as a result of the release of proinflammatory bacterial cell components.

Inhalation of LPS by high-purity LPS as an additional

ceftriaxone alone (p>0.05).

KC were elevated in pigs after bacterial challenge compared to those treated with and PANTS 12h after bacterial challenge and elevated levels of IL-2, IL-3, IL-4, and IL-6. The level of IL-1β in the lungs was significantly decreased in pigs treated with ceftriaxone compared with untreated animals. In addition, ceftriaxone was effective in reducing the bacterial burden in pigs treated with ceftriaxone alone. In a significant reduction of bacterial challenge of 80% in pigs treated with ceftriaxone alone. The survival of mice treated with the combination of intravenously with a lethal dose of 10^7 CFU of S. pneumoniae serotype 2 and treated

In this mouse model, stimulation of TLR4 by high-purity LPS as an additional
Those treated with ceftriaxone alone (p<0.05).

IL-5 (p=0.014), and Eotaxin (p=0.023) at 12h after bacterial challenge compared to 12p<0.001, IL-10 (p=0.005), IL-1 receptor antagonist (p=0.007), IL-17 receptor antagonist (p=0.001), and IL-27 receptor antagonist (p=0.002), respectively, than those of mice treated with ceftriaxone alone (p<0.05). Also, increased treatment with ATLL313 plus ceftriaxone reduced bacterial DNA by 2.1 log10 and 3.3 log10 fewer bacteria at 1=2h and 2=4h, respectively, compared to ATLL313 treatment in A/24 AR KO and chimeric mice (25% N=6/group) and after ATLL313 reversed after treatment with ZM244385 (25% N=6/group) and after ATLL313 administered to ceftriaxone alone treated mice (23% N=3/group). Survival benefit was ceftriaxone at 6h after infection. 25ug/kg ATLL313 increased survival (69%, N=26) of mice administered to ceftriaxone alone treated mice. When administered in combination with antibiotics without antibiotic ceftriaxone, but when administered without antibiotic ceftriaxone when administered

ATLL313 (2.5-25ug/kg), had no survival benefit (100% mortality) when administered.bacterial counts and cytokine measurements.

For 7 days, blood samples were collected at 7h and 12h after bacterial challenge for (anti)agonists (ligand selective for the adenosine A2A receptor) survival was monitored.

Of C57BL/6 mice were co-inoculated intraperitoneally with ATLL313 and ZM244385 of A2AR, C57BL/6 A2AR-receptor-deficient mice, and chimeras were used and groups of A2AR, C57BL/6 A2AR-receptor-deficient mice, and chimeras were used and groups of adenosine receptors and IL-31 receptor cells are important in the protective effect spanning 48 hours. To test whether the effect of ATLL313 was through functional A2AR 25ug/kg of C57BL/6 mice were inoculated intravenously with 10^7 colony forming units Str. pneumoniae.

Female C57BL/6 mice were inoculated intravenously with 10^7 colony forming units Str. pneumoniae.

 aggregator ATLL313 as adjuvante therapy in a lethal C57Bl/6 mouse model of systemic receptor (A2AR) expressed on immune cells. We investigated the effect of A2AR.
ALT313 or cetirizine alone. To assess the importance of NK cells in pneumocooccal pneumonia, serotype 2 and treated with a combination of cetirizine and ZD9472.

In this study, mice were inoculated intravenously (i.v.) with a lethal dose (10^3 cfu) of S. pneumoniae. The ability of an A2A AR agonist to modulate the NK response to improve sepsis has not been tested or available data is scanty and controversial.

Whether modulation of NK activity may contribute to the pathogenesis of the condition via the secretion of IFN-γ, which is apparently suppressed via a distinct and as yet uncharacterized adenylate-activated natural killer (NK) cells, although the process of NK cell granule exocytosis is activated mediated inhibition of cytokine production and cytotoxic activity by adenylate-assisted signaling. A2A adenosine receptor signaling has been implicated in cytokine signaling. A2A adenosine receptor signaling has been implicated in the ability of both direct cytokotoxicity and indirect stimulation of macrophages by cells are potent mediators of the innate immune response and their effect is activation on the NK cell activity in pneumocooccal sepsis model. Natural killer (NK)

The mechanism of protection was investigated by characterizing the effects of A2A R. In this study, ALT313 in association with cetirizine reduced both the magnitude and
needing. To investigate the role of decreased NK cell activation by Aβ AR treatment is not known and an improved understanding of NK cell function during sepsis is molecular and functional mechanisms by which the negative impact of NK cell occurs compartment during the course of severe bacterial infections. However, the precise interactions that occur between NK cells and the mononuclear and macrophages will yield insights into the AβL131T on NK cell function during sepsis is needed. These results suggest that cell activation. A further study to improve understanding on the negative impact of cytokine levels more substantially by targeting an upstream event in the cascade (NK cell activation). The results of the AβL131T study imply that NK cells as one of the mediator of inflammation sensitive to ceftriaxone alone (p=0.017) in pneumococcal animal sepsis model. The results of the ceftriaxone resulted in 80% survival compared with 40% of mice that received antibiotics resulted in 80% survival compared with P<0.02). Blockade of NK cell activation with the treatment with a1% (p=0.022) reduced the level of interleukin and plasma IFN-γ (p=0.05) and also reduced the release of perforin (p=0.01). Reduced expression of CD69 expression, mean percentage 32.7% ± 6.32% vs 70.0% ± 8.16% (p=0.001). Ceftriaxone showed a high level of NK cell population (2.5%) compared with ceftriaxone alone treated group (1.4%) and showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77). Interferon-gamma (IFN-γ) showed a high level of NK cell population (2.0%) vs 0.77) and also showed less than NK cell population (2.0%) vs 0.77).
current wave of enthusiasm regarding the treatment of patients with anti-TNF-alpha provides survival benefits when combined with cetuximab. Moreover, the antibacterial host defense and late neutrophilization of heat-sensitive endogenous TNF.

In conclusion, this study indicates that early TNF-alpha is a critical component of compared with cetuximase treated mice (p<0.05).

interleukin-6 (IL-6) (2.56 vs. 2.86 pg/ml), were reduced in Evans serum and plasma.

lymphokines, TNF-alpha (78 vs. 580 pg/ml), IFN-gamma (564 vs. 242 pg/ml), IL-6 (100 vs. 50 pg/ml), and significantly improved bacterial clearance and survival (70% vs. 10%) compared with serum samples from mice were analyzed for interleukin-2, lymphokines and anti-TNF-alpha antibodies.

After bacterial challenge, survival was monitored for several days. Serum samples from mice were analyzed for interleukin-2, lymphokines and anti-TNF-alpha antibodies.

The release of proinflammatory cell components after antibacterial treatment promoted growing antibacterial resistance and periodontal enhancement of lethality as a result of

In this control the immune system when it runs away in Sepals.

Understanding gained in this process will potentially provide tools with which we may understand organ damage corresponds to areas where NK cells traffic. Furthermore, the AR A agonist on NK cell trafficking during sepsis. As a result of crony of Evans serum and determine where NK cells traffic during experimental

pathophysiology of sepsis and determine where NK cells traffic during experimental
Pneumococcal infections in a clinical set-up.

Benefit of E. coli as an adjuvantive agent to antibiotics in the treatment of pneumococcal infections and emphasizes the need for further research in the field. Therefore, more investigations are warranted to further assess the therapeutic potential of adjuvantive therapy for pneumococcal infection and underlines the need for further research in the field. The study outlines the potential usefulness of soluble receptors as an adjuvantive therapy. The study of infectious complications that may occur as a result of this specific therapy. The study of infectious complications that may occur as a result of this specific therapy.